Root/
1 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module |
2 | * |
3 | * This driver supports the memory controllers found on the Intel |
4 | * processor family Sandy Bridge. |
5 | * |
6 | * This file may be distributed under the terms of the |
7 | * GNU General Public License version 2 only. |
8 | * |
9 | * Copyright (c) 2011 by: |
10 | * Mauro Carvalho Chehab <mchehab@redhat.com> |
11 | */ |
12 | |
13 | #include <linux/module.h> |
14 | #include <linux/init.h> |
15 | #include <linux/pci.h> |
16 | #include <linux/pci_ids.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/delay.h> |
19 | #include <linux/edac.h> |
20 | #include <linux/mmzone.h> |
21 | #include <linux/smp.h> |
22 | #include <linux/bitmap.h> |
23 | #include <linux/math64.h> |
24 | #include <asm/processor.h> |
25 | #include <asm/mce.h> |
26 | |
27 | #include "edac_core.h" |
28 | |
29 | /* Static vars */ |
30 | static LIST_HEAD(sbridge_edac_list); |
31 | static DEFINE_MUTEX(sbridge_edac_lock); |
32 | static int probed; |
33 | |
34 | /* |
35 | * Alter this version for the module when modifications are made |
36 | */ |
37 | #define SBRIDGE_REVISION " Ver: 1.0.0 " |
38 | #define EDAC_MOD_STR "sbridge_edac" |
39 | |
40 | /* |
41 | * Debug macros |
42 | */ |
43 | #define sbridge_printk(level, fmt, arg...) \ |
44 | edac_printk(level, "sbridge", fmt, ##arg) |
45 | |
46 | #define sbridge_mc_printk(mci, level, fmt, arg...) \ |
47 | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) |
48 | |
49 | /* |
50 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> |
51 | */ |
52 | #define GET_BITFIELD(v, lo, hi) \ |
53 | (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) |
54 | |
55 | /* |
56 | * sbridge Memory Controller Registers |
57 | */ |
58 | |
59 | /* |
60 | * FIXME: For now, let's order by device function, as it makes |
61 | * easier for driver's development process. This table should be |
62 | * moved to pci_id.h when submitted upstream |
63 | */ |
64 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ |
65 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ |
66 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ |
67 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ |
68 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ |
69 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ |
70 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ |
71 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ |
72 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ |
73 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ |
74 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ |
75 | |
76 | /* |
77 | * Currently, unused, but will be needed in the future |
78 | * implementations, as they hold the error counters |
79 | */ |
80 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ |
81 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ |
82 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ |
83 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ |
84 | |
85 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ |
86 | static const u32 dram_rule[] = { |
87 | 0x80, 0x88, 0x90, 0x98, 0xa0, |
88 | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, |
89 | }; |
90 | #define MAX_SAD ARRAY_SIZE(dram_rule) |
91 | |
92 | #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) |
93 | #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) |
94 | #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) |
95 | #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) |
96 | |
97 | static char *get_dram_attr(u32 reg) |
98 | { |
99 | switch(DRAM_ATTR(reg)) { |
100 | case 0: |
101 | return "DRAM"; |
102 | case 1: |
103 | return "MMCFG"; |
104 | case 2: |
105 | return "NXM"; |
106 | default: |
107 | return "unknown"; |
108 | } |
109 | } |
110 | |
111 | static const u32 interleave_list[] = { |
112 | 0x84, 0x8c, 0x94, 0x9c, 0xa4, |
113 | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, |
114 | }; |
115 | #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) |
116 | |
117 | #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) |
118 | #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) |
119 | #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) |
120 | #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) |
121 | #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) |
122 | #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) |
123 | #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) |
124 | #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) |
125 | |
126 | static inline int sad_pkg(u32 reg, int interleave) |
127 | { |
128 | switch (interleave) { |
129 | case 0: |
130 | return SAD_PKG0(reg); |
131 | case 1: |
132 | return SAD_PKG1(reg); |
133 | case 2: |
134 | return SAD_PKG2(reg); |
135 | case 3: |
136 | return SAD_PKG3(reg); |
137 | case 4: |
138 | return SAD_PKG4(reg); |
139 | case 5: |
140 | return SAD_PKG5(reg); |
141 | case 6: |
142 | return SAD_PKG6(reg); |
143 | case 7: |
144 | return SAD_PKG7(reg); |
145 | default: |
146 | return -EINVAL; |
147 | } |
148 | } |
149 | |
150 | /* Devices 12 Function 7 */ |
151 | |
152 | #define TOLM 0x80 |
153 | #define TOHM 0x84 |
154 | |
155 | #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) |
156 | #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) |
157 | |
158 | /* Device 13 Function 6 */ |
159 | |
160 | #define SAD_TARGET 0xf0 |
161 | |
162 | #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) |
163 | |
164 | #define SAD_CONTROL 0xf4 |
165 | |
166 | #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) |
167 | |
168 | /* Device 14 function 0 */ |
169 | |
170 | static const u32 tad_dram_rule[] = { |
171 | 0x40, 0x44, 0x48, 0x4c, |
172 | 0x50, 0x54, 0x58, 0x5c, |
173 | 0x60, 0x64, 0x68, 0x6c, |
174 | }; |
175 | #define MAX_TAD ARRAY_SIZE(tad_dram_rule) |
176 | |
177 | #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) |
178 | #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) |
179 | #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) |
180 | #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) |
181 | #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) |
182 | #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) |
183 | #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) |
184 | |
185 | /* Device 15, function 0 */ |
186 | |
187 | #define MCMTR 0x7c |
188 | |
189 | #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) |
190 | #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) |
191 | #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) |
192 | |
193 | /* Device 15, function 1 */ |
194 | |
195 | #define RASENABLES 0xac |
196 | #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) |
197 | |
198 | /* Device 15, functions 2-5 */ |
199 | |
200 | static const int mtr_regs[] = { |
201 | 0x80, 0x84, 0x88, |
202 | }; |
203 | |
204 | #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) |
205 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) |
206 | #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) |
207 | #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) |
