Root/
1 | /* |
2 | * Intel 3000/3010 Memory Controller kernel module |
3 | * Copyright (C) 2007 Akamai Technologies, Inc. |
4 | * Shamelessly copied from: |
5 | * Intel D82875P Memory Controller kernel module |
6 | * (C) 2003 Linux Networx (http://lnxi.com) |
7 | * |
8 | * This file may be distributed under the terms of the |
9 | * GNU General Public License. |
10 | */ |
11 | |
12 | #include <linux/module.h> |
13 | #include <linux/init.h> |
14 | #include <linux/pci.h> |
15 | #include <linux/pci_ids.h> |
16 | #include <linux/edac.h> |
17 | #include "edac_core.h" |
18 | |
19 | #define I3000_REVISION "1.1" |
20 | |
21 | #define EDAC_MOD_STR "i3000_edac" |
22 | |
23 | #define I3000_RANKS 8 |
24 | #define I3000_RANKS_PER_CHANNEL 4 |
25 | #define I3000_CHANNELS 2 |
26 | |
27 | /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ |
28 | |
29 | #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ |
30 | #define I3000_MCHBAR_MASK 0xffffc000 |
31 | #define I3000_MMR_WINDOW_SIZE 16384 |
32 | |
33 | #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) |
34 | * |
35 | * 7:1 reserved |
36 | * 0 bit 32 of address |
37 | */ |
38 | #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) |
39 | * |
40 | * 31:7 address |
41 | * 6:1 reserved |
42 | * 0 Error channel 0/1 |
43 | */ |
44 | #define I3000_DEAP_GRAIN (1 << 7) |
45 | |
46 | /* |
47 | * Helper functions to decode the DEAP/EDEAP hardware registers. |
48 | * |
49 | * The type promotion here is deliberate; we're deriving an |
50 | * unsigned long pfn and offset from hardware regs which are u8/u32. |
51 | */ |
52 | |
53 | static inline unsigned long deap_pfn(u8 edeap, u32 deap) |
54 | { |
55 | deap >>= PAGE_SHIFT; |
56 | deap |= (edeap & 1) << (32 - PAGE_SHIFT); |
57 | return deap; |
58 | } |
59 | |
60 | static inline unsigned long deap_offset(u32 deap) |
61 | { |
62 | return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; |
63 | } |
64 | |
65 | static inline int deap_channel(u32 deap) |
66 | { |
67 | return deap & 1; |
68 | } |
69 | |
70 | #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) |
71 | * |
72 | * 7:0 DRAM ECC Syndrome |
73 | */ |
74 | |
75 | #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) |
76 | * |
77 | * 15:12 reserved |
78 | * 11 MCH Thermal Sensor Event |
79 | * for SMI/SCI/SERR |
80 | * 10 reserved |
81 | * 9 LOCK to non-DRAM Memory Flag (LCKF) |
82 | * 8 Received Refresh Timeout Flag (RRTOF) |
83 | * 7:2 reserved |
84 | * 1 Multi-bit DRAM ECC Error Flag (DMERR) |
85 | * 0 Single-bit DRAM ECC Error Flag (DSERR) |
86 | */ |
87 | #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ |
88 | #define I3000_ERRSTS_UE 0x0002 |
89 | #define I3000_ERRSTS_CE 0x0001 |
90 | |
91 | #define I3000_ERRCMD 0xca /* Error Command (16b) |
92 | * |
93 | * 15:12 reserved |
94 | * 11 SERR on MCH Thermal Sensor Event |
95 | * (TSESERR) |
96 | * 10 reserved |
97 | * 9 SERR on LOCK to non-DRAM Memory |
98 | * (LCKERR) |
99 | * 8 SERR on DRAM Refresh Timeout |
100 | * (DRTOERR) |
101 | * 7:2 reserved |
102 | * 1 SERR Multi-Bit DRAM ECC Error |
103 | * (DMERR) |
104 | * 0 SERR on Single-Bit ECC Error |
105 | * (DSERR) |
106 | */ |
107 | |
108 | /* Intel MMIO register space - device 0 function 0 - MMR space */ |
109 | |
110 | #define I3000_DRB_SHIFT 25 /* 32MiB grain */ |
111 | |
112 | #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) |
113 | * |
114 | * 7:0 Channel 0 DRAM Rank Boundary Address |
115 | */ |
116 | #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) |
