Root/drivers/edac/i7core_edac.c

1/* Intel i7 core/Nehalem Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
11 * Copyright (c) 2009-2010 by:
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/pci.h>
31#include <linux/pci_ids.h>
32#include <linux/slab.h>
33#include <linux/delay.h>
34#include <linux/dmi.h>
35#include <linux/edac.h>
36#include <linux/mmzone.h>
37#include <linux/smp.h>
38#include <asm/mce.h>
39#include <asm/processor.h>
40#include <asm/div64.h>
41
42#include "edac_core.h"
43
44/* Static vars */
45static LIST_HEAD(i7core_edac_list);
46static DEFINE_MUTEX(i7core_edac_lock);
47static int probed;
48
49static int use_pci_fixup;
50module_param(use_pci_fixup, int, 0444);
51MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52/*
53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54 * registers start at bus 255, and are not reported by BIOS.
55 * We currently find devices with only 2 sockets. In order to support more QPI
56 * Quick Path Interconnect, just increment this number.
57 */
58#define MAX_SOCKET_BUSES 2
59
60
61/*
62 * Alter this version for the module when modifications are made
63 */
64#define I7CORE_REVISION " Ver: 1.0.0"
65#define EDAC_MOD_STR "i7core_edac"
66
67/*
68 * Debug macros
69 */
70#define i7core_printk(level, fmt, arg...) \
71    edac_printk(level, "i7core", fmt, ##arg)
72
73#define i7core_mc_printk(mci, level, fmt, arg...) \
74    edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75
76/*
77 * i7core Memory Controller Registers
78 */
79
80    /* OFFSETS for Device 0 Function 0 */
81
82#define MC_CFG_CONTROL 0x90
83  #define MC_CFG_UNLOCK 0x02
84  #define MC_CFG_LOCK 0x00
85
86    /* OFFSETS for Device 3 Function 0 */
87
88#define MC_CONTROL 0x48
89#define MC_STATUS 0x4c
90#define MC_MAX_DOD 0x64
91
92/*
93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95 */
96
97#define MC_TEST_ERR_RCV1 0x60
98  #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
99
100#define MC_TEST_ERR_RCV0 0x64
101  #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
102  #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
103
104/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105#define MC_SSRCONTROL 0x48
106  #define SSR_MODE_DISABLE 0x00
107  #define SSR_MODE_ENABLE 0x01
108  #define SSR_MODE_MASK 0x03
109
110#define MC_SCRUB_CONTROL 0x4c
111  #define STARTSCRUB (1 << 24)
112  #define SCRUBINTERVAL_MASK 0xffffff
113
114#define MC_COR_ECC_CNT_0 0x80
115#define MC_COR_ECC_CNT_1 0x84
116#define MC_COR_ECC_CNT_2 0x88
117#define MC_COR_ECC_CNT_3 0x8c
118#define MC_COR_ECC_CNT_4 0x90
119#define MC_COR_ECC_CNT_5 0x94
120
121#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
122#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
123
124
125    /* OFFSETS for Devices 4,5 and 6 Function 0 */
126
127#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128  #define THREE_DIMMS_PRESENT (1 << 24)
129  #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
130  #define QUAD_RANK_PRESENT (1 << 22)
131  #define REGISTERED_DIMM (1 << 15)
132
133#define MC_CHANNEL_MAPPER 0x60
134  #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135  #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
136
137#define MC_CHANNEL_RANK_PRESENT 0x7c
138  #define RANK_PRESENT_MASK 0xffff
139
140#define MC_CHANNEL_ADDR_MATCH 0xf0
141#define MC_CHANNEL_ERROR_MASK 0xf8
142#define MC_CHANNEL_ERROR_INJECT 0xfc
143  #define INJECT_ADDR_PARITY 0x10
144  #define INJECT_ECC 0x08
145  #define MASK_CACHELINE 0x06
146  #define MASK_FULL_CACHELINE 0x06
147  #define MASK_MSB32_CACHELINE 0x04
148  #define MASK_LSB32_CACHELINE 0x02
149  #define NO_MASK_CACHELINE 0x00
150  #define REPEAT_EN 0x01
151
152    /* OFFSETS for Devices 4,5 and 6 Function 1 */
153
154#define MC_DOD_CH_DIMM0 0x48
155#define MC_DOD_CH_DIMM1 0x4c
156#define MC_DOD_CH_DIMM2 0x50
157  #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
158  #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
159  #define DIMM_PRESENT_MASK (1 << 9)
160  #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
161  #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
162  #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
163  #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
164  #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
165  #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
166  #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
167  #define MC_DOD_NUMCOL_MASK 3
168  #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
169
170#define MC_RANK_PRESENT 0x7c
171
172#define MC_SAG_CH_0 0x80
173#define MC_SAG_CH_1 0x84
174#define MC_SAG_CH_2 0x88
175#define MC_SAG_CH_3 0x8c
176#define MC_SAG_CH_4 0x90
177#define MC_SAG_CH_5 0x94
178#define MC_SAG_CH_6 0x98
179#define MC_SAG_CH_7 0x9c
180
181#define MC_RIR_LIMIT_CH_0 0x40
182#define MC_RIR_LIMIT_CH_1 0x44
183#define MC_RIR_LIMIT_CH_2 0x48
184#define MC_RIR_LIMIT_CH_3 0x4C
185#define MC_RIR_LIMIT_CH_4 0x50
186#define MC_RIR_LIMIT_CH_5 0x54
187#define MC_RIR_LIMIT_CH_6 0x58
188#define MC_RIR_LIMIT_CH_7 0x5C
189#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
190
191#define MC_RIR_WAY_CH 0x80
192  #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
193  #define MC_RIR_WAY_RANK_MASK 0x7
194
195/*
196 * i7core structs
197 */
198
199#define NUM_CHANS 3
200#define MAX_DIMMS 3 /* Max DIMMS per channel */
201#define MAX_MCR_FUNC 4
202#define MAX_CHAN_FUNC 3
203
204struct i7core_info {
205    u32 mc_control;
206    u32 mc_status;
207    u32 max_dod;
208    u32 ch_map;
209};
210
211
212struct i7core_inject {
213    int enable;
214
215    u32 section;
216    u32 type;
217    u32 eccmask;
218
219    /* Error address mask */
220    int channel, dimm, rank, bank, page, col;
221};
222
223struct i7core_channel {
224    bool is_3dimms_present;
225    bool is_single_4rank;
226    bool has_4rank;
227    u32 dimms;
228};
229
230struct pci_id_descr {
231    int dev;
232    int func;
233    int dev_id;
234    int optional;
235};
236
237struct pci_id_table {
238    const struct pci_id_descr *descr;
239    int n_devs;
240};
241
242struct i7core_dev {
243    struct list_head list;
244    u8 socket;
245    struct pci_dev **pdev;
246    int n_devs;
247    struct mem_ctl_info *mci;
248};
249
250struct i7core_pvt {
251    struct device *addrmatch_dev, *chancounts_dev;
252
253    struct pci_dev *pci_noncore;
254    struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
255    struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256
257    struct i7core_dev *i7core_dev;
258
259    struct i7core_info info;
260    struct i7core_inject inject;
261    struct i7core_channel channel[NUM_CHANS];
262
263    int ce_count_available;
264
265            /* ECC corrected errors counts per udimm */
266    unsigned long udimm_ce_count[MAX_DIMMS];
267    int udimm_last_ce_count[MAX_DIMMS];
268            /* ECC corrected errors counts per rdimm */
269    unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270    int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271
272    bool is_registered, enable_scrub;
273
274    /* Fifo double buffers */
275    struct mce mce_entry[MCE_LOG_LEN];
276    struct mce mce_outentry[MCE_LOG_LEN];
277
278    /* Fifo in/out counters */
279    unsigned mce_in, mce_out;
280
281    /* Count indicator to show errors not got */
282    unsigned mce_overrun;
283
284    /* DCLK Frequency used for computing scrub rate */
285    int dclk_freq;
286
287    /* Struct to control EDAC polling */
288    struct edac_pci_ctl_info *i7core_pci;
289};
290
291#define PCI_DESCR(device, function, device_id) \
292    .dev = (device), \
293    .func = (function), \
294    .dev_id = (device_id)
295
296static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
297        /* Memory controller */
298    { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
299    { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
300            /* Exists only for RDIMM */
301    { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
302    { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
303
304        /* Channel 0 */
305    { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
306    { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
307    { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
308    { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
309
310        /* Channel 1 */
311    { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
312    { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
313    { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
314    { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
315
316        /* Channel 2 */
317    { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
318    { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
319    { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
320    { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
321
322        /* Generic Non-core registers */
323    /*
324     * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
325     * On Xeon 55xx, however, it has a different id (8086:2c40). So,
326     * the probing code needs to test for the other address in case of
327     * failure of this one
328     */
329    { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
330
331};
332
333static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
334    { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
335    { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
336    { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
337
338    { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
339    { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
340    { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
341    { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
342
343    { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
344    { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
345    { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
346    { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
347
348    /*
349     * This is the PCI device has an alternate address on some
350     * processors like Core i7 860
351     */
352    { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
353};
354
355static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
356        /* Memory controller */
357    { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
358    { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
359            /* Exists only for RDIMM */
360    { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
361    { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
362
363        /* Channel 0 */
364    { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