208 | #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) |
209 | |
210 | static const u32 tad_ch_nilv_offset[] = { |
211 | 0x90, 0x94, 0x98, 0x9c, |
212 | 0xa0, 0xa4, 0xa8, 0xac, |
213 | 0xb0, 0xb4, 0xb8, 0xbc, |
214 | }; |
215 | #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) |
216 | #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) |
217 | |
218 | static const u32 rir_way_limit[] = { |
219 | 0x108, 0x10c, 0x110, 0x114, 0x118, |
220 | }; |
221 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) |
222 | |
223 | #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) |
224 | #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) |
225 | #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) |
226 | |
227 | #define MAX_RIR_WAY 8 |
228 | |
229 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { |
230 | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, |
231 | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, |
232 | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, |
233 | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, |
234 | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, |
235 | }; |
236 | |
237 | #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) |
238 | #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) |
239 | |
240 | /* Device 16, functions 2-7 */ |
241 | |
242 | /* |
243 | * FIXME: Implement the error count reads directly |
244 | */ |
245 | |
246 | static const u32 correrrcnt[] = { |
247 | 0x104, 0x108, 0x10c, 0x110, |
248 | }; |
249 | |
250 | #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) |
251 | #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) |
252 | #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) |
253 | #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) |
254 | |
255 | static const u32 correrrthrsld[] = { |
256 | 0x11c, 0x120, 0x124, 0x128, |
257 | }; |
258 | |
259 | #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) |
260 | #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) |
261 | |
262 | |
263 | /* Device 17, function 0 */ |
264 | |
265 | #define RANK_CFG_A 0x0328 |
266 | |
267 | #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) |
268 | |
269 | /* |
270 | * sbridge structs |
271 | */ |
272 | |
273 | #define NUM_CHANNELS 4 |
274 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ |
275 | |
276 | struct sbridge_info { |
277 | u32 mcmtr; |
278 | }; |
279 | |
280 | struct sbridge_channel { |
281 | u32 ranks; |
282 | u32 dimms; |
283 | }; |
284 | |
285 | struct pci_id_descr { |
286 | int dev; |
287 | int func; |
288 | int dev_id; |
289 | int optional; |
290 | }; |
291 | |
292 | struct pci_id_table { |
293 | const struct pci_id_descr *descr; |
294 | int n_devs; |
295 | }; |
296 | |
297 | struct sbridge_dev { |
298 | struct list_head list; |
299 | u8 bus, mc; |
300 | u8 node_id, source_id; |
301 | struct pci_dev **pdev; |
302 | int n_devs; |
303 | struct mem_ctl_info *mci; |
304 | }; |
305 | |
306 | struct sbridge_pvt { |
307 | struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; |
308 | struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; |
309 | struct pci_dev *pci_br; |
310 | struct pci_dev *pci_tad[NUM_CHANNELS]; |
311 | |
312 | struct sbridge_dev *sbridge_dev; |
313 | |
314 | struct sbridge_info info; |
315 | struct sbridge_channel channel[NUM_CHANNELS]; |
316 | |
317 | /* Memory type detection */ |
318 | bool is_mirrored, is_lockstep, is_close_pg; |
319 | |
320 | /* Fifo double buffers */ |
321 | struct mce mce_entry[MCE_LOG_LEN]; |
322 | struct mce mce_outentry[MCE_LOG_LEN]; |
323 | |
324 | /* Fifo in/out counters */ |
325 | unsigned mce_in, mce_out; |
326 | |
327 | /* Count indicator to show errors not got */ |
328 | unsigned mce_overrun; |
329 | |
330 | /* Memory description */ |
331 | u64 tolm, tohm; |
332 | }; |
333 | |
334 | #define PCI_DESCR(device, function, device_id) \ |
335 | .dev = (device), \ |
336 | .func = (function), \ |
337 | .dev_id = (device_id) |
338 | |
339 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { |
340 | /* Processor Home Agent */ |
341 | { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) }, |
342 | |
343 | /* Memory controller */ |
344 | { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) }, |
345 | { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) }, |
346 | { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) }, |
347 | { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) }, |
348 | { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) }, |
349 | { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) }, |
350 | { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) }, |
351 | |
352 | /* System Address Decoder */ |
353 | { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) }, |
354 | { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) }, |
355 | |
356 | /* Broadcast Registers */ |
357 | { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) }, |
358 | }; |
359 | |
360 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } |
361 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { |
362 | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), |
363 | {0,} /* 0 terminated list. */ |
364 | }; |
365 | |
366 | /* |
367 | * pci_device_id table for which devices we are looking for |
368 | */ |
369 | static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { |
370 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, |
371 | {0,} /* 0 terminated list. */ |
372 | }; |
373 | |
374 | |
375 | /**************************************************************************** |
376 | Ancillary status routines |
377 | ****************************************************************************/ |
378 | |
379 | static inline int numrank(u32 mtr) |
380 | { |
381 | int ranks = (1 << RANK_CNT_BITS(mtr)); |
382 | |
383 | if (ranks > 4) { |
384 | edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n", |
385 | ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); |
386 | return -EINVAL; |
387 | } |
388 | |
389 | return ranks; |
390 | } |
391 | |
392 | static inline int numrow(u32 mtr) |
393 | { |
394 | int rows = (RANK_WIDTH_BITS(mtr) + 12); |
395 | |
396 | if (rows < 13 || rows > 18) { |
397 | edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", |
398 | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); |
399 | return -EINVAL; |
400 | } |
401 | |
402 | return 1 << rows; |
403 | } |
404 | |
405 | static inline int numcol(u32 mtr) |
406 | { |
407 | int cols = (COL_WIDTH_BITS(mtr) + 10); |
408 | |
409 | if (cols > 12) { |
410 | edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", |
411 | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); |
412 | return -EINVAL; |
413 | } |
414 | |
415 | return 1 << cols; |
416 | } |
417 | |
418 | static struct sbridge_dev *get_sbridge_dev(u8 bus) |
419 | { |
420 | struct sbridge_dev *sbridge_dev; |
421 | |
422 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
423 | if (sbridge_dev->bus == bus) |
424 | return sbridge_dev; |
425 | } |
426 | |
427 | return NULL; |
428 | } |
429 | |
430 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, |
431 | const struct pci_id_table *table) |
432 | { |
