Root/drivers/edac/i3000_edac.c

1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/edac.h>
17#include "edac_core.h"
18
19#define I3000_REVISION "1.1"
20
21#define EDAC_MOD_STR "i3000_edac"
22
23#define I3000_RANKS 8
24#define I3000_RANKS_PER_CHANNEL 4
25#define I3000_CHANNELS 2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK 0xffffc000
31#define I3000_MMR_WINDOW_SIZE 16384
32
33#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34                 *
35                 * 7:1 reserved
36                 * 0 bit 32 of address
37                 */
38#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39                 *
40                 * 31:7 address
41                 * 6:1 reserved
42                 * 0 Error channel 0/1
43                 */
44#define I3000_DEAP_GRAIN (1 << 7)
45
46/*
47 * Helper functions to decode the DEAP/EDEAP hardware registers.
48 *
49 * The type promotion here is deliberate; we're deriving an
50 * unsigned long pfn and offset from hardware regs which are u8/u32.
51 */
52
53static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54{
55    deap >>= PAGE_SHIFT;
56    deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57    return deap;
58}
59
60static inline unsigned long deap_offset(u32 deap)
61{
62    return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63}
64
65static inline int deap_channel(u32 deap)
66{
67    return deap & 1;
68}
69
70#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
71                 *
72                 * 7:0 DRAM ECC Syndrome
73                 */
74
75#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
76                 *
77                 * 15:12 reserved
78                 * 11 MCH Thermal Sensor Event
79                 * for SMI/SCI/SERR
80                 * 10 reserved
81                 * 9 LOCK to non-DRAM Memory Flag (LCKF)
82                 * 8 Received Refresh Timeout Flag (RRTOF)
83                 * 7:2 reserved
84                 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
85                 * 0 Single-bit DRAM ECC Error Flag (DSERR)
86                 */
87#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
88#define I3000_ERRSTS_UE 0x0002
89#define I3000_ERRSTS_CE 0x0001
90
91#define I3000_ERRCMD 0xca /* Error Command (16b)
92                 *
93                 * 15:12 reserved
94                 * 11 SERR on MCH Thermal Sensor Event
95                 * (TSESERR)
96                 * 10 reserved
97                 * 9 SERR on LOCK to non-DRAM Memory
98                 * (LCKERR)
99                 * 8 SERR on DRAM Refresh Timeout
100                 * (DRTOERR)
101                 * 7:2 reserved
102                 * 1 SERR Multi-Bit DRAM ECC Error
103                 * (DMERR)
104                 * 0 SERR on Single-Bit ECC Error
105                 * (DSERR)
106                 */
107
108/* Intel MMIO register space - device 0 function 0 - MMR space */
109
110#define I3000_DRB_SHIFT 25 /* 32MiB grain */
111
112#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
113                 *
114                 * 7:0 Channel 0 DRAM Rank Boundary Address
115                 */
116#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
117                 *
118                 * 7:0 Channel 1 DRAM Rank Boundary Address
119                 */
120
121#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
122                 *
123                 * 7 reserved
124                 * 6:4 DRAM odd Rank Attribute
125                 * 3 reserved
126                 * 2:0 DRAM even Rank Attribute
127                 *
128                 * Each attribute defines the page
129                 * size of the corresponding rank:
130                 * 000: unpopulated
131                 * 001: reserved
132                 * 010: 4 KB
133                 * 011: 8 KB
134                 * 100: 16 KB
135                 * Others: reserved
136                 */
137#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
138
139static inline unsigned char odd_rank_attrib(unsigned char dra)
140{
141    return (dra & 0x70) >> 4;
142}
143
144static inline unsigned char even_rank_attrib(unsigned char dra)
145{
146    return dra & 0x07;
147}
148
149#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
150                 *
151                 * 31:30 reserved
152                 * 29 Initialization Complete (IC)
153                 * 28:11 reserved
154                 * 10:8 Refresh Mode Select (RMS)
155                 * 7 reserved
156                 * 6:4 Mode Select (SMS)
157                 * 3:2 reserved
158                 * 1:0 DRAM Type (DT)
159                 */
160
161#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
162                 *
163                 * 31 Enhanced Addressing Enable (ENHADE)
164                 * 30:0 reserved
165                 */
166
167enum i3000p_chips {
168    I3000 = 0,
169};
170
171struct i3000_dev_info {
172    const char *ctl_name;
173};
174
175struct i3000_error_info {
176    u16 errsts;
177    u8 derrsyn;
178    u8 edeap;
179    u32 deap;
180    u16 errsts2;
181};
182
183static const struct i3000_dev_info i3000_devs[] = {
184    [I3000] = {
185        .ctl_name = "i3000"},
186};
187
188static struct pci_dev *mci_pdev;
189static int i3000_registered = 1;
190static struct edac_pci_ctl_info *i3000_pci;
191
192static void i3000_get_error_info(struct mem_ctl_info *mci,
193                 struct i3000_error_info *info)
194{
195    struct pci_dev *pdev;
196
197    pdev = to_pci_dev(mci->pdev);
198
199    /*
200     * This is a mess because there is no atomic way to read all the
201     * registers at once and the registers can transition from CE being
202     * overwritten by UE.
