Root/
1 | /* |
2 | * AMD64 class Memory Controller kernel module |
3 | * |
4 | * Copyright (c) 2009 SoftwareBitMaker. |
5 | * Copyright (c) 2009 Advanced Micro Devices, Inc. |
6 | * |
7 | * This file may be distributed under the terms of the |
8 | * GNU General Public License. |
9 | * |
10 | * Originally Written by Thayne Harbaugh |
11 | * |
12 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: |
13 | * - K8 CPU Revision D and greater support |
14 | * |
15 | * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>: |
16 | * - Module largely rewritten, with new (and hopefully correct) |
17 | * code for dealing with node and chip select interleaving, |
18 | * various code cleanup, and bug fixes |
19 | * - Added support for memory hoisting using DRAM hole address |
20 | * register |
21 | * |
22 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: |
23 | * -K8 Rev (1207) revision support added, required Revision |
24 | * specific mini-driver code to support Rev F as well as |
25 | * prior revisions |
26 | * |
27 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: |
28 | * -Family 10h revision support added. New PCI Device IDs, |
29 | * indicating new changes. Actual registers modified |
30 | * were slight, less than the Rev E to Rev F transition |
31 | * but changing the PCI Device ID was the proper thing to |
32 | * do, as it provides for almost automactic family |
33 | * detection. The mods to Rev F required more family |
34 | * information detection. |
35 | * |
36 | * Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>: |
37 | * - misc fixes and code cleanups |
38 | * |
39 | * This module is based on the following documents |
40 | * (available from http://www.amd.com/): |
41 | * |
42 | * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD |
43 | * Opteron Processors |
44 | * AMD publication #: 26094 |
45 | *` Revision: 3.26 |
46 | * |
47 | * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh |
48 | * Processors |
49 | * AMD publication #: 32559 |
50 | * Revision: 3.00 |
51 | * Issue Date: May 2006 |
52 | * |
53 | * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h |
54 | * Processors |
55 | * AMD publication #: 31116 |
56 | * Revision: 3.00 |
57 | * Issue Date: September 07, 2007 |
58 | * |
59 | * Sections in the first 2 documents are no longer in sync with each other. |
60 | * The Family 10h BKDG was totally re-written from scratch with a new |
61 | * presentation model. |
62 | * Therefore, comments that refer to a Document section might be off. |
63 | */ |
64 | |
65 | #include <linux/module.h> |
66 | #include <linux/ctype.h> |
67 | #include <linux/init.h> |
68 | #include <linux/pci.h> |
69 | #include <linux/pci_ids.h> |
70 | #include <linux/slab.h> |
71 | #include <linux/mmzone.h> |
72 | #include <linux/edac.h> |
73 | #include <asm/msr.h> |
74 | #include "edac_core.h" |
75 | #include "mce_amd.h" |
76 | |
77 | #define amd64_debug(fmt, arg...) \ |
78 | edac_printk(KERN_DEBUG, "amd64", fmt, ##arg) |
79 | |
80 | #define amd64_info(fmt, arg...) \ |
81 | edac_printk(KERN_INFO, "amd64", fmt, ##arg) |
82 | |
83 | #define amd64_notice(fmt, arg...) \ |
84 | edac_printk(KERN_NOTICE, "amd64", fmt, ##arg) |
85 | |
86 | #define amd64_warn(fmt, arg...) \ |
87 | edac_printk(KERN_WARNING, "amd64", fmt, ##arg) |
88 | |
89 | #define amd64_err(fmt, arg...) \ |
90 | edac_printk(KERN_ERR, "amd64", fmt, ##arg) |
91 | |
92 | #define amd64_mc_warn(mci, fmt, arg...) \ |
93 | edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg) |
94 | |
95 | #define amd64_mc_err(mci, fmt, arg...) \ |
96 | edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg) |
97 | |
98 | /* |
99 | * Throughout the comments in this code, the following terms are used: |
100 | * |
101 | * SysAddr, DramAddr, and InputAddr |
102 | * |
103 | * These terms come directly from the amd64 documentation |
104 | * (AMD publication #26094). They are defined as follows: |
105 | * |
106 | * SysAddr: |
107 | * This is a physical address generated by a CPU core or a device |
108 | * doing DMA. If generated by a CPU core, a SysAddr is the result of |
109 | * a virtual to physical address translation by the CPU core's address |
110 | * translation mechanism (MMU). |
111 | * |
112 | * DramAddr: |
