Root/
1 | /* Intel i7 core/Nehalem Memory Controller kernel module |
2 | * |
3 | * This driver supports the memory controllers found on the Intel |
4 | * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, |
5 | * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield |
6 | * and Westmere-EP. |
7 | * |
8 | * This file may be distributed under the terms of the |
9 | * GNU General Public License version 2 only. |
10 | * |
11 | * Copyright (c) 2009-2010 by: |
12 | * Mauro Carvalho Chehab <mchehab@redhat.com> |
13 | * |
14 | * Red Hat Inc. http://www.redhat.com |
15 | * |
16 | * Forked and adapted from the i5400_edac driver |
17 | * |
18 | * Based on the following public Intel datasheets: |
19 | * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor |
20 | * Datasheet, Volume 2: |
21 | * http://download.intel.com/design/processor/datashts/320835.pdf |
22 | * Intel Xeon Processor 5500 Series Datasheet Volume 2 |
23 | * http://www.intel.com/Assets/PDF/datasheet/321322.pdf |
24 | * also available at: |
25 | * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
26 | */ |
27 | |
28 | #include <linux/module.h> |
29 | #include <linux/init.h> |
30 | #include <linux/pci.h> |
31 | #include <linux/pci_ids.h> |
32 | #include <linux/slab.h> |
33 | #include <linux/delay.h> |
34 | #include <linux/dmi.h> |
35 | #include <linux/edac.h> |
36 | #include <linux/mmzone.h> |
37 | #include <linux/smp.h> |
38 | #include <asm/mce.h> |
39 | #include <asm/processor.h> |
40 | #include <asm/div64.h> |
41 | |
42 | #include "edac_core.h" |
43 | |
44 | /* Static vars */ |
45 | static LIST_HEAD(i7core_edac_list); |
46 | static DEFINE_MUTEX(i7core_edac_lock); |
47 | static int probed; |
48 | |
49 | static int use_pci_fixup; |
50 | module_param(use_pci_fixup, int, 0444); |
51 | MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); |
52 | /* |
53 | * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core |
54 | * registers start at bus 255, and are not reported by BIOS. |
55 | * We currently find devices with only 2 sockets. In order to support more QPI |
56 | * Quick Path Interconnect, just increment this number. |
57 | */ |
58 | #define MAX_SOCKET_BUSES 2 |
59 | |
60 | |
61 | /* |
62 | * Alter this version for the module when modifications are made |
63 | */ |
64 | #define I7CORE_REVISION " Ver: 1.0.0" |
65 | #define EDAC_MOD_STR "i7core_edac" |
66 | |
67 | /* |
68 | * Debug macros |
69 | */ |
70 | #define i7core_printk(level, fmt, arg...) \ |
71 | edac_printk(level, "i7core", fmt, ##arg) |
72 | |
73 | #define i7core_mc_printk(mci, level, fmt, arg...) \ |
74 | edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) |
75 | |
76 | /* |
77 | * i7core Memory Controller Registers |
78 | */ |
79 | |
80 | /* OFFSETS for Device 0 Function 0 */ |
81 | |
82 | #define MC_CFG_CONTROL 0x90 |
83 | #define MC_CFG_UNLOCK 0x02 |
84 | #define MC_CFG_LOCK 0x00 |
85 | |
86 | /* OFFSETS for Device 3 Function 0 */ |
87 | |
88 | #define MC_CONTROL 0x48 |
89 | #define MC_STATUS 0x4c |
90 | #define MC_MAX_DOD 0x64 |
91 | |
92 | /* |
93 | * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: |
94 | * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
95 | */ |
96 | |
97 | #define MC_TEST_ERR_RCV1 0x60 |
98 | #define DIMM2_COR_ERR(r) ((r) & 0x7fff) |
99 | |
100 | #define MC_TEST_ERR_RCV0 0x64 |
101 | #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) |
102 | #define DIMM0_COR_ERR(r) ((r) & 0x7fff) |
103 | |
104 | /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ |
105 | #define MC_SSRCONTROL 0x48 |
106 | #define SSR_MODE_DISABLE 0x00 |
107 | #define SSR_MODE_ENABLE 0x01 |
108 | #define SSR_MODE_MASK 0x03 |
109 | |
110 | #define MC_SCRUB_CONTROL 0x4c |
111 | #define STARTSCRUB (1 << 24) |
112 | #define SCRUBINTERVAL_MASK 0xffffff |
113 | |
114 | #define MC_COR_ECC_CNT_0 0x80 |
115 | #define MC_COR_ECC_CNT_1 0x84 |
116 | #define MC_COR_ECC_CNT_2 0x88 |
117 | #define MC_COR_ECC_CNT_3 0x8c |
118 | #define MC_COR_ECC_CNT_4 0x90 |
119 | #define MC_COR_ECC_CNT_5 0x94 |
120 | |
121 | #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) |
122 | #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) |
123 | |
124 | |
125 | /* OFFSETS for Devices 4,5 and 6 Function 0 */ |
126 | |
127 | #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 |
128 | #define THREE_DIMMS_PRESENT (1 << 24) |
129 | #define SINGLE_QUAD_RANK_PRESENT (1 << 23) |
130 | #define QUAD_RANK_PRESENT (1 << 22) |
131 | #define REGISTERED_DIMM (1 << 15) |
132 | |
133 | #define MC_CHANNEL_MAPPER 0x60 |
134 | #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) |
135 | #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) |
136 | |
137 | #define MC_CHANNEL_RANK_PRESENT 0x7c |
138 | #define RANK_PRESENT_MASK 0xffff |
139 | |
140 | #define MC_CHANNEL_ADDR_MATCH 0xf0 |
141 | #define MC_CHANNEL_ERROR_MASK 0xf8 |
142 | #define MC_CHANNEL_ERROR_INJECT 0xfc |
143 | #define INJECT_ADDR_PARITY 0x10 |
144 | #define INJECT_ECC 0x08 |
145 | #define MASK_CACHELINE 0x06 |
146 | #define MASK_FULL_CACHELINE 0x06 |
147 | #define MASK_MSB32_CACHELINE 0x04 |
148 | #define MASK_LSB32_CACHELINE 0x02 |
149 | #define NO_MASK_CACHELINE 0x00 |
150 | #define REPEAT_EN 0x01 |
151 | |
152 | /* OFFSETS for Devices 4,5 and 6 Function 1 */ |
153 | |
154 | #define MC_DOD_CH_DIMM0 0x48 |
155 | #define MC_DOD_CH_DIMM1 0x4c |
156 | #define MC_DOD_CH_DIMM2 0x50 |
157 | #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) |
158 | #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) |
159 | #define DIMM_PRESENT_MASK (1 << 9) |
160 | #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) |
161 | #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) |
162 | #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) |
163 | #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) |
164 | #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) |
165 | #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) |
166 | #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) |
167 | #define MC_DOD_NUMCOL_MASK 3 |
168 | #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) |
169 | |
170 | #define MC_RANK_PRESENT 0x7c |
171 | |
172 | #define MC_SAG_CH_0 0x80 |
173 | #define MC_SAG_CH_1 0x84 |
174 | #define MC_SAG_CH_2 0x88 |
175 | #define MC_SAG_CH_3 0x8c |
176 | #define MC_SAG_CH_4 0x90 |
177 | #define MC_SAG_CH_5 0x94 |
178 | #define MC_SAG_CH_6 0x98 |
179 | #define MC_SAG_CH_7 0x9c |
180 | |
181 | #define MC_RIR_LIMIT_CH_0 0x40 |
182 | #define MC_RIR_LIMIT_CH_1 0x44 |
183 | #define MC_RIR_LIMIT_CH_2 0x48 |
184 | #define MC_RIR_LIMIT_CH_3 0x4C |
185 | #define MC_RIR_LIMIT_CH_4 0x50 |
186 | #define MC_RIR_LIMIT_CH_5 0x54 |
187 | #define MC_RIR_LIMIT_CH_6 0x58 |
188 | #define MC_RIR_LIMIT_CH_7 0x5C |
189 | #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) |
190 | |
191 | #define MC_RIR_WAY_CH 0x80 |
192 | #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) |
193 | #define MC_RIR_WAY_RANK_MASK 0x7 |
194 | |
195 | /* |
196 | * i7core structs |
197 | */ |
198 | |
199 | #define NUM_CHANS 3 |
200 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ |
201 | #define MAX_MCR_FUNC 4 |
202 | #define MAX_CHAN_FUNC 3 |
203 | |
204 | struct i7core_info { |
205 | u32 mc_control; |
206 | u32 mc_status; |
207 | u32 max_dod; |
208 | u32 ch_map; |
209 | }; |
210 | |
211 | |
212 | struct i7core_inject { |
213 | int enable; |
214 | |
215 | u32 section; |
216 | u32 type; |
217 | u32 eccmask; |
218 | |
219 | /* Error address mask */ |
220 | int channel, dimm, rank, bank, page, col; |
221 | }; |
222 | |
223 | struct i7core_channel { |
224 | bool is_3dimms_present; |
225 | bool is_single_4rank; |
226 | bool has_4rank; |
227 | u32 dimms; |
228 | }; |
229 | |
230 | struct pci_id_descr { |
231 | int dev; |
232 | int func; |
233 | int dev_id; |
234 | int optional; |
235 | }; |
236 | |
237 | struct pci_id_table { |
238 | const struct pci_id_descr *descr; |
239 | int n_devs; |
240 | }; |
241 | |
242 | struct i7core_dev { |
243 | struct list_head list; |
244 | u8 socket; |
245 | struct pci_dev **pdev; |
246 | int n_devs; |
247 | struct mem_ctl_info *mci; |
248 | }; |
249 | |
250 | struct i7core_pvt { |
251 | struct device *addrmatch_dev, *chancounts_dev; |
252 | |
253 | struct pci_dev *pci_noncore; |
254 | struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; |
255 | struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; |
256 | |
257 | struct i7core_dev *i7core_dev; |
258 | |
259 | struct i7core_info info; |
260 | struct i7core_inject inject; |
261 | struct i7core_channel channel[NUM_CHANS]; |
262 | |
263 | int ce_count_available; |
264 | |
265 | /* ECC corrected errors counts per udimm */ |
266 | unsigned long udimm_ce_count[MAX_DIMMS]; |
267 | int udimm_last_ce_count[MAX_DIMMS]; |
268 | /* ECC corrected errors counts per rdimm */ |
269 | unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; |
270 | int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; |
271 | |
272 | bool is_registered, enable_scrub; |
273 | |
274 | /* Fifo double buffers */ |
275 | struct mce mce_entry[MCE_LOG_LEN]; |
276 | struct mce mce_outentry[MCE_LOG_LEN]; |
277 | |
278 | /* Fifo in/out counters */ |
279 | unsigned mce_in, mce_out; |
280 | |
281 | /* Count indicator to show errors not got */ |
282 | unsigned mce_overrun; |
283 | |
284 | /* DCLK Frequency used for computing scrub rate */ |
285 | int dclk_freq; |
286 | |
287 | /* Struct to control EDAC polling */ |
288 | struct edac_pci_ctl_info *i7core_pci; |
289 | }; |
290 | |
291 | #define PCI_DESCR(device, function, device_id) \ |
292 | .dev = (device), \ |
293 | .func = (function), \ |
294 | .dev_id = (device_id) |
295 | |
296 | static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { |
297 | /* Memory controller */ |
298 | { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, |
299 | { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, |
300 | /* Exists only for RDIMM */ |
301 | { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, |
302 | { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, |
303 | |
304 | /* Channel 0 */ |
305 | { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, |
306 | { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, |