117 | * |
118 | * 7:0 Channel 1 DRAM Rank Boundary Address |
119 | */ |
120 | |
121 | #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) |
122 | * |
123 | * 7 reserved |
124 | * 6:4 DRAM odd Rank Attribute |
125 | * 3 reserved |
126 | * 2:0 DRAM even Rank Attribute |
127 | * |
128 | * Each attribute defines the page |
129 | * size of the corresponding rank: |
130 | * 000: unpopulated |
131 | * 001: reserved |
132 | * 010: 4 KB |
133 | * 011: 8 KB |
134 | * 100: 16 KB |
135 | * Others: reserved |
136 | */ |
137 | #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ |
138 | |
139 | static inline unsigned char odd_rank_attrib(unsigned char dra) |
140 | { |
141 | return (dra & 0x70) >> 4; |
142 | } |
143 | |
144 | static inline unsigned char even_rank_attrib(unsigned char dra) |
145 | { |
146 | return dra & 0x07; |
147 | } |
148 | |
149 | #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) |
150 | * |
151 | * 31:30 reserved |
152 | * 29 Initialization Complete (IC) |
153 | * 28:11 reserved |
154 | * 10:8 Refresh Mode Select (RMS) |
155 | * 7 reserved |
156 | * 6:4 Mode Select (SMS) |
157 | * 3:2 reserved |
158 | * 1:0 DRAM Type (DT) |
159 | */ |
160 | |
161 | #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) |
162 | * |
163 | * 31 Enhanced Addressing Enable (ENHADE) |
164 | * 30:0 reserved |
165 | */ |
166 | |
167 | enum i3000p_chips { |
168 | I3000 = 0, |
169 | }; |
170 | |
171 | struct i3000_dev_info { |
172 | const char *ctl_name; |
173 | }; |
174 | |
175 | struct i3000_error_info { |
176 | u16 errsts; |
177 | u8 derrsyn; |
178 | u8 edeap; |
179 | u32 deap; |
180 | u16 errsts2; |
181 | }; |
182 | |
183 | static const struct i3000_dev_info i3000_devs[] = { |
184 | [I3000] = { |
185 | .ctl_name = "i3000"}, |
186 | }; |
187 | |
188 | static struct pci_dev *mci_pdev; |
189 | static int i3000_registered = 1; |
190 | static struct edac_pci_ctl_info *i3000_pci; |
191 | |
192 | static void i3000_get_error_info(struct mem_ctl_info *mci, |
193 | struct i3000_error_info *info) |
194 | { |
195 | struct pci_dev *pdev; |
196 | |
197 | pdev = to_pci_dev(mci->pdev); |
198 | |
199 | /* |
200 | * This is a mess because there is no atomic way to read all the |
201 | * registers at once and the registers can transition from CE being |
202 | * overwritten by UE. |
203 | */ |
204 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); |
205 | if (!(info->errsts & I3000_ERRSTS_BITS)) |
206 | return; |
207 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
208 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); |
209 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); |
210 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); |
211 | |
212 | /* |
213 | * If the error is the same for both reads then the first set |
214 | * of reads is valid. If there is a change then there is a CE |
215 | * with no info and the second set of reads is valid and |
216 | * should be UE info. |
217 | */ |
218 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
219 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
220 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); |
221 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); |
222 | } |
223 | |
224 | /* |
225 | * Clear any error bits. |
226 | * (Yes, we really clear bits by writing 1 to them.) |
227 | */ |
228 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
229 | I3000_ERRSTS_BITS); |
230 | } |
231 | |