365    { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
366    { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
367    { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
368
369        /* Channel 1 */
370    { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
371    { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
372    { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
373    { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
374
375        /* Channel 2 */
376    { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
377    { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
378    { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
379    { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
380
381        /* Generic Non-core registers */
382    { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
383
384};
385
386#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387static const struct pci_id_table pci_dev_table[] = {
388    PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
389    PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
390    PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
391    {0,} /* 0 terminated list. */
392};
393
394/*
395 * pci_device_id table for which devices we are looking for
396 */
397static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
398    {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
399    {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
400    {0,} /* 0 terminated list. */
401};
402
403/****************************************************************************
404            Ancillary status routines
405 ****************************************************************************/
406
407    /* MC_CONTROL bits */
408#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
409#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
410
411    /* MC_STATUS bits */
412#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
413#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
414
415    /* MC_MAX_DOD read functions */
416static inline int numdimms(u32 dimms)
417{
418    return (dimms & 0x3) + 1;
419}
420
421static inline int numrank(u32 rank)
422{
423    static int ranks[4] = { 1, 2, 4, -EINVAL };
424
425    return ranks[rank & 0x3];
426}
427
428static inline int numbank(u32 bank)
429{
430    static int banks[4] = { 4, 8, 16, -EINVAL };
431
432    return banks[bank & 0x3];
433}
434
435static inline int numrow(u32 row)
436{
437    static int rows[8] = {
438        1 << 12, 1 << 13, 1 << 14, 1 << 15,
439        1 << 16, -EINVAL, -EINVAL, -EINVAL,
440    };
441
442    return rows[row & 0x7];
443}
444
445static inline int numcol(u32 col)
446{
447    static int cols[8] = {
448        1 << 10, 1 << 11, 1 << 12, -EINVAL,
449    };
450    return cols[col & 0x3];
451}
452
453static struct i7core_dev *get_i7core_dev(u8 socket)
454{
455    struct i7core_dev *i7core_dev;
456
457    list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
458        if (i7core_dev->socket == socket)
459            return i7core_dev;
460    }
461
462    return NULL;
463}
464
465static struct i7core_dev *alloc_i7core_dev(u8 socket,
466                       const struct pci_id_table *table)
467{
468    struct i7core_dev *i7core_dev;
469
470    i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
471    if (!i7core_dev)
472        return NULL;
473
474    i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
475                   GFP_KERNEL);
476    if (!i7core_dev->pdev) {
477        kfree(i7core_dev);
478        return NULL;
479    }
480
481    i7core_dev->socket = socket;
482    i7core_dev->n_devs = table->n_devs;
483    list_add_tail(&i7core_dev->list, &i7core_edac_list);
484
485    return i7core_dev;
486}
487
488static void free_i7core_dev(struct i7core_dev *i7core_dev)
489{
490    list_del(&i7core_dev->list);
491    kfree(i7core_dev->pdev);
492    kfree(i7core_dev);
493}
494
495/****************************************************************************
496            Memory check routines
497 ****************************************************************************/
498
499static int get_dimm_config(struct mem_ctl_info *mci)
500{
501    struct i7core_pvt *pvt = mci->pvt_info;
502    struct pci_dev *pdev;
503    int i, j;
504    enum edac_type mode;
505    enum mem_type mtype;
506    struct dimm_info *dimm;
507
508    /* Get data from the MC register, function 0 */
509    pdev = pvt->pci_mcr[0];
510    if (!pdev)
511        return -ENODEV;
512
513    /* Device 3 function 0 reads */
514    pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
515    pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
516    pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
517    pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
518
519    edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520         pvt->i7core_dev->socket, pvt->info.mc_control,
521         pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
522
523    if (ECC_ENABLED(pvt)) {
524        edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
525        if (ECCx8(pvt))
526            mode = EDAC_S8ECD8ED;
527        else
528            mode = EDAC_S4ECD4ED;
529    } else {
530        edac_dbg(0, "ECC disabled\n");
531        mode = EDAC_NONE;
532    }
533
534    /* FIXME: need to handle the error codes */
535    edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
536         numdimms(pvt->info.max_dod),
537         numrank(pvt->info.max_dod >> 2),
538         numbank(pvt->info.max_dod >> 4),
539         numrow(pvt->info.max_dod >> 6),
540         numcol(pvt->info.max_dod >> 9));
541
542    for (i = 0; i < NUM_CHANS; i++) {
543        u32 data, dimm_dod[3], value[8];
544
545        if (!pvt->pci_ch[i][0])
546            continue;
547
548        if (!CH_ACTIVE(pvt, i)) {
549            edac_dbg(0, "Channel %i is not active\n", i);
550            continue;
551        }
552        if (CH_DISABLED(pvt, i)) {
553            edac_dbg(0, "Channel %i is disabled\n", i);
554            continue;
555        }
556
557        /* Devices 4-6 function 0 */
558        pci_read_config_dword(pvt->pci_ch[i][0],
559                MC_CHANNEL_DIMM_INIT_PARAMS, &data);
560
561
562        if (data & THREE_DIMMS_PRESENT)
563            pvt->channel[i].is_3dimms_present = true;
564
565        if (data & SINGLE_QUAD_RANK_PRESENT)
566            pvt->channel[i].is_single_4rank = true;
567
568        if (data & QUAD_RANK_PRESENT)
569            pvt->channel[i].has_4rank = true;
570
571        if (data & REGISTERED_DIMM)
572            mtype = MEM_RDDR3;
573        else
574            mtype = MEM_DDR3;
575
576        /* Devices 4-6 function 1 */
577        pci_read_config_dword(pvt->pci_ch[i][1],
578                MC_DOD_CH_DIMM0, &dimm_dod[0]);
579        pci_read_config_dword(pvt->pci_ch[i][1],
580                MC_DOD_CH_DIMM1, &dimm_dod[1]);
581        pci_read_config_dword(pvt->pci_ch[i][1],
582                MC_DOD_CH_DIMM2, &dimm_dod[2]);
583
584        edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
585             i,
586             RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
587             data,
588             pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
589             pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
590             pvt->channel[i].has_4rank ? "HAS_4R " : "",
591             (data & REGISTERED_DIMM) ? 'R' : 'U');
592
593        for (j = 0; j < 3; j++) {
594            u32 banks, ranks, rows, cols;
595            u32 size, npages;
596
597            if (!DIMM_PRESENT(dimm_dod[j]))
598                continue;
599
600            dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
601                       i, j, 0);
602            banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
603            ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
604            rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
605            cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
606
607            /* DDR3 has 8 I/O banks */
608            size = (rows * cols * banks * ranks) >> (20 - 3);
609
610            edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
611                 j, size,
612                 RANKOFFSET(dimm_dod[j]),
613                 banks, ranks, rows, cols);
614
615            npages = MiB_TO_PAGES(size);
616
617            dimm->nr_pages = npages;
618
619            switch (banks) {
620            case 4:
621                dimm->dtype = DEV_X4;
622                break;
623            case 8:
624                dimm->dtype = DEV_X8;
625                break;
626            case 16:
627                dimm->dtype = DEV_X16;
628                break;
629            default:
630                dimm->dtype = DEV_UNKNOWN;
631            }
632
633            snprintf(dimm->label, sizeof(dimm->label),
634                 "CPU#%uChannel#%u_DIMM#%u",
635                 pvt->i7core_dev->socket, i, j);
636            dimm->grain = 8;
637            dimm->edac_mode = mode;
638            dimm->mtype = mtype;
639        }
640
641        pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
642        pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
643        pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
644        pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
645        pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
646        pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
647        pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
648        pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
649        edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
650        for (j = 0; j < 8; j++)
651            edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
652                 (value[j] >> 27) & 0x1,
653                 (value[j] >> 24) & 0x7,
654                 (value[j] & ((1 << 24) - 1)));
655    }
656
657    return 0;
658}
659
660/****************************************************************************
661            Error insertion routines
662 ****************************************************************************/
663
664#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
665
666/* The i7core has independent error injection features per channel.
667   However, to have a simpler code, we don't allow enabling error injection
668   on more than one channel.
669   Also, since a change at an inject parameter will be applied only at enable,
670   we're disabling error injection on all write calls to the sysfs nodes that
671   controls the error code injection.
