Root/drivers/edac/sb_edac.c

1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/pci.h>
16#include <linux/pci_ids.h>
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/edac.h>
20#include <linux/mmzone.h>
21#include <linux/smp.h>
22#include <linux/bitmap.h>
23#include <linux/math64.h>
24#include <asm/processor.h>
25#include <asm/mce.h>
26
27#include "edac_core.h"
28
29/* Static vars */
30static LIST_HEAD(sbridge_edac_list);
31static DEFINE_MUTEX(sbridge_edac_lock);
32static int probed;
33
34/*
35 * Alter this version for the module when modifications are made
36 */
37#define SBRIDGE_REVISION " Ver: 1.0.0 "
38#define EDAC_MOD_STR "sbridge_edac"
39
40/*
41 * Debug macros
42 */
43#define sbridge_printk(level, fmt, arg...) \
44    edac_printk(level, "sbridge", fmt, ##arg)
45
46#define sbridge_mc_printk(mci, level, fmt, arg...) \
47    edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49/*
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 */
52#define GET_BITFIELD(v, lo, hi) \
53    (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
54
55/*
56 * sbridge Memory Controller Registers
57 */
58
59/*
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development process. This table should be
62 * moved to pci_id.h when submitted upstream
63 */
64#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
75
76    /*
77     * Currently, unused, but will be needed in the future
78     * implementations, as they hold the error counters
79     */
80#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
84
85/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86static const u32 dram_rule[] = {
87    0x80, 0x88, 0x90, 0x98, 0xa0,
88    0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89};
90#define MAX_SAD ARRAY_SIZE(dram_rule)
91
92#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
96
97static char *get_dram_attr(u32 reg)
98{
99    switch(DRAM_ATTR(reg)) {
100        case 0:
101            return "DRAM";
102        case 1:
103            return "MMCFG";
104        case 2:
105            return "NXM";
106        default:
107            return "unknown";
108    }
109}
110
111static const u32 interleave_list[] = {
112    0x84, 0x8c, 0x94, 0x9c, 0xa4,
113    0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114};
115#define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
116
117#define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118#define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119#define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120#define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121#define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122#define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123#define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124#define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
125
126static inline int sad_pkg(u32 reg, int interleave)
127{
128    switch (interleave) {
129    case 0:
130        return SAD_PKG0(reg);
131    case 1:
132        return SAD_PKG1(reg);
133    case 2:
134        return SAD_PKG2(reg);
135    case 3:
136        return SAD_PKG3(reg);
137    case 4:
138        return SAD_PKG4(reg);
139    case 5:
140        return SAD_PKG5(reg);
141    case 6:
142        return SAD_PKG6(reg);
143    case 7:
144        return SAD_PKG7(reg);
145    default:
146        return -EINVAL;
147    }
148}
149
150/* Devices 12 Function 7 */
151
152#define TOLM 0x80
153#define TOHM 0x84
154
155#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157
158/* Device 13 Function 6 */
159
160#define SAD_TARGET 0xf0
161
162#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
163
164#define SAD_CONTROL 0xf4
165
166#define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
167
168/* Device 14 function 0 */
169
170static const u32 tad_dram_rule[] = {
171    0x40, 0x44, 0x48, 0x4c,
172    0x50, 0x54, 0x58, 0x5c,
173    0x60, 0x64, 0x68, 0x6c,
174};
175#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
176
177#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
184
185/* Device 15, function 0 */
186
187#define MCMTR 0x7c
188
189#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
192
193/* Device 15, function 1 */
194
195#define RASENABLES 0xac
196#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
197
198/* Device 15, functions 2-5 */
199
200static const int mtr_regs[] = {
201    0x80, 0x84, 0x88,
202};
203
204#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
209
210static const u32 tad_ch_nilv_offset[] = {
211    0x90, 0x94, 0x98, 0x9c,
212    0xa0, 0xa4, 0xa8, 0xac,
213    0xb0, 0xb4, 0xb8, 0xbc,
214};
215#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
217
218static const u32 rir_way_limit[] = {
219    0x108, 0x10c, 0x110, 0x114, 0x118,
220};
221#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222
223#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225#define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
226
227#define MAX_RIR_WAY 8
228
229static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230    { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231    { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232    { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233    { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234    { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235};
236
237#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
239
240/* Device 16, functions 2-7 */
241
242/*
243 * FIXME: Implement the error count reads directly
244 */
245
246static const u32 correrrcnt[] = {
247    0x104, 0x108, 0x10c, 0x110,
248};
249
250#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
254
255static const u32 correrrthrsld[] = {
256    0x11c, 0x120, 0x124, 0x128,
257};
258
259#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
261
262
263/* Device 17, function 0 */
264