433 | struct sbridge_dev *sbridge_dev; |
434 | |
435 | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); |
436 | if (!sbridge_dev) |
437 | return NULL; |
438 | |
439 | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, |
440 | GFP_KERNEL); |
441 | if (!sbridge_dev->pdev) { |
442 | kfree(sbridge_dev); |
443 | return NULL; |
444 | } |
445 | |
446 | sbridge_dev->bus = bus; |
447 | sbridge_dev->n_devs = table->n_devs; |
448 | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); |
449 | |
450 | return sbridge_dev; |
451 | } |
452 | |
453 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) |
454 | { |
455 | list_del(&sbridge_dev->list); |
456 | kfree(sbridge_dev->pdev); |
457 | kfree(sbridge_dev); |
458 | } |
459 | |
460 | /**************************************************************************** |
461 | Memory check routines |
462 | ****************************************************************************/ |
463 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, |
464 | unsigned func) |
465 | { |
466 | struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); |
467 | int i; |
468 | |
469 | if (!sbridge_dev) |
470 | return NULL; |
471 | |
472 | for (i = 0; i < sbridge_dev->n_devs; i++) { |
473 | if (!sbridge_dev->pdev[i]) |
474 | continue; |
475 | |
476 | if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && |
477 | PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { |
478 | edac_dbg(1, "Associated %02x.%02x.%d with %p\n", |
479 | bus, slot, func, sbridge_dev->pdev[i]); |
480 | return sbridge_dev->pdev[i]; |
481 | } |
482 | } |
483 | |
484 | return NULL; |
485 | } |
486 | |
487 | /** |
488 | * check_if_ecc_is_active() - Checks if ECC is active |
489 | * bus: Device bus |
490 | */ |
491 | static int check_if_ecc_is_active(const u8 bus) |
492 | { |
493 | struct pci_dev *pdev = NULL; |
494 | u32 mcmtr; |
495 | |
496 | pdev = get_pdev_slot_func(bus, 15, 0); |
497 | if (!pdev) { |
498 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " |
499 | "%2x.%02d.%d!!!\n", |
500 | bus, 15, 0); |
501 | return -ENODEV; |
502 | } |
503 | |
504 | pci_read_config_dword(pdev, MCMTR, &mcmtr); |
505 | if (!IS_ECC_ENABLED(mcmtr)) { |
506 | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); |
507 | return -ENODEV; |
508 | } |
509 | return 0; |
510 | } |
511 | |
512 | static int get_dimm_config(struct mem_ctl_info *mci) |
513 | { |
514 | struct sbridge_pvt *pvt = mci->pvt_info; |
515 | struct dimm_info *dimm; |
516 | unsigned i, j, banks, ranks, rows, cols, npages; |
517 | u64 size; |
518 | u32 reg; |
519 | enum edac_type mode; |
520 | enum mem_type mtype; |
521 | |
522 | pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); |
523 | pvt->sbridge_dev->source_id = SOURCE_ID(reg); |
524 | |
525 | pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); |
526 | pvt->sbridge_dev->node_id = NODE_ID(reg); |
527 | edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", |
528 | pvt->sbridge_dev->mc, |
529 | pvt->sbridge_dev->node_id, |
530 | pvt->sbridge_dev->source_id); |
531 | |
532 | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); |
533 | if (IS_MIRROR_ENABLED(reg)) { |
534 | edac_dbg(0, "Memory mirror is enabled\n"); |
535 | pvt->is_mirrored = true; |
536 | } else { |
537 | edac_dbg(0, "Memory mirror is disabled\n"); |
538 | pvt->is_mirrored = false; |
539 | } |
540 | |
541 | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); |
542 | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { |
543 | edac_dbg(0, "Lockstep is enabled\n"); |
544 | mode = EDAC_S8ECD8ED; |
545 | pvt->is_lockstep = true; |
546 | } else { |
547 | edac_dbg(0, "Lockstep is disabled\n"); |
548 | mode = EDAC_S4ECD4ED; |
549 | pvt->is_lockstep = false; |
550 | } |
551 | if (IS_CLOSE_PG(pvt->info.mcmtr)) { |
552 | edac_dbg(0, "address map is on closed page mode\n"); |
553 | pvt->is_close_pg = true; |
554 | } else { |
555 | edac_dbg(0, "address map is on open page mode\n"); |
556 | pvt->is_close_pg = false; |
557 | } |
558 | |
559 | pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, ®); |
560 | if (IS_RDIMM_ENABLED(reg)) { |
561 | /* FIXME: Can also be LRDIMM */ |
562 | edac_dbg(0, "Memory is registered\n"); |
563 | mtype = MEM_RDDR3; |
564 | } else { |
565 | edac_dbg(0, "Memory is unregistered\n"); |
566 | mtype = MEM_DDR3; |
567 | } |
568 | |
569 | /* On all supported DDR3 DIMM types, there are 8 banks available */ |
570 | banks = 8; |
571 | |
572 | for (i = 0; i < NUM_CHANNELS; i++) { |
573 | u32 mtr; |
574 | |
575 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { |
576 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
577 | i, j, 0); |
578 | pci_read_config_dword(pvt->pci_tad[i], |
579 | mtr_regs[j], &mtr); |
580 | edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); |
581 | if (IS_DIMM_PRESENT(mtr)) { |
582 | pvt->channel[i].dimms++; |
583 | |
584 | ranks = numrank(mtr); |
585 | rows = numrow(mtr); |
586 | cols = numcol(mtr); |
587 | |
588 | /* DDR3 has 8 I/O banks */ |
589 | size = ((u64)rows * cols * banks * ranks) >> (20 - 3); |
590 | npages = MiB_TO_PAGES(size); |
591 | |
592 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
593 | pvt->sbridge_dev->mc, i, j, |
594 | size, npages, |
595 | banks, ranks, rows, cols); |
596 | |
597 | dimm->nr_pages = npages; |
598 | dimm->grain = 32; |
599 | dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4; |
600 | dimm->mtype = mtype; |
601 | dimm->edac_mode = mode; |
602 | snprintf(dimm->label, sizeof(dimm->label), |
603 | "CPU_SrcID#%u_Channel#%u_DIMM#%u", |
604 | pvt->sbridge_dev->source_id, i, j); |
605 | } |
606 | } |
607 | } |
608 | |
609 | return 0; |
610 | } |
611 | |
612 | static void get_memory_layout(const struct mem_ctl_info *mci) |
613 | { |
614 | struct sbridge_pvt *pvt = mci->pvt_info; |
615 | int i, j, k, n_sads, n_tads, sad_interl; |
616 | u32 reg; |
617 | u64 limit, prv = 0; |
618 | u64 tmp_mb; |
619 | u32 mb, kb; |
620 | u32 rir_way; |
621 | |
622 | /* |
623 | * Step 1) Get TOLM/TOHM ranges |
624 | */ |
625 | |
626 | /* Address range is 32:28 */ |
627 | pci_read_config_dword(pvt->pci_sad1, TOLM, |
628 | ®); |
629 | pvt->tolm = GET_TOLM(reg); |
630 | tmp_mb = (1 + pvt->tolm) >> 20; |
631 | |
632 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
633 | edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm); |
634 | |
635 | /* Address range is already 45:25 */ |
636 | pci_read_config_dword(pvt->pci_sad1, TOHM, |
637 | ®); |
638 | pvt->tohm = GET_TOHM(reg); |
639 | tmp_mb = (1 + pvt->tohm) >> 20; |
640 | |
641 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
642 | edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm); |
643 | |
644 | /* |
645 | * Step 2) Get SAD range and SAD Interleave list |
646 | * TAD registers contain the interleave wayness. However, it |
647 | * seems simpler to just discover it indirectly, with the |
648 | * algorithm bellow. |
649 | */ |
650 | prv = 0; |
651 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { |
652 | /* SAD_LIMIT Address range is 45:26 */ |
653 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], |
654 | ®); |
655 | limit = SAD_LIMIT(reg); |
656 | |
657 | if (!DRAM_RULE_ENABLE(reg)) |