672 */
673static int disable_inject(const struct mem_ctl_info *mci)
674{
675    struct i7core_pvt *pvt = mci->pvt_info;
676
677    pvt->inject.enable = 0;
678
679    if (!pvt->pci_ch[pvt->inject.channel][0])
680        return -ENODEV;
681
682    pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
683                MC_CHANNEL_ERROR_INJECT, 0);
684
685    return 0;
686}
687
688/*
689 * i7core inject inject.section
690 *
691 * accept and store error injection inject.section value
692 * bit 0 - refers to the lower 32-byte half cacheline
693 * bit 1 - refers to the upper 32-byte half cacheline
694 */
695static ssize_t i7core_inject_section_store(struct device *dev,
696                       struct device_attribute *mattr,
697                       const char *data, size_t count)
698{
699    struct mem_ctl_info *mci = to_mci(dev);
700    struct i7core_pvt *pvt = mci->pvt_info;
701    unsigned long value;
702    int rc;
703
704    if (pvt->inject.enable)
705        disable_inject(mci);
706
707    rc = strict_strtoul(data, 10, &value);
708    if ((rc < 0) || (value > 3))
709        return -EIO;
710
711    pvt->inject.section = (u32) value;
712    return count;
713}
714
715static ssize_t i7core_inject_section_show(struct device *dev,
716                      struct device_attribute *mattr,
717                      char *data)
718{
719    struct mem_ctl_info *mci = to_mci(dev);
720    struct i7core_pvt *pvt = mci->pvt_info;
721    return sprintf(data, "0x%08x\n", pvt->inject.section);
722}
723
724/*
725 * i7core inject.type
726 *
727 * accept and store error injection inject.section value
728 * bit 0 - repeat enable - Enable error repetition
729 * bit 1 - inject ECC error
730 * bit 2 - inject parity error
731 */
732static ssize_t i7core_inject_type_store(struct device *dev,
733                    struct device_attribute *mattr,
734                    const char *data, size_t count)
735{
736    struct mem_ctl_info *mci = to_mci(dev);
737struct i7core_pvt *pvt = mci->pvt_info;
738    unsigned long value;
739    int rc;
740
741    if (pvt->inject.enable)
742        disable_inject(mci);
743
744    rc = strict_strtoul(data, 10, &value);
745    if ((rc < 0) || (value > 7))
746        return -EIO;
747
748    pvt->inject.type = (u32) value;
749    return count;
750}
751
752static ssize_t i7core_inject_type_show(struct device *dev,
753                       struct device_attribute *mattr,
754                       char *data)
755{
756    struct mem_ctl_info *mci = to_mci(dev);
757    struct i7core_pvt *pvt = mci->pvt_info;
758
759    return sprintf(data, "0x%08x\n", pvt->inject.type);
760}
761
762/*
763 * i7core_inject_inject.eccmask_store
764 *
765 * The type of error (UE/CE) will depend on the inject.eccmask value:
766 * Any bits set to a 1 will flip the corresponding ECC bit
767 * Correctable errors can be injected by flipping 1 bit or the bits within
768 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
769 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
770 * uncorrectable error to be injected.
771 */
772static ssize_t i7core_inject_eccmask_store(struct device *dev,
773                       struct device_attribute *mattr,
774                       const char *data, size_t count)
775{
776    struct mem_ctl_info *mci = to_mci(dev);
777    struct i7core_pvt *pvt = mci->pvt_info;
778    unsigned long value;
779    int rc;
780
781    if (pvt->inject.enable)
782        disable_inject(mci);
783
784    rc = strict_strtoul(data, 10, &value);
785    if (rc < 0)
786        return -EIO;
787
788    pvt->inject.eccmask = (u32) value;
789    return count;
790}
791
792static ssize_t i7core_inject_eccmask_show(struct device *dev,
793                      struct device_attribute *mattr,
794                      char *data)
795{
796    struct mem_ctl_info *mci = to_mci(dev);
797    struct i7core_pvt *pvt = mci->pvt_info;
798
799    return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
800}
801
802/*
803 * i7core_addrmatch
804 *
805 * The type of error (UE/CE) will depend on the inject.eccmask value:
806 * Any bits set to a 1 will flip the corresponding ECC bit
807 * Correctable errors can be injected by flipping 1 bit or the bits within
808 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
809 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
810 * uncorrectable error to be injected.
811 */
812
813#define DECLARE_ADDR_MATCH(param, limit) \
814static ssize_t i7core_inject_store_##param( \
815    struct device *dev, \
816    struct device_attribute *mattr, \
817    const char *data, size_t count) \
818{ \
819    struct mem_ctl_info *mci = to_mci(dev); \
820    struct i7core_pvt *pvt; \
821    long value; \
822    int rc; \
823                                \
824    edac_dbg(1, "\n"); \
825    pvt = mci->pvt_info; \
826                                \
827    if (pvt->inject.enable) \
828        disable_inject(mci); \
829                                \
830    if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
831        value = -1; \
832    else { \
833        rc = strict_strtoul(data, 10, &value); \
834        if ((rc < 0) || (value >= limit)) \
835            return -EIO; \
836    } \
837                                \
838    pvt->inject.param = value; \
839                                \
840    return count; \
841} \
842                                \
843static ssize_t i7core_inject_show_##param( \
844    struct device *dev, \
845    struct device_attribute *mattr, \
846    char *data) \
847{ \
848    struct mem_ctl_info *mci = to_mci(dev); \
849    struct i7core_pvt *pvt; \
850                                \
851    pvt = mci->pvt_info; \
852    edac_dbg(1, "pvt=%p\n", pvt); \
853    if (pvt->inject.param < 0) \
854        return sprintf(data, "any\n"); \
855    else \
856        return sprintf(data, "%d\n", pvt->inject.param);\
857}
858
859#define ATTR_ADDR_MATCH(param) \
860    static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \
861            i7core_inject_show_##param, \
862            i7core_inject_store_##param)
863
864DECLARE_ADDR_MATCH(channel, 3);
865DECLARE_ADDR_MATCH(dimm, 3);
866DECLARE_ADDR_MATCH(rank, 4);
867DECLARE_ADDR_MATCH(bank, 32);
868DECLARE_ADDR_MATCH(page, 0x10000);
869DECLARE_ADDR_MATCH(col, 0x4000);
870
871ATTR_ADDR_MATCH(channel);
872ATTR_ADDR_MATCH(dimm);
873ATTR_ADDR_MATCH(rank);
874ATTR_ADDR_MATCH(bank);
875ATTR_ADDR_MATCH(page);
876ATTR_ADDR_MATCH(col);
877
878static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
879{
880    u32 read;
881    int count;
882
883    edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
884         dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
885         where, val);
886
887    for (count = 0; count < 10; count++) {
888        if (count)
889            msleep(100);
890        pci_write_config_dword(dev, where, val);
891        pci_read_config_dword(dev, where, &read);
892
893        if (read == val)
894            return 0;
895    }
896
897    i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
898        "write=%08x. Read=%08x\n",
899        dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
900        where, val, read);
901
902    return -EINVAL;
903}
904
905/*
906 * This routine prepares the Memory Controller for error injection.
907 * The error will be injected when some process tries to write to the
908 * memory that matches the given criteria.
909 * The criteria can be set in terms of a mask where dimm, rank, bank, page
910 * and col can be specified.
911 * A -1 value for any of the mask items will make the MCU to ignore
912 * that matching criteria for error injection.
913 *
914 * It should be noticed that the error will only happen after a write operation
915 * on a memory that matches the condition. if REPEAT_EN is not enabled at
916 * inject mask, then it will produce just one error. Otherwise, it will repeat
917 * until the injectmask would be cleaned.
918 *
919 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
920 * is reliable enough to check if the MC is using the
921 * three channels. However, this is not clear at the datasheet.
922 */
923static ssize_t i7core_inject_enable_store(struct device *dev,
924                      struct device_attribute *mattr,
925                      const char *data, size_t count)
926{
927    struct mem_ctl_info *mci = to_mci(dev);
928    struct i7core_pvt *pvt = mci->pvt_info;
929    u32 injectmask;
930    u64 mask = 0;
931    int rc;
932    long enable;
933
934    if (!pvt->pci_ch[pvt->inject.channel][0])
935        return 0;
936
937    rc = strict_strtoul(data, 10, &enable);
938    if ((rc < 0))
939        return 0;
940
941    if (enable) {
942        pvt->inject.enable = 1;
943    } else {
944        disable_inject(mci);
945        return count;
946    }
947
948    /* Sets pvt->inject.dimm mask */
949    if (pvt->inject.dimm < 0)
950        mask |= 1LL << 41;
951    else {
952        if (pvt->channel[pvt->inject.channel].dimms > 2)
953            mask |= (pvt->inject.dimm & 0x3LL) << 35;
954        else
955            mask |= (pvt->inject.dimm & 0x1LL) << 36;
956    }
957
958    /* Sets pvt->inject.rank mask */
959    if (pvt->inject.rank < 0)
960        mask |= 1LL << 40;
961    else {
962        if (pvt->channel[pvt->inject.channel].dimms > 2)
963            mask |= (pvt->inject.rank & 0x1LL) << 34;
964        else
965            mask |= (pvt->inject.rank & 0x3LL) << 34;
966    }
967
968    /* Sets pvt->inject.bank mask */
969    if (pvt->inject.bank < 0)
970        mask |= 1LL << 39;
971    else
972        mask |= (pvt->inject.bank & 0x15LL) << 30;
973
974    /* Sets pvt->inject.page mask */
975    if (pvt->inject.page < 0)
976        mask |= 1LL << 38;
977    else
978        mask |= (pvt->inject.page & 0xffff) << 14;
979
980    /* Sets pvt->inject.column mask */
981    if (pvt->inject.col < 0)
982        mask |= 1LL << 37;
983    else
984        mask |= (pvt->inject.col & 0x3fff);
985
986    /*
987     * bit 0: REPEAT_EN
988     * bits 1-2: MASK_HALF_CACHELINE
989     * bit 3: INJECT_ECC
990     * bit 4: INJECT_ADDR_PARITY
991     */
992
993    injectmask = (pvt->inject.type & 1) |
994             (pvt->inject.section & 0x3) << 1 |
995             (pvt->inject.type & 0x6) << (3 - 1);
996
997    /* Unlock writes to registers - this register is write only */
998    pci_write_config_dword(pvt->pci_noncore,
999                   MC_CFG_CONTROL, 0x2);
1000
1001    write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002                   MC_CHANNEL_ADDR_MATCH, mask);
1003    write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1004                   MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1005
1006    write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007                   MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008
1009    write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010                   MC_CHANNEL_ERROR_INJECT, injectmask);
1011
1012    /*
1013     * This is something undocumented, based on my tests
1014     * Without writing 8 to this register, errors aren't injected. Not sure
1015     * why.