232 | static int i3000_process_error_info(struct mem_ctl_info *mci, |
233 | struct i3000_error_info *info, |
234 | int handle_errors) |
235 | { |
236 | int row, multi_chan, channel; |
237 | unsigned long pfn, offset; |
238 | |
239 | multi_chan = mci->csrows[0]->nr_channels - 1; |
240 | |
241 | if (!(info->errsts & I3000_ERRSTS_BITS)) |
242 | return 0; |
243 | |
244 | if (!handle_errors) |
245 | return 1; |
246 | |
247 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
248 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, |
249 | -1, -1, -1, |
250 | "UE overwrote CE", ""); |
251 | info->errsts = info->errsts2; |
252 | } |
253 | |
254 | pfn = deap_pfn(info->edeap, info->deap); |
255 | offset = deap_offset(info->deap); |
256 | channel = deap_channel(info->deap); |
257 | |
258 | row = edac_mc_find_csrow_by_page(mci, pfn); |
259 | |
260 | if (info->errsts & I3000_ERRSTS_UE) |
261 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
262 | pfn, offset, 0, |
263 | row, -1, -1, |
264 | "i3000 UE", ""); |
265 | else |
266 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
267 | pfn, offset, info->derrsyn, |
268 | row, multi_chan ? channel : 0, -1, |
269 | "i3000 CE", ""); |
270 | |
271 | return 1; |
272 | } |
273 | |
274 | static void i3000_check(struct mem_ctl_info *mci) |
275 | { |
276 | struct i3000_error_info info; |
277 | |
278 | edac_dbg(1, "MC%d\n", mci->mc_idx); |
279 | i3000_get_error_info(mci, &info); |
280 | i3000_process_error_info(mci, &info, 1); |
281 | } |
282 | |
283 | static int i3000_is_interleaved(const unsigned char *c0dra, |
284 | const unsigned char *c1dra, |
285 | const unsigned char *c0drb, |
286 | const unsigned char *c1drb) |
287 | { |
288 | int i; |
289 | |
290 | /* |
291 | * If the channels aren't populated identically then |
292 | * we're not interleaved. |
293 | */ |
294 | for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) |
295 | if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || |
296 | even_rank_attrib(c0dra[i]) != |
297 | even_rank_attrib(c1dra[i])) |
298 | return 0; |
299 | |
300 | /* |
301 | * If the rank boundaries for the two channels are different |
302 | * then we're not interleaved. |
303 | */ |
304 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) |
305 | if (c0drb[i] != c1drb[i]) |
306 | return 0; |
307 | |
308 | return 1; |
309 | } |
310 | |
311 | static int i3000_probe1(struct pci_dev *pdev, int dev_idx) |
312 | { |
313 | int rc; |
314 | int i, j; |
315 | struct mem_ctl_info *mci = NULL; |
316 | struct edac_mc_layer layers[2]; |
317 | unsigned long last_cumul_size, nr_pages; |
318 | int interleaved, nr_channels; |
319 | unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; |
320 | unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; |
321 | unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; |
322 | unsigned long mchbar; |
323 | void __iomem *window; |
324 | |
325 | edac_dbg(0, "MC:\n"); |
326 | |
327 | pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); |
328 | mchbar &= I3000_MCHBAR_MASK; |
329 | window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); |
330 | if (!window) { |
331 | printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", |
332 | mchbar); |
333 | return -ENODEV; |
334 | } |
335 | |
336 | c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ |
337 | c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ |
338 | c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ |
339 | c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ |
340 | |
341 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { |
342 | c0drb[i] = readb(window + I3000_C0DRB + i); |
343 | c1drb[i] = readb(window + I3000_C1DRB + i); |
344 | } |
345 | |
346 | iounmap(window); |
347 | |
348 | /* |
349 | * Figure out how many channels we have. |
350 | * |
351 | * If we have what the datasheet calls "asymmetric channels" |
352 | * (essentially the same as what was called "virtual single |
353 | * channel mode" in the i82875) then it's a single channel as |
354 | * far as EDAC is concerned. |
355 | */ |
356 | interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); |
357 | nr_channels = interleaved ? 2 : 1; |
358 | |
359 | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
360 | layers[0].size = I3000_RANKS / nr_channels; |
361 | layers[0].is_virt_csrow = true; |
362 | layers[1].type = EDAC_MC_LAYER_CHANNEL; |
363 | layers[1].size = nr_channels; |
364 | layers[1].is_virt_csrow = false; |
365 | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); |
366 | if (!mci) |
367 | return -ENOMEM; |
368 | |
369 | edac_dbg(3, "MC: init mci\n"); |
370 | |
371 | mci->pdev = &pdev->dev; |
372 | mci->mtype_cap = MEM_FLAG_DDR2; |
373 | |
374 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; |
375 | mci->edac_cap = EDAC_FLAG_SECDED; |
376 | |
377 | mci->mod_name = EDAC_MOD_STR; |
378 | mci->mod_ver = I3000_REVISION; |
379 | mci->ctl_name = i3000_devs[dev_idx].ctl_name; |
380 | mci->dev_name = pci_name(pdev); |
381 | mci->edac_check = i3000_check; |
382 | mci->ctl_page_to_phys = NULL; |
383 | |
384 | /* |
385 | * The dram rank boundary (DRB) reg values are boundary addresses |
386 | * for each DRAM rank with a granularity of 32MB. DRB regs are |
387 | * cumulative; the last one will contain the total memory |
388 | * contained in all ranks. |
389 | * |
390 | * If we're in interleaved mode then we're only walking through |
391 | * the ranks of controller 0, so we double all the values we see. |
392 | */ |
393 | for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { |
394 | u8 value; |
395 | u32 cumul_size; |
396 | struct csrow_info *csrow = mci->csrows[i]; |
397 | |
398 | value = drb[i]; |
399 | cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); |
400 | if (interleaved) |
401 | cumul_size <<= 1; |
402 | edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size); |
403 | if (cumul_size == last_cumul_size) |
404 | continue; |
405 | |
406 | csrow->first_page = last_cumul_size; |
407 | csrow->last_page = cumul_size - 1; |
408 | nr_pages = cumul_size - last_cumul_size; |
409 | last_cumul_size = cumul_size; |
410 | |
411 | for (j = 0; j < nr_channels; j++) { |
412 | struct dimm_info *dimm = csrow->channels[j]->dimm; |
413 | |
414 | dimm->nr_pages = nr_pages / nr_channels; |
415 | dimm->grain = I3000_DEAP_GRAIN; |
416 | dimm->mtype = MEM_DDR2; |
417 | dimm->dtype = DEV_UNKNOWN; |
418 | dimm->edac_mode = EDAC_UNKNOWN; |
419 | } |
420 | } |
421 | |
422 | /* |
423 | * Clear any error bits. |
424 | * (Yes, we really clear bits by writing 1 to them.) |
425 | */ |
426 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
427 | I3000_ERRSTS_BITS); |
428 | |
429 | rc = -ENODEV; |
430 | if (edac_mc_add_mc(mci)) { |
431 | edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); |
432 | goto fail; |
433 | } |
434 | |
435 | /* allocating generic PCI control info */ |
436 | i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
437 | if (!i3000_pci) { |
438 | printk(KERN_WARNING |