307 | { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, |
308 | { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, |
309 | |
310 | /* Channel 1 */ |
311 | { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, |
312 | { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, |
313 | { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, |
314 | { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, |
315 | |
316 | /* Channel 2 */ |
317 | { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, |
318 | { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, |
319 | { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, |
320 | { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, |
321 | |
322 | /* Generic Non-core registers */ |
323 | /* |
324 | * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) |
325 | * On Xeon 55xx, however, it has a different id (8086:2c40). So, |
326 | * the probing code needs to test for the other address in case of |
327 | * failure of this one |
328 | */ |
329 | { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, |
330 | |
331 | }; |
332 | |
333 | static const struct pci_id_descr pci_dev_descr_lynnfield[] = { |
334 | { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, |
335 | { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, |
336 | { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, |
337 | |
338 | { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, |
339 | { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, |
340 | { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, |
341 | { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, |
342 | |
343 | { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, |
344 | { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, |
345 | { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, |
346 | { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, |
347 | |
348 | /* |
349 | * This is the PCI device has an alternate address on some |
350 | * processors like Core i7 860 |
351 | */ |
352 | { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, |
353 | }; |
354 | |
355 | static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { |
356 | /* Memory controller */ |
357 | { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, |
358 | { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, |
359 | /* Exists only for RDIMM */ |
360 | { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, |
361 | { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, |
362 | |
363 | /* Channel 0 */ |
364 | { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, |
365 | { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, |
366 | { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, |
367 | { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, |
368 | |
369 | /* Channel 1 */ |
370 | { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, |
371 | { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, |
372 | { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, |
373 | { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, |
374 | |
375 | /* Channel 2 */ |
376 | { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, |
377 | { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, |
378 | { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, |
379 | { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, |
380 | |
381 | /* Generic Non-core registers */ |
382 | { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, |
383 | |
384 | }; |
385 | |
386 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } |
387 | static const struct pci_id_table pci_dev_table[] = { |
388 | PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), |
389 | PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), |
390 | PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), |
391 | {0,} /* 0 terminated list. */ |
392 | }; |
393 | |
394 | /* |
395 | * pci_device_id table for which devices we are looking for |
396 | */ |
397 | static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = { |
398 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, |
399 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, |
400 | {0,} /* 0 terminated list. */ |
401 | }; |
402 | |
403 | /**************************************************************************** |
404 | Ancillary status routines |
405 | ****************************************************************************/ |
406 | |
407 | /* MC_CONTROL bits */ |
408 | #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) |
409 | #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) |
410 | |
411 | /* MC_STATUS bits */ |
412 | #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) |
413 | #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) |
414 | |
415 | /* MC_MAX_DOD read functions */ |
416 | static inline int numdimms(u32 dimms) |
417 | { |
418 | return (dimms & 0x3) + 1; |
419 | } |
420 | |
421 | static inline int numrank(u32 rank) |
422 | { |
423 | static int ranks[4] = { 1, 2, 4, -EINVAL }; |
424 | |
425 | return ranks[rank & 0x3]; |
426 | } |
427 | |
428 | static inline int numbank(u32 bank) |
429 | { |
430 | static int banks[4] = { 4, 8, 16, -EINVAL }; |
431 | |
432 | return banks[bank & 0x3]; |
433 | } |
434 | |
435 | static inline int numrow(u32 row) |
436 | { |
437 | static int rows[8] = { |
438 | 1 << 12, 1 << 13, 1 << 14, 1 << 15, |
439 | 1 << 16, -EINVAL, -EINVAL, -EINVAL, |
440 | }; |
441 | |
442 | return rows[row & 0x7]; |
443 | } |
444 | |
445 | static inline int numcol(u32 col) |
446 | { |
447 | static int cols[8] = { |
448 | 1 << 10, 1 << 11, 1 << 12, -EINVAL, |
449 | }; |
450 | return cols[col & 0x3]; |
451 | } |
452 | |
453 | static struct i7core_dev *get_i7core_dev(u8 socket) |
454 | { |
455 | struct i7core_dev *i7core_dev; |
456 | |
457 | list_for_each_entry(i7core_dev, &i7core_edac_list, list) { |
458 | if (i7core_dev->socket == socket) |
459 | return i7core_dev; |
460 | } |
461 | |
462 | return NULL; |
463 | } |
464 | |
465 | static struct i7core_dev *alloc_i7core_dev(u8 socket, |
466 | const struct pci_id_table *table) |
467 | { |
468 | struct i7core_dev *i7core_dev; |
469 | |
470 | i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); |
471 | if (!i7core_dev) |
472 | return NULL; |
473 | |
474 | i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs, |
475 | GFP_KERNEL); |
476 | if (!i7core_dev->pdev) { |
477 | kfree(i7core_dev); |
478 | return NULL; |
479 | } |
480 | |
481 | i7core_dev->socket = socket; |
482 | i7core_dev->n_devs = table->n_devs; |
483 | list_add_tail(&i7core_dev->list, &i7core_edac_list); |
484 | |
485 | return i7core_dev; |
486 | } |
487 | |
488 | static void free_i7core_dev(struct i7core_dev *i7core_dev) |
489 | { |
490 | list_del(&i7core_dev->list); |
491 | kfree(i7core_dev->pdev); |
492 | kfree(i7core_dev); |
493 | } |
494 | |
495 | /**************************************************************************** |
496 | Memory check routines |
497 | ****************************************************************************/ |
498 | |
499 | static int get_dimm_config(struct mem_ctl_info *mci) |
500 | { |
501 | struct i7core_pvt *pvt = mci->pvt_info; |
502 | struct pci_dev *pdev; |
503 | int i, j; |
504 | enum edac_type mode; |
505 | enum mem_type mtype; |
506 | struct dimm_info *dimm; |
507 | |
508 | /* Get data from the MC register, function 0 */ |
509 | pdev = pvt->pci_mcr[0]; |
510 | if (!pdev) |
511 | return -ENODEV; |
512 | |
513 | /* Device 3 function 0 reads */ |
514 | pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); |
515 | pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); |
516 | pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); |
517 | pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); |
518 | |
519 | edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", |
520 | pvt->i7core_dev->socket, pvt->info.mc_control, |
521 | pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); |
522 | |
523 | if (ECC_ENABLED(pvt)) { |
524 | edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); |
525 | if (ECCx8(pvt)) |
526 | mode = EDAC_S8ECD8ED; |
527 | else |
528 | mode = EDAC_S4ECD4ED; |
529 | } else { |
530 | edac_dbg(0, "ECC disabled\n"); |
531 | mode = EDAC_NONE; |
532 | } |
533 | |
534 | /* FIXME: need to handle the error codes */ |
535 | edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", |
536 | numdimms(pvt->info.max_dod), |
537 | numrank(pvt->info.max_dod >> 2), |
538 | numbank(pvt->info.max_dod >> 4), |
539 | numrow(pvt->info.max_dod >> 6), |
540 | numcol(pvt->info.max_dod >> 9)); |
541 | |
542 | for (i = 0; i < NUM_CHANS; i++) { |
543 | u32 data, dimm_dod[3], value[8]; |
544 | |
545 | if (!pvt->pci_ch[i][0]) |
546 | continue; |
547 | |
548 | if (!CH_ACTIVE(pvt, i)) { |
549 | edac_dbg(0, "Channel %i is not active\n", i); |
550 | continue; |
551 | } |
552 | if (CH_DISABLED(pvt, i)) { |
553 | edac_dbg(0, "Channel %i is disabled\n", i); |
554 | continue; |
555 | } |
556 | |
557 | /* Devices 4-6 function 0 */ |
558 | pci_read_config_dword(pvt->pci_ch[i][0], |
559 | MC_CHANNEL_DIMM_INIT_PARAMS, &data); |
560 | |
561 | |
562 | if (data & THREE_DIMMS_PRESENT) |
563 | pvt->channel[i].is_3dimms_present = true; |
564 | |
565 | if (data & SINGLE_QUAD_RANK_PRESENT) |
566 | pvt->channel[i].is_single_4rank = true; |
567 | |
568 | if (data & QUAD_RANK_PRESENT) |
569 | pvt->channel[i].has_4rank = true; |
570 | |
571 | if (data & REGISTERED_DIMM) |
572 | mtype = MEM_RDDR3; |
573 | else |
574 | mtype = MEM_DDR3; |
575 | |
576 | /* Devices 4-6 function 1 */ |
577 | pci_read_config_dword(pvt->pci_ch[i][1], |
578 | MC_DOD_CH_DIMM0, &dimm_dod[0]); |
579 | pci_read_config_dword(pvt->pci_ch[i][1], |
580 | MC_DOD_CH_DIMM1, &dimm_dod[1]); |
581 | pci_read_config_dword(pvt->pci_ch[i][1], |
582 | MC_DOD_CH_DIMM2, &dimm_dod[2]); |
583 | |
584 | edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", |
585 | i, |
586 | RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), |
587 | data, |
588 | pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", |
589 | pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", |
590 | pvt->channel[i].has_4rank ? "HAS_4R " : "", |