113 | * A DramAddr is derived from a SysAddr by subtracting an offset that |
114 | * depends on which node the SysAddr maps to and whether the SysAddr |
115 | * is within a range affected by memory hoisting. The DRAM Base |
116 | * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers |
117 | * determine which node a SysAddr maps to. |
118 | * |
119 | * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr |
120 | * is within the range of addresses specified by this register, then |
121 | * a value x from the DHAR is subtracted from the SysAddr to produce a |
122 | * DramAddr. Here, x represents the base address for the node that |
123 | * the SysAddr maps to plus an offset due to memory hoisting. See |
124 | * section 3.4.8 and the comments in amd64_get_dram_hole_info() and |
125 | * sys_addr_to_dram_addr() below for more information. |
126 | * |
127 | * If the SysAddr is not affected by the DHAR then a value y is |
128 | * subtracted from the SysAddr to produce a DramAddr. Here, y is the |
129 | * base address for the node that the SysAddr maps to. See section |
130 | * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more |
131 | * information. |
132 | * |
133 | * InputAddr: |
134 | * A DramAddr is translated to an InputAddr before being passed to the |
135 | * memory controller for the node that the DramAddr is associated |
136 | * with. The memory controller then maps the InputAddr to a csrow. |
137 | * If node interleaving is not in use, then the InputAddr has the same |
138 | * value as the DramAddr. Otherwise, the InputAddr is produced by |
139 | * discarding the bits used for node interleaving from the DramAddr. |
140 | * See section 3.4.4 for more information. |
141 | * |
142 | * The memory controller for a given node uses its DRAM CS Base and |
143 | * DRAM CS Mask registers to map an InputAddr to a csrow. See |
144 | * sections 3.5.4 and 3.5.5 for more information. |
145 | */ |
146 | |
147 | #define EDAC_AMD64_VERSION "3.4.0" |
148 | #define EDAC_MOD_STR "amd64_edac" |
149 | |
150 | /* Extended Model from CPUID, for CPU Revision numbers */ |
151 | #define K8_REV_D 1 |
152 | #define K8_REV_E 2 |
153 | #define K8_REV_F 4 |
154 | |
155 | /* Hardware limit on ChipSelect rows per MC and processors per system */ |
156 | #define NUM_CHIPSELECTS 8 |
157 | #define DRAM_RANGES 8 |
158 | |
159 | #define ON true |
160 | #define OFF false |
161 | |
162 | /* |
163 | * Create a contiguous bitmask starting at bit position @lo and ending at |
164 | * position @hi. For example |
165 | * |
166 | * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000. |
167 | */ |
168 | #define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) |
169 | |
170 | /* |
171 | * PCI-defined configuration space registers |
172 | */ |
173 | #define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601 |
174 | #define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602 |
175 | |
176 | |
177 | /* |
178 | * Function 1 - Address Map |
179 | */ |
180 | #define DRAM_BASE_LO 0x40 |
181 | #define DRAM_LIMIT_LO 0x44 |
182 | |
183 | #define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7)) |
184 | #define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3)) |
185 | #define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7)) |
186 | #define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7)) |
187 | |
188 | #define DHAR 0xf0 |
189 | #define dhar_valid(pvt) ((pvt)->dhar & BIT(0)) |
190 | #define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1)) |
191 | #define dhar_base(pvt) ((pvt)->dhar & 0xff000000) |
192 | #define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16) |
193 | |
194 | /* NOTE: Extra mask bit vs K8 */ |
195 | #define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16) |
196 | |
197 | #define DCT_CFG_SEL 0x10C |
198 | |
199 | #define DRAM_LOCAL_NODE_BASE 0x120 |
200 | #define DRAM_LOCAL_NODE_LIM 0x124 |
201 | |
202 | #define DRAM_BASE_HI 0x140 |
203 | #define DRAM_LIMIT_HI 0x144 |
204 | |
205 | |
206 | /* |
207 | * Function 2 - DRAM controller |
208 | */ |
209 | #define DCSB0 0x40 |
210 | #define DCSB1 0x140 |
211 | #define DCSB_CS_ENABLE BIT(0) |
212 | |
213 | #define DCSM0 0x60 |
214 | #define DCSM1 0x160 |
215 | |
216 | #define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE) |