265#define RANK_CFG_A 0x0328
266
267#define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
268
269/*
270 * sbridge structs
271 */
272
273#define NUM_CHANNELS 4
274#define MAX_DIMMS 3 /* Max DIMMS per channel */
275
276struct sbridge_info {
277    u32 mcmtr;
278};
279
280struct sbridge_channel {
281    u32 ranks;
282    u32 dimms;
283};
284
285struct pci_id_descr {
286    int dev;
287    int func;
288    int dev_id;
289    int optional;
290};
291
292struct pci_id_table {
293    const struct pci_id_descr *descr;
294    int n_devs;
295};
296
297struct sbridge_dev {
298    struct list_head list;
299    u8 bus, mc;
300    u8 node_id, source_id;
301    struct pci_dev **pdev;
302    int n_devs;
303    struct mem_ctl_info *mci;
304};
305
306struct sbridge_pvt {
307    struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
308    struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
309    struct pci_dev *pci_br;
310    struct pci_dev *pci_tad[NUM_CHANNELS];
311
312    struct sbridge_dev *sbridge_dev;
313
314    struct sbridge_info info;
315    struct sbridge_channel channel[NUM_CHANNELS];
316
317    /* Memory type detection */
318    bool is_mirrored, is_lockstep, is_close_pg;
319
320    /* Fifo double buffers */
321    struct mce mce_entry[MCE_LOG_LEN];
322    struct mce mce_outentry[MCE_LOG_LEN];
323
324    /* Fifo in/out counters */
325    unsigned mce_in, mce_out;
326
327    /* Count indicator to show errors not got */
328    unsigned mce_overrun;
329
330    /* Memory description */
331    u64 tolm, tohm;
332};
333
334#define PCI_DESCR(device, function, device_id) \
335    .dev = (device), \
336    .func = (function), \
337    .dev_id = (device_id)
338
339static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340        /* Processor Home Agent */
341    { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
342
343        /* Memory controller */
344    { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
345    { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
346    { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
347    { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
348    { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
349    { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
350    { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
351
352        /* System Address Decoder */
353    { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
354    { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
355
356        /* Broadcast Registers */
357    { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
358};
359
360#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362    PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363    {0,} /* 0 terminated list. */
364};
365
366/*
367 * pci_device_id table for which devices we are looking for
368 */
369static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370    {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371    {0,} /* 0 terminated list. */
372};
373
374
375/****************************************************************************
376            Ancillary status routines
377 ****************************************************************************/
378
379static inline int numrank(u32 mtr)
380{
381    int ranks = (1 << RANK_CNT_BITS(mtr));
382
383    if (ranks > 4) {
384        edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
385             ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386        return -EINVAL;
387    }
388
389    return ranks;
390}
391
392static inline int numrow(u32 mtr)
393{
394    int rows = (RANK_WIDTH_BITS(mtr) + 12);
395
396    if (rows < 13 || rows > 18) {
397        edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
398             rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399        return -EINVAL;
400    }
401
402    return 1 << rows;
403}
404
405static inline int numcol(u32 mtr)
406{
407    int cols = (COL_WIDTH_BITS(mtr) + 10);
408
409    if (cols > 12) {
410        edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
411             cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412        return -EINVAL;
413    }
414
415    return 1 << cols;
416}
417
418static struct sbridge_dev *get_sbridge_dev(u8 bus)
419{
420    struct sbridge_dev *sbridge_dev;
421
422    list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423        if (sbridge_dev->bus == bus)
424            return sbridge_dev;
425    }
426
427    return NULL;
428}
429
430static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431                       const struct pci_id_table *table)
432{
433    struct sbridge_dev *sbridge_dev;
434
435    sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436    if (!sbridge_dev)
437        return NULL;
438
439    sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440                   GFP_KERNEL);
441    if (!sbridge_dev->pdev) {
442        kfree(sbridge_dev);
443        return NULL;
444    }
445
446    sbridge_dev->bus = bus;
447    sbridge_dev->n_devs = table->n_devs;
448    list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
449
450    return sbridge_dev;
451}
452
453static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
454{
455    list_del(&sbridge_dev->list);
456    kfree(sbridge_dev->pdev);
457    kfree(sbridge_dev);
458}
459
460/****************************************************************************
461            Memory check routines
462 ****************************************************************************/
463static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464                      unsigned func)
465{
466    struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467    int i;
468
469    if (!sbridge_dev)
470        return NULL;
471
472    for (i = 0; i < sbridge_dev->n_devs; i++) {
473        if (!sbridge_dev->pdev[i])