658 | continue; |
659 | |
660 | if (limit <= prv) |
661 | break; |
662 | |
663 | tmp_mb = (limit + 1) >> 20; |
664 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
665 | edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", |
666 | n_sads, |
667 | get_dram_attr(reg), |
668 | mb, kb, |
669 | ((u64)tmp_mb) << 20L, |
670 | INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]", |
671 | reg); |
672 | prv = limit; |
673 | |
674 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], |
675 | ®); |
676 | sad_interl = sad_pkg(reg, 0); |
677 | for (j = 0; j < 8; j++) { |
678 | if (j > 0 && sad_interl == sad_pkg(reg, j)) |
679 | break; |
680 | |
681 | edac_dbg(0, "SAD#%d, interleave #%d: %d\n", |
682 | n_sads, j, sad_pkg(reg, j)); |
683 | } |
684 | } |
685 | |
686 | /* |
687 | * Step 3) Get TAD range |
688 | */ |
689 | prv = 0; |
690 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { |
691 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], |
692 | ®); |
693 | limit = TAD_LIMIT(reg); |
694 | if (limit <= prv) |
695 | break; |
696 | tmp_mb = (limit + 1) >> 20; |
697 | |
698 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
699 | edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", |
700 | n_tads, mb, kb, |
701 | ((u64)tmp_mb) << 20L, |
702 | (u32)TAD_SOCK(reg), |
703 | (u32)TAD_CH(reg), |
704 | (u32)TAD_TGT0(reg), |
705 | (u32)TAD_TGT1(reg), |
706 | (u32)TAD_TGT2(reg), |
707 | (u32)TAD_TGT3(reg), |
708 | reg); |
709 | prv = limit; |
710 | } |
711 | |
712 | /* |
713 | * Step 4) Get TAD offsets, per each channel |
714 | */ |
715 | for (i = 0; i < NUM_CHANNELS; i++) { |
716 | if (!pvt->channel[i].dimms) |
717 | continue; |
718 | for (j = 0; j < n_tads; j++) { |
719 | pci_read_config_dword(pvt->pci_tad[i], |
720 | tad_ch_nilv_offset[j], |
721 | ®); |
722 | tmp_mb = TAD_OFFSET(reg) >> 20; |
723 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
724 | edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", |
725 | i, j, |
726 | mb, kb, |
727 | ((u64)tmp_mb) << 20L, |
728 | reg); |
729 | } |
730 | } |
731 | |
732 | /* |
733 | * Step 6) Get RIR Wayness/Limit, per each channel |
734 | */ |
735 | for (i = 0; i < NUM_CHANNELS; i++) { |
736 | if (!pvt->channel[i].dimms) |
737 | continue; |
738 | for (j = 0; j < MAX_RIR_RANGES; j++) { |
739 | pci_read_config_dword(pvt->pci_tad[i], |
740 | rir_way_limit[j], |
741 | ®); |
742 | |
743 | if (!IS_RIR_VALID(reg)) |
744 | continue; |
745 | |
746 | tmp_mb = RIR_LIMIT(reg) >> 20; |
747 | rir_way = 1 << RIR_WAY(reg); |
748 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
749 | edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", |
750 | i, j, |
751 | mb, kb, |
752 | ((u64)tmp_mb) << 20L, |
753 | rir_way, |
754 | reg); |
755 | |
756 | for (k = 0; k < rir_way; k++) { |
757 | pci_read_config_dword(pvt->pci_tad[i], |
758 | rir_offset[j][k], |
759 | ®); |
760 | tmp_mb = RIR_OFFSET(reg) << 6; |
761 | |
762 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
763 | edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", |
764 | i, j, k, |
765 | mb, kb, |
766 | ((u64)tmp_mb) << 20L, |
767 | (u32)RIR_RNK_TGT(reg), |
768 | reg); |
769 | } |
770 | } |
771 | } |
772 | } |
773 | |
774 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) |
775 | { |
776 | struct sbridge_dev *sbridge_dev; |
777 | |
778 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
779 | if (sbridge_dev->node_id == node_id) |
780 | return sbridge_dev->mci; |
781 | } |
782 | return NULL; |
783 | } |
784 | |
785 | static int get_memory_error_data(struct mem_ctl_info *mci, |
786 | u64 addr, |
787 | u8 *socket, |
788 | long *channel_mask, |
789 | u8 *rank, |
790 | char **area_type, char *msg) |
791 | { |
792 | struct mem_ctl_info *new_mci; |
793 | struct sbridge_pvt *pvt = mci->pvt_info; |
794 | int n_rir, n_sads, n_tads, sad_way, sck_xch; |
795 | int sad_interl, idx, base_ch; |
796 | int interleave_mode; |
797 | unsigned sad_interleave[MAX_INTERLEAVE]; |
798 | u32 reg; |
799 | u8 ch_way,sck_way; |
800 | u32 tad_offset; |
801 | u32 rir_way; |
802 | u32 mb, kb; |
803 | u64 ch_addr, offset, limit, prv = 0; |
804 | |
805 | |
806 | /* |
807 | * Step 0) Check if the address is at special memory ranges |
808 | * The check bellow is probably enough to fill all cases where |
809 | * the error is not inside a memory, except for the legacy |
810 | * range (e. g. VGA addresses). It is unlikely, however, that the |
811 | * memory controller would generate an error on that range. |
812 | */ |
813 | if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { |
814 | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); |
815 | return -EINVAL; |
816 | } |
817 | if (addr >= (u64)pvt->tohm) { |
818 | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); |
819 | return -EINVAL; |
820 | } |
821 | |
822 | /* |
823 | * Step 1) Get socket |
824 | */ |
825 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { |
826 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], |
827 | ®); |
828 | |
829 | if (!DRAM_RULE_ENABLE(reg)) |
830 | continue; |
831 | |
832 | limit = SAD_LIMIT(reg); |
833 | if (limit <= prv) { |
834 | sprintf(msg, "Can't discover the memory socket"); |
835 | return -EINVAL; |
836 | } |
837 | if (addr <= limit) |
838 | break; |
839 | prv = limit; |
840 | } |
841 | if (n_sads == MAX_SAD) { |
842 | sprintf(msg, "Can't discover the memory socket"); |
843 | return -EINVAL; |
844 | } |
845 | *area_type = get_dram_attr(reg); |
846 | interleave_mode = INTERLEAVE_MODE(reg); |
847 | |
848 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], |
849 | ®); |
850 | sad_interl = sad_pkg(reg, 0); |
851 | for (sad_way = 0; sad_way < 8; sad_way++) { |
852 | if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) |
853 | break; |
854 | sad_interleave[sad_way] = sad_pkg(reg, sad_way); |
855 | edac_dbg(0, "SAD interleave #%d: %d\n", |
856 | sad_way, sad_interleave[sad_way]); |
857 | } |
858 | edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", |
859 | pvt->sbridge_dev->mc, |
860 | n_sads, |
861 | addr, |
862 | limit, |
863 | sad_way + 7, |
864 | interleave_mode ? "" : "XOR[18:16]"); |
865 | if (interleave_mode) |
866 | idx = ((addr >> 6) ^ (addr >> 16)) & 7; |
867 | else |
868 | idx = (addr >> 6) & 7; |
869 | switch (sad_way) { |
870 | case 1: |
871 | idx = 0; |
872 | break; |
873 | case 2: |
874 | idx = idx & 1; |
875 | break; |
876 | case 4: |
877 | idx = idx & 3; |
878 | break; |
879 | case 8: |
880 | break; |
881 | default: |
882 | sprintf(msg, "Can't discover socket interleave"); |
883 | return -EINVAL; |
884 | } |
885 | *socket = sad_interleave[idx]; |
886 | edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", |
887 | idx, sad_way, *socket); |
888 | |
889 | /* |
890 | * Move to the proper node structure, in order to access the |
891 | * right PCI registers |
892 | */ |
893 | new_mci = get_mci_for_node_id(*socket); |
894 | if (!new_mci) { |
895 | sprintf(msg, "Struct for socket #%u wasn't initialized", |
896 | *socket); |
897 | return -EINVAL; |
898 | } |
899 | mci = new_mci; |
900 | pvt = mci->pvt_info; |
901 | |
902 | /* |
903 | * Step 2) Get memory channel |
904 | */ |