217 | |
218 | #define DBAM0 0x80 |
219 | #define DBAM1 0x180 |
220 | |
221 | /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */ |
222 | #define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF) |
223 | |
224 | #define DBAM_MAX_VALUE 11 |
225 | |
226 | #define DCLR0 0x90 |
227 | #define DCLR1 0x190 |
228 | #define REVE_WIDTH_128 BIT(16) |
229 | #define WIDTH_128 BIT(11) |
230 | |
231 | #define DCHR0 0x94 |
232 | #define DCHR1 0x194 |
233 | #define DDR3_MODE BIT(8) |
234 | |
235 | #define DCT_SEL_LO 0x110 |
236 | #define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800) |
237 | #define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3) |
238 | #define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0)) |
239 | #define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2)) |
240 | |
241 | #define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4))) |
242 | |
243 | #define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5)) |
244 | #define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10)) |
245 | |
246 | #define SWAP_INTLV_REG 0x10c |
247 | |
248 | #define DCT_SEL_HI 0x114 |
249 | |
250 | /* |
251 | * Function 3 - Misc Control |
252 | */ |
253 | #define NBCTL 0x40 |
254 | |
255 | #define NBCFG 0x44 |
256 | #define NBCFG_CHIPKILL BIT(23) |
257 | #define NBCFG_ECC_ENABLE BIT(22) |
258 | |
259 | /* F3x48: NBSL */ |
260 | #define F10_NBSL_EXT_ERR_ECC 0x8 |
261 | #define NBSL_PP_OBS 0x2 |
262 | |
263 | #define SCRCTRL 0x58 |
264 | |
265 | #define F10_ONLINE_SPARE 0xB0 |
266 | #define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1) |
267 | #define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7) |
268 | |
269 | #define F10_NB_ARRAY_ADDR 0xB8 |
270 | #define F10_NB_ARRAY_DRAM_ECC BIT(31) |
271 | |
272 | /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */ |
273 | #define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1) |
274 | |
275 | #define F10_NB_ARRAY_DATA 0xBC |
276 | #define SET_NB_DRAM_INJECTION_WRITE(word, bits) \ |
277 | (BIT(((word) & 0xF) + 20) | \ |
278 | BIT(17) | bits) |
279 | #define SET_NB_DRAM_INJECTION_READ(word, bits) \ |
280 | (BIT(((word) & 0xF) + 20) | \ |
281 | BIT(16) | bits) |
282 | |
283 | #define NBCAP 0xE8 |
284 | #define NBCAP_CHIPKILL BIT(4) |
285 | #define NBCAP_SECDED BIT(3) |
286 | #define NBCAP_DCT_DUAL BIT(0) |
287 | |
288 | #define EXT_NB_MCA_CFG 0x180 |
289 | |
290 | /* MSRs */ |
291 | #define MSR_MCGCTL_NBE BIT(4) |
292 | |
293 | /* AMD sets the first MC device at device ID 0x18. */ |
294 | static inline u8 get_node_id(struct pci_dev *pdev) |
295 | { |
296 | return PCI_SLOT(pdev->devfn) - 0x18; |
297 | } |
298 | |
299 | enum amd_families { |
300 | K8_CPUS = 0, |
301 | F10_CPUS, |
302 | F15_CPUS, |
303 | NUM_FAMILIES, |
304 | }; |
305 | |
306 | /* Error injection control structure */ |
307 | struct error_injection { |
308 | u32 section; |
309 | u32 word; |
310 | u32 bit_map; |
311 | }; |
312 | |
313 | /* low and high part of PCI config space regs */ |
314 | struct reg_pair { |
315 | u32 lo, hi; |
316 | }; |
317 | |
318 | /* |
319 | * See F1x[1, 0][7C:40] DRAM Base/Limit Registers |
320 | */ |
321 | struct dram_range { |
322 | struct reg_pair base; |
323 | struct reg_pair lim; |
324 | }; |
325 | |
326 | /* A DCT chip selects collection */ |
327 | struct chip_select { |
328 | u32 csbases[NUM_CHIPSELECTS]; |
329 | u8 b_cnt; |
330 | |
331 | u32 csmasks[NUM_CHIPSELECTS]; |
332 | u8 m_cnt; |
333 | }; |
334 | |
335 | struct amd64_pvt { |
336 | struct low_ops *ops; |
337 | |
338 | /* pci_device handles which we utilize */ |
339 | struct pci_dev *F1, *F2, *F3; |
340 | |
341 | unsigned mc_node_id; /* MC index of this MC node */ |
342 | int ext_model; /* extended model value of this node */ |
343 | int channel_count; |
344 | |
345 | /* Raw registers */ |
346 | u32 dclr0; /* DRAM Configuration Low DCT0 reg */ |
347 | u32 dclr1; /* DRAM Configuration Low DCT1 reg */ |
348 | u32 dchr0; /* DRAM Configuration High DCT0 reg */ |
349 | u32 dchr1; /* DRAM Configuration High DCT1 reg */ |
350 | u32 nbcap; /* North Bridge Capabilities */ |
351 | u32 nbcfg; /* F10 North Bridge Configuration */ |
352 | u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */ |
353 | u32 dhar; /* DRAM Hoist reg */ |
354 | u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */ |
355 | u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */ |
356 | |
357 | /* one for each DCT */ |
358 | struct chip_select csels[2]; |
359 | |
360 | /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */ |
361 | struct dram_range ranges[DRAM_RANGES]; |
362 | |
363 | u64 top_mem; /* top of memory below 4GB */ |
364 | u64 top_mem2; /* top of memory above 4GB */ |
365 | |
366 | u32 dct_sel_lo; /* DRAM Controller Select Low */ |
367 | u32 dct_sel_hi; /* DRAM Controller Select High */ |
368 | u32 online_spare; /* On-Line spare Reg */ |
369 | |
370 | /* x4 or x8 syndromes in use */ |
371 | u8 ecc_sym_sz; |
372 | |
373 | /* place to store error injection parameters prior to issue */ |
374 | struct error_injection injection; |
375 | }; |
376 | |
377 | static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i) |
378 | { |
379 | u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8; |
380 | |
381 | if (boot_cpu_data.x86 == 0xf) |
382 | return addr; |
383 | |
384 | return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr; |
385 | } |
386 | |
387 | static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i) |
388 | { |
389 | u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff; |
390 | |
391 | if (boot_cpu_data.x86 == 0xf) |
392 | return lim; |
393 | |
394 | return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim; |
395 | } |
396 | |
397 | static inline u16 extract_syndrome(u64 status) |
398 | { |
399 | return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00); |
400 | } |
401 | |
402 | /* |
403 | * per-node ECC settings descriptor |
404 | */ |
405 | struct ecc_settings { |
406 | u32 old_nbctl; |
407 | bool nbctl_valid; |
408 | |
409 | struct flags { |
410 | unsigned long nb_mce_enable:1; |
411 | unsigned long nb_ecc_prev:1; |
412 | } flags; |
413 | }; |
414 | |
415 | #ifdef CONFIG_EDAC_DEBUG |
416 | int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci); |
417 | void amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci); |
418 | |
419 | #else |
420 | static inline int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci) |
421 | { |
422 | return 0; |
423 | } |
424 | static void inline amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci) |
425 | { |
426 | } |
427 | #endif |
428 | |
429 | #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION |
430 | int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci); |
431 | void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci); |
432 | |
433 | #else |
434 | static inline int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci) |
435 | { |
436 | return 0; |
437 | } |
438 | static inline void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci) |
439 | { |
440 | } |
441 | #endif |
442 | |
443 | /* |
444 | * Each of the PCI Device IDs types have their own set of hardware accessor |
445 | * functions and per device encoding/decoding logic. |
446 | */ |
447 | struct low_ops { |
448 | int (*early_channel_count) (struct amd64_pvt *pvt); |
449 | void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr, |
450 | u16 syndrome); |
451 | int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode); |
452 | int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset, |
453 | u32 *val, const char *func); |
454 | }; |
455 | |
456 | struct amd64_family_type { |
457 | const char *ctl_name; |
458 | u16 f1_id, f3_id; |
459 | struct low_ops ops; |
460 | }; |
461 | |
462 | int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, |
463 | u32 val, const char *func); |
464 | |
465 | #define amd64_read_pci_cfg(pdev, offset, val) \ |
466 | __amd64_read_pci_cfg_dword(pdev, offset, val, __func__) |
467 | |
468 | #define amd64_write_pci_cfg(pdev, offset, val) \ |
469 | __amd64_write_pci_cfg_dword(pdev, offset, val, __func__) |
470 | |
471 | #define amd64_read_dct_pci_cfg(pvt, offset, val) \ |
472 | pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__) |
473 | |
474 | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, |
475 | u64 *hole_offset, u64 *hole_size); |
476 | |
477 | #define to_mci(k) container_of(k, struct mem_ctl_info, dev) |
478 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9