1016     */
1017    pci_write_config_dword(pvt->pci_noncore,
1018                   MC_CFG_CONTROL, 8);
1019
1020    edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021         mask, pvt->inject.eccmask, injectmask);
1022
1023
1024    return count;
1025}
1026
1027static ssize_t i7core_inject_enable_show(struct device *dev,
1028                     struct device_attribute *mattr,
1029                     char *data)
1030{
1031    struct mem_ctl_info *mci = to_mci(dev);
1032    struct i7core_pvt *pvt = mci->pvt_info;
1033    u32 injectmask;
1034
1035    if (!pvt->pci_ch[pvt->inject.channel][0])
1036        return 0;
1037
1038    pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1039                   MC_CHANNEL_ERROR_INJECT, &injectmask);
1040
1041    edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1042
1043    if (injectmask & 0x0c)
1044        pvt->inject.enable = 1;
1045
1046    return sprintf(data, "%d\n", pvt->inject.enable);
1047}
1048
1049#define DECLARE_COUNTER(param) \
1050static ssize_t i7core_show_counter_##param( \
1051    struct device *dev, \
1052    struct device_attribute *mattr, \
1053    char *data) \
1054{ \
1055    struct mem_ctl_info *mci = to_mci(dev); \
1056    struct i7core_pvt *pvt = mci->pvt_info; \
1057                                \
1058    edac_dbg(1, "\n"); \
1059    if (!pvt->ce_count_available || (pvt->is_registered)) \
1060        return sprintf(data, "data unavailable\n"); \
1061    return sprintf(data, "%lu\n", \
1062            pvt->udimm_ce_count[param]); \
1063}
1064
1065#define ATTR_COUNTER(param) \
1066    static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \
1067            i7core_show_counter_##param, \
1068            NULL)
1069
1070DECLARE_COUNTER(0);
1071DECLARE_COUNTER(1);
1072DECLARE_COUNTER(2);
1073
1074ATTR_COUNTER(0);
1075ATTR_COUNTER(1);
1076ATTR_COUNTER(2);
1077
1078/*
1079 * inject_addrmatch device sysfs struct
1080 */
1081
1082static struct attribute *i7core_addrmatch_attrs[] = {
1083    &dev_attr_channel.attr,
1084    &dev_attr_dimm.attr,
1085    &dev_attr_rank.attr,
1086    &dev_attr_bank.attr,
1087    &dev_attr_page.attr,
1088    &dev_attr_col.attr,
1089    NULL
1090};
1091
1092static struct attribute_group addrmatch_grp = {
1093    .attrs = i7core_addrmatch_attrs,
1094};
1095
1096static const struct attribute_group *addrmatch_groups[] = {
1097    &addrmatch_grp,
1098    NULL
1099};
1100
1101static void addrmatch_release(struct device *device)
1102{
1103    edac_dbg(1, "Releasing device %s\n", dev_name(device));
1104    kfree(device);
1105}
1106
1107static struct device_type addrmatch_type = {
1108    .groups = addrmatch_groups,
1109    .release = addrmatch_release,
1110};
1111
1112/*
1113 * all_channel_counts sysfs struct
1114 */
1115
1116static struct attribute *i7core_udimm_counters_attrs[] = {
1117    &dev_attr_udimm0.attr,
1118    &dev_attr_udimm1.attr,
1119    &dev_attr_udimm2.attr,
1120    NULL
1121};
1122
1123static struct attribute_group all_channel_counts_grp = {
1124    .attrs = i7core_udimm_counters_attrs,
1125};
1126
1127static const struct attribute_group *all_channel_counts_groups[] = {
1128    &all_channel_counts_grp,
1129    NULL
1130};
1131
1132static void all_channel_counts_release(struct device *device)
1133{
1134    edac_dbg(1, "Releasing device %s\n", dev_name(device));
1135    kfree(device);
1136}
1137
1138static struct device_type all_channel_counts_type = {
1139    .groups = all_channel_counts_groups,
1140    .release = all_channel_counts_release,
1141};
1142
1143/*
1144 * inject sysfs attributes
1145 */
1146
1147static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148           i7core_inject_section_show, i7core_inject_section_store);
1149
1150static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151           i7core_inject_type_show, i7core_inject_type_store);
1152
1153
1154static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155           i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156
1157static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158           i7core_inject_enable_show, i7core_inject_enable_store);
1159
1160static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1161{
1162    struct i7core_pvt *pvt = mci->pvt_info;
1163    int rc;
1164
1165    rc = device_create_file(&mci->dev, &dev_attr_inject_section);
1166    if (rc < 0)
1167        return rc;
1168    rc = device_create_file(&mci->dev, &dev_attr_inject_type);
1169    if (rc < 0)
1170        return rc;
1171    rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
1172    if (rc < 0)
1173        return rc;
1174    rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
1175    if (rc < 0)
1176        return rc;
1177
1178    pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1179    if (!pvt->addrmatch_dev)
1180        return rc;
1181
1182    pvt->addrmatch_dev->type = &addrmatch_type;
1183    pvt->addrmatch_dev->bus = mci->dev.bus;
1184    device_initialize(pvt->addrmatch_dev);
1185    pvt->addrmatch_dev->parent = &mci->dev;
1186    dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1187    dev_set_drvdata(pvt->addrmatch_dev, mci);
1188
1189    edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1190
1191    rc = device_add(pvt->addrmatch_dev);
1192    if (rc < 0)
1193        return rc;
1194
1195    if (!pvt->is_registered) {
1196        pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1197                          GFP_KERNEL);
1198        if (!pvt->chancounts_dev) {
1199            put_device(pvt->addrmatch_dev);
1200            device_del(pvt->addrmatch_dev);
1201            return rc;
1202        }
1203
1204        pvt->chancounts_dev->type = &all_channel_counts_type;
1205        pvt->chancounts_dev->bus = mci->dev.bus;
1206        device_initialize(pvt->chancounts_dev);
1207        pvt->chancounts_dev->parent = &mci->dev;
1208        dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1209        dev_set_drvdata(pvt->chancounts_dev, mci);
1210
1211        edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1212
1213        rc = device_add(pvt->chancounts_dev);
1214        if (rc < 0)
1215            return rc;
1216    }
1217    return 0;
1218}
1219
1220static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1221{
1222    struct i7core_pvt *pvt = mci->pvt_info;
1223
1224    edac_dbg(1, "\n");
1225
1226    device_remove_file(&mci->dev, &dev_attr_inject_section);
1227    device_remove_file(&mci->dev, &dev_attr_inject_type);
1228    device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
1229    device_remove_file(&mci->dev, &dev_attr_inject_enable);
1230
1231    if (!pvt->is_registered) {
1232        put_device(pvt->chancounts_dev);
1233        device_del(pvt->chancounts_dev);
1234    }
1235    put_device(pvt->addrmatch_dev);
1236    device_del(pvt->addrmatch_dev);
1237}
1238
1239/****************************************************************************
1240    Device initialization routines: put/get, init/exit
1241 ****************************************************************************/
1242
1243/*
1244 * i7core_put_all_devices 'put' all the devices that we have
1245 * reserved via 'get'
1246 */
1247static void i7core_put_devices(struct i7core_dev *i7core_dev)
1248{
1249    int i;
1250
1251    edac_dbg(0, "\n");
1252    for (i = 0; i < i7core_dev->n_devs; i++) {
1253        struct pci_dev *pdev = i7core_dev->pdev[i];
1254        if (!pdev)
1255            continue;
1256        edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1257             pdev->bus->number,
1258             PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1259        pci_dev_put(pdev);
1260    }
1261}
1262
1263static void i7core_put_all_devices(void)
1264{
1265    struct i7core_dev *i7core_dev, *tmp;
1266
1267    list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1268        i7core_put_devices(i7core_dev);
1269        free_i7core_dev(i7core_dev);
1270    }
1271}
1272
1273static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1274{
1275    struct pci_dev *pdev = NULL;
1276    int i;
1277
1278    /*
1279     * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1280     * aren't announced by acpi. So, we need to use a legacy scan probing
1281     * to detect them
1282     */
1283    while (table && table->descr) {
1284        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1285        if (unlikely(!pdev)) {
1286            for (i = 0; i < MAX_SOCKET_BUSES; i++)
1287                pcibios_scan_specific_bus(255-i);
1288        }
1289        pci_dev_put(pdev);
1290        table++;
1291    }
1292}
1293
1294static unsigned i7core_pci_lastbus(void)
1295{
1296    int last_bus = 0, bus;
1297    struct pci_bus *b = NULL;
1298
1299    while ((b = pci_find_next_bus(b)) != NULL) {
1300        bus = b->number;
1301        edac_dbg(0, "Found bus %d\n", bus);
1302        if (bus > last_bus)
1303            last_bus = bus;
1304    }
1305
1306    edac_dbg(0, "Last bus %d\n", last_bus);
1307
1308    return last_bus;
1309}
1310
1311/*
1312 * i7core_get_all_devices Find and perform 'get' operation on the MCH's
1313 * device/functions we want to reference for this driver
1314 *
1315 * Need to 'get' device 16 func 1 and func 2
1316 */
1317static int i7core_get_onedevice(struct pci_dev **prev,
1318                const struct pci_id_table *table,
1319                const unsigned devno,
1320                const unsigned last_bus)