591 | (data & REGISTERED_DIMM) ? 'R' : 'U'); |
592 | |
593 | for (j = 0; j < 3; j++) { |
594 | u32 banks, ranks, rows, cols; |
595 | u32 size, npages; |
596 | |
597 | if (!DIMM_PRESENT(dimm_dod[j])) |
598 | continue; |
599 | |
600 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
601 | i, j, 0); |
602 | banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); |
603 | ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); |
604 | rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); |
605 | cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); |
606 | |
607 | /* DDR3 has 8 I/O banks */ |
608 | size = (rows * cols * banks * ranks) >> (20 - 3); |
609 | |
610 | edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", |
611 | j, size, |
612 | RANKOFFSET(dimm_dod[j]), |
613 | banks, ranks, rows, cols); |
614 | |
615 | npages = MiB_TO_PAGES(size); |
616 | |
617 | dimm->nr_pages = npages; |
618 | |
619 | switch (banks) { |
620 | case 4: |
621 | dimm->dtype = DEV_X4; |
622 | break; |
623 | case 8: |
624 | dimm->dtype = DEV_X8; |
625 | break; |
626 | case 16: |
627 | dimm->dtype = DEV_X16; |
628 | break; |
629 | default: |
630 | dimm->dtype = DEV_UNKNOWN; |
631 | } |
632 | |
633 | snprintf(dimm->label, sizeof(dimm->label), |
634 | "CPU#%uChannel#%u_DIMM#%u", |
635 | pvt->i7core_dev->socket, i, j); |
636 | dimm->grain = 8; |
637 | dimm->edac_mode = mode; |
638 | dimm->mtype = mtype; |
639 | } |
640 | |
641 | pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); |
642 | pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); |
643 | pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); |
644 | pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); |
645 | pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); |
646 | pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); |
647 | pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); |
648 | pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); |
649 | edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); |
650 | for (j = 0; j < 8; j++) |
651 | edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", |
652 | (value[j] >> 27) & 0x1, |
653 | (value[j] >> 24) & 0x7, |
654 | (value[j] & ((1 << 24) - 1))); |
655 | } |
656 | |
657 | return 0; |
658 | } |
659 | |
660 | /**************************************************************************** |
661 | Error insertion routines |
662 | ****************************************************************************/ |
663 | |
664 | #define to_mci(k) container_of(k, struct mem_ctl_info, dev) |
665 | |
666 | /* The i7core has independent error injection features per channel. |
667 | However, to have a simpler code, we don't allow enabling error injection |
668 | on more than one channel. |
669 | Also, since a change at an inject parameter will be applied only at enable, |
670 | we're disabling error injection on all write calls to the sysfs nodes that |
671 | controls the error code injection. |
672 | */ |
673 | static int disable_inject(const struct mem_ctl_info *mci) |
674 | { |
675 | struct i7core_pvt *pvt = mci->pvt_info; |
676 | |
677 | pvt->inject.enable = 0; |
678 | |
679 | if (!pvt->pci_ch[pvt->inject.channel][0]) |
680 | return -ENODEV; |
681 | |
682 | pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], |
683 | MC_CHANNEL_ERROR_INJECT, 0); |
684 | |
685 | return 0; |
686 | } |
687 | |
688 | /* |
689 | * i7core inject inject.section |
690 | * |
691 | * accept and store error injection inject.section value |
692 | * bit 0 - refers to the lower 32-byte half cacheline |
693 | * bit 1 - refers to the upper 32-byte half cacheline |
694 | */ |
695 | static ssize_t i7core_inject_section_store(struct device *dev, |
696 | struct device_attribute *mattr, |
697 | const char *data, size_t count) |
698 | { |
699 | struct mem_ctl_info *mci = to_mci(dev); |
700 | struct i7core_pvt *pvt = mci->pvt_info; |
701 | unsigned long value; |
702 | int rc; |
703 | |
704 | if (pvt->inject.enable) |
705 | disable_inject(mci); |
706 | |
707 | rc = strict_strtoul(data, 10, &value); |
708 | if ((rc < 0) || (value > 3)) |
709 | return -EIO; |
710 | |
711 | pvt->inject.section = (u32) value; |
712 | return count; |
713 | } |
714 | |
715 | static ssize_t i7core_inject_section_show(struct device *dev, |
716 | struct device_attribute *mattr, |
717 | char *data) |
718 | { |
719 | struct mem_ctl_info *mci = to_mci(dev); |
720 | struct i7core_pvt *pvt = mci->pvt_info; |
721 | return sprintf(data, "0x%08x\n", pvt->inject.section); |
722 | } |
723 | |
724 | /* |
725 | * i7core inject.type |
726 | * |
727 | * accept and store error injection inject.section value |
728 | * bit 0 - repeat enable - Enable error repetition |
729 | * bit 1 - inject ECC error |
730 | * bit 2 - inject parity error |
731 | */ |
732 | static ssize_t i7core_inject_type_store(struct device *dev, |
733 | struct device_attribute *mattr, |
734 | const char *data, size_t count) |
735 | { |
736 | struct mem_ctl_info *mci = to_mci(dev); |
737 | struct i7core_pvt *pvt = mci->pvt_info; |
738 | unsigned long value; |
739 | int rc; |
740 | |
741 | if (pvt->inject.enable) |
742 | disable_inject(mci); |
743 | |
744 | rc = strict_strtoul(data, 10, &value); |
745 | if ((rc < 0) || (value > 7)) |
746 | return -EIO; |
747 | |
748 | pvt->inject.type = (u32) value; |
749 | return count; |
750 | } |
751 | |
752 | static ssize_t i7core_inject_type_show(struct device *dev, |
753 | struct device_attribute *mattr, |
754 | char *data) |
755 | { |
756 | struct mem_ctl_info *mci = to_mci(dev); |
757 | struct i7core_pvt *pvt = mci->pvt_info; |
758 | |
759 | return sprintf(data, "0x%08x\n", pvt->inject.type); |
760 | } |
761 | |
762 | /* |
763 | * i7core_inject_inject.eccmask_store |
764 | * |
765 | * The type of error (UE/CE) will depend on the inject.eccmask value: |
766 | * Any bits set to a 1 will flip the corresponding ECC bit |
767 | * Correctable errors can be injected by flipping 1 bit or the bits within |
768 | * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or |
769 | * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an |
770 | * uncorrectable error to be injected. |
771 | */ |
772 | static ssize_t i7core_inject_eccmask_store(struct device *dev, |
773 | struct device_attribute *mattr, |
774 | const char *data, size_t count) |
775 | { |
776 | struct mem_ctl_info *mci = to_mci(dev); |
777 | struct i7core_pvt *pvt = mci->pvt_info; |
778 | unsigned long value; |
779 | int rc; |
780 | |
781 | if (pvt->inject.enable) |
782 | disable_inject(mci); |
783 | |
784 | rc = strict_strtoul(data, 10, &value); |
785 | if (rc < 0) |
786 | return -EIO; |
787 | |
788 | pvt->inject.eccmask = (u32) value; |
789 | return count; |
790 | } |
791 | |
792 | static ssize_t i7core_inject_eccmask_show(struct device *dev, |
793 | struct device_attribute *mattr, |
794 | char *data) |
795 | { |
796 | struct mem_ctl_info *mci = to_mci(dev); |
797 | struct i7core_pvt *pvt = mci->pvt_info; |
798 | |
799 | return sprintf(data, "0x%08x\n", pvt->inject.eccmask); |
800 | } |
801 | |
802 | /* |
803 | * i7core_addrmatch |
804 | * |
805 | * The type of error (UE/CE) will depend on the inject.eccmask value: |
806 | * Any bits set to a 1 will flip the corresponding ECC bit |
807 | * Correctable errors can be injected by flipping 1 bit or the bits within |
808 | * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or |
809 | * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an |
810 | * uncorrectable error to be injected. |
811 | */ |
812 | |
813 | #define DECLARE_ADDR_MATCH(param, limit) \ |
814 | static ssize_t i7core_inject_store_##param( \ |
815 | struct device *dev, \ |
816 | struct device_attribute *mattr, \ |
817 | const char *data, size_t count) \ |
818 | { \ |
819 | struct mem_ctl_info *mci = to_mci(dev); \ |
820 | struct i7core_pvt *pvt; \ |
821 | long value; \ |
822 | int rc; \ |
823 | \ |
824 | edac_dbg(1, "\n"); \ |
825 | pvt = mci->pvt_info; \ |
826 | \ |
827 | if (pvt->inject.enable) \ |
828 | disable_inject(mci); \ |
829 | \ |
830 | if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ |
831 | value = -1; \ |
832 | else { \ |
833 | rc = strict_strtoul(data, 10, &value); \ |
834 | if ((rc < 0) || (value >= limit)) \ |
835 | return -EIO; \ |
836 | } \ |
837 | \ |
838 | pvt->inject.param = value; \ |
839 | \ |
840 | return count; \ |
841 | } \ |
842 | \ |
843 | static ssize_t i7core_inject_show_##param( \ |
844 | struct device *dev, \ |
845 | struct device_attribute *mattr, \ |
846 | char *data) \ |
847 | { \ |
848 | struct mem_ctl_info *mci = to_mci(dev); \ |
849 | struct i7core_pvt *pvt; \ |
850 | \ |
851 | pvt = mci->pvt_info; \ |
852 | edac_dbg(1, "pvt=%p\n", pvt); \ |
853 | if (pvt->inject.param < 0) \ |
854 | return sprintf(data, "any\n"); \ |
855 | else \ |
856 | return sprintf(data, "%d\n", pvt->inject.param);\ |
857 | } |
858 | |
859 | #define ATTR_ADDR_MATCH(param) \ |
860 | static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ |
861 | i7core_inject_show_##param, \ |
862 | i7core_inject_store_##param) |
863 | |
864 | DECLARE_ADDR_MATCH(channel, 3); |
865 | DECLARE_ADDR_MATCH(dimm, 3); |
866 | DECLARE_ADDR_MATCH(rank, 4); |
867 | DECLARE_ADDR_MATCH(bank, 32); |
868 | DECLARE_ADDR_MATCH(page, 0x10000); |
869 | DECLARE_ADDR_MATCH(col, 0x4000); |
870 | |
871 | ATTR_ADDR_MATCH(channel); |
872 | ATTR_ADDR_MATCH(dimm); |
873 | ATTR_ADDR_MATCH(rank); |
874 | ATTR_ADDR_MATCH(bank); |
875 | ATTR_ADDR_MATCH(page); |
876 | ATTR_ADDR_MATCH(col); |
877 | |
878 | static int write_and_test(struct pci_dev *dev, const int where, const u32 val) |
879 | { |
880 | u32 read; |
881 | int count; |
882 | |
883 | edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", |
884 | dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), |
885 | where, val); |
886 | |
887 | for (count = 0; count < 10; count++) { |
888 | if (count) |
889 | msleep(100); |
890 | pci_write_config_dword(dev, where, val); |
891 | pci_read_config_dword(dev, where, &read); |
892 | |
893 | if (read == val) |
894 | return 0; |
895 | } |
896 | |
897 | i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " |
898 | "write=%08x. Read=%08x\n", |
899 | dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), |