474            continue;
475
476        if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477            PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478            edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
479                 bus, slot, func, sbridge_dev->pdev[i]);
480            return sbridge_dev->pdev[i];
481        }
482    }
483
484    return NULL;
485}
486
487/**
488 * check_if_ecc_is_active() - Checks if ECC is active
489 * bus: Device bus
490 */
491static int check_if_ecc_is_active(const u8 bus)
492{
493    struct pci_dev *pdev = NULL;
494    u32 mcmtr;
495
496    pdev = get_pdev_slot_func(bus, 15, 0);
497    if (!pdev) {
498        sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499                    "%2x.%02d.%d!!!\n",
500                    bus, 15, 0);
501        return -ENODEV;
502    }
503
504    pci_read_config_dword(pdev, MCMTR, &mcmtr);
505    if (!IS_ECC_ENABLED(mcmtr)) {
506        sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507        return -ENODEV;
508    }
509    return 0;
510}
511
512static int get_dimm_config(struct mem_ctl_info *mci)
513{
514    struct sbridge_pvt *pvt = mci->pvt_info;
515    struct dimm_info *dimm;
516    unsigned i, j, banks, ranks, rows, cols, npages;
517    u64 size;
518    u32 reg;
519    enum edac_type mode;
520    enum mem_type mtype;
521
522    pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
523    pvt->sbridge_dev->source_id = SOURCE_ID(reg);
524
525    pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
526    pvt->sbridge_dev->node_id = NODE_ID(reg);
527    edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
528         pvt->sbridge_dev->mc,
529         pvt->sbridge_dev->node_id,
530         pvt->sbridge_dev->source_id);
531
532    pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
533    if (IS_MIRROR_ENABLED(reg)) {
534        edac_dbg(0, "Memory mirror is enabled\n");
535        pvt->is_mirrored = true;
536    } else {
537        edac_dbg(0, "Memory mirror is disabled\n");
538        pvt->is_mirrored = false;
539    }
540
541    pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
542    if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
543        edac_dbg(0, "Lockstep is enabled\n");
544        mode = EDAC_S8ECD8ED;
545        pvt->is_lockstep = true;
546    } else {
547        edac_dbg(0, "Lockstep is disabled\n");
548        mode = EDAC_S4ECD4ED;
549        pvt->is_lockstep = false;
550    }
551    if (IS_CLOSE_PG(pvt->info.mcmtr)) {
552        edac_dbg(0, "address map is on closed page mode\n");
553        pvt->is_close_pg = true;
554    } else {
555        edac_dbg(0, "address map is on open page mode\n");
556        pvt->is_close_pg = false;
557    }
558
559    pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
560    if (IS_RDIMM_ENABLED(reg)) {
561        /* FIXME: Can also be LRDIMM */
562        edac_dbg(0, "Memory is registered\n");
563        mtype = MEM_RDDR3;
564    } else {
565        edac_dbg(0, "Memory is unregistered\n");
566        mtype = MEM_DDR3;
567    }
568
569    /* On all supported DDR3 DIMM types, there are 8 banks available */
570    banks = 8;
571
572    for (i = 0; i < NUM_CHANNELS; i++) {
573        u32 mtr;
574
575        for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
576            dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
577                       i, j, 0);
578            pci_read_config_dword(pvt->pci_tad[i],
579                          mtr_regs[j], &mtr);
580            edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
581            if (IS_DIMM_PRESENT(mtr)) {
582                pvt->channel[i].dimms++;
583
584                ranks = numrank(mtr);
585                rows = numrow(mtr);
586                cols = numcol(mtr);
587
588                /* DDR3 has 8 I/O banks */
589                size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
590                npages = MiB_TO_PAGES(size);
591
592                edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
593                     pvt->sbridge_dev->mc, i, j,
594                     size, npages,
595                     banks, ranks, rows, cols);
596
597                dimm->nr_pages = npages;
598                dimm->grain = 32;
599                dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
600                dimm->mtype = mtype;
601                dimm->edac_mode = mode;
602                snprintf(dimm->label, sizeof(dimm->label),
603                     "CPU_SrcID#%u_Channel#%u_DIMM#%u",
604                     pvt->sbridge_dev->source_id, i, j);
605            }
606        }
607    }
608
609    return 0;
610}
611
612static void get_memory_layout(const struct mem_ctl_info *mci)
613{
614    struct sbridge_pvt *pvt = mci->pvt_info;
615    int i, j, k, n_sads, n_tads, sad_interl;
616    u32 reg;
617    u64 limit, prv = 0;
618    u64 tmp_mb;
619    u32 mb, kb;
620    u32 rir_way;
621
622    /*
623     * Step 1) Get TOLM/TOHM ranges
624     */
625
626    /* Address range is 32:28 */
627    pci_read_config_dword(pvt->pci_sad1, TOLM,
628                  &reg);
629    pvt->tolm = GET_TOLM(reg);
630    tmp_mb = (1 + pvt->tolm) >> 20;
631
632    mb = div_u64_rem(tmp_mb, 1000, &kb);
633    edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
634
635    /* Address range is already 45:25 */
636    pci_read_config_dword(pvt->pci_sad1, TOHM,
637                  &reg);
638    pvt->tohm = GET_TOHM(reg);
639    tmp_mb = (1 + pvt->tohm) >> 20;
640
641    mb = div_u64_rem(tmp_mb, 1000, &kb);
642    edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
643
644    /*
645     * Step 2) Get SAD range and SAD Interleave list
646     * TAD registers contain the interleave wayness. However, it
647     * seems simpler to just discover it indirectly, with the
648     * algorithm bellow.