203     */
204    pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205    if (!(info->errsts & I3000_ERRSTS_BITS))
206        return;
207    pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208    pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209    pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210    pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211
212    /*
213     * If the error is the same for both reads then the first set
214     * of reads is valid. If there is a change then there is a CE
215     * with no info and the second set of reads is valid and
216     * should be UE info.
217     */
218    if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219        pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220        pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221        pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222    }
223
224    /*
225     * Clear any error bits.
226     * (Yes, we really clear bits by writing 1 to them.)
227     */
228    pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229             I3000_ERRSTS_BITS);
230}
231
232static int i3000_process_error_info(struct mem_ctl_info *mci,
233                struct i3000_error_info *info,
234                int handle_errors)
235{
236    int row, multi_chan, channel;
237    unsigned long pfn, offset;
238
239    multi_chan = mci->csrows[0]->nr_channels - 1;
240
241    if (!(info->errsts & I3000_ERRSTS_BITS))
242        return 0;
243
244    if (!handle_errors)
245        return 1;
246
247    if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248        edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
249                     -1, -1, -1,
250                     "UE overwrote CE", "");
251        info->errsts = info->errsts2;
252    }
253
254    pfn = deap_pfn(info->edeap, info->deap);
255    offset = deap_offset(info->deap);
256    channel = deap_channel(info->deap);
257
258    row = edac_mc_find_csrow_by_page(mci, pfn);
259
260    if (info->errsts & I3000_ERRSTS_UE)
261        edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
262                     pfn, offset, 0,
263                     row, -1, -1,
264                     "i3000 UE", "");
265    else
266        edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
267                     pfn, offset, info->derrsyn,
268                     row, multi_chan ? channel : 0, -1,
269                     "i3000 CE", "");
270
271    return 1;
272}
273
274static void i3000_check(struct mem_ctl_info *mci)
275{
276    struct i3000_error_info info;
277
278    edac_dbg(1, "MC%d\n", mci->mc_idx);
279    i3000_get_error_info(mci, &info);
280    i3000_process_error_info(mci, &info, 1);
281}
282
283static int i3000_is_interleaved(const unsigned char *c0dra,
284                const unsigned char *c1dra,
285                const unsigned char *c0drb,
286                const unsigned char *c1drb)
287{
288    int i;
289
290    /*
291     * If the channels aren't populated identically then
292     * we're not interleaved.
293     */
294    for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
295        if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
296            even_rank_attrib(c0dra[i]) !=
297                        even_rank_attrib(c1dra[i]))
298            return 0;
299
300    /*
301     * If the rank boundaries for the two channels are different
302     * then we're not interleaved.
303     */
304    for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
305        if (c0drb[i] != c1drb[i])
306            return 0;
307
308    return 1;
309}
310
311static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
312{
313    int rc;
314    int i, j;
315    struct mem_ctl_info *mci = NULL;
316    struct edac_mc_layer layers[2];
317    unsigned long last_cumul_size, nr_pages;
318    int interleaved, nr_channels;
319    unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
320    unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
321    unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
322    unsigned long mchbar;
323    void __iomem *window;
324
325    edac_dbg(0, "MC:\n");
326
327    pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
328    mchbar &= I3000_MCHBAR_MASK;
329    window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
330    if (!window) {
331        printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
332            mchbar);
333        return -ENODEV;
334    }
335
336    c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
337    c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
338    c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
339    c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
340
341    for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
342        c0drb[i] = readb(window + I3000_C0DRB + i);
343        c1drb[i] = readb(window + I3000_C1DRB + i);
344    }
345
346    iounmap(window);
347
348    /*
349     * Figure out how many channels we have.
350     *
351     * If we have what the datasheet calls "asymmetric channels"
352     * (essentially the same as what was called "virtual single
353     * channel mode" in the i82875) then it's a single channel as
354     * far as EDAC is concerned.
355     */
356    interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
357    nr_channels = interleaved ? 2 : 1;
358
359    layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360    layers[0].size = I3000_RANKS / nr_channels;
361    layers[0].is_virt_csrow = true;
362    layers[1].type = EDAC_MC_LAYER_CHANNEL;
363    layers[1].size = nr_channels;
364    layers[1].is_virt_csrow = false;
365    mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
366    if (!mci)
367        return -ENOMEM;
368
369    edac_dbg(3, "MC: init mci\n");
370
371    mci->pdev = &pdev->dev;
372    mci->mtype_cap = MEM_FLAG_DDR2;
373
374    mci->edac_ctl_cap = EDAC_FLAG_SECDED;
375    mci->edac_cap = EDAC_FLAG_SECDED;
376
377    mci->mod_name = EDAC_MOD_STR;
378    mci->mod_ver = I3000_REVISION;
379    mci->ctl_name = i3000_devs[dev_idx].ctl_name;
380    mci->dev_name = pci_name(pdev);
381    mci->edac_check = i3000_check;
382    mci->ctl_page_to_phys = NULL;
383
384    /*
385     * The dram rank boundary (DRB) reg values are boundary addresses
386     * for each DRAM rank with a granularity of 32MB. DRB regs are
387     * cumulative; the last one will contain the total memory
388     * contained in all ranks.