900 | where, val, read); |
901 | |
902 | return -EINVAL; |
903 | } |
904 | |
905 | /* |
906 | * This routine prepares the Memory Controller for error injection. |
907 | * The error will be injected when some process tries to write to the |
908 | * memory that matches the given criteria. |
909 | * The criteria can be set in terms of a mask where dimm, rank, bank, page |
910 | * and col can be specified. |
911 | * A -1 value for any of the mask items will make the MCU to ignore |
912 | * that matching criteria for error injection. |
913 | * |
914 | * It should be noticed that the error will only happen after a write operation |
915 | * on a memory that matches the condition. if REPEAT_EN is not enabled at |
916 | * inject mask, then it will produce just one error. Otherwise, it will repeat |
917 | * until the injectmask would be cleaned. |
918 | * |
919 | * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD |
920 | * is reliable enough to check if the MC is using the |
921 | * three channels. However, this is not clear at the datasheet. |
922 | */ |
923 | static ssize_t i7core_inject_enable_store(struct device *dev, |
924 | struct device_attribute *mattr, |
925 | const char *data, size_t count) |
926 | { |
927 | struct mem_ctl_info *mci = to_mci(dev); |
928 | struct i7core_pvt *pvt = mci->pvt_info; |
929 | u32 injectmask; |
930 | u64 mask = 0; |
931 | int rc; |
932 | long enable; |
933 | |
934 | if (!pvt->pci_ch[pvt->inject.channel][0]) |
935 | return 0; |
936 | |
937 | rc = strict_strtoul(data, 10, &enable); |
938 | if ((rc < 0)) |
939 | return 0; |
940 | |
941 | if (enable) { |
942 | pvt->inject.enable = 1; |
943 | } else { |
944 | disable_inject(mci); |
945 | return count; |
946 | } |
947 | |
948 | /* Sets pvt->inject.dimm mask */ |
949 | if (pvt->inject.dimm < 0) |
950 | mask |= 1LL << 41; |
951 | else { |
952 | if (pvt->channel[pvt->inject.channel].dimms > 2) |
953 | mask |= (pvt->inject.dimm & 0x3LL) << 35; |
954 | else |
955 | mask |= (pvt->inject.dimm & 0x1LL) << 36; |
956 | } |
957 | |
958 | /* Sets pvt->inject.rank mask */ |
959 | if (pvt->inject.rank < 0) |
960 | mask |= 1LL << 40; |
961 | else { |
962 | if (pvt->channel[pvt->inject.channel].dimms > 2) |
963 | mask |= (pvt->inject.rank & 0x1LL) << 34; |
964 | else |
965 | mask |= (pvt->inject.rank & 0x3LL) << 34; |
966 | } |
967 | |
968 | /* Sets pvt->inject.bank mask */ |
969 | if (pvt->inject.bank < 0) |
970 | mask |= 1LL << 39; |
971 | else |
972 | mask |= (pvt->inject.bank & 0x15LL) << 30; |
973 | |
974 | /* Sets pvt->inject.page mask */ |
975 | if (pvt->inject.page < 0) |
976 | mask |= 1LL << 38; |
977 | else |
978 | mask |= (pvt->inject.page & 0xffff) << 14; |
979 | |
980 | /* Sets pvt->inject.column mask */ |
981 | if (pvt->inject.col < 0) |
982 | mask |= 1LL << 37; |
983 | else |
984 | mask |= (pvt->inject.col & 0x3fff); |
985 | |
986 | /* |
987 | * bit 0: REPEAT_EN |
988 | * bits 1-2: MASK_HALF_CACHELINE |
989 | * bit 3: INJECT_ECC |
990 | * bit 4: INJECT_ADDR_PARITY |
991 | */ |
992 | |
993 | injectmask = (pvt->inject.type & 1) | |
994 | (pvt->inject.section & 0x3) << 1 | |
995 | (pvt->inject.type & 0x6) << (3 - 1); |
996 | |
997 | /* Unlock writes to registers - this register is write only */ |
998 | pci_write_config_dword(pvt->pci_noncore, |
999 | MC_CFG_CONTROL, 0x2); |
1000 | |
1001 | write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
1002 | MC_CHANNEL_ADDR_MATCH, mask); |
1003 | write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
1004 | MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); |
1005 | |
1006 | write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
1007 | MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); |
1008 | |
1009 | write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
1010 | MC_CHANNEL_ERROR_INJECT, injectmask); |
1011 | |
1012 | /* |
1013 | * This is something undocumented, based on my tests |
1014 | * Without writing 8 to this register, errors aren't injected. Not sure |
1015 | * why. |
1016 | */ |
1017 | pci_write_config_dword(pvt->pci_noncore, |
1018 | MC_CFG_CONTROL, 8); |
1019 | |
1020 | edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", |
1021 | mask, pvt->inject.eccmask, injectmask); |
1022 | |
1023 | |
1024 | return count; |
1025 | } |
1026 | |
1027 | static ssize_t i7core_inject_enable_show(struct device *dev, |
1028 | struct device_attribute *mattr, |
1029 | char *data) |
1030 | { |
1031 | struct mem_ctl_info *mci = to_mci(dev); |
1032 | struct i7core_pvt *pvt = mci->pvt_info; |
1033 | u32 injectmask; |
1034 | |
1035 | if (!pvt->pci_ch[pvt->inject.channel][0]) |
1036 | return 0; |
1037 | |
1038 | pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], |
1039 | MC_CHANNEL_ERROR_INJECT, &injectmask); |
1040 | |
1041 | edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); |
1042 | |
1043 | if (injectmask & 0x0c) |
1044 | pvt->inject.enable = 1; |
1045 | |
1046 | return sprintf(data, "%d\n", pvt->inject.enable); |
1047 | } |
1048 | |
1049 | #define DECLARE_COUNTER(param) \ |
1050 | static ssize_t i7core_show_counter_##param( \ |
1051 | struct device *dev, \ |
1052 | struct device_attribute *mattr, \ |
1053 | char *data) \ |
1054 | { \ |
1055 | struct mem_ctl_info *mci = to_mci(dev); \ |
1056 | struct i7core_pvt *pvt = mci->pvt_info; \ |
1057 | \ |
1058 | edac_dbg(1, "\n"); \ |
1059 | if (!pvt->ce_count_available || (pvt->is_registered)) \ |
1060 | return sprintf(data, "data unavailable\n"); \ |
1061 | return sprintf(data, "%lu\n", \ |
1062 | pvt->udimm_ce_count[param]); \ |
1063 | } |
1064 | |
1065 | #define ATTR_COUNTER(param) \ |
1066 | static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ |
1067 | i7core_show_counter_##param, \ |
1068 | NULL) |
1069 | |
1070 | DECLARE_COUNTER(0); |
1071 | DECLARE_COUNTER(1); |
1072 | DECLARE_COUNTER(2); |
1073 | |
1074 | ATTR_COUNTER(0); |
1075 | ATTR_COUNTER(1); |
1076 | ATTR_COUNTER(2); |
1077 | |
1078 | /* |
1079 | * inject_addrmatch device sysfs struct |
1080 | */ |
1081 | |
1082 | static struct attribute *i7core_addrmatch_attrs[] = { |
1083 | &dev_attr_channel.attr, |
1084 | &dev_attr_dimm.attr, |
1085 | &dev_attr_rank.attr, |
1086 | &dev_attr_bank.attr, |
1087 | &dev_attr_page.attr, |
1088 | &dev_attr_col.attr, |
1089 | NULL |
1090 | }; |
1091 | |
1092 | static struct attribute_group addrmatch_grp = { |
1093 | .attrs = i7core_addrmatch_attrs, |
1094 | }; |
1095 | |
1096 | static const struct attribute_group *addrmatch_groups[] = { |
1097 | &addrmatch_grp, |
1098 | NULL |
1099 | }; |
1100 | |
1101 | static void addrmatch_release(struct device *device) |
1102 | { |
1103 | edac_dbg(1, "Releasing device %s\n", dev_name(device)); |
1104 | kfree(device); |
1105 | } |
1106 | |
1107 | static struct device_type addrmatch_type = { |
1108 | .groups = addrmatch_groups, |
1109 | .release = addrmatch_release, |
1110 | }; |
1111 | |
1112 | /* |
1113 | * all_channel_counts sysfs struct |
1114 | */ |
1115 | |
1116 | static struct attribute *i7core_udimm_counters_attrs[] = { |
1117 | &dev_attr_udimm0.attr, |
1118 | &dev_attr_udimm1.attr, |
1119 | &dev_attr_udimm2.attr, |
1120 | NULL |
1121 | }; |
1122 | |
1123 | static struct attribute_group all_channel_counts_grp = { |
1124 | .attrs = i7core_udimm_counters_attrs, |
1125 | }; |
1126 | |
1127 | static const struct attribute_group *all_channel_counts_groups[] = { |
1128 | &all_channel_counts_grp, |
1129 | NULL |
1130 | }; |
1131 | |
1132 | static void all_channel_counts_release(struct device *device) |
1133 | { |
1134 | edac_dbg(1, "Releasing device %s\n", dev_name(device)); |
1135 | kfree(device); |
1136 | } |
1137 | |
1138 | static struct device_type all_channel_counts_type = { |
1139 | .groups = all_channel_counts_groups, |
1140 | .release = all_channel_counts_release, |
1141 | }; |
1142 | |
1143 | /* |
1144 | * inject sysfs attributes |
1145 | */ |
1146 | |
1147 | static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, |
1148 | i7core_inject_section_show, i7core_inject_section_store); |
1149 | |
1150 | static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, |
1151 | i7core_inject_type_show, i7core_inject_type_store); |
1152 | |
1153 | |
1154 | static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, |
1155 | i7core_inject_eccmask_show, i7core_inject_eccmask_store); |
1156 | |
1157 | static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, |
1158 | i7core_inject_enable_show, i7core_inject_enable_store); |
1159 | |
1160 | static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) |
1161 | { |
1162 | struct i7core_pvt *pvt = mci->pvt_info; |
1163 | int rc; |
1164 | |
1165 | rc = device_create_file(&mci->dev, &dev_attr_inject_section); |
1166 | if (rc < 0) |
1167 | return rc; |
1168 | rc = device_create_file(&mci->dev, &dev_attr_inject_type); |
1169 | if (rc < 0) |
1170 | return rc; |
1171 | rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask); |
1172 | if (rc < 0) |
1173 | return rc; |
1174 | rc = device_create_file(&mci->dev, &dev_attr_inject_enable); |
1175 | if (rc < 0) |
1176 | return rc; |
1177 | |
1178 | pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); |
1179 | if (!pvt->addrmatch_dev) |
1180 | return rc; |
1181 | |
1182 | pvt->addrmatch_dev->type = &addrmatch_type; |
1183 | pvt->addrmatch_dev->bus = mci->dev.bus; |
1184 | device_initialize(pvt->addrmatch_dev); |
1185 | pvt->addrmatch_dev->parent = &mci->dev; |
1186 | dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); |
1187 | dev_set_drvdata(pvt->addrmatch_dev, mci); |
1188 | |
1189 | edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); |
1190 | |
1191 | rc = device_add(pvt->addrmatch_dev); |
1192 | if (rc < 0) |
1193 | return rc; |
1194 | |
1195 | if (!pvt->is_registered) { |
1196 | pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), |
1197 | GFP_KERNEL); |
1198 | if (!pvt->chancounts_dev) { |
1199 | put_device(pvt->addrmatch_dev); |
1200 | device_del(pvt->addrmatch_dev); |
1201 | return rc; |
1202 | } |
1203 | |
1204 | pvt->chancounts_dev->type = &all_channel_counts_type; |
1205 | pvt->chancounts_dev->bus = mci->dev.bus; |
1206 | device_initialize(pvt->chancounts_dev); |
1207 | pvt->chancounts_dev->parent = &mci->dev; |