649     */
650    prv = 0;
651    for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
652        /* SAD_LIMIT Address range is 45:26 */
653        pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
654                      &reg);
655        limit = SAD_LIMIT(reg);
656
657        if (!DRAM_RULE_ENABLE(reg))
658            continue;
659
660        if (limit <= prv)
661            break;
662
663        tmp_mb = (limit + 1) >> 20;
664        mb = div_u64_rem(tmp_mb, 1000, &kb);
665        edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
666             n_sads,
667             get_dram_attr(reg),
668             mb, kb,
669             ((u64)tmp_mb) << 20L,
670             INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
671             reg);
672        prv = limit;
673
674        pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
675                      &reg);
676        sad_interl = sad_pkg(reg, 0);
677        for (j = 0; j < 8; j++) {
678            if (j > 0 && sad_interl == sad_pkg(reg, j))
679                break;
680
681            edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
682                 n_sads, j, sad_pkg(reg, j));
683        }
684    }
685
686    /*
687     * Step 3) Get TAD range
688     */
689    prv = 0;
690    for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
691        pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
692                      &reg);
693        limit = TAD_LIMIT(reg);
694        if (limit <= prv)
695            break;
696        tmp_mb = (limit + 1) >> 20;
697
698        mb = div_u64_rem(tmp_mb, 1000, &kb);
699        edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
700             n_tads, mb, kb,
701             ((u64)tmp_mb) << 20L,
702             (u32)TAD_SOCK(reg),
703             (u32)TAD_CH(reg),
704             (u32)TAD_TGT0(reg),
705             (u32)TAD_TGT1(reg),
706             (u32)TAD_TGT2(reg),
707             (u32)TAD_TGT3(reg),
708             reg);
709        prv = limit;
710    }
711
712    /*
713     * Step 4) Get TAD offsets, per each channel
714     */
715    for (i = 0; i < NUM_CHANNELS; i++) {
716        if (!pvt->channel[i].dimms)
717            continue;
718        for (j = 0; j < n_tads; j++) {
719            pci_read_config_dword(pvt->pci_tad[i],
720                          tad_ch_nilv_offset[j],
721                          &reg);
722            tmp_mb = TAD_OFFSET(reg) >> 20;
723            mb = div_u64_rem(tmp_mb, 1000, &kb);
724            edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
725                 i, j,
726                 mb, kb,
727                 ((u64)tmp_mb) << 20L,
728                 reg);
729        }
730    }
731
732    /*
733     * Step 6) Get RIR Wayness/Limit, per each channel
734     */
735    for (i = 0; i < NUM_CHANNELS; i++) {
736        if (!pvt->channel[i].dimms)
737            continue;
738        for (j = 0; j < MAX_RIR_RANGES; j++) {
739            pci_read_config_dword(pvt->pci_tad[i],
740                          rir_way_limit[j],
741                          &reg);
742
743            if (!IS_RIR_VALID(reg))
744                continue;
745
746            tmp_mb = RIR_LIMIT(reg) >> 20;
747            rir_way = 1 << RIR_WAY(reg);
748            mb = div_u64_rem(tmp_mb, 1000, &kb);
749            edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
750                 i, j,
751                 mb, kb,
752                 ((u64)tmp_mb) << 20L,
753                 rir_way,
754                 reg);
755
756            for (k = 0; k < rir_way; k++) {
757                pci_read_config_dword(pvt->pci_tad[i],
758                              rir_offset[j][k],
759                              &reg);
760                tmp_mb = RIR_OFFSET(reg) << 6;
761
762                mb = div_u64_rem(tmp_mb, 1000, &kb);
763                edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
764                     i, j, k,
765                     mb, kb,
766                     ((u64)tmp_mb) << 20L,
767                     (u32)RIR_RNK_TGT(reg),
768                     reg);
769            }
770        }
771    }
772}
773
774struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
775{
776    struct sbridge_dev *sbridge_dev;
777
778    list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
779        if (sbridge_dev->node_id == node_id)
780            return sbridge_dev->mci;
781    }
782    return NULL;
783}
784
785static int get_memory_error_data(struct mem_ctl_info *mci,
786                 u64 addr,
787                 u8 *socket,
788                 long *channel_mask,
789                 u8 *rank,
790                 char **area_type, char *msg)
791{
792    struct mem_ctl_info *new_mci;
793    struct sbridge_pvt *pvt = mci->pvt_info;
794    int n_rir, n_sads, n_tads, sad_way, sck_xch;
795    int sad_interl, idx, base_ch;
796    int interleave_mode;
797    unsigned sad_interleave[MAX_INTERLEAVE];
798    u32 reg;
799    u8 ch_way,sck_way;
800    u32 tad_offset;
801    u32 rir_way;
802    u32 mb, kb;
803    u64 ch_addr, offset, limit, prv = 0;
804
805
806    /*
807     * Step 0) Check if the address is at special memory ranges
808     * The check bellow is probably enough to fill all cases where
809     * the error is not inside a memory, except for the legacy
810     * range (e. g. VGA addresses). It is unlikely, however, that the
811     * memory controller would generate an error on that range.