905 | prv = 0; |
906 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { |
907 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], |
908 | ®); |
909 | limit = TAD_LIMIT(reg); |
910 | if (limit <= prv) { |
911 | sprintf(msg, "Can't discover the memory channel"); |
912 | return -EINVAL; |
913 | } |
914 | if (addr <= limit) |
915 | break; |
916 | prv = limit; |
917 | } |
918 | ch_way = TAD_CH(reg) + 1; |
919 | sck_way = TAD_SOCK(reg) + 1; |
920 | /* |
921 | * FIXME: Is it right to always use channel 0 for offsets? |
922 | */ |
923 | pci_read_config_dword(pvt->pci_tad[0], |
924 | tad_ch_nilv_offset[n_tads], |
925 | &tad_offset); |
926 | |
927 | if (ch_way == 3) |
928 | idx = addr >> 6; |
929 | else |
930 | idx = addr >> (6 + sck_way); |
931 | idx = idx % ch_way; |
932 | |
933 | /* |
934 | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? |
935 | */ |
936 | switch (idx) { |
937 | case 0: |
938 | base_ch = TAD_TGT0(reg); |
939 | break; |
940 | case 1: |
941 | base_ch = TAD_TGT1(reg); |
942 | break; |
943 | case 2: |
944 | base_ch = TAD_TGT2(reg); |
945 | break; |
946 | case 3: |
947 | base_ch = TAD_TGT3(reg); |
948 | break; |
949 | default: |
950 | sprintf(msg, "Can't discover the TAD target"); |
951 | return -EINVAL; |
952 | } |
953 | *channel_mask = 1 << base_ch; |
954 | |
955 | if (pvt->is_mirrored) { |
956 | *channel_mask |= 1 << ((base_ch + 2) % 4); |
957 | switch(ch_way) { |
958 | case 2: |
959 | case 4: |
960 | sck_xch = 1 << sck_way * (ch_way >> 1); |
961 | break; |
962 | default: |
963 | sprintf(msg, "Invalid mirror set. Can't decode addr"); |
964 | return -EINVAL; |
965 | } |
966 | } else |
967 | sck_xch = (1 << sck_way) * ch_way; |
968 | |
969 | if (pvt->is_lockstep) |
970 | *channel_mask |= 1 << ((base_ch + 1) % 4); |
971 | |
972 | offset = TAD_OFFSET(tad_offset); |
973 | |
974 | edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", |
975 | n_tads, |
976 | addr, |
977 | limit, |
978 | (u32)TAD_SOCK(reg), |
979 | ch_way, |
980 | offset, |
981 | idx, |
982 | base_ch, |
983 | *channel_mask); |
984 | |
985 | /* Calculate channel address */ |
986 | /* Remove the TAD offset */ |
987 | |
988 | if (offset > addr) { |
989 | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", |
990 | offset, addr); |
991 | return -EINVAL; |
992 | } |
993 | addr -= offset; |
994 | /* Store the low bits [0:6] of the addr */ |
995 | ch_addr = addr & 0x7f; |
996 | /* Remove socket wayness and remove 6 bits */ |
997 | addr >>= 6; |
998 | addr = div_u64(addr, sck_xch); |
999 | #if 0 |
1000 | /* Divide by channel way */ |
1001 | addr = addr / ch_way; |
1002 | #endif |
1003 | /* Recover the last 6 bits */ |
1004 | ch_addr |= addr << 6; |
1005 | |
1006 | /* |
1007 | * Step 3) Decode rank |
1008 | */ |
1009 | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { |
1010 | pci_read_config_dword(pvt->pci_tad[base_ch], |
1011 | rir_way_limit[n_rir], |
1012 | ®); |
1013 | |
1014 | if (!IS_RIR_VALID(reg)) |
1015 | continue; |
1016 | |
1017 | limit = RIR_LIMIT(reg); |
1018 | mb = div_u64_rem(limit >> 20, 1000, &kb); |
1019 | edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", |
1020 | n_rir, |
1021 | mb, kb, |
1022 | limit, |
1023 | 1 << RIR_WAY(reg)); |
1024 | if (ch_addr <= limit) |
1025 | break; |
1026 | } |
1027 | if (n_rir == MAX_RIR_RANGES) { |
1028 | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", |
1029 | ch_addr); |
1030 | return -EINVAL; |
1031 | } |
1032 | rir_way = RIR_WAY(reg); |
1033 | if (pvt->is_close_pg) |
1034 | idx = (ch_addr >> 6); |
1035 | else |
1036 | idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ |
1037 | idx %= 1 << rir_way; |
1038 | |
1039 | pci_read_config_dword(pvt->pci_tad[base_ch], |
1040 | rir_offset[n_rir][idx], |
1041 | ®); |
1042 | *rank = RIR_RNK_TGT(reg); |
1043 | |
1044 | edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", |
1045 | n_rir, |
1046 | ch_addr, |
1047 | limit, |
1048 | rir_way, |
1049 | idx); |
1050 | |
1051 | return 0; |
1052 | } |
1053 | |
1054 | /**************************************************************************** |
1055 | Device initialization routines: put/get, init/exit |
1056 | ****************************************************************************/ |
1057 | |
1058 | /* |
1059 | * sbridge_put_all_devices 'put' all the devices that we have |
1060 | * reserved via 'get' |
1061 | */ |
1062 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) |
1063 | { |
1064 | int i; |
1065 | |
1066 | edac_dbg(0, "\n"); |
1067 | for (i = 0; i < sbridge_dev->n_devs; i++) { |
1068 | struct pci_dev *pdev = sbridge_dev->pdev[i]; |
1069 | if (!pdev) |
1070 | continue; |
1071 | edac_dbg(0, "Removing dev %02x:%02x.%d\n", |
1072 | pdev->bus->number, |
1073 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
1074 | pci_dev_put(pdev); |
1075 | } |
1076 | } |
1077 | |
1078 | static void sbridge_put_all_devices(void) |
1079 | { |
1080 | struct sbridge_dev *sbridge_dev, *tmp; |
1081 | |
1082 | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { |
1083 | sbridge_put_devices(sbridge_dev); |
1084 | free_sbridge_dev(sbridge_dev); |
1085 | } |
1086 | } |
1087 | |
1088 | /* |
1089 | * sbridge_get_all_devices Find and perform 'get' operation on the MCH's |
1090 | * device/functions we want to reference for this driver |
1091 | * |
1092 | * Need to 'get' device 16 func 1 and func 2 |
1093 | */ |
1094 | static int sbridge_get_onedevice(struct pci_dev **prev, |
1095 | u8 *num_mc, |
1096 | const struct pci_id_table *table, |
1097 | const unsigned devno) |
1098 | { |
1099 | struct sbridge_dev *sbridge_dev; |
1100 | const struct pci_id_descr *dev_descr = &table->descr[devno]; |
1101 | |
1102 | struct pci_dev *pdev = NULL; |
1103 | u8 bus = 0; |
1104 | |
1105 | sbridge_printk(KERN_INFO, |
1106 | "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", |
1107 | dev_descr->dev, dev_descr->func, |
1108 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1109 | |
1110 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
1111 | dev_descr->dev_id, *prev); |
1112 | |
1113 | if (!pdev) { |
1114 | if (*prev) { |
1115 | *prev = pdev; |
1116 | return 0; |
1117 | } |
1118 | |
1119 | if (dev_descr->optional) |
1120 | return 0; |
1121 | |
1122 | if (devno == 0) |
1123 | return -ENODEV; |
1124 | |
1125 | sbridge_printk(KERN_INFO, |
1126 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", |
1127 | dev_descr->dev, dev_descr->func, |
1128 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1129 | |
1130 | /* End of list, leave */ |
1131 | return -ENODEV; |
1132 | } |
1133 | bus = pdev->bus->number; |
1134 | |
1135 | sbridge_dev = get_sbridge_dev(bus); |
1136 | if (!sbridge_dev) { |
1137 | sbridge_dev = alloc_sbridge_dev(bus, table); |
1138 | if (!sbridge_dev) { |
1139 | pci_dev_put(pdev); |
1140 | return -ENOMEM; |
1141 | } |
1142 | (*num_mc)++; |
1143 | } |
1144 | |
1145 | if (sbridge_dev->pdev[devno]) { |
1146 | sbridge_printk(KERN_ERR, |
1147 | "Duplicated device for " |
1148 | "dev %02x:%d.%d PCI ID %04x:%04x\n", |
1149 | bus, dev_descr->dev, dev_descr->func, |
1150 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1151 | pci_dev_put(pdev); |
1152 | return -ENODEV; |