1208 | dev_set_name(pvt->chancounts_dev, "all_channel_counts"); |
1209 | dev_set_drvdata(pvt->chancounts_dev, mci); |
1210 | |
1211 | edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); |
1212 | |
1213 | rc = device_add(pvt->chancounts_dev); |
1214 | if (rc < 0) |
1215 | return rc; |
1216 | } |
1217 | return 0; |
1218 | } |
1219 | |
1220 | static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) |
1221 | { |
1222 | struct i7core_pvt *pvt = mci->pvt_info; |
1223 | |
1224 | edac_dbg(1, "\n"); |
1225 | |
1226 | device_remove_file(&mci->dev, &dev_attr_inject_section); |
1227 | device_remove_file(&mci->dev, &dev_attr_inject_type); |
1228 | device_remove_file(&mci->dev, &dev_attr_inject_eccmask); |
1229 | device_remove_file(&mci->dev, &dev_attr_inject_enable); |
1230 | |
1231 | if (!pvt->is_registered) { |
1232 | put_device(pvt->chancounts_dev); |
1233 | device_del(pvt->chancounts_dev); |
1234 | } |
1235 | put_device(pvt->addrmatch_dev); |
1236 | device_del(pvt->addrmatch_dev); |
1237 | } |
1238 | |
1239 | /**************************************************************************** |
1240 | Device initialization routines: put/get, init/exit |
1241 | ****************************************************************************/ |
1242 | |
1243 | /* |
1244 | * i7core_put_all_devices 'put' all the devices that we have |
1245 | * reserved via 'get' |
1246 | */ |
1247 | static void i7core_put_devices(struct i7core_dev *i7core_dev) |
1248 | { |
1249 | int i; |
1250 | |
1251 | edac_dbg(0, "\n"); |
1252 | for (i = 0; i < i7core_dev->n_devs; i++) { |
1253 | struct pci_dev *pdev = i7core_dev->pdev[i]; |
1254 | if (!pdev) |
1255 | continue; |
1256 | edac_dbg(0, "Removing dev %02x:%02x.%d\n", |
1257 | pdev->bus->number, |
1258 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
1259 | pci_dev_put(pdev); |
1260 | } |
1261 | } |
1262 | |
1263 | static void i7core_put_all_devices(void) |
1264 | { |
1265 | struct i7core_dev *i7core_dev, *tmp; |
1266 | |
1267 | list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { |
1268 | i7core_put_devices(i7core_dev); |
1269 | free_i7core_dev(i7core_dev); |
1270 | } |
1271 | } |
1272 | |
1273 | static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) |
1274 | { |
1275 | struct pci_dev *pdev = NULL; |
1276 | int i; |
1277 | |
1278 | /* |
1279 | * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses |
1280 | * aren't announced by acpi. So, we need to use a legacy scan probing |
1281 | * to detect them |
1282 | */ |
1283 | while (table && table->descr) { |
1284 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); |
1285 | if (unlikely(!pdev)) { |
1286 | for (i = 0; i < MAX_SOCKET_BUSES; i++) |
1287 | pcibios_scan_specific_bus(255-i); |
1288 | } |
1289 | pci_dev_put(pdev); |
1290 | table++; |
1291 | } |
1292 | } |
1293 | |
1294 | static unsigned i7core_pci_lastbus(void) |
1295 | { |
1296 | int last_bus = 0, bus; |
1297 | struct pci_bus *b = NULL; |
1298 | |
1299 | while ((b = pci_find_next_bus(b)) != NULL) { |
1300 | bus = b->number; |
1301 | edac_dbg(0, "Found bus %d\n", bus); |
1302 | if (bus > last_bus) |
1303 | last_bus = bus; |
1304 | } |
1305 | |
1306 | edac_dbg(0, "Last bus %d\n", last_bus); |
1307 | |
1308 | return last_bus; |
1309 | } |
1310 | |
1311 | /* |
1312 | * i7core_get_all_devices Find and perform 'get' operation on the MCH's |
1313 | * device/functions we want to reference for this driver |
1314 | * |
1315 | * Need to 'get' device 16 func 1 and func 2 |
1316 | */ |
1317 | static int i7core_get_onedevice(struct pci_dev **prev, |
1318 | const struct pci_id_table *table, |
1319 | const unsigned devno, |
1320 | const unsigned last_bus) |
1321 | { |
1322 | struct i7core_dev *i7core_dev; |
1323 | const struct pci_id_descr *dev_descr = &table->descr[devno]; |
1324 | |
1325 | struct pci_dev *pdev = NULL; |
1326 | u8 bus = 0; |
1327 | u8 socket = 0; |
1328 | |
1329 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
1330 | dev_descr->dev_id, *prev); |
1331 | |
1332 | /* |
1333 | * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs |
1334 | * is at addr 8086:2c40, instead of 8086:2c41. So, we need |
1335 | * to probe for the alternate address in case of failure |
1336 | */ |
1337 | if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) |
1338 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
1339 | PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); |
1340 | |
1341 | if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev) |
1342 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
1343 | PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, |
1344 | *prev); |
1345 | |
1346 | if (!pdev) { |
1347 | if (*prev) { |
1348 | *prev = pdev; |
1349 | return 0; |
1350 | } |
1351 | |
1352 | if (dev_descr->optional) |
1353 | return 0; |
1354 | |
1355 | if (devno == 0) |
1356 | return -ENODEV; |
1357 | |
1358 | i7core_printk(KERN_INFO, |
1359 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", |
1360 | dev_descr->dev, dev_descr->func, |
1361 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1362 | |
1363 | /* End of list, leave */ |
1364 | return -ENODEV; |
1365 | } |
1366 | bus = pdev->bus->number; |
1367 | |
1368 | socket = last_bus - bus; |
1369 | |
1370 | i7core_dev = get_i7core_dev(socket); |
1371 | if (!i7core_dev) { |
1372 | i7core_dev = alloc_i7core_dev(socket, table); |
1373 | if (!i7core_dev) { |
1374 | pci_dev_put(pdev); |
1375 | return -ENOMEM; |
1376 | } |
1377 | } |
1378 | |
1379 | if (i7core_dev->pdev[devno]) { |
1380 | i7core_printk(KERN_ERR, |
1381 | "Duplicated device for " |
1382 | "dev %02x:%02x.%d PCI ID %04x:%04x\n", |
1383 | bus, dev_descr->dev, dev_descr->func, |
1384 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1385 | pci_dev_put(pdev); |
1386 | return -ENODEV; |
1387 | } |
1388 | |
1389 | i7core_dev->pdev[devno] = pdev; |
1390 | |
1391 | /* Sanity check */ |
1392 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || |
1393 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { |
1394 | i7core_printk(KERN_ERR, |
1395 | "Device PCI ID %04x:%04x " |
1396 | "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", |
1397 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, |
1398 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
1399 | bus, dev_descr->dev, dev_descr->func); |
1400 | return -ENODEV; |
1401 | } |
1402 | |
1403 | /* Be sure that the device is enabled */ |
1404 | if (unlikely(pci_enable_device(pdev) < 0)) { |
1405 | i7core_printk(KERN_ERR, |
1406 | "Couldn't enable " |
1407 | "dev %02x:%02x.%d PCI ID %04x:%04x\n", |
1408 | bus, dev_descr->dev, dev_descr->func, |
1409 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1410 | return -ENODEV; |
1411 | } |
1412 | |
1413 | edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", |
1414 | socket, bus, dev_descr->dev, |
1415 | dev_descr->func, |
1416 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1417 | |
1418 | /* |
1419 | * As stated on drivers/pci/search.c, the reference count for |
1420 | * @from is always decremented if it is not %NULL. So, as we need |
1421 | * to get all devices up to null, we need to do a get for the device |
1422 | */ |
1423 | pci_dev_get(pdev); |
1424 | |
1425 | *prev = pdev; |
1426 | |
1427 | return 0; |
1428 | } |
1429 | |
1430 | static int i7core_get_all_devices(void) |
1431 | { |
1432 | int i, rc, last_bus; |
1433 | struct pci_dev *pdev = NULL; |
1434 | const struct pci_id_table *table = pci_dev_table; |
1435 | |
1436 | last_bus = i7core_pci_lastbus(); |
1437 | |
1438 | while (table && table->descr) { |
1439 | for (i = 0; i < table->n_devs; i++) { |
1440 | pdev = NULL; |
1441 | do { |
1442 | rc = i7core_get_onedevice(&pdev, table, i, |
1443 | last_bus); |
1444 | if (rc < 0) { |
1445 | if (i == 0) { |
1446 | i = table->n_devs; |
1447 | break; |
1448 | } |
1449 | i7core_put_all_devices(); |
1450 | return -ENODEV; |
1451 | } |
1452 | } while (pdev); |
1453 | } |
1454 | table++; |
1455 | } |
1456 | |
1457 | return 0; |
1458 | } |
1459 | |
1460 | static int mci_bind_devs(struct mem_ctl_info *mci, |
1461 | struct i7core_dev *i7core_dev) |
1462 | { |
1463 | struct i7core_pvt *pvt = mci->pvt_info; |
1464 | struct pci_dev *pdev; |
1465 | int i, func, slot; |
1466 | char *family; |
1467 | |
1468 | pvt->is_registered = false; |
1469 | pvt->enable_scrub = false; |
1470 | for (i = 0; i < i7core_dev->n_devs; i++) { |
1471 | pdev = i7core_dev->pdev[i]; |
1472 | if (!pdev) |
1473 | continue; |
1474 | |
1475 | func = PCI_FUNC(pdev->devfn); |
1476 | slot = PCI_SLOT(pdev->devfn); |
1477 | if (slot == 3) { |
1478 | if (unlikely(func > MAX_MCR_FUNC)) |
1479 | goto error; |
1480 | pvt->pci_mcr[func] = pdev; |
1481 | } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { |
1482 | if (unlikely(func > MAX_CHAN_FUNC)) |
1483 | goto error; |
1484 | pvt->pci_ch[slot - 4][func] = pdev; |
1485 | } else if (!slot && !func) { |
1486 | pvt->pci_noncore = pdev; |
1487 | |
1488 | /* Detect the processor family */ |
1489 | switch (pdev->device) { |
1490 | case PCI_DEVICE_ID_INTEL_I7_NONCORE: |
1491 | family = "Xeon 35xx/ i7core"; |
1492 | pvt->enable_scrub = false; |
1493 | break; |
1494 | case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: |
1495 | family = "i7-800/i5-700"; |
1496 | pvt->enable_scrub = false; |
1497 | break; |
1498 | case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: |
1499 | family = "Xeon 34xx"; |
1500 | pvt->enable_scrub = false; |
1501 | break; |
1502 | case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: |
1503 | family = "Xeon 55xx"; |
1504 | pvt->enable_scrub = true; |
1505 | break; |
1506 | case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: |
1507 | family = "Xeon 56xx / i7-900"; |
1508 | pvt->enable_scrub = true; |
1509 | break; |
1510 | default: |
1511 | family = "unknown"; |
1512 | pvt->enable_scrub = false; |
1513 | } |
1514 | edac_dbg(0, "Detected a processor type %s\n", family); |
1515 | } else |
1516 | goto error; |
1517 | |
1518 | edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", |
1519 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
1520 | pdev, i7core_dev->socket); |
1521 | |
1522 | if (PCI_SLOT(pdev->devfn) == 3 && |