812     */
813    if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
814        sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
815        return -EINVAL;
816    }
817    if (addr >= (u64)pvt->tohm) {
818        sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
819        return -EINVAL;
820    }
821
822    /*
823     * Step 1) Get socket
824     */
825    for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
826        pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
827                      &reg);
828
829        if (!DRAM_RULE_ENABLE(reg))
830            continue;
831
832        limit = SAD_LIMIT(reg);
833        if (limit <= prv) {
834            sprintf(msg, "Can't discover the memory socket");
835            return -EINVAL;
836        }
837        if (addr <= limit)
838            break;
839        prv = limit;
840    }
841    if (n_sads == MAX_SAD) {
842        sprintf(msg, "Can't discover the memory socket");
843        return -EINVAL;
844    }
845    *area_type = get_dram_attr(reg);
846    interleave_mode = INTERLEAVE_MODE(reg);
847
848    pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
849                  &reg);
850    sad_interl = sad_pkg(reg, 0);
851    for (sad_way = 0; sad_way < 8; sad_way++) {
852        if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
853            break;
854        sad_interleave[sad_way] = sad_pkg(reg, sad_way);
855        edac_dbg(0, "SAD interleave #%d: %d\n",
856             sad_way, sad_interleave[sad_way]);
857    }
858    edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
859         pvt->sbridge_dev->mc,
860         n_sads,
861         addr,
862         limit,
863         sad_way + 7,
864         interleave_mode ? "" : "XOR[18:16]");
865    if (interleave_mode)
866        idx = ((addr >> 6) ^ (addr >> 16)) & 7;
867    else
868        idx = (addr >> 6) & 7;
869    switch (sad_way) {
870    case 1:
871        idx = 0;
872        break;
873    case 2:
874        idx = idx & 1;
875        break;
876    case 4:
877        idx = idx & 3;
878        break;
879    case 8:
880        break;
881    default:
882        sprintf(msg, "Can't discover socket interleave");
883        return -EINVAL;
884    }
885    *socket = sad_interleave[idx];
886    edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
887         idx, sad_way, *socket);
888
889    /*
890     * Move to the proper node structure, in order to access the
891     * right PCI registers
892     */
893    new_mci = get_mci_for_node_id(*socket);
894    if (!new_mci) {
895        sprintf(msg, "Struct for socket #%u wasn't initialized",
896            *socket);
897        return -EINVAL;
898    }
899    mci = new_mci;
900    pvt = mci->pvt_info;
901
902    /*
903     * Step 2) Get memory channel
904     */
905    prv = 0;
906    for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
907        pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
908                      &reg);
909        limit = TAD_LIMIT(reg);
910        if (limit <= prv) {
911            sprintf(msg, "Can't discover the memory channel");
912            return -EINVAL;
913        }
914        if (addr <= limit)
915            break;
916        prv = limit;
917    }
918    ch_way = TAD_CH(reg) + 1;
919    sck_way = TAD_SOCK(reg) + 1;
920    /*
921     * FIXME: Is it right to always use channel 0 for offsets?
922     */
923    pci_read_config_dword(pvt->pci_tad[0],
924                tad_ch_nilv_offset[n_tads],
925                &tad_offset);
926
927    if (ch_way == 3)
928        idx = addr >> 6;
929    else
930        idx = addr >> (6 + sck_way);
931    idx = idx % ch_way;
932
933    /*
934     * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
935     */
936    switch (idx) {
937    case 0:
938        base_ch = TAD_TGT0(reg);
939        break;
940    case 1:
941        base_ch = TAD_TGT1(reg);
942        break;
943    case 2:
944        base_ch = TAD_TGT2(reg);
945        break;
946    case 3:
947        base_ch = TAD_TGT3(reg);
948        break;
949    default:
950        sprintf(msg, "Can't discover the TAD target");
951        return -EINVAL;
952    }
953    *channel_mask = 1 << base_ch;
954
955    if (pvt->is_mirrored) {
956        *channel_mask |= 1 << ((base_ch + 2) % 4);
957        switch(ch_way) {
958        case 2:
959        case 4:
960            sck_xch = 1 << sck_way * (ch_way >> 1);
961            break;
962        default:
963            sprintf(msg, "Invalid mirror set. Can't decode addr");
964            return -EINVAL;
965        }
966    } else
967        sck_xch = (1 << sck_way) * ch_way;
968
969    if (pvt->is_lockstep)
970        *channel_mask |= 1 << ((base_ch + 1) % 4);
971
972    offset = TAD_OFFSET(tad_offset);
973
974    edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
975         n_tads,
976         addr,
977         limit,
978         (u32)TAD_SOCK(reg),
979         ch_way,
980         offset,
981         idx,
982         base_ch,
983         *channel_mask);
984
985    /* Calculate channel address */
986    /* Remove the TAD offset */
987
988    if (offset > addr) {
989        sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
990            offset, addr);
991        return -EINVAL;
992    }
993    addr -= offset;
994    /* Store the low bits [0:6] of the addr */
995    ch_addr = addr & 0x7f;