389     *
390     * If we're in interleaved mode then we're only walking through
391     * the ranks of controller 0, so we double all the values we see.
392     */
393    for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
394        u8 value;
395        u32 cumul_size;
396        struct csrow_info *csrow = mci->csrows[i];
397
398        value = drb[i];
399        cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
400        if (interleaved)
401            cumul_size <<= 1;
402        edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
403        if (cumul_size == last_cumul_size)
404            continue;
405
406        csrow->first_page = last_cumul_size;
407        csrow->last_page = cumul_size - 1;
408        nr_pages = cumul_size - last_cumul_size;
409        last_cumul_size = cumul_size;
410
411        for (j = 0; j < nr_channels; j++) {
412            struct dimm_info *dimm = csrow->channels[j]->dimm;
413
414            dimm->nr_pages = nr_pages / nr_channels;
415            dimm->grain = I3000_DEAP_GRAIN;
416            dimm->mtype = MEM_DDR2;
417            dimm->dtype = DEV_UNKNOWN;
418            dimm->edac_mode = EDAC_UNKNOWN;
419        }
420    }
421
422    /*
423     * Clear any error bits.
424     * (Yes, we really clear bits by writing 1 to them.)
425     */
426    pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
427             I3000_ERRSTS_BITS);
428
429    rc = -ENODEV;
430    if (edac_mc_add_mc(mci)) {
431        edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
432        goto fail;
433    }
434
435    /* allocating generic PCI control info */
436    i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
437    if (!i3000_pci) {
438        printk(KERN_WARNING
439            "%s(): Unable to create PCI control\n",
440            __func__);
441        printk(KERN_WARNING
442            "%s(): PCI error report via EDAC not setup\n",
443            __func__);
444    }
445
446    /* get this far and it's successful */
447    edac_dbg(3, "MC: success\n");
448    return 0;
449
450fail:
451    if (mci)
452        edac_mc_free(mci);
453
454    return rc;
455}
456
457/* returns count (>= 0), or negative on error */
458static int __devinit i3000_init_one(struct pci_dev *pdev,
459                const struct pci_device_id *ent)
460{
461    int rc;
462
463    edac_dbg(0, "MC:\n");
464
465    if (pci_enable_device(pdev) < 0)
466        return -EIO;
467
468    rc = i3000_probe1(pdev, ent->driver_data);
469    if (!mci_pdev)
470        mci_pdev = pci_dev_get(pdev);
471
472    return rc;
473}
474
475static void __devexit i3000_remove_one(struct pci_dev *pdev)
476{
477    struct mem_ctl_info *mci;
478
479    edac_dbg(0, "\n");
480
481    if (i3000_pci)
482        edac_pci_release_generic_ctl(i3000_pci);
483
484    mci = edac_mc_del_mc(&pdev->dev);
485    if (!mci)
486        return;
487
488    edac_mc_free(mci);
489}
490
491static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
492    {
493     PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
494     I3000},
495    {
496     0,
497     } /* 0 terminated list. */
498};
499
500MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
501
502static struct pci_driver i3000_driver = {
503    .name = EDAC_MOD_STR,
504    .probe = i3000_init_one,
505    .remove = __devexit_p(i3000_remove_one),
506    .id_table = i3000_pci_tbl,
507};
508
509static int __init i3000_init(void)
510{
511    int pci_rc;
512
513    edac_dbg(3, "MC:\n");
514
515       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
516       opstate_init();
517
518    pci_rc = pci_register_driver(&i3000_driver);
519    if (pci_rc < 0)
520        goto fail0;
521
522    if (!mci_pdev) {
523        i3000_registered = 0;
524        mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
525                    PCI_DEVICE_ID_INTEL_3000_HB, NULL);
526        if (!mci_pdev) {
527            edac_dbg(0, "i3000 pci_get_device fail\n");
528            pci_rc = -ENODEV;
529            goto fail1;
530        }
531
532        pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
533        if (pci_rc < 0) {
534            edac_dbg(0, "i3000 init fail\n");
535            pci_rc = -ENODEV;
536            goto fail1;
537        }
538    }
539
540    return 0;
541
542fail1:
543    pci_unregister_driver(&i3000_driver);
544
545fail0:
546    if (mci_pdev)
547        pci_dev_put(mci_pdev);
548
549    return pci_rc;
550}
551
552static void __exit i3000_exit(void)
553{
554    edac_dbg(3, "MC:\n");
555
556    pci_unregister_driver(&i3000_driver);
557    if (!i3000_registered) {
558        i3000_remove_one(mci_pdev);
559        pci_dev_put(mci_pdev);
560    }
561}
562
563module_init(i3000_init);
564module_exit(i3000_exit);
565
566MODULE_LICENSE("GPL");
567MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
568MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
569
570module_param(edac_op_state, int, 0444);
571MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
572

Archive Download this file



interactive