1523 | PCI_FUNC(pdev->devfn) == 2) |
1524 | pvt->is_registered = true; |
1525 | } |
1526 | |
1527 | return 0; |
1528 | |
1529 | error: |
1530 | i7core_printk(KERN_ERR, "Device %d, function %d " |
1531 | "is out of the expected range\n", |
1532 | slot, func); |
1533 | return -EINVAL; |
1534 | } |
1535 | |
1536 | /**************************************************************************** |
1537 | Error check routines |
1538 | ****************************************************************************/ |
1539 | |
1540 | static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, |
1541 | const int chan, |
1542 | const int new0, |
1543 | const int new1, |
1544 | const int new2) |
1545 | { |
1546 | struct i7core_pvt *pvt = mci->pvt_info; |
1547 | int add0 = 0, add1 = 0, add2 = 0; |
1548 | /* Updates CE counters if it is not the first time here */ |
1549 | if (pvt->ce_count_available) { |
1550 | /* Updates CE counters */ |
1551 | |
1552 | add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; |
1553 | add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; |
1554 | add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; |
1555 | |
1556 | if (add2 < 0) |
1557 | add2 += 0x7fff; |
1558 | pvt->rdimm_ce_count[chan][2] += add2; |
1559 | |
1560 | if (add1 < 0) |
1561 | add1 += 0x7fff; |
1562 | pvt->rdimm_ce_count[chan][1] += add1; |
1563 | |
1564 | if (add0 < 0) |
1565 | add0 += 0x7fff; |
1566 | pvt->rdimm_ce_count[chan][0] += add0; |
1567 | } else |
1568 | pvt->ce_count_available = 1; |
1569 | |
1570 | /* Store the new values */ |
1571 | pvt->rdimm_last_ce_count[chan][2] = new2; |
1572 | pvt->rdimm_last_ce_count[chan][1] = new1; |
1573 | pvt->rdimm_last_ce_count[chan][0] = new0; |
1574 | |
1575 | /*updated the edac core */ |
1576 | if (add0 != 0) |
1577 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, |
1578 | 0, 0, 0, |
1579 | chan, 0, -1, "error", ""); |
1580 | if (add1 != 0) |
1581 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, |
1582 | 0, 0, 0, |
1583 | chan, 1, -1, "error", ""); |
1584 | if (add2 != 0) |
1585 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, |
1586 | 0, 0, 0, |
1587 | chan, 2, -1, "error", ""); |
1588 | } |
1589 | |
1590 | static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) |
1591 | { |
1592 | struct i7core_pvt *pvt = mci->pvt_info; |
1593 | u32 rcv[3][2]; |
1594 | int i, new0, new1, new2; |
1595 | |
1596 | /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ |
1597 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, |
1598 | &rcv[0][0]); |
1599 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, |
1600 | &rcv[0][1]); |
1601 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, |
1602 | &rcv[1][0]); |
1603 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, |
1604 | &rcv[1][1]); |
1605 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, |
1606 | &rcv[2][0]); |
1607 | pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, |
1608 | &rcv[2][1]); |
1609 | for (i = 0 ; i < 3; i++) { |
1610 | edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", |
1611 | (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); |
1612 | /*if the channel has 3 dimms*/ |
1613 | if (pvt->channel[i].dimms > 2) { |
1614 | new0 = DIMM_BOT_COR_ERR(rcv[i][0]); |
1615 | new1 = DIMM_TOP_COR_ERR(rcv[i][0]); |
1616 | new2 = DIMM_BOT_COR_ERR(rcv[i][1]); |
1617 | } else { |
1618 | new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + |
1619 | DIMM_BOT_COR_ERR(rcv[i][0]); |
1620 | new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + |
1621 | DIMM_BOT_COR_ERR(rcv[i][1]); |
1622 | new2 = 0; |
1623 | } |
1624 | |
1625 | i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); |
1626 | } |
1627 | } |
1628 | |
1629 | /* This function is based on the device 3 function 4 registers as described on: |
1630 | * Intel Xeon Processor 5500 Series Datasheet Volume 2 |
1631 | * http://www.intel.com/Assets/PDF/datasheet/321322.pdf |
1632 | * also available at: |
1633 | * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
1634 | */ |
1635 | static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) |
1636 | { |
1637 | struct i7core_pvt *pvt = mci->pvt_info; |
1638 | u32 rcv1, rcv0; |
1639 | int new0, new1, new2; |
1640 | |
1641 | if (!pvt->pci_mcr[4]) { |
1642 | edac_dbg(0, "MCR registers not found\n"); |
1643 | return; |
1644 | } |
1645 | |
1646 | /* Corrected test errors */ |
1647 | pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); |
1648 | pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); |
1649 | |
1650 | /* Store the new values */ |
1651 | new2 = DIMM2_COR_ERR(rcv1); |
1652 | new1 = DIMM1_COR_ERR(rcv0); |
1653 | new0 = DIMM0_COR_ERR(rcv0); |
1654 | |
1655 | /* Updates CE counters if it is not the first time here */ |
1656 | if (pvt->ce_count_available) { |
1657 | /* Updates CE counters */ |
1658 | int add0, add1, add2; |
1659 | |
1660 | add2 = new2 - pvt->udimm_last_ce_count[2]; |
1661 | add1 = new1 - pvt->udimm_last_ce_count[1]; |
1662 | add0 = new0 - pvt->udimm_last_ce_count[0]; |
1663 | |
1664 | if (add2 < 0) |
1665 | add2 += 0x7fff; |
1666 | pvt->udimm_ce_count[2] += add2; |
1667 | |
1668 | if (add1 < 0) |
1669 | add1 += 0x7fff; |
1670 | pvt->udimm_ce_count[1] += add1; |
1671 | |
1672 | if (add0 < 0) |
1673 | add0 += 0x7fff; |
1674 | pvt->udimm_ce_count[0] += add0; |
1675 | |
1676 | if (add0 | add1 | add2) |
1677 | i7core_printk(KERN_ERR, "New Corrected error(s): " |
1678 | "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", |
1679 | add0, add1, add2); |
1680 | } else |
1681 | pvt->ce_count_available = 1; |
1682 | |
1683 | /* Store the new values */ |
1684 | pvt->udimm_last_ce_count[2] = new2; |
1685 | pvt->udimm_last_ce_count[1] = new1; |
1686 | pvt->udimm_last_ce_count[0] = new0; |
1687 | } |
1688 | |
1689 | /* |
1690 | * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 |
1691 | * Architectures Software Developer’s Manual Volume 3B. |
1692 | * Nehalem are defined as family 0x06, model 0x1a |
1693 | * |
1694 | * The MCA registers used here are the following ones: |
1695 | * struct mce field MCA Register |
1696 | * m->status MSR_IA32_MC8_STATUS |
1697 | * m->addr MSR_IA32_MC8_ADDR |
1698 | * m->misc MSR_IA32_MC8_MISC |
1699 | * In the case of Nehalem, the error information is masked at .status and .misc |
1700 | * fields |
1701 | */ |
1702 | static void i7core_mce_output_error(struct mem_ctl_info *mci, |
1703 | const struct mce *m) |
1704 | { |
1705 | struct i7core_pvt *pvt = mci->pvt_info; |
1706 | char *type, *optype, *err; |
1707 | enum hw_event_mc_err_type tp_event; |
1708 | unsigned long error = m->status & 0x1ff0000l; |
1709 | bool uncorrected_error = m->mcgstatus & 1ll << 61; |
1710 | bool ripv = m->mcgstatus & 1; |
1711 | u32 optypenum = (m->status >> 4) & 0x07; |
1712 | u32 core_err_cnt = (m->status >> 38) & 0x7fff; |
1713 | u32 dimm = (m->misc >> 16) & 0x3; |
1714 | u32 channel = (m->misc >> 18) & 0x3; |
1715 | u32 syndrome = m->misc >> 32; |
1716 | u32 errnum = find_first_bit(&error, 32); |
1717 | |
1718 | if (uncorrected_error) { |
1719 | if (ripv) { |
1720 | type = "FATAL"; |
1721 | tp_event = HW_EVENT_ERR_FATAL; |
1722 | } else { |
1723 | type = "NON_FATAL"; |
1724 | tp_event = HW_EVENT_ERR_UNCORRECTED; |
1725 | } |
1726 | } else { |
1727 | type = "CORRECTED"; |
1728 | tp_event = HW_EVENT_ERR_CORRECTED; |
1729 | } |
1730 | |
1731 | switch (optypenum) { |
1732 | case 0: |
1733 | optype = "generic undef request"; |
1734 | break; |
1735 | case 1: |
1736 | optype = "read error"; |
1737 | break; |
1738 | case 2: |
1739 | optype = "write error"; |
1740 | break; |
1741 | case 3: |
1742 | optype = "addr/cmd error"; |
1743 | break; |
1744 | case 4: |
1745 | optype = "scrubbing error"; |
1746 | break; |
1747 | default: |
1748 | optype = "reserved"; |
1749 | break; |
1750 | } |
1751 | |
1752 | switch (errnum) { |
1753 | case 16: |
1754 | err = "read ECC error"; |
1755 | break; |
1756 | case 17: |
1757 | err = "RAS ECC error"; |
1758 | break; |
1759 | case 18: |
1760 | err = "write parity error"; |
1761 | break; |
1762 | case 19: |
1763 | err = "redundacy loss"; |
1764 | break; |
1765 | case 20: |
1766 | err = "reserved"; |
1767 | break; |
1768 | case 21: |
1769 | err = "memory range error"; |
1770 | break; |
1771 | case 22: |
1772 | err = "RTID out of range"; |
1773 | break; |
1774 | case 23: |
1775 | err = "address parity error"; |
1776 | break; |
1777 | case 24: |
1778 | err = "byte enable parity error"; |
1779 | break; |
1780 | default: |
1781 | err = "unknown"; |
1782 | } |
1783 | |
1784 | /* |
1785 | * Call the helper to output message |
1786 | * FIXME: what to do if core_err_cnt > 1? Currently, it generates |
1787 | * only one event |
1788 | */ |
1789 | if (uncorrected_error || !pvt->is_registered) |
1790 | edac_mc_handle_error(tp_event, mci, core_err_cnt, |
1791 | m->addr >> PAGE_SHIFT, |
1792 | m->addr & ~PAGE_MASK, |
1793 | syndrome, |
1794 | channel, dimm, -1, |
1795 | err, optype); |
1796 | } |
1797 | |
1798 | /* |
1799 | * i7core_check_error Retrieve and process errors reported by the |
1800 | * hardware. Called by the Core module. |
1801 | */ |
1802 | static void i7core_check_error(struct mem_ctl_info *mci) |
1803 | { |
1804 | struct i7core_pvt *pvt = mci->pvt_info; |
1805 | int i; |
1806 | unsigned count = 0; |
1807 | struct mce *m; |
1808 | |
1809 | /* |
1810 | * MCE first step: Copy all mce errors into a temporary buffer |
1811 | * We use a double buffering here, to reduce the risk of |
1812 | * losing an error. |
1813 | */ |
1814 | smp_rmb(); |
1815 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) |
1816 | % MCE_LOG_LEN; |
1817 | if (!count) |
1818 | goto check_ce_error; |
1819 | |
1820 | m = pvt->mce_outentry; |
1821 | if (pvt->mce_in + count > MCE_LOG_LEN) { |
1822 | unsigned l = MCE_LOG_LEN - pvt->mce_in; |
1823 | |
1824 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); |
1825 | smp_wmb(); |
1826 | pvt->mce_in = 0; |
1827 | count -= l; |
1828 | m += l; |
1829 | } |
1830 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); |
1831 | smp_wmb(); |
1832 | pvt->mce_in += count; |
1833 | |
1834 | smp_rmb(); |
1835 | if (pvt->mce_overrun) { |
1836 | i7core_printk(KERN_ERR, "Lost %d memory errors\n", |