996    /* Remove socket wayness and remove 6 bits */
997    addr >>= 6;
998    addr = div_u64(addr, sck_xch);
999#if 0
1000    /* Divide by channel way */
1001    addr = addr / ch_way;
1002#endif
1003    /* Recover the last 6 bits */
1004    ch_addr |= addr << 6;
1005
1006    /*
1007     * Step 3) Decode rank
1008     */
1009    for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1010        pci_read_config_dword(pvt->pci_tad[base_ch],
1011                      rir_way_limit[n_rir],
1012                      &reg);
1013
1014        if (!IS_RIR_VALID(reg))
1015            continue;
1016
1017        limit = RIR_LIMIT(reg);
1018        mb = div_u64_rem(limit >> 20, 1000, &kb);
1019        edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1020             n_rir,
1021             mb, kb,
1022             limit,
1023             1 << RIR_WAY(reg));
1024        if (ch_addr <= limit)
1025            break;
1026    }
1027    if (n_rir == MAX_RIR_RANGES) {
1028        sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1029            ch_addr);
1030        return -EINVAL;
1031    }
1032    rir_way = RIR_WAY(reg);
1033    if (pvt->is_close_pg)
1034        idx = (ch_addr >> 6);
1035    else
1036        idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1037    idx %= 1 << rir_way;
1038
1039    pci_read_config_dword(pvt->pci_tad[base_ch],
1040                  rir_offset[n_rir][idx],
1041                  &reg);
1042    *rank = RIR_RNK_TGT(reg);
1043
1044    edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1045         n_rir,
1046         ch_addr,
1047         limit,
1048         rir_way,
1049         idx);
1050
1051    return 0;
1052}
1053
1054/****************************************************************************
1055    Device initialization routines: put/get, init/exit
1056 ****************************************************************************/
1057
1058/*
1059 * sbridge_put_all_devices 'put' all the devices that we have
1060 * reserved via 'get'
1061 */
1062static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1063{
1064    int i;
1065
1066    edac_dbg(0, "\n");
1067    for (i = 0; i < sbridge_dev->n_devs; i++) {
1068        struct pci_dev *pdev = sbridge_dev->pdev[i];
1069        if (!pdev)
1070            continue;
1071        edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1072             pdev->bus->number,
1073             PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1074        pci_dev_put(pdev);
1075    }
1076}
1077
1078static void sbridge_put_all_devices(void)
1079{
1080    struct sbridge_dev *sbridge_dev, *tmp;
1081
1082    list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1083        sbridge_put_devices(sbridge_dev);
1084        free_sbridge_dev(sbridge_dev);
1085    }
1086}
1087
1088/*
1089 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1090 * device/functions we want to reference for this driver
1091 *
1092 * Need to 'get' device 16 func 1 and func 2
1093 */
1094static int sbridge_get_onedevice(struct pci_dev **prev,
1095                 u8 *num_mc,
1096                 const struct pci_id_table *table,
1097                 const unsigned devno)
1098{
1099    struct sbridge_dev *sbridge_dev;
1100    const struct pci_id_descr *dev_descr = &table->descr[devno];
1101
1102    struct pci_dev *pdev = NULL;
1103    u8 bus = 0;
1104
1105    sbridge_printk(KERN_INFO,
1106        "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1107        dev_descr->dev, dev_descr->func,
1108        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1109
1110    pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1111                  dev_descr->dev_id, *prev);
1112
1113    if (!pdev) {
1114        if (*prev) {
1115            *prev = pdev;
1116            return 0;
1117        }
1118
1119        if (dev_descr->optional)
1120            return 0;
1121
1122        if (devno == 0)
1123            return -ENODEV;
1124
1125        sbridge_printk(KERN_INFO,
1126            "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1127            dev_descr->dev, dev_descr->func,
1128            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1129
1130        /* End of list, leave */
1131        return -ENODEV;
1132    }
1133    bus = pdev->bus->number;
1134
1135    sbridge_dev = get_sbridge_dev(bus);
1136    if (!sbridge_dev) {
1137        sbridge_dev = alloc_sbridge_dev(bus, table);
1138        if (!sbridge_dev) {
1139            pci_dev_put(pdev);
1140            return -ENOMEM;
1141        }
1142        (*num_mc)++;
1143    }
1144
1145    if (sbridge_dev->pdev[devno]) {
1146        sbridge_printk(KERN_ERR,
1147            "Duplicated device for "
1148            "dev %02x:%d.%d PCI ID %04x:%04x\n",
1149            bus, dev_descr->dev, dev_descr->func,
1150            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1151        pci_dev_put(pdev);
1152        return -ENODEV;
1153    }
1154
1155    sbridge_dev->pdev[devno] = pdev;
1156
1157    /* Sanity check */
1158    if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1159            PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1160        sbridge_printk(KERN_ERR,
1161            "Device PCI ID %04x:%04x "
1162            "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1163            PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1164            bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1165            bus, dev_descr->dev, dev_descr->func);