1153 | } |
1154 | |
1155 | sbridge_dev->pdev[devno] = pdev; |
1156 | |
1157 | /* Sanity check */ |
1158 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || |
1159 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { |
1160 | sbridge_printk(KERN_ERR, |
1161 | "Device PCI ID %04x:%04x " |
1162 | "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", |
1163 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, |
1164 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
1165 | bus, dev_descr->dev, dev_descr->func); |
1166 | return -ENODEV; |
1167 | } |
1168 | |
1169 | /* Be sure that the device is enabled */ |
1170 | if (unlikely(pci_enable_device(pdev) < 0)) { |
1171 | sbridge_printk(KERN_ERR, |
1172 | "Couldn't enable " |
1173 | "dev %02x:%d.%d PCI ID %04x:%04x\n", |
1174 | bus, dev_descr->dev, dev_descr->func, |
1175 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1176 | return -ENODEV; |
1177 | } |
1178 | |
1179 | edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n", |
1180 | bus, dev_descr->dev, dev_descr->func, |
1181 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
1182 | |
1183 | /* |
1184 | * As stated on drivers/pci/search.c, the reference count for |
1185 | * @from is always decremented if it is not %NULL. So, as we need |
1186 | * to get all devices up to null, we need to do a get for the device |
1187 | */ |
1188 | pci_dev_get(pdev); |
1189 | |
1190 | *prev = pdev; |
1191 | |
1192 | return 0; |
1193 | } |
1194 | |
1195 | static int sbridge_get_all_devices(u8 *num_mc) |
1196 | { |
1197 | int i, rc; |
1198 | struct pci_dev *pdev = NULL; |
1199 | const struct pci_id_table *table = pci_dev_descr_sbridge_table; |
1200 | |
1201 | while (table && table->descr) { |
1202 | for (i = 0; i < table->n_devs; i++) { |
1203 | pdev = NULL; |
1204 | do { |
1205 | rc = sbridge_get_onedevice(&pdev, num_mc, |
1206 | table, i); |
1207 | if (rc < 0) { |
1208 | if (i == 0) { |
1209 | i = table->n_devs; |
1210 | break; |
1211 | } |
1212 | sbridge_put_all_devices(); |
1213 | return -ENODEV; |
1214 | } |
1215 | } while (pdev); |
1216 | } |
1217 | table++; |
1218 | } |
1219 | |
1220 | return 0; |
1221 | } |
1222 | |
1223 | static int mci_bind_devs(struct mem_ctl_info *mci, |
1224 | struct sbridge_dev *sbridge_dev) |
1225 | { |
1226 | struct sbridge_pvt *pvt = mci->pvt_info; |
1227 | struct pci_dev *pdev; |
1228 | int i, func, slot; |
1229 | |
1230 | for (i = 0; i < sbridge_dev->n_devs; i++) { |
1231 | pdev = sbridge_dev->pdev[i]; |
1232 | if (!pdev) |
1233 | continue; |
1234 | slot = PCI_SLOT(pdev->devfn); |
1235 | func = PCI_FUNC(pdev->devfn); |
1236 | switch (slot) { |
1237 | case 12: |
1238 | switch (func) { |
1239 | case 6: |
1240 | pvt->pci_sad0 = pdev; |
1241 | break; |
1242 | case 7: |
1243 | pvt->pci_sad1 = pdev; |
1244 | break; |
1245 | default: |
1246 | goto error; |
1247 | } |
1248 | break; |
1249 | case 13: |
1250 | switch (func) { |
1251 | case 6: |
1252 | pvt->pci_br = pdev; |
1253 | break; |
1254 | default: |
1255 | goto error; |
1256 | } |
1257 | break; |
1258 | case 14: |
1259 | switch (func) { |
1260 | case 0: |
1261 | pvt->pci_ha0 = pdev; |
1262 | break; |
1263 | default: |
1264 | goto error; |
1265 | } |
1266 | break; |
1267 | case 15: |
1268 | switch (func) { |
1269 | case 0: |
1270 | pvt->pci_ta = pdev; |
1271 | break; |
1272 | case 1: |
1273 | pvt->pci_ras = pdev; |
1274 | break; |
1275 | case 2: |
1276 | case 3: |
1277 | case 4: |
1278 | case 5: |
1279 | pvt->pci_tad[func - 2] = pdev; |
1280 | break; |
1281 | default: |
1282 | goto error; |
1283 | } |
1284 | break; |
1285 | case 17: |
1286 | switch (func) { |
1287 | case 0: |
1288 | pvt->pci_ddrio = pdev; |
1289 | break; |
1290 | default: |
1291 | goto error; |
1292 | } |
1293 | break; |
1294 | default: |
1295 | goto error; |
1296 | } |
1297 | |
1298 | edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", |
1299 | sbridge_dev->bus, |
1300 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
1301 | pdev); |
1302 | } |
1303 | |
1304 | /* Check if everything were registered */ |
1305 | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || |
1306 | !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta || |
1307 | !pvt->pci_ddrio) |
1308 | goto enodev; |
1309 | |
1310 | for (i = 0; i < NUM_CHANNELS; i++) { |
1311 | if (!pvt->pci_tad[i]) |
1312 | goto enodev; |
1313 | } |
1314 | return 0; |
1315 | |
1316 | enodev: |
1317 | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); |
1318 | return -ENODEV; |
1319 | |
1320 | error: |
1321 | sbridge_printk(KERN_ERR, "Device %d, function %d " |
1322 | "is out of the expected range\n", |
1323 | slot, func); |
1324 | return -EINVAL; |
1325 | } |
1326 | |
1327 | /**************************************************************************** |
1328 | Error check routines |
1329 | ****************************************************************************/ |
1330 | |
1331 | /* |
1332 | * While Sandy Bridge has error count registers, SMI BIOS read values from |
1333 | * and resets the counters. So, they are not reliable for the OS to read |
1334 | * from them. So, we have no option but to just trust on whatever MCE is |
1335 | * telling us about the errors. |
1336 | */ |
1337 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, |
1338 | const struct mce *m) |
1339 | { |
1340 | struct mem_ctl_info *new_mci; |
1341 | struct sbridge_pvt *pvt = mci->pvt_info; |
1342 | enum hw_event_mc_err_type tp_event; |
1343 | char *type, *optype, msg[256]; |
1344 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
1345 | bool overflow = GET_BITFIELD(m->status, 62, 62); |
1346 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); |
1347 | bool recoverable = GET_BITFIELD(m->status, 56, 56); |
1348 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
1349 | u32 mscod = GET_BITFIELD(m->status, 16, 31); |
1350 | u32 errcode = GET_BITFIELD(m->status, 0, 15); |
1351 | u32 channel = GET_BITFIELD(m->status, 0, 3); |
1352 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
1353 | long channel_mask, first_channel; |
1354 | u8 rank, socket; |
1355 | int rc, dimm; |
1356 | char *area_type = NULL; |
1357 | |
1358 | if (uncorrected_error) { |
1359 | if (ripv) { |
1360 | type = "FATAL"; |
1361 | tp_event = HW_EVENT_ERR_FATAL; |
1362 | } else { |
1363 | type = "NON_FATAL"; |
1364 | tp_event = HW_EVENT_ERR_UNCORRECTED; |
1365 | } |
1366 | } else { |
1367 | type = "CORRECTED"; |
1368 | tp_event = HW_EVENT_ERR_CORRECTED; |
1369 | } |
1370 | |
1371 | /* |
1372 | * According with Table 15-9 of the Intel Architecture spec vol 3A, |
1373 | * memory errors should fit in this mask: |
1374 | * 000f 0000 1mmm cccc (binary) |
1375 | * where: |
1376 | * f = Correction Report Filtering Bit. If 1, subsequent errors |
1377 | * won't be shown |
1378 | * mmm = error type |
1379 | * cccc = channel |
1380 | * If the mask doesn't match, report an error to the parsing logic |
1381 | */ |
1382 | if (! ((errcode & 0xef80) == 0x80)) { |
1383 | optype = "Can't parse: it is not a mem"; |
1384 | } else { |
1385 | switch (optypenum) { |
1386 | case 0: |
1387 | optype = "generic undef request error"; |
1388 | break; |
1389 | case 1: |