1321{
1322    struct i7core_dev *i7core_dev;
1323    const struct pci_id_descr *dev_descr = &table->descr[devno];
1324
1325    struct pci_dev *pdev = NULL;
1326    u8 bus = 0;
1327    u8 socket = 0;
1328
1329    pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1330                  dev_descr->dev_id, *prev);
1331
1332    /*
1333     * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1334     * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1335     * to probe for the alternate address in case of failure
1336     */
1337    if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1338        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1339                      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1340
1341    if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1342        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1343                      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1344                      *prev);
1345
1346    if (!pdev) {
1347        if (*prev) {
1348            *prev = pdev;
1349            return 0;
1350        }
1351
1352        if (dev_descr->optional)
1353            return 0;
1354
1355        if (devno == 0)
1356            return -ENODEV;
1357
1358        i7core_printk(KERN_INFO,
1359            "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1360            dev_descr->dev, dev_descr->func,
1361            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1362
1363        /* End of list, leave */
1364        return -ENODEV;
1365    }
1366    bus = pdev->bus->number;
1367
1368    socket = last_bus - bus;
1369
1370    i7core_dev = get_i7core_dev(socket);
1371    if (!i7core_dev) {
1372        i7core_dev = alloc_i7core_dev(socket, table);
1373        if (!i7core_dev) {
1374            pci_dev_put(pdev);
1375            return -ENOMEM;
1376        }
1377    }
1378
1379    if (i7core_dev->pdev[devno]) {
1380        i7core_printk(KERN_ERR,
1381            "Duplicated device for "
1382            "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1383            bus, dev_descr->dev, dev_descr->func,
1384            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1385        pci_dev_put(pdev);
1386        return -ENODEV;
1387    }
1388
1389    i7core_dev->pdev[devno] = pdev;
1390
1391    /* Sanity check */
1392    if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1393            PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1394        i7core_printk(KERN_ERR,
1395            "Device PCI ID %04x:%04x "
1396            "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1397            PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1398            bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1399            bus, dev_descr->dev, dev_descr->func);
1400        return -ENODEV;
1401    }
1402
1403    /* Be sure that the device is enabled */
1404    if (unlikely(pci_enable_device(pdev) < 0)) {
1405        i7core_printk(KERN_ERR,
1406            "Couldn't enable "
1407            "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1408            bus, dev_descr->dev, dev_descr->func,
1409            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1410        return -ENODEV;
1411    }
1412
1413    edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1414         socket, bus, dev_descr->dev,
1415         dev_descr->func,
1416         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1417
1418    /*
1419     * As stated on drivers/pci/search.c, the reference count for
1420     * @from is always decremented if it is not %NULL. So, as we need
1421     * to get all devices up to null, we need to do a get for the device
1422     */
1423    pci_dev_get(pdev);
1424
1425    *prev = pdev;
1426
1427    return 0;
1428}
1429
1430static int i7core_get_all_devices(void)
1431{
1432    int i, rc, last_bus;
1433    struct pci_dev *pdev = NULL;
1434    const struct pci_id_table *table = pci_dev_table;
1435
1436    last_bus = i7core_pci_lastbus();
1437
1438    while (table && table->descr) {
1439        for (i = 0; i < table->n_devs; i++) {
1440            pdev = NULL;
1441            do {
1442                rc = i7core_get_onedevice(&pdev, table, i,
1443                              last_bus);
1444                if (rc < 0) {
1445                    if (i == 0) {
1446                        i = table->n_devs;
1447                        break;
1448                    }
1449                    i7core_put_all_devices();
1450                    return -ENODEV;
1451                }
1452            } while (pdev);
1453        }
1454        table++;
1455    }
1456
1457    return 0;
1458}
1459
1460static int mci_bind_devs(struct mem_ctl_info *mci,
1461             struct i7core_dev *i7core_dev)
1462{
1463    struct i7core_pvt *pvt = mci->pvt_info;
1464    struct pci_dev *pdev;
1465    int i, func, slot;
1466    char *family;
1467
1468    pvt->is_registered = false;
1469    pvt->enable_scrub = false;
1470    for (i = 0; i < i7core_dev->n_devs; i++) {
1471        pdev = i7core_dev->pdev[i];
1472        if (!pdev)
1473            continue;
1474
1475        func = PCI_FUNC(pdev->devfn);
1476        slot = PCI_SLOT(pdev->devfn);
1477        if (slot == 3) {
1478            if (unlikely(func > MAX_MCR_FUNC))
1479                goto error;
1480            pvt->pci_mcr[func] = pdev;
1481        } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1482            if (unlikely(func > MAX_CHAN_FUNC))
1483                goto error;
1484            pvt->pci_ch[slot - 4][func] = pdev;
1485        } else if (!slot && !func) {
1486            pvt->pci_noncore = pdev;
1487
1488            /* Detect the processor family */
1489            switch (pdev->device) {
1490            case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1491                family = "Xeon 35xx/ i7core";
1492                pvt->enable_scrub = false;
1493                break;
1494            case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1495                family = "i7-800/i5-700";
1496                pvt->enable_scrub = false;
1497                break;
1498            case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1499                family = "Xeon 34xx";
1500                pvt->enable_scrub = false;
1501                break;
1502            case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1503                family = "Xeon 55xx";
1504                pvt->enable_scrub = true;
1505                break;
1506            case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1507                family = "Xeon 56xx / i7-900";
1508                pvt->enable_scrub = true;
1509                break;
1510            default:
1511                family = "unknown";
1512                pvt->enable_scrub = false;
1513            }
1514            edac_dbg(0, "Detected a processor type %s\n", family);
1515        } else
1516            goto error;
1517
1518        edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1519             PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1520             pdev, i7core_dev->socket);
1521
1522        if (PCI_SLOT(pdev->devfn) == 3 &&
1523            PCI_FUNC(pdev->devfn) == 2)
1524            pvt->is_registered = true;
1525    }
1526
1527    return 0;
1528
1529error:
1530    i7core_printk(KERN_ERR, "Device %d, function %d "
1531              "is out of the expected range\n",
1532              slot, func);
1533    return -EINVAL;
1534}
1535
1536/****************************************************************************
1537            Error check routines
1538 ****************************************************************************/
1539
1540static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1541                     const int chan,
1542                     const int new0,
1543                     const int new1,
1544                     const int new2)
1545{
1546    struct i7core_pvt *pvt = mci->pvt_info;
1547    int add0 = 0, add1 = 0, add2 = 0;
1548    /* Updates CE counters if it is not the first time here */
1549    if (pvt->ce_count_available) {
1550        /* Updates CE counters */
1551
1552        add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1553        add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1554        add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1555
1556        if (add2 < 0)
1557            add2 += 0x7fff;
1558        pvt->rdimm_ce_count[chan][2] += add2;
1559
1560        if (add1 < 0)
1561            add1 += 0x7fff;
1562        pvt->rdimm_ce_count[chan][1] += add1;
1563
1564        if (add0 < 0)
1565            add0 += 0x7fff;
1566        pvt->rdimm_ce_count[chan][0] += add0;
1567    } else
1568        pvt->ce_count_available = 1;
1569
1570    /* Store the new values */
1571    pvt->rdimm_last_ce_count[chan][2] = new2;
1572    pvt->rdimm_last_ce_count[chan][1] = new1;
1573    pvt->rdimm_last_ce_count[chan][0] = new0;
1574
1575    /*updated the edac core */
1576    if (add0 != 0)
1577        edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1578                     0, 0, 0,
1579                     chan, 0, -1, "error", "");
1580    if (add1 != 0)
1581        edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1582                     0, 0, 0,
1583                     chan, 1, -1, "error", "");