1166        return -ENODEV;
1167    }
1168
1169    /* Be sure that the device is enabled */
1170    if (unlikely(pci_enable_device(pdev) < 0)) {
1171        sbridge_printk(KERN_ERR,
1172            "Couldn't enable "
1173            "dev %02x:%d.%d PCI ID %04x:%04x\n",
1174            bus, dev_descr->dev, dev_descr->func,
1175            PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1176        return -ENODEV;
1177    }
1178
1179    edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1180         bus, dev_descr->dev, dev_descr->func,
1181         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1182
1183    /*
1184     * As stated on drivers/pci/search.c, the reference count for
1185     * @from is always decremented if it is not %NULL. So, as we need
1186     * to get all devices up to null, we need to do a get for the device
1187     */
1188    pci_dev_get(pdev);
1189
1190    *prev = pdev;
1191
1192    return 0;
1193}
1194
1195static int sbridge_get_all_devices(u8 *num_mc)
1196{
1197    int i, rc;
1198    struct pci_dev *pdev = NULL;
1199    const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1200
1201    while (table && table->descr) {
1202        for (i = 0; i < table->n_devs; i++) {
1203            pdev = NULL;
1204            do {
1205                rc = sbridge_get_onedevice(&pdev, num_mc,
1206                               table, i);
1207                if (rc < 0) {
1208                    if (i == 0) {
1209                        i = table->n_devs;
1210                        break;
1211                    }
1212                    sbridge_put_all_devices();
1213                    return -ENODEV;
1214                }
1215            } while (pdev);
1216        }
1217        table++;
1218    }
1219
1220    return 0;
1221}
1222
1223static int mci_bind_devs(struct mem_ctl_info *mci,
1224             struct sbridge_dev *sbridge_dev)
1225{
1226    struct sbridge_pvt *pvt = mci->pvt_info;
1227    struct pci_dev *pdev;
1228    int i, func, slot;
1229
1230    for (i = 0; i < sbridge_dev->n_devs; i++) {
1231        pdev = sbridge_dev->pdev[i];
1232        if (!pdev)
1233            continue;
1234        slot = PCI_SLOT(pdev->devfn);
1235        func = PCI_FUNC(pdev->devfn);
1236        switch (slot) {
1237        case 12:
1238            switch (func) {
1239            case 6:
1240                pvt->pci_sad0 = pdev;
1241                break;
1242            case 7:
1243                pvt->pci_sad1 = pdev;
1244                break;
1245            default:
1246                goto error;
1247            }
1248            break;
1249        case 13:
1250            switch (func) {
1251            case 6:
1252                pvt->pci_br = pdev;
1253                break;
1254            default:
1255                goto error;
1256            }
1257            break;
1258        case 14:
1259            switch (func) {
1260            case 0:
1261                pvt->pci_ha0 = pdev;
1262                break;
1263            default:
1264                goto error;
1265            }
1266            break;
1267        case 15:
1268            switch (func) {
1269            case 0:
1270                pvt->pci_ta = pdev;
1271                break;
1272            case 1:
1273                pvt->pci_ras = pdev;
1274                break;
1275            case 2:
1276            case 3:
1277            case 4:
1278            case 5:
1279                pvt->pci_tad[func - 2] = pdev;
1280                break;
1281            default:
1282                goto error;
1283            }
1284            break;
1285        case 17:
1286            switch (func) {
1287            case 0:
1288                pvt->pci_ddrio = pdev;
1289                break;
1290            default:
1291                goto error;
1292            }
1293            break;
1294        default:
1295            goto error;
1296        }
1297
1298        edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1299             sbridge_dev->bus,
1300             PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1301             pdev);
1302    }
1303
1304    /* Check if everything were registered */
1305    if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1306        !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
1307        !pvt->pci_ddrio)
1308        goto enodev;
1309
1310    for (i = 0; i < NUM_CHANNELS; i++) {
1311        if (!pvt->pci_tad[i])
1312            goto enodev;
1313    }
1314    return 0;
1315
1316enodev:
1317    sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1318    return -ENODEV;
1319
1320error:
1321    sbridge_printk(KERN_ERR, "Device %d, function %d "
1322              "is out of the expected range\n",
1323              slot, func);
1324    return -EINVAL;
1325}
1326
1327/****************************************************************************
1328            Error check routines
1329 ****************************************************************************/
1330
1331/*
1332 * While Sandy Bridge has error count registers, SMI BIOS read values from
1333 * and resets the counters. So, they are not reliable for the OS to read
1334 * from them. So, we have no option but to just trust on whatever MCE is
1335 * telling us about the errors.