1837 | pvt->mce_overrun); |
1838 | smp_wmb(); |
1839 | pvt->mce_overrun = 0; |
1840 | } |
1841 | |
1842 | /* |
1843 | * MCE second step: parse errors and display |
1844 | */ |
1845 | for (i = 0; i < count; i++) |
1846 | i7core_mce_output_error(mci, &pvt->mce_outentry[i]); |
1847 | |
1848 | /* |
1849 | * Now, let's increment CE error counts |
1850 | */ |
1851 | check_ce_error: |
1852 | if (!pvt->is_registered) |
1853 | i7core_udimm_check_mc_ecc_err(mci); |
1854 | else |
1855 | i7core_rdimm_check_mc_ecc_err(mci); |
1856 | } |
1857 | |
1858 | /* |
1859 | * i7core_mce_check_error Replicates mcelog routine to get errors |
1860 | * This routine simply queues mcelog errors, and |
1861 | * return. The error itself should be handled later |
1862 | * by i7core_check_error. |
1863 | * WARNING: As this routine should be called at NMI time, extra care should |
1864 | * be taken to avoid deadlocks, and to be as fast as possible. |
1865 | */ |
1866 | static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, |
1867 | void *data) |
1868 | { |
1869 | struct mce *mce = (struct mce *)data; |
1870 | struct i7core_dev *i7_dev; |
1871 | struct mem_ctl_info *mci; |
1872 | struct i7core_pvt *pvt; |
1873 | |
1874 | i7_dev = get_i7core_dev(mce->socketid); |
1875 | if (!i7_dev) |
1876 | return NOTIFY_BAD; |
1877 | |
1878 | mci = i7_dev->mci; |
1879 | pvt = mci->pvt_info; |
1880 | |
1881 | /* |
1882 | * Just let mcelog handle it if the error is |
1883 | * outside the memory controller |
1884 | */ |
1885 | if (((mce->status & 0xffff) >> 7) != 1) |
1886 | return NOTIFY_DONE; |
1887 | |
1888 | /* Bank 8 registers are the only ones that we know how to handle */ |
1889 | if (mce->bank != 8) |
1890 | return NOTIFY_DONE; |
1891 | |
1892 | smp_rmb(); |
1893 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { |
1894 | smp_wmb(); |
1895 | pvt->mce_overrun++; |
1896 | return NOTIFY_DONE; |
1897 | } |
1898 | |
1899 | /* Copy memory error at the ringbuffer */ |
1900 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); |
1901 | smp_wmb(); |
1902 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; |
1903 | |
1904 | /* Handle fatal errors immediately */ |
1905 | if (mce->mcgstatus & 1) |
1906 | i7core_check_error(mci); |
1907 | |
1908 | /* Advise mcelog that the errors were handled */ |
1909 | return NOTIFY_STOP; |
1910 | } |
1911 | |
1912 | static struct notifier_block i7_mce_dec = { |
1913 | .notifier_call = i7core_mce_check_error, |
1914 | }; |
1915 | |
1916 | struct memdev_dmi_entry { |
1917 | u8 type; |
1918 | u8 length; |
1919 | u16 handle; |
1920 | u16 phys_mem_array_handle; |
1921 | u16 mem_err_info_handle; |
1922 | u16 total_width; |
1923 | u16 data_width; |
1924 | u16 size; |
1925 | u8 form; |
1926 | u8 device_set; |
1927 | u8 device_locator; |
1928 | u8 bank_locator; |
1929 | u8 memory_type; |
1930 | u16 type_detail; |
1931 | u16 speed; |
1932 | u8 manufacturer; |
1933 | u8 serial_number; |
1934 | u8 asset_tag; |
1935 | u8 part_number; |
1936 | u8 attributes; |
1937 | u32 extended_size; |
1938 | u16 conf_mem_clk_speed; |
1939 | } __attribute__((__packed__)); |
1940 | |
1941 | |
1942 | /* |
1943 | * Decode the DRAM Clock Frequency, be paranoid, make sure that all |
1944 | * memory devices show the same speed, and if they don't then consider |
1945 | * all speeds to be invalid. |
1946 | */ |
1947 | static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) |
1948 | { |
1949 | int *dclk_freq = _dclk_freq; |
1950 | u16 dmi_mem_clk_speed; |
1951 | |
1952 | if (*dclk_freq == -1) |
1953 | return; |
1954 | |
1955 | if (dh->type == DMI_ENTRY_MEM_DEVICE) { |
1956 | struct memdev_dmi_entry *memdev_dmi_entry = |
1957 | (struct memdev_dmi_entry *)dh; |
1958 | unsigned long conf_mem_clk_speed_offset = |
1959 | (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - |
1960 | (unsigned long)&memdev_dmi_entry->type; |
1961 | unsigned long speed_offset = |
1962 | (unsigned long)&memdev_dmi_entry->speed - |
1963 | (unsigned long)&memdev_dmi_entry->type; |
1964 | |
1965 | /* Check that a DIMM is present */ |
1966 | if (memdev_dmi_entry->size == 0) |
1967 | return; |
1968 | |
1969 | /* |
1970 | * Pick the configured speed if it's available, otherwise |
1971 | * pick the DIMM speed, or we don't have a speed. |
1972 | */ |
1973 | if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { |
1974 | dmi_mem_clk_speed = |
1975 | memdev_dmi_entry->conf_mem_clk_speed; |
1976 | } else if (memdev_dmi_entry->length > speed_offset) { |
1977 | dmi_mem_clk_speed = memdev_dmi_entry->speed; |
1978 | } else { |
1979 | *dclk_freq = -1; |
1980 | return; |
1981 | } |
1982 | |
1983 | if (*dclk_freq == 0) { |
1984 | /* First pass, speed was 0 */ |
1985 | if (dmi_mem_clk_speed > 0) { |
1986 | /* Set speed if a valid speed is read */ |
1987 | *dclk_freq = dmi_mem_clk_speed; |
1988 | } else { |
1989 | /* Otherwise we don't have a valid speed */ |
1990 | *dclk_freq = -1; |
1991 | } |
1992 | } else if (*dclk_freq > 0 && |
1993 | *dclk_freq != dmi_mem_clk_speed) { |
1994 | /* |
1995 | * If we have a speed, check that all DIMMS are the same |
1996 | * speed, otherwise set the speed as invalid. |
1997 | */ |
1998 | *dclk_freq = -1; |
1999 | } |
2000 | } |
2001 | } |
2002 | |
2003 | /* |
2004 | * The default DCLK frequency is used as a fallback if we |
2005 | * fail to find anything reliable in the DMI. The value |
2006 | * is taken straight from the datasheet. |
2007 | */ |
2008 | #define DEFAULT_DCLK_FREQ 800 |
2009 | |
2010 | static int get_dclk_freq(void) |
2011 | { |
2012 | int dclk_freq = 0; |
2013 | |
2014 | dmi_walk(decode_dclk, (void *)&dclk_freq); |
2015 | |
2016 | if (dclk_freq < 1) |
2017 | return DEFAULT_DCLK_FREQ; |
2018 | |
2019 | return dclk_freq; |
2020 | } |
2021 | |
2022 | /* |
2023 | * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate |
2024 | * to hardware according to SCRUBINTERVAL formula |
2025 | * found in datasheet. |
2026 | */ |
2027 | static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) |
2028 | { |
2029 | struct i7core_pvt *pvt = mci->pvt_info; |
2030 | struct pci_dev *pdev; |
2031 | u32 dw_scrub; |
2032 | u32 dw_ssr; |
2033 | |
2034 | /* Get data from the MC register, function 2 */ |
2035 | pdev = pvt->pci_mcr[2]; |
2036 | if (!pdev) |
2037 | return -ENODEV; |
2038 | |
2039 | pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); |
2040 | |
2041 | if (new_bw == 0) { |
2042 | /* Prepare to disable petrol scrub */ |
2043 | dw_scrub &= ~STARTSCRUB; |
2044 | /* Stop the patrol scrub engine */ |
2045 | write_and_test(pdev, MC_SCRUB_CONTROL, |
2046 | dw_scrub & ~SCRUBINTERVAL_MASK); |
2047 | |
2048 | /* Get current status of scrub rate and set bit to disable */ |
2049 | pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); |
2050 | dw_ssr &= ~SSR_MODE_MASK; |
2051 | dw_ssr |= SSR_MODE_DISABLE; |
2052 | } else { |
2053 | const int cache_line_size = 64; |
2054 | const u32 freq_dclk_mhz = pvt->dclk_freq; |
2055 | unsigned long long scrub_interval; |
2056 | /* |
2057 | * Translate the desired scrub rate to a register value and |
2058 | * program the corresponding register value. |
2059 | */ |
2060 | scrub_interval = (unsigned long long)freq_dclk_mhz * |
2061 | cache_line_size * 1000000; |
2062 | do_div(scrub_interval, new_bw); |
2063 | |
2064 | if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) |
2065 | return -EINVAL; |
2066 | |
2067 | dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; |
2068 | |
2069 | /* Start the patrol scrub engine */ |
2070 | pci_write_config_dword(pdev, MC_SCRUB_CONTROL, |
2071 | STARTSCRUB | dw_scrub); |
2072 | |
2073 | /* Get current status of scrub rate and set bit to enable */ |
2074 | pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); |
2075 | dw_ssr &= ~SSR_MODE_MASK; |
2076 | dw_ssr |= SSR_MODE_ENABLE; |
2077 | } |
2078 | /* Disable or enable scrubbing */ |
2079 | pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); |
2080 | |
2081 | return new_bw; |
2082 | } |
2083 | |
2084 | /* |
2085 | * get_sdram_scrub_rate This routine convert current scrub rate value |
2086 | * into byte/sec bandwidth according to |
2087 | * SCRUBINTERVAL formula found in datasheet. |
2088 | */ |
2089 | static int get_sdram_scrub_rate(struct mem_ctl_info *mci) |
2090 | { |
2091 | struct i7core_pvt *pvt = mci->pvt_info; |
2092 | struct pci_dev *pdev; |
2093 | const u32 cache_line_size = 64; |
2094 | const u32 freq_dclk_mhz = pvt->dclk_freq; |
2095 | unsigned long long scrub_rate; |
2096 | u32 scrubval; |
2097 | |
2098 | /* Get data from the MC register, function 2 */ |
2099 | pdev = pvt->pci_mcr[2]; |
2100 | if (!pdev) |
2101 | return -ENODEV; |
2102 | |
2103 | /* Get current scrub control data */ |
2104 | pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); |
2105 | |
2106 | /* Mask highest 8-bits to 0 */ |
2107 | scrubval &= SCRUBINTERVAL_MASK; |
2108 | if (!scrubval) |
2109 | return 0; |
2110 | |
2111 | /* Calculate scrub rate value into byte/sec bandwidth */ |
2112 | scrub_rate = (unsigned long long)freq_dclk_mhz * |
2113 | 1000000 * cache_line_size; |
2114 | do_div(scrub_rate, scrubval); |
2115 | return (int)scrub_rate; |
2116 | } |
2117 | |
2118 | static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) |
2119 | { |
2120 | struct i7core_pvt *pvt = mci->pvt_info; |
2121 | u32 pci_lock; |
2122 | |
2123 | /* Unlock writes to pci registers */ |
2124 | pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); |
2125 | pci_lock &= ~0x3; |
2126 | pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, |
2127 | pci_lock | MC_CFG_UNLOCK); |
2128 | |
2129 | mci->set_sdram_scrub_rate = set_sdram_scrub_rate; |
2130 | mci->get_sdram_scrub_rate = get_sdram_scrub_rate; |
2131 | } |
2132 | |
2133 | static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) |
2134 | { |
2135 | struct i7core_pvt *pvt = mci->pvt_info; |
2136 | u32 pci_lock; |
2137 | |
2138 | /* Lock writes to pci registers */ |
2139 | pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); |
2140 | pci_lock &= ~0x3; |
2141 | pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, |
2142 | pci_lock | MC_CFG_LOCK); |
2143 | } |
2144 | |
2145 | static void i7core_pci_ctl_create(struct i7core_pvt *pvt) |