1584    if (add2 != 0)
1585        edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1586                     0, 0, 0,
1587                     chan, 2, -1, "error", "");
1588}
1589
1590static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1591{
1592    struct i7core_pvt *pvt = mci->pvt_info;
1593    u32 rcv[3][2];
1594    int i, new0, new1, new2;
1595
1596    /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1597    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1598                                &rcv[0][0]);
1599    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1600                                &rcv[0][1]);
1601    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1602                                &rcv[1][0]);
1603    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1604                                &rcv[1][1]);
1605    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1606                                &rcv[2][0]);
1607    pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1608                                &rcv[2][1]);
1609    for (i = 0 ; i < 3; i++) {
1610        edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1611             (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1612        /*if the channel has 3 dimms*/
1613        if (pvt->channel[i].dimms > 2) {
1614            new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1615            new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1616            new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1617        } else {
1618            new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1619                    DIMM_BOT_COR_ERR(rcv[i][0]);
1620            new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1621                    DIMM_BOT_COR_ERR(rcv[i][1]);
1622            new2 = 0;
1623        }
1624
1625        i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1626    }
1627}
1628
1629/* This function is based on the device 3 function 4 registers as described on:
1630 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1631 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1632 * also available at:
1633 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1634 */
1635static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1636{
1637    struct i7core_pvt *pvt = mci->pvt_info;
1638    u32 rcv1, rcv0;
1639    int new0, new1, new2;
1640
1641    if (!pvt->pci_mcr[4]) {
1642        edac_dbg(0, "MCR registers not found\n");
1643        return;
1644    }
1645
1646    /* Corrected test errors */
1647    pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1648    pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1649
1650    /* Store the new values */
1651    new2 = DIMM2_COR_ERR(rcv1);
1652    new1 = DIMM1_COR_ERR(rcv0);
1653    new0 = DIMM0_COR_ERR(rcv0);
1654
1655    /* Updates CE counters if it is not the first time here */
1656    if (pvt->ce_count_available) {
1657        /* Updates CE counters */
1658        int add0, add1, add2;
1659
1660        add2 = new2 - pvt->udimm_last_ce_count[2];
1661        add1 = new1 - pvt->udimm_last_ce_count[1];
1662        add0 = new0 - pvt->udimm_last_ce_count[0];
1663
1664        if (add2 < 0)
1665            add2 += 0x7fff;
1666        pvt->udimm_ce_count[2] += add2;
1667
1668        if (add1 < 0)
1669            add1 += 0x7fff;
1670        pvt->udimm_ce_count[1] += add1;
1671
1672        if (add0 < 0)
1673            add0 += 0x7fff;
1674        pvt->udimm_ce_count[0] += add0;
1675
1676        if (add0 | add1 | add2)
1677            i7core_printk(KERN_ERR, "New Corrected error(s): "
1678                      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1679                      add0, add1, add2);
1680    } else
1681        pvt->ce_count_available = 1;
1682
1683    /* Store the new values */
1684    pvt->udimm_last_ce_count[2] = new2;
1685    pvt->udimm_last_ce_count[1] = new1;
1686    pvt->udimm_last_ce_count[0] = new0;
1687}
1688
1689/*
1690 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1691 * Architectures Software Developer’s Manual Volume 3B.
1692 * Nehalem are defined as family 0x06, model 0x1a
1693 *
1694 * The MCA registers used here are the following ones:
1695 * struct mce field MCA Register
1696 * m->status MSR_IA32_MC8_STATUS
1697 * m->addr MSR_IA32_MC8_ADDR
1698 * m->misc MSR_IA32_MC8_MISC
1699 * In the case of Nehalem, the error information is masked at .status and .misc
1700 * fields
1701 */
1702static void i7core_mce_output_error(struct mem_ctl_info *mci,
1703                    const struct mce *m)
1704{
1705    struct i7core_pvt *pvt = mci->pvt_info;
1706    char *type, *optype, *err;
1707    enum hw_event_mc_err_type tp_event;
1708    unsigned long error = m->status & 0x1ff0000l;
1709    bool uncorrected_error = m->mcgstatus & 1ll << 61;
1710    bool ripv = m->mcgstatus & 1;
1711    u32 optypenum = (m->status >> 4) & 0x07;
1712    u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1713    u32 dimm = (m->misc >> 16) & 0x3;
1714    u32 channel = (m->misc >> 18) & 0x3;
1715    u32 syndrome = m->misc >> 32;
1716    u32 errnum = find_first_bit(&error, 32);
1717
1718    if (uncorrected_error) {
1719        if (ripv) {
1720            type = "FATAL";
1721            tp_event = HW_EVENT_ERR_FATAL;
1722        } else {
1723            type = "NON_FATAL";
1724            tp_event = HW_EVENT_ERR_UNCORRECTED;
1725        }
1726    } else {
1727        type = "CORRECTED";
1728        tp_event = HW_EVENT_ERR_CORRECTED;
1729    }
1730
1731    switch (optypenum) {
1732    case 0:
1733        optype = "generic undef request";
1734        break;
1735    case 1:
1736        optype = "read error";
1737        break;
1738    case 2:
1739        optype = "write error";
1740        break;
1741    case 3:
1742        optype = "addr/cmd error";
1743        break;
1744    case 4:
1745        optype = "scrubbing error";
1746        break;
1747    default:
1748        optype = "reserved";
1749        break;
1750    }
1751
1752    switch (errnum) {
1753    case 16:
1754        err = "read ECC error";
1755        break;
1756    case 17:
1757        err = "RAS ECC error";
1758        break;
1759    case 18:
1760        err = "write parity error";
1761        break;
1762    case 19:
1763        err = "redundacy loss";
1764        break;
1765    case 20:
1766        err = "reserved";
1767        break;
1768    case 21:
1769        err = "memory range error";
1770        break;
1771    case 22:
1772        err = "RTID out of range";
1773        break;
1774    case 23:
1775        err = "address parity error";
1776        break;
1777    case 24:
1778        err = "byte enable parity error";
1779        break;
1780    default:
1781        err = "unknown";
1782    }
1783
1784    /*
1785     * Call the helper to output message
1786     * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1787     * only one event
1788     */
1789    if (uncorrected_error || !pvt->is_registered)
1790        edac_mc_handle_error(tp_event, mci, core_err_cnt,
1791                     m->addr >> PAGE_SHIFT,
1792                     m->addr & ~PAGE_MASK,
1793                     syndrome,
1794                     channel, dimm, -1,
1795                     err, optype);
1796}
1797
1798/*
1799 * i7core_check_error Retrieve and process errors reported by the
1800 * hardware. Called by the Core module.
1801 */
1802static void i7core_check_error(struct mem_ctl_info *mci)
1803{
1804    struct i7core_pvt *pvt = mci->pvt_info;
1805    int i;
1806    unsigned count = 0;
1807    struct mce *m;
1808
1809    /*
1810     * MCE first step: Copy all mce errors into a temporary buffer
1811     * We use a double buffering here, to reduce the risk of
1812     * losing an error.
1813     */
1814    smp_rmb();
1815    count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1816        % MCE_LOG_LEN;
1817    if (!count)
1818        goto check_ce_error;
1819
1820    m = pvt->mce_outentry;
1821    if (pvt->mce_in + count > MCE_LOG_LEN) {
1822        unsigned l = MCE_LOG_LEN - pvt->mce_in;
1823
1824        memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1825        smp_wmb();
1826        pvt->mce_in = 0;
1827        count -= l;
1828        m += l;
1829    }
1830    memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1831    smp_wmb();
1832    pvt->mce_in += count;
1833
1834    smp_rmb();
1835    if (pvt->mce_overrun) {
1836        i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1837                  pvt->mce_overrun);
1838        smp_wmb();
1839        pvt->mce_overrun = 0;
1840    }
1841
1842    /*
1843     * MCE second step: parse errors and display
1844     */
1845    for (i = 0; i < count; i++)
1846        i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1847
1848    /*
1849     * Now, let's increment CE error counts
1850     */
1851check_ce_error:
1852    if (!pvt->is_registered)
1853        i7core_udimm_check_mc_ecc_err(mci);
1854    else
1855        i7core_rdimm_check_mc_ecc_err(mci);
1856}
1857
1858/*
1859 * i7core_mce_check_error Replicates mcelog routine to get errors
1860 * This routine simply queues mcelog errors, and
1861 * return. The error itself should be handled later
1862 * by i7core_check_error.
1863 * WARNING: As this routine should be called at NMI time, extra care should
1864 * be taken to avoid deadlocks, and to be as fast as possible.