1390 | optype = "memory read error"; |
1391 | break; |
1392 | case 2: |
1393 | optype = "memory write error"; |
1394 | break; |
1395 | case 3: |
1396 | optype = "addr/cmd error"; |
1397 | break; |
1398 | case 4: |
1399 | optype = "memory scrubbing error"; |
1400 | break; |
1401 | default: |
1402 | optype = "reserved"; |
1403 | break; |
1404 | } |
1405 | } |
1406 | |
1407 | rc = get_memory_error_data(mci, m->addr, &socket, |
1408 | &channel_mask, &rank, &area_type, msg); |
1409 | if (rc < 0) |
1410 | goto err_parsing; |
1411 | new_mci = get_mci_for_node_id(socket); |
1412 | if (!new_mci) { |
1413 | strcpy(msg, "Error: socket got corrupted!"); |
1414 | goto err_parsing; |
1415 | } |
1416 | mci = new_mci; |
1417 | pvt = mci->pvt_info; |
1418 | |
1419 | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); |
1420 | |
1421 | if (rank < 4) |
1422 | dimm = 0; |
1423 | else if (rank < 8) |
1424 | dimm = 1; |
1425 | else |
1426 | dimm = 2; |
1427 | |
1428 | |
1429 | /* |
1430 | * FIXME: On some memory configurations (mirror, lockstep), the |
1431 | * Memory Controller can't point the error to a single DIMM. The |
1432 | * EDAC core should be handling the channel mask, in order to point |
1433 | * to the group of dimm's where the error may be happening. |
1434 | */ |
1435 | snprintf(msg, sizeof(msg), |
1436 | "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d", |
1437 | overflow ? " OVERFLOW" : "", |
1438 | (uncorrected_error && recoverable) ? " recoverable" : "", |
1439 | area_type, |
1440 | mscod, errcode, |
1441 | socket, |
1442 | channel_mask, |
1443 | rank); |
1444 | |
1445 | edac_dbg(0, "%s\n", msg); |
1446 | |
1447 | /* FIXME: need support for channel mask */ |
1448 | |
1449 | /* Call the helper to output message */ |
1450 | edac_mc_handle_error(tp_event, mci, core_err_cnt, |
1451 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
1452 | channel, dimm, -1, |
1453 | optype, msg); |
1454 | return; |
1455 | err_parsing: |
1456 | edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, |
1457 | -1, -1, -1, |
1458 | msg, ""); |
1459 | |
1460 | } |
1461 | |
1462 | /* |
1463 | * sbridge_check_error Retrieve and process errors reported by the |
1464 | * hardware. Called by the Core module. |
1465 | */ |
1466 | static void sbridge_check_error(struct mem_ctl_info *mci) |
1467 | { |
1468 | struct sbridge_pvt *pvt = mci->pvt_info; |
1469 | int i; |
1470 | unsigned count = 0; |
1471 | struct mce *m; |
1472 | |
1473 | /* |
1474 | * MCE first step: Copy all mce errors into a temporary buffer |
1475 | * We use a double buffering here, to reduce the risk of |
1476 | * loosing an error. |
1477 | */ |
1478 | smp_rmb(); |
1479 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) |
1480 | % MCE_LOG_LEN; |
1481 | if (!count) |
1482 | return; |
1483 | |
1484 | m = pvt->mce_outentry; |
1485 | if (pvt->mce_in + count > MCE_LOG_LEN) { |
1486 | unsigned l = MCE_LOG_LEN - pvt->mce_in; |
1487 | |
1488 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); |
1489 | smp_wmb(); |
1490 | pvt->mce_in = 0; |
1491 | count -= l; |
1492 | m += l; |
1493 | } |
1494 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); |
1495 | smp_wmb(); |
1496 | pvt->mce_in += count; |
1497 | |
1498 | smp_rmb(); |
1499 | if (pvt->mce_overrun) { |
1500 | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", |
1501 | pvt->mce_overrun); |
1502 | smp_wmb(); |
1503 | pvt->mce_overrun = 0; |
1504 | } |
1505 | |
1506 | /* |
1507 | * MCE second step: parse errors and display |
1508 | */ |
1509 | for (i = 0; i < count; i++) |
1510 | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); |
1511 | } |
1512 | |
1513 | /* |
1514 | * sbridge_mce_check_error Replicates mcelog routine to get errors |
1515 | * This routine simply queues mcelog errors, and |
1516 | * return. The error itself should be handled later |
1517 | * by sbridge_check_error. |
1518 | * WARNING: As this routine should be called at NMI time, extra care should |
1519 | * be taken to avoid deadlocks, and to be as fast as possible. |
1520 | */ |
1521 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, |
1522 | void *data) |
1523 | { |
1524 | struct mce *mce = (struct mce *)data; |
1525 | struct mem_ctl_info *mci; |
1526 | struct sbridge_pvt *pvt; |
1527 | |
1528 | mci = get_mci_for_node_id(mce->socketid); |
1529 | if (!mci) |
1530 | return NOTIFY_BAD; |
1531 | pvt = mci->pvt_info; |
1532 | |
1533 | /* |
1534 | * Just let mcelog handle it if the error is |
1535 | * outside the memory controller. A memory error |
1536 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. |
1537 | * bit 12 has an special meaning. |
1538 | */ |
1539 | if ((mce->status & 0xefff) >> 7 != 1) |
1540 | return NOTIFY_DONE; |
1541 | |
1542 | printk("sbridge: HANDLING MCE MEMORY ERROR\n"); |
1543 | |
1544 | printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", |
1545 | mce->extcpu, mce->mcgstatus, mce->bank, mce->status); |
1546 | printk("TSC %llx ", mce->tsc); |
1547 | printk("ADDR %llx ", mce->addr); |
1548 | printk("MISC %llx ", mce->misc); |
1549 | |
1550 | printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", |
1551 | mce->cpuvendor, mce->cpuid, mce->time, |
1552 | mce->socketid, mce->apicid); |
1553 | |
1554 | /* Only handle if it is the right mc controller */ |
1555 | if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) |
1556 | return NOTIFY_DONE; |
1557 | |
1558 | smp_rmb(); |
1559 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { |
1560 | smp_wmb(); |
1561 | pvt->mce_overrun++; |
1562 | return NOTIFY_DONE; |
1563 | } |
1564 | |
1565 | /* Copy memory error at the ringbuffer */ |
1566 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); |
1567 | smp_wmb(); |
1568 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; |
1569 | |
1570 | /* Handle fatal errors immediately */ |
1571 | if (mce->mcgstatus & 1) |
1572 | sbridge_check_error(mci); |
1573 | |
1574 | /* Advice mcelog that the error were handled */ |
1575 | return NOTIFY_STOP; |
1576 | } |
1577 | |
1578 | static struct notifier_block sbridge_mce_dec = { |
1579 | .notifier_call = sbridge_mce_check_error, |
1580 | }; |
1581 | |
1582 | /**************************************************************************** |
1583 | EDAC register/unregister logic |
1584 | ****************************************************************************/ |
1585 | |
1586 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) |
1587 | { |
1588 | struct mem_ctl_info *mci = sbridge_dev->mci; |
1589 | struct sbridge_pvt *pvt; |
1590 | |
1591 | if (unlikely(!mci || !mci->pvt_info)) { |
1592 | edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); |
1593 | |
1594 | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); |
1595 | return; |
1596 | } |
1597 | |
1598 | pvt = mci->pvt_info; |
1599 | |
1600 | edac_dbg(0, "MC: mci = %p, dev = %p\n", |
1601 | mci, &sbridge_dev->pdev[0]->dev); |
1602 | |
1603 | /* Remove MC sysfs nodes */ |
1604 | edac_mc_del_mc(mci->pdev); |
1605 | |
1606 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
1607 | kfree(mci->ctl_name); |
1608 | edac_mc_free(mci); |
1609 | sbridge_dev->mci = NULL; |
1610 | } |
1611 | |