2146 | { |
2147 | pvt->i7core_pci = edac_pci_create_generic_ctl( |
2148 | &pvt->i7core_dev->pdev[0]->dev, |
2149 | EDAC_MOD_STR); |
2150 | if (unlikely(!pvt->i7core_pci)) |
2151 | i7core_printk(KERN_WARNING, |
2152 | "Unable to setup PCI error report via EDAC\n"); |
2153 | } |
2154 | |
2155 | static void i7core_pci_ctl_release(struct i7core_pvt *pvt) |
2156 | { |
2157 | if (likely(pvt->i7core_pci)) |
2158 | edac_pci_release_generic_ctl(pvt->i7core_pci); |
2159 | else |
2160 | i7core_printk(KERN_ERR, |
2161 | "Couldn't find mem_ctl_info for socket %d\n", |
2162 | pvt->i7core_dev->socket); |
2163 | pvt->i7core_pci = NULL; |
2164 | } |
2165 | |
2166 | static void i7core_unregister_mci(struct i7core_dev *i7core_dev) |
2167 | { |
2168 | struct mem_ctl_info *mci = i7core_dev->mci; |
2169 | struct i7core_pvt *pvt; |
2170 | |
2171 | if (unlikely(!mci || !mci->pvt_info)) { |
2172 | edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); |
2173 | |
2174 | i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); |
2175 | return; |
2176 | } |
2177 | |
2178 | pvt = mci->pvt_info; |
2179 | |
2180 | edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); |
2181 | |
2182 | /* Disable scrubrate setting */ |
2183 | if (pvt->enable_scrub) |
2184 | disable_sdram_scrub_setting(mci); |
2185 | |
2186 | /* Disable EDAC polling */ |
2187 | i7core_pci_ctl_release(pvt); |
2188 | |
2189 | /* Remove MC sysfs nodes */ |
2190 | i7core_delete_sysfs_devices(mci); |
2191 | edac_mc_del_mc(mci->pdev); |
2192 | |
2193 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
2194 | kfree(mci->ctl_name); |
2195 | edac_mc_free(mci); |
2196 | i7core_dev->mci = NULL; |
2197 | } |
2198 | |
2199 | static int i7core_register_mci(struct i7core_dev *i7core_dev) |
2200 | { |
2201 | struct mem_ctl_info *mci; |
2202 | struct i7core_pvt *pvt; |
2203 | int rc; |
2204 | struct edac_mc_layer layers[2]; |
2205 | |
2206 | /* allocate a new MC control structure */ |
2207 | |
2208 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
2209 | layers[0].size = NUM_CHANS; |
2210 | layers[0].is_virt_csrow = false; |
2211 | layers[1].type = EDAC_MC_LAYER_SLOT; |
2212 | layers[1].size = MAX_DIMMS; |
2213 | layers[1].is_virt_csrow = true; |
2214 | mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, |
2215 | sizeof(*pvt)); |
2216 | if (unlikely(!mci)) |
2217 | return -ENOMEM; |
2218 | |
2219 | edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); |
2220 | |
2221 | pvt = mci->pvt_info; |
2222 | memset(pvt, 0, sizeof(*pvt)); |
2223 | |
2224 | /* Associates i7core_dev and mci for future usage */ |
2225 | pvt->i7core_dev = i7core_dev; |
2226 | i7core_dev->mci = mci; |
2227 | |
2228 | /* |
2229 | * FIXME: how to handle RDDR3 at MCI level? It is possible to have |
2230 | * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different |
2231 | * memory channels |
2232 | */ |
2233 | mci->mtype_cap = MEM_FLAG_DDR3; |
2234 | mci->edac_ctl_cap = EDAC_FLAG_NONE; |
2235 | mci->edac_cap = EDAC_FLAG_NONE; |
2236 | mci->mod_name = "i7core_edac.c"; |
2237 | mci->mod_ver = I7CORE_REVISION; |
2238 | mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", |
2239 | i7core_dev->socket); |
2240 | mci->dev_name = pci_name(i7core_dev->pdev[0]); |
2241 | mci->ctl_page_to_phys = NULL; |
2242 | |
2243 | /* Store pci devices at mci for faster access */ |
2244 | rc = mci_bind_devs(mci, i7core_dev); |
2245 | if (unlikely(rc < 0)) |
2246 | goto fail0; |
2247 | |
2248 | |
2249 | /* Get dimm basic config */ |
2250 | get_dimm_config(mci); |
2251 | /* record ptr to the generic device */ |
2252 | mci->pdev = &i7core_dev->pdev[0]->dev; |
2253 | /* Set the function pointer to an actual operation function */ |
2254 | mci->edac_check = i7core_check_error; |
2255 | |
2256 | /* Enable scrubrate setting */ |
2257 | if (pvt->enable_scrub) |
2258 | enable_sdram_scrub_setting(mci); |
2259 | |
2260 | /* add this new MC control structure to EDAC's list of MCs */ |
2261 | if (unlikely(edac_mc_add_mc(mci))) { |
2262 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
2263 | /* FIXME: perhaps some code should go here that disables error |
2264 | * reporting if we just enabled it |
2265 | */ |
2266 | |
2267 | rc = -EINVAL; |
2268 | goto fail0; |
2269 | } |
2270 | if (i7core_create_sysfs_devices(mci)) { |
2271 | edac_dbg(0, "MC: failed to create sysfs nodes\n"); |
2272 | edac_mc_del_mc(mci->pdev); |
2273 | rc = -EINVAL; |
2274 | goto fail0; |
2275 | } |
2276 | |
2277 | /* Default error mask is any memory */ |
2278 | pvt->inject.channel = 0; |
2279 | pvt->inject.dimm = -1; |
2280 | pvt->inject.rank = -1; |
2281 | pvt->inject.bank = -1; |
2282 | pvt->inject.page = -1; |
2283 | pvt->inject.col = -1; |
2284 | |
2285 | /* allocating generic PCI control info */ |
2286 | i7core_pci_ctl_create(pvt); |
2287 | |
2288 | /* DCLK for scrub rate setting */ |
2289 | pvt->dclk_freq = get_dclk_freq(); |
2290 | |
2291 | return 0; |
2292 | |
2293 | fail0: |
2294 | kfree(mci->ctl_name); |
2295 | edac_mc_free(mci); |
2296 | i7core_dev->mci = NULL; |
2297 | return rc; |
2298 | } |
2299 | |
2300 | /* |
2301 | * i7core_probe Probe for ONE instance of device to see if it is |
2302 | * present. |
2303 | * return: |
2304 | * 0 for FOUND a device |
2305 | * < 0 for error code |
2306 | */ |
2307 | |
2308 | static int __devinit i7core_probe(struct pci_dev *pdev, |
2309 | const struct pci_device_id *id) |
2310 | { |
2311 | int rc, count = 0; |
2312 | struct i7core_dev *i7core_dev; |
2313 | |
2314 | /* get the pci devices we want to reserve for our use */ |
2315 | mutex_lock(&i7core_edac_lock); |
2316 | |
2317 | /* |
2318 | * All memory controllers are allocated at the first pass. |
2319 | */ |
2320 | if (unlikely(probed >= 1)) { |
2321 | mutex_unlock(&i7core_edac_lock); |
2322 | return -ENODEV; |
2323 | } |
2324 | probed++; |
2325 | |
2326 | rc = i7core_get_all_devices(); |
2327 | if (unlikely(rc < 0)) |
2328 | goto fail0; |
2329 | |
2330 | list_for_each_entry(i7core_dev, &i7core_edac_list, list) { |
2331 | count++; |
2332 | rc = i7core_register_mci(i7core_dev); |
2333 | if (unlikely(rc < 0)) |
2334 | goto fail1; |
2335 | } |
2336 | |
2337 | /* |
2338 | * Nehalem-EX uses a different memory controller. However, as the |
2339 | * memory controller is not visible on some Nehalem/Nehalem-EP, we |
2340 | * need to indirectly probe via a X58 PCI device. The same devices |
2341 | * are found on (some) Nehalem-EX. So, on those machines, the |
2342 | * probe routine needs to return -ENODEV, as the actual Memory |
2343 | * Controller registers won't be detected. |
2344 | */ |
2345 | if (!count) { |
2346 | rc = -ENODEV; |
2347 | goto fail1; |
2348 | } |
2349 | |
2350 | i7core_printk(KERN_INFO, |
2351 | "Driver loaded, %d memory controller(s) found.\n", |
2352 | count); |
2353 | |
2354 | mutex_unlock(&i7core_edac_lock); |
2355 | return 0; |
2356 | |
2357 | fail1: |
2358 | list_for_each_entry(i7core_dev, &i7core_edac_list, list) |
2359 | i7core_unregister_mci(i7core_dev); |
2360 | |
2361 | i7core_put_all_devices(); |
2362 | fail0: |
2363 | mutex_unlock(&i7core_edac_lock); |
2364 | return rc; |
2365 | } |
2366 | |
2367 | /* |
2368 | * i7core_remove destructor for one instance of device |
2369 | * |
2370 | */ |
2371 | static void __devexit i7core_remove(struct pci_dev *pdev) |
2372 | { |
2373 | struct i7core_dev *i7core_dev; |
2374 | |
2375 | edac_dbg(0, "\n"); |
2376 | |
2377 | /* |
2378 | * we have a trouble here: pdev value for removal will be wrong, since |
2379 | * it will point to the X58 register used to detect that the machine |
2380 | * is a Nehalem or upper design. However, due to the way several PCI |
2381 | * devices are grouped together to provide MC functionality, we need |
2382 | * to use a different method for releasing the devices |
2383 | */ |
2384 | |
2385 | mutex_lock(&i7core_edac_lock); |
2386 | |
2387 | if (unlikely(!probed)) { |
2388 | mutex_unlock(&i7core_edac_lock); |
2389 | return; |
2390 | } |
2391 | |
2392 | list_for_each_entry(i7core_dev, &i7core_edac_list, list) |
2393 | i7core_unregister_mci(i7core_dev); |
2394 | |
2395 | /* Release PCI resources */ |
2396 | i7core_put_all_devices(); |
2397 | |
2398 | probed--; |
2399 | |
2400 | mutex_unlock(&i7core_edac_lock); |
2401 | } |
2402 | |
2403 | MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); |
2404 | |
2405 | /* |
2406 | * i7core_driver pci_driver structure for this module |
2407 | * |
2408 | */ |
2409 | static struct pci_driver i7core_driver = { |
2410 | .name = "i7core_edac", |
2411 | .probe = i7core_probe, |
2412 | .remove = __devexit_p(i7core_remove), |
2413 | .id_table = i7core_pci_tbl, |
2414 | }; |
2415 | |
2416 | /* |
2417 | * i7core_init Module entry function |
2418 | * Try to initialize this module for its devices |
2419 | */ |
2420 | static int __init i7core_init(void) |
2421 | { |
2422 | int pci_rc; |
2423 | |
2424 | edac_dbg(2, "\n"); |
2425 | |
2426 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
2427 | opstate_init(); |
2428 | |
2429 | if (use_pci_fixup) |
2430 | i7core_xeon_pci_fixup(pci_dev_table); |
2431 | |
2432 | pci_rc = pci_register_driver(&i7core_driver); |
2433 | |
2434 | if (pci_rc >= 0) { |
2435 | mce_register_decode_chain(&i7_mce_dec); |
2436 | return 0; |
2437 | } |
2438 | |
2439 | i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", |
2440 | pci_rc); |
2441 | |
2442 | return pci_rc; |
2443 | } |
2444 | |
2445 | /* |
2446 | * i7core_exit() Module exit function |
2447 | * Unregister the driver |
2448 | */ |
2449 | static void __exit i7core_exit(void) |
2450 | { |
2451 | edac_dbg(2, "\n"); |
2452 | pci_unregister_driver(&i7core_driver); |
2453 | mce_unregister_decode_chain(&i7_mce_dec); |
2454 | } |
2455 | |
2456 | module_init(i7core_init); |
2457 | module_exit(i7core_exit); |
2458 | |
2459 | MODULE_LICENSE("GPL"); |
2460 | MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
2461 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
2462 | MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " |
2463 | I7CORE_REVISION); |
2464 | |
2465 | module_param(edac_op_state, int, 0444); |
2466 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
2467 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9