1865 */
1866static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1867                  void *data)
1868{
1869    struct mce *mce = (struct mce *)data;
1870    struct i7core_dev *i7_dev;
1871    struct mem_ctl_info *mci;
1872    struct i7core_pvt *pvt;
1873
1874    i7_dev = get_i7core_dev(mce->socketid);
1875    if (!i7_dev)
1876        return NOTIFY_BAD;
1877
1878    mci = i7_dev->mci;
1879    pvt = mci->pvt_info;
1880
1881    /*
1882     * Just let mcelog handle it if the error is
1883     * outside the memory controller
1884     */
1885    if (((mce->status & 0xffff) >> 7) != 1)
1886        return NOTIFY_DONE;
1887
1888    /* Bank 8 registers are the only ones that we know how to handle */
1889    if (mce->bank != 8)
1890        return NOTIFY_DONE;
1891
1892    smp_rmb();
1893    if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1894        smp_wmb();
1895        pvt->mce_overrun++;
1896        return NOTIFY_DONE;
1897    }
1898
1899    /* Copy memory error at the ringbuffer */
1900    memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1901    smp_wmb();
1902    pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1903
1904    /* Handle fatal errors immediately */
1905    if (mce->mcgstatus & 1)
1906        i7core_check_error(mci);
1907
1908    /* Advise mcelog that the errors were handled */
1909    return NOTIFY_STOP;
1910}
1911
1912static struct notifier_block i7_mce_dec = {
1913    .notifier_call = i7core_mce_check_error,
1914};
1915
1916struct memdev_dmi_entry {
1917    u8 type;
1918    u8 length;
1919    u16 handle;
1920    u16 phys_mem_array_handle;
1921    u16 mem_err_info_handle;
1922    u16 total_width;
1923    u16 data_width;
1924    u16 size;
1925    u8 form;
1926    u8 device_set;
1927    u8 device_locator;
1928    u8 bank_locator;
1929    u8 memory_type;
1930    u16 type_detail;
1931    u16 speed;
1932    u8 manufacturer;
1933    u8 serial_number;
1934    u8 asset_tag;
1935    u8 part_number;
1936    u8 attributes;
1937    u32 extended_size;
1938    u16 conf_mem_clk_speed;
1939} __attribute__((__packed__));
1940
1941
1942/*
1943 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1944 * memory devices show the same speed, and if they don't then consider
1945 * all speeds to be invalid.
1946 */
1947static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1948{
1949    int *dclk_freq = _dclk_freq;
1950    u16 dmi_mem_clk_speed;
1951
1952    if (*dclk_freq == -1)
1953        return;
1954
1955    if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1956        struct memdev_dmi_entry *memdev_dmi_entry =
1957            (struct memdev_dmi_entry *)dh;
1958        unsigned long conf_mem_clk_speed_offset =
1959            (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1960            (unsigned long)&memdev_dmi_entry->type;
1961        unsigned long speed_offset =
1962            (unsigned long)&memdev_dmi_entry->speed -
1963            (unsigned long)&memdev_dmi_entry->type;
1964
1965        /* Check that a DIMM is present */
1966        if (memdev_dmi_entry->size == 0)
1967            return;
1968
1969        /*
1970         * Pick the configured speed if it's available, otherwise
1971         * pick the DIMM speed, or we don't have a speed.
1972         */
1973        if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1974            dmi_mem_clk_speed =
1975                memdev_dmi_entry->conf_mem_clk_speed;
1976        } else if (memdev_dmi_entry->length > speed_offset) {
1977            dmi_mem_clk_speed = memdev_dmi_entry->speed;
1978        } else {
1979            *dclk_freq = -1;
1980            return;
1981        }
1982
1983        if (*dclk_freq == 0) {
1984            /* First pass, speed was 0 */
1985            if (dmi_mem_clk_speed > 0) {
1986                /* Set speed if a valid speed is read */
1987                *dclk_freq = dmi_mem_clk_speed;
1988            } else {
1989                /* Otherwise we don't have a valid speed */
1990                *dclk_freq = -1;
1991            }
1992        } else if (*dclk_freq > 0 &&
1993               *dclk_freq != dmi_mem_clk_speed) {
1994            /*
1995             * If we have a speed, check that all DIMMS are the same
1996             * speed, otherwise set the speed as invalid.
1997             */
1998            *dclk_freq = -1;
1999        }
2000    }
2001}
2002
2003/*
2004 * The default DCLK frequency is used as a fallback if we
2005 * fail to find anything reliable in the DMI. The value
2006 * is taken straight from the datasheet.
2007 */
2008#define DEFAULT_DCLK_FREQ 800
2009
2010static int get_dclk_freq(void)
2011{
2012    int dclk_freq = 0;
2013
2014    dmi_walk(decode_dclk, (void *)&dclk_freq);
2015
2016    if (dclk_freq < 1)
2017        return DEFAULT_DCLK_FREQ;
2018
2019    return dclk_freq;
2020}
2021
2022/*
2023 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate
2024 * to hardware according to SCRUBINTERVAL formula
2025 * found in datasheet.
2026 */
2027static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2028{
2029    struct i7core_pvt *pvt = mci->pvt_info;
2030    struct pci_dev *pdev;
2031    u32 dw_scrub;
2032    u32 dw_ssr;
2033
2034    /* Get data from the MC register, function 2 */
2035    pdev = pvt->pci_mcr[2];
2036    if (!pdev)
2037        return -ENODEV;
2038
2039    pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2040
2041    if (new_bw == 0) {
2042        /* Prepare to disable petrol scrub */
2043        dw_scrub &= ~STARTSCRUB;
2044        /* Stop the patrol scrub engine */
2045        write_and_test(pdev, MC_SCRUB_CONTROL,
2046                   dw_scrub & ~SCRUBINTERVAL_MASK);
2047
2048        /* Get current status of scrub rate and set bit to disable */
2049        pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2050        dw_ssr &= ~SSR_MODE_MASK;
2051        dw_ssr |= SSR_MODE_DISABLE;
2052    } else {
2053        const int cache_line_size = 64;
2054        const u32 freq_dclk_mhz = pvt->dclk_freq;
2055        unsigned long long scrub_interval;
2056        /*
2057         * Translate the desired scrub rate to a register value and
2058         * program the corresponding register value.
2059         */
2060        scrub_interval = (unsigned long long)freq_dclk_mhz *
2061            cache_line_size * 1000000;
2062        do_div(scrub_interval, new_bw);
2063
2064        if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2065            return -EINVAL;
2066
2067        dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2068
2069        /* Start the patrol scrub engine */
2070        pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2071                       STARTSCRUB | dw_scrub);
2072
2073        /* Get current status of scrub rate and set bit to enable */
2074        pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2075        dw_ssr &= ~SSR_MODE_MASK;
2076        dw_ssr |= SSR_MODE_ENABLE;
2077    }
2078    /* Disable or enable scrubbing */
2079    pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2080
2081    return new_bw;
2082}
2083
2084/*
2085 * get_sdram_scrub_rate This routine convert current scrub rate value
2086 * into byte/sec bandwidth according to
2087 * SCRUBINTERVAL formula found in datasheet.