439 | "%s(): Unable to create PCI control\n", |
440 | __func__); |
441 | printk(KERN_WARNING |
442 | "%s(): PCI error report via EDAC not setup\n", |
443 | __func__); |
444 | } |
445 | |
446 | /* get this far and it's successful */ |
447 | edac_dbg(3, "MC: success\n"); |
448 | return 0; |
449 | |
450 | fail: |
451 | if (mci) |
452 | edac_mc_free(mci); |
453 | |
454 | return rc; |
455 | } |
456 | |
457 | /* returns count (>= 0), or negative on error */ |
458 | static int __devinit i3000_init_one(struct pci_dev *pdev, |
459 | const struct pci_device_id *ent) |
460 | { |
461 | int rc; |
462 | |
463 | edac_dbg(0, "MC:\n"); |
464 | |
465 | if (pci_enable_device(pdev) < 0) |
466 | return -EIO; |
467 | |
468 | rc = i3000_probe1(pdev, ent->driver_data); |
469 | if (!mci_pdev) |
470 | mci_pdev = pci_dev_get(pdev); |
471 | |
472 | return rc; |
473 | } |
474 | |
475 | static void __devexit i3000_remove_one(struct pci_dev *pdev) |
476 | { |
477 | struct mem_ctl_info *mci; |
478 | |
479 | edac_dbg(0, "\n"); |
480 | |
481 | if (i3000_pci) |
482 | edac_pci_release_generic_ctl(i3000_pci); |
483 | |
484 | mci = edac_mc_del_mc(&pdev->dev); |
485 | if (!mci) |
486 | return; |
487 | |
488 | edac_mc_free(mci); |
489 | } |
490 | |
491 | static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = { |
492 | { |
493 | PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
494 | I3000}, |
495 | { |
496 | 0, |
497 | } /* 0 terminated list. */ |
498 | }; |
499 | |
500 | MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); |
501 | |
502 | static struct pci_driver i3000_driver = { |
503 | .name = EDAC_MOD_STR, |
504 | .probe = i3000_init_one, |
505 | .remove = __devexit_p(i3000_remove_one), |
506 | .id_table = i3000_pci_tbl, |
507 | }; |
508 | |
509 | static int __init i3000_init(void) |
510 | { |
511 | int pci_rc; |
512 | |
513 | edac_dbg(3, "MC:\n"); |
514 | |
515 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
516 | opstate_init(); |
517 | |
518 | pci_rc = pci_register_driver(&i3000_driver); |
519 | if (pci_rc < 0) |
520 | goto fail0; |
521 | |
522 | if (!mci_pdev) { |
523 | i3000_registered = 0; |
524 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
525 | PCI_DEVICE_ID_INTEL_3000_HB, NULL); |
526 | if (!mci_pdev) { |
527 | edac_dbg(0, "i3000 pci_get_device fail\n"); |
528 | pci_rc = -ENODEV; |
529 | goto fail1; |
530 | } |
531 | |
532 | pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); |
533 | if (pci_rc < 0) { |
534 | edac_dbg(0, "i3000 init fail\n"); |
535 | pci_rc = -ENODEV; |
536 | goto fail1; |
537 | } |
538 | } |
539 | |
540 | return 0; |
541 | |
542 | fail1: |
543 | pci_unregister_driver(&i3000_driver); |
544 | |
545 | fail0: |
546 | if (mci_pdev) |
547 | pci_dev_put(mci_pdev); |
548 | |
549 | return pci_rc; |
550 | } |
551 | |
552 | static void __exit i3000_exit(void) |
553 | { |
554 | edac_dbg(3, "MC:\n"); |
555 | |
556 | pci_unregister_driver(&i3000_driver); |
557 | if (!i3000_registered) { |
558 | i3000_remove_one(mci_pdev); |
559 | pci_dev_put(mci_pdev); |
560 | } |
561 | } |
562 | |
563 | module_init(i3000_init); |
564 | module_exit(i3000_exit); |
565 | |
566 | MODULE_LICENSE("GPL"); |
567 | MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); |
568 | MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); |
569 | |
570 | module_param(edac_op_state, int, 0444); |
571 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
572 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9