1612 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) |
1613 | { |
1614 | struct mem_ctl_info *mci; |
1615 | struct edac_mc_layer layers[2]; |
1616 | struct sbridge_pvt *pvt; |
1617 | int rc; |
1618 | |
1619 | /* Check the number of active and not disabled channels */ |
1620 | rc = check_if_ecc_is_active(sbridge_dev->bus); |
1621 | if (unlikely(rc < 0)) |
1622 | return rc; |
1623 | |
1624 | /* allocate a new MC control structure */ |
1625 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
1626 | layers[0].size = NUM_CHANNELS; |
1627 | layers[0].is_virt_csrow = false; |
1628 | layers[1].type = EDAC_MC_LAYER_SLOT; |
1629 | layers[1].size = MAX_DIMMS; |
1630 | layers[1].is_virt_csrow = true; |
1631 | mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, |
1632 | sizeof(*pvt)); |
1633 | |
1634 | if (unlikely(!mci)) |
1635 | return -ENOMEM; |
1636 | |
1637 | edac_dbg(0, "MC: mci = %p, dev = %p\n", |
1638 | mci, &sbridge_dev->pdev[0]->dev); |
1639 | |
1640 | pvt = mci->pvt_info; |
1641 | memset(pvt, 0, sizeof(*pvt)); |
1642 | |
1643 | /* Associate sbridge_dev and mci for future usage */ |
1644 | pvt->sbridge_dev = sbridge_dev; |
1645 | sbridge_dev->mci = mci; |
1646 | |
1647 | mci->mtype_cap = MEM_FLAG_DDR3; |
1648 | mci->edac_ctl_cap = EDAC_FLAG_NONE; |
1649 | mci->edac_cap = EDAC_FLAG_NONE; |
1650 | mci->mod_name = "sbridge_edac.c"; |
1651 | mci->mod_ver = SBRIDGE_REVISION; |
1652 | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); |
1653 | mci->dev_name = pci_name(sbridge_dev->pdev[0]); |
1654 | mci->ctl_page_to_phys = NULL; |
1655 | |
1656 | /* Set the function pointer to an actual operation function */ |
1657 | mci->edac_check = sbridge_check_error; |
1658 | |
1659 | /* Store pci devices at mci for faster access */ |
1660 | rc = mci_bind_devs(mci, sbridge_dev); |
1661 | if (unlikely(rc < 0)) |
1662 | goto fail0; |
1663 | |
1664 | /* Get dimm basic config and the memory layout */ |
1665 | get_dimm_config(mci); |
1666 | get_memory_layout(mci); |
1667 | |
1668 | /* record ptr to the generic device */ |
1669 | mci->pdev = &sbridge_dev->pdev[0]->dev; |
1670 | |
1671 | /* add this new MC control structure to EDAC's list of MCs */ |
1672 | if (unlikely(edac_mc_add_mc(mci))) { |
1673 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
1674 | rc = -EINVAL; |
1675 | goto fail0; |
1676 | } |
1677 | |
1678 | return 0; |
1679 | |
1680 | fail0: |
1681 | kfree(mci->ctl_name); |
1682 | edac_mc_free(mci); |
1683 | sbridge_dev->mci = NULL; |
1684 | return rc; |
1685 | } |
1686 | |
1687 | /* |
1688 | * sbridge_probe Probe for ONE instance of device to see if it is |
1689 | * present. |
1690 | * return: |
1691 | * 0 for FOUND a device |
1692 | * < 0 for error code |
1693 | */ |
1694 | |
1695 | static int __devinit sbridge_probe(struct pci_dev *pdev, |
1696 | const struct pci_device_id *id) |
1697 | { |
1698 | int rc; |
1699 | u8 mc, num_mc = 0; |
1700 | struct sbridge_dev *sbridge_dev; |
1701 | |
1702 | /* get the pci devices we want to reserve for our use */ |
1703 | mutex_lock(&sbridge_edac_lock); |
1704 | |
1705 | /* |
1706 | * All memory controllers are allocated at the first pass. |
1707 | */ |
1708 | if (unlikely(probed >= 1)) { |
1709 | mutex_unlock(&sbridge_edac_lock); |
1710 | return -ENODEV; |
1711 | } |
1712 | probed++; |
1713 | |
1714 | rc = sbridge_get_all_devices(&num_mc); |
1715 | if (unlikely(rc < 0)) |
1716 | goto fail0; |
1717 | mc = 0; |
1718 | |
1719 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { |
1720 | edac_dbg(0, "Registering MC#%d (%d of %d)\n", |
1721 | mc, mc + 1, num_mc); |
1722 | sbridge_dev->mc = mc++; |
1723 | rc = sbridge_register_mci(sbridge_dev); |
1724 | if (unlikely(rc < 0)) |
1725 | goto fail1; |
1726 | } |
1727 | |
1728 | sbridge_printk(KERN_INFO, "Driver loaded.\n"); |
1729 | |
1730 | mutex_unlock(&sbridge_edac_lock); |
1731 | return 0; |
1732 | |
1733 | fail1: |
1734 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) |
1735 | sbridge_unregister_mci(sbridge_dev); |
1736 | |
1737 | sbridge_put_all_devices(); |
1738 | fail0: |
1739 | mutex_unlock(&sbridge_edac_lock); |
1740 | return rc; |
1741 | } |
1742 | |
1743 | /* |
1744 | * sbridge_remove destructor for one instance of device |
1745 | * |
1746 | */ |
1747 | static void __devexit sbridge_remove(struct pci_dev *pdev) |
1748 | { |
1749 | struct sbridge_dev *sbridge_dev; |
1750 | |
1751 | edac_dbg(0, "\n"); |
1752 | |
1753 | /* |
1754 | * we have a trouble here: pdev value for removal will be wrong, since |
1755 | * it will point to the X58 register used to detect that the machine |
1756 | * is a Nehalem or upper design. However, due to the way several PCI |
1757 | * devices are grouped together to provide MC functionality, we need |
1758 | * to use a different method for releasing the devices |
1759 | */ |
1760 | |
1761 | mutex_lock(&sbridge_edac_lock); |
1762 | |
1763 | if (unlikely(!probed)) { |
1764 | mutex_unlock(&sbridge_edac_lock); |
1765 | return; |
1766 | } |
1767 | |
1768 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) |
1769 | sbridge_unregister_mci(sbridge_dev); |
1770 | |
1771 | /* Release PCI resources */ |
1772 | sbridge_put_all_devices(); |
1773 | |
1774 | probed--; |
1775 | |
1776 | mutex_unlock(&sbridge_edac_lock); |
1777 | } |
1778 | |
1779 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); |
1780 | |
1781 | /* |
1782 | * sbridge_driver pci_driver structure for this module |
1783 | * |
1784 | */ |
1785 | static struct pci_driver sbridge_driver = { |
1786 | .name = "sbridge_edac", |
1787 | .probe = sbridge_probe, |
1788 | .remove = __devexit_p(sbridge_remove), |
1789 | .id_table = sbridge_pci_tbl, |
1790 | }; |
1791 | |
1792 | /* |
1793 | * sbridge_init Module entry function |
1794 | * Try to initialize this module for its devices |
1795 | */ |
1796 | static int __init sbridge_init(void) |
1797 | { |
1798 | int pci_rc; |
1799 | |
1800 | edac_dbg(2, "\n"); |
1801 | |
1802 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
1803 | opstate_init(); |
1804 | |
1805 | pci_rc = pci_register_driver(&sbridge_driver); |
1806 | |
1807 | if (pci_rc >= 0) { |
1808 | mce_register_decode_chain(&sbridge_mce_dec); |
1809 | return 0; |
1810 | } |
1811 | |
1812 | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", |
1813 | pci_rc); |
1814 | |
1815 | return pci_rc; |
1816 | } |
1817 | |
1818 | /* |
1819 | * sbridge_exit() Module exit function |
1820 | * Unregister the driver |
1821 | */ |
1822 | static void __exit sbridge_exit(void) |
1823 | { |
1824 | edac_dbg(2, "\n"); |
1825 | pci_unregister_driver(&sbridge_driver); |
1826 | mce_unregister_decode_chain(&sbridge_mce_dec); |
1827 | } |
1828 | |
1829 | module_init(sbridge_init); |
1830 | module_exit(sbridge_exit); |
1831 | |
1832 | module_param(edac_op_state, int, 0444); |
1833 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
1834 | |
1835 | MODULE_LICENSE("GPL"); |
1836 | MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
1837 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
1838 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " |
1839 | SBRIDGE_REVISION); |
1840 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9