2088 */
2089static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2090{
2091    struct i7core_pvt *pvt = mci->pvt_info;
2092    struct pci_dev *pdev;
2093    const u32 cache_line_size = 64;
2094    const u32 freq_dclk_mhz = pvt->dclk_freq;
2095    unsigned long long scrub_rate;
2096    u32 scrubval;
2097
2098    /* Get data from the MC register, function 2 */
2099    pdev = pvt->pci_mcr[2];
2100    if (!pdev)
2101        return -ENODEV;
2102
2103    /* Get current scrub control data */
2104    pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2105
2106    /* Mask highest 8-bits to 0 */
2107    scrubval &= SCRUBINTERVAL_MASK;
2108    if (!scrubval)
2109        return 0;
2110
2111    /* Calculate scrub rate value into byte/sec bandwidth */
2112    scrub_rate = (unsigned long long)freq_dclk_mhz *
2113        1000000 * cache_line_size;
2114    do_div(scrub_rate, scrubval);
2115    return (int)scrub_rate;
2116}
2117
2118static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2119{
2120    struct i7core_pvt *pvt = mci->pvt_info;
2121    u32 pci_lock;
2122
2123    /* Unlock writes to pci registers */
2124    pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2125    pci_lock &= ~0x3;
2126    pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2127                   pci_lock | MC_CFG_UNLOCK);
2128
2129    mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2130    mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2131}
2132
2133static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2134{
2135    struct i7core_pvt *pvt = mci->pvt_info;
2136    u32 pci_lock;
2137
2138    /* Lock writes to pci registers */
2139    pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2140    pci_lock &= ~0x3;
2141    pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2142                   pci_lock | MC_CFG_LOCK);
2143}
2144
2145static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2146{
2147    pvt->i7core_pci = edac_pci_create_generic_ctl(
2148                        &pvt->i7core_dev->pdev[0]->dev,
2149                        EDAC_MOD_STR);
2150    if (unlikely(!pvt->i7core_pci))
2151        i7core_printk(KERN_WARNING,
2152                  "Unable to setup PCI error report via EDAC\n");
2153}
2154
2155static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2156{
2157    if (likely(pvt->i7core_pci))
2158        edac_pci_release_generic_ctl(pvt->i7core_pci);
2159    else
2160        i7core_printk(KERN_ERR,
2161                "Couldn't find mem_ctl_info for socket %d\n",
2162                pvt->i7core_dev->socket);
2163    pvt->i7core_pci = NULL;
2164}
2165
2166static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2167{
2168    struct mem_ctl_info *mci = i7core_dev->mci;
2169    struct i7core_pvt *pvt;
2170
2171    if (unlikely(!mci || !mci->pvt_info)) {
2172        edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2173
2174        i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2175        return;
2176    }
2177
2178    pvt = mci->pvt_info;
2179
2180    edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2181
2182    /* Disable scrubrate setting */
2183    if (pvt->enable_scrub)
2184        disable_sdram_scrub_setting(mci);
2185
2186    /* Disable EDAC polling */
2187    i7core_pci_ctl_release(pvt);
2188
2189    /* Remove MC sysfs nodes */
2190    i7core_delete_sysfs_devices(mci);
2191    edac_mc_del_mc(mci->pdev);
2192
2193    edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2194    kfree(mci->ctl_name);
2195    edac_mc_free(mci);
2196    i7core_dev->mci = NULL;
2197}
2198
2199static int i7core_register_mci(struct i7core_dev *i7core_dev)
2200{
2201    struct mem_ctl_info *mci;
2202    struct i7core_pvt *pvt;
2203    int rc;
2204    struct edac_mc_layer layers[2];
2205
2206    /* allocate a new MC control structure */
2207
2208    layers[0].type = EDAC_MC_LAYER_CHANNEL;
2209    layers[0].size = NUM_CHANS;
2210    layers[0].is_virt_csrow = false;
2211    layers[1].type = EDAC_MC_LAYER_SLOT;
2212    layers[1].size = MAX_DIMMS;
2213    layers[1].is_virt_csrow = true;
2214    mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2215                sizeof(*pvt));
2216    if (unlikely(!mci))
2217        return -ENOMEM;
2218
2219    edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2220
2221    pvt = mci->pvt_info;
2222    memset(pvt, 0, sizeof(*pvt));
2223
2224    /* Associates i7core_dev and mci for future usage */
2225    pvt->i7core_dev = i7core_dev;
2226    i7core_dev->mci = mci;
2227
2228    /*
2229     * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2230     * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2231     * memory channels
2232     */
2233    mci->mtype_cap = MEM_FLAG_DDR3;
2234    mci->edac_ctl_cap = EDAC_FLAG_NONE;
2235    mci->edac_cap = EDAC_FLAG_NONE;
2236    mci->mod_name = "i7core_edac.c";
2237    mci->mod_ver = I7CORE_REVISION;
2238    mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2239                  i7core_dev->socket);
2240    mci->dev_name = pci_name(i7core_dev->pdev[0]);
2241    mci->ctl_page_to_phys = NULL;
2242
2243    /* Store pci devices at mci for faster access */
2244    rc = mci_bind_devs(mci, i7core_dev);
2245    if (unlikely(rc < 0))
2246        goto fail0;
2247
2248
2249    /* Get dimm basic config */
2250    get_dimm_config(mci);
2251    /* record ptr to the generic device */
2252    mci->pdev = &i7core_dev->pdev[0]->dev;
2253    /* Set the function pointer to an actual operation function */
2254    mci->edac_check = i7core_check_error;
2255
2256    /* Enable scrubrate setting */
2257    if (pvt->enable_scrub)
2258        enable_sdram_scrub_setting(mci);
2259
2260    /* add this new MC control structure to EDAC's list of MCs */
2261    if (unlikely(edac_mc_add_mc(mci))) {
2262        edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2263        /* FIXME: perhaps some code should go here that disables error
2264         * reporting if we just enabled it
2265         */
2266
2267        rc = -EINVAL;
2268        goto fail0;
2269    }
2270    if (i7core_create_sysfs_devices(mci)) {
2271        edac_dbg(0, "MC: failed to create sysfs nodes\n");
2272        edac_mc_del_mc(mci->pdev);
2273        rc = -EINVAL;
2274        goto fail0;
2275    }
2276
2277    /* Default error mask is any memory */
2278    pvt->inject.channel = 0;
2279    pvt->inject.dimm = -1;
2280    pvt->inject.rank = -1;
2281    pvt->inject.bank = -1;
2282    pvt->inject.page = -1;
2283    pvt->inject.col = -1;
2284
2285    /* allocating generic PCI control info */
2286    i7core_pci_ctl_create(pvt);
2287
2288    /* DCLK for scrub rate setting */
2289    pvt->dclk_freq = get_dclk_freq();
2290
2291    return 0;
2292
2293fail0:
2294    kfree(mci->ctl_name);
2295    edac_mc_free(mci);
2296    i7core_dev->mci = NULL;
2297    return rc;
2298}
2299
2300/*
2301 * i7core_probe Probe for ONE instance of device to see if it is
2302 * present.
2303 * return:
2304 * 0 for FOUND a device
2305 * < 0 for error code
2306 */
2307
2308static int __devinit i7core_probe(struct pci_dev *pdev,
2309                  const struct pci_device_id *id)
2310{
2311    int rc, count = 0;
2312    struct i7core_dev *i7core_dev;
2313
2314    /* get the pci devices we want to reserve for our use */
2315    mutex_lock(&i7core_edac_lock);
2316
2317    /*
2318     * All memory controllers are allocated at the first pass.
2319     */
2320    if (unlikely(probed >= 1)) {
2321        mutex_unlock(&i7core_edac_lock);
2322        return -ENODEV;
2323    }
2324    probed++;
2325
2326    rc = i7core_get_all_devices();
2327    if (unlikely(rc < 0))
2328        goto fail0;
2329
2330    list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2331        count++;
2332        rc = i7core_register_mci(i7core_dev);
2333        if (unlikely(rc < 0))
2334            goto fail1;
2335    }
2336
2337    /*
2338     * Nehalem-EX uses a different memory controller. However, as the
2339     * memory controller is not visible on some Nehalem/Nehalem-EP, we
2340     * need to indirectly probe via a X58 PCI device. The same devices
2341     * are found on (some) Nehalem-EX. So, on those machines, the
2342     * probe routine needs to return -ENODEV, as the actual Memory
2343     * Controller registers won't be detected.
2344     */
2345    if (!count) {
2346        rc = -ENODEV;
2347        goto fail1;
2348    }
2349
2350    i7core_printk(KERN_INFO,
2351              "Driver loaded, %d memory controller(s) found.\n",
2352              count);
2353
2354    mutex_unlock(&i7core_edac_lock);
2355    return 0;
2356
2357fail1:
2358    list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2359        i7core_unregister_mci(i7core_dev);
2360
2361    i7core_put_all_devices();
2362fail0:
2363    mutex_unlock(&i7core_edac_lock);
2364    return rc;
2365}
2366
2367/*
2368 * i7core_remove destructor for one instance of device
2369 *
2370 */
2371static void __devexit i7core_remove(struct pci_dev *pdev)
2372{
2373    struct i7core_dev *i7core_dev;
2374
2375    edac_dbg(0, "\n");
2376
2377    /*
2378     * we have a trouble here: pdev value for removal will be wrong, since
2379     * it will point to the X58 register used to detect that the machine
2380     * is a Nehalem or upper design. However, due to the way several PCI
2381     * devices are grouped together to provide MC functionality, we need
2382     * to use a different method for releasing the devices
2383     */
2384
2385    mutex_lock(&i7core_edac_lock);
2386
2387    if (unlikely(!probed)) {
2388        mutex_unlock(&i7core_edac_lock);
2389        return;
2390    }
2391
2392    list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2393        i7core_unregister_mci(i7core_dev);
2394
2395    /* Release PCI resources */
2396    i7core_put_all_devices();
2397
2398    probed--;
2399
2400    mutex_unlock(&i7core_edac_lock);
2401}
2402
2403MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2404
2405/*
2406 * i7core_driver pci_driver structure for this module
2407 *
2408 */
2409static struct pci_driver i7core_driver = {
2410    .name = "i7core_edac",
2411    .probe = i7core_probe,
2412    .remove = __devexit_p(i7core_remove),
2413    .id_table = i7core_pci_tbl,
2414};
2415
2416/*
2417 * i7core_init Module entry function
2418 * Try to initialize this module for its devices
2419 */
2420static int __init i7core_init(void)
2421{
2422    int pci_rc;
2423
2424    edac_dbg(2, "\n");
2425
2426    /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2427    opstate_init();
2428
2429    if (use_pci_fixup)
2430        i7core_xeon_pci_fixup(pci_dev_table);
2431
2432    pci_rc = pci_register_driver(&i7core_driver);
2433
2434    if (pci_rc >= 0) {
2435        mce_register_decode_chain(&i7_mce_dec);
2436        return 0;
2437    }
2438
2439    i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2440              pci_rc);
2441
2442    return pci_rc;
2443}
2444
2445/*
2446 * i7core_exit() Module exit function
2447 * Unregister the driver
2448 */
2449static void __exit i7core_exit(void)
2450{
2451    edac_dbg(2, "\n");
2452    pci_unregister_driver(&i7core_driver);
2453    mce_unregister_decode_chain(&i7_mce_dec);
2454}
2455
2456module_init(i7core_init);
2457module_exit(i7core_exit);
2458
2459MODULE_LICENSE("GPL");
2460MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2461MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2462MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2463           I7CORE_REVISION);
2464
2465module_param(edac_op_state, int, 0444);
2466MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2467

Archive Download this file



interactive