1336 */
1337static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1338                    const struct mce *m)
1339{
1340    struct mem_ctl_info *new_mci;
1341    struct sbridge_pvt *pvt = mci->pvt_info;
1342    enum hw_event_mc_err_type tp_event;
1343    char *type, *optype, msg[256];
1344    bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1345    bool overflow = GET_BITFIELD(m->status, 62, 62);
1346    bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1347    bool recoverable = GET_BITFIELD(m->status, 56, 56);
1348    u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1349    u32 mscod = GET_BITFIELD(m->status, 16, 31);
1350    u32 errcode = GET_BITFIELD(m->status, 0, 15);
1351    u32 channel = GET_BITFIELD(m->status, 0, 3);
1352    u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1353    long channel_mask, first_channel;
1354    u8 rank, socket;
1355    int rc, dimm;
1356    char *area_type = NULL;
1357
1358    if (uncorrected_error) {
1359        if (ripv) {
1360            type = "FATAL";
1361            tp_event = HW_EVENT_ERR_FATAL;
1362        } else {
1363            type = "NON_FATAL";
1364            tp_event = HW_EVENT_ERR_UNCORRECTED;
1365        }
1366    } else {
1367        type = "CORRECTED";
1368        tp_event = HW_EVENT_ERR_CORRECTED;
1369    }
1370
1371    /*
1372     * According with Table 15-9 of the Intel Architecture spec vol 3A,
1373     * memory errors should fit in this mask:
1374     * 000f 0000 1mmm cccc (binary)
1375     * where:
1376     * f = Correction Report Filtering Bit. If 1, subsequent errors
1377     * won't be shown
1378     * mmm = error type
1379     * cccc = channel
1380     * If the mask doesn't match, report an error to the parsing logic
1381     */
1382    if (! ((errcode & 0xef80) == 0x80)) {
1383        optype = "Can't parse: it is not a mem";
1384    } else {
1385        switch (optypenum) {
1386        case 0:
1387            optype = "generic undef request error";
1388            break;
1389        case 1:
1390            optype = "memory read error";
1391            break;
1392        case 2:
1393            optype = "memory write error";
1394            break;
1395        case 3:
1396            optype = "addr/cmd error";
1397            break;
1398        case 4:
1399            optype = "memory scrubbing error";
1400            break;
1401        default:
1402            optype = "reserved";
1403            break;
1404        }
1405    }
1406
1407    rc = get_memory_error_data(mci, m->addr, &socket,
1408                   &channel_mask, &rank, &area_type, msg);
1409    if (rc < 0)
1410        goto err_parsing;
1411    new_mci = get_mci_for_node_id(socket);
1412    if (!new_mci) {
1413        strcpy(msg, "Error: socket got corrupted!");
1414        goto err_parsing;
1415    }
1416    mci = new_mci;
1417    pvt = mci->pvt_info;
1418
1419    first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1420
1421    if (rank < 4)
1422        dimm = 0;
1423    else if (rank < 8)
1424        dimm = 1;
1425    else
1426        dimm = 2;
1427
1428
1429    /*
1430     * FIXME: On some memory configurations (mirror, lockstep), the
1431     * Memory Controller can't point the error to a single DIMM. The
1432     * EDAC core should be handling the channel mask, in order to point
1433     * to the group of dimm's where the error may be happening.
1434     */
1435    snprintf(msg, sizeof(msg),
1436         "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1437         overflow ? " OVERFLOW" : "",
1438         (uncorrected_error && recoverable) ? " recoverable" : "",
1439         area_type,
1440         mscod, errcode,
1441         socket,
1442         channel_mask,
1443         rank);
1444
1445    edac_dbg(0, "%s\n", msg);
1446
1447    /* FIXME: need support for channel mask */
1448
1449    /* Call the helper to output message */
1450    edac_mc_handle_error(tp_event, mci, core_err_cnt,
1451                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1452                 channel, dimm, -1,
1453                 optype, msg);
1454    return;
1455err_parsing:
1456    edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1457                 -1, -1, -1,
1458                 msg, "");
1459
1460}
1461
1462/*
1463 * sbridge_check_error Retrieve and process errors reported by the
1464 * hardware. Called by the Core module.
1465 */
1466static void sbridge_check_error(struct mem_ctl_info *mci)
1467{
1468    struct sbridge_pvt *pvt = mci->pvt_info;
1469    int i;
1470    unsigned count = 0;
1471    struct mce *m;
1472
1473    /*
1474     * MCE first step: Copy all mce errors into a temporary buffer
1475     * We use a double buffering here, to reduce the risk of
1476     * loosing an error.
1477     */
1478    smp_rmb();
1479    count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1480        % MCE_LOG_LEN;
1481    if (!count)
1482        return;
1483
1484    m = pvt->mce_outentry;
1485    if (pvt->mce_in + count > MCE_LOG_LEN) {
1486        unsigned l = MCE_LOG_LEN - pvt->mce_in;
1487
1488        memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1489        smp_wmb();
1490        pvt->mce_in = 0;
1491        count -= l;
1492        m += l;
1493    }
1494    memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1495    smp_wmb();
1496    pvt->mce_in += count;
1497
1498    smp_rmb();
1499    if (pvt->mce_overrun) {
1500        sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1501                  pvt->mce_overrun);
1502        smp_wmb();
1503        pvt->mce_overrun = 0;
1504    }
1505
1506    /*
1507     * MCE second step: parse errors and display
1508     */
1509    for (i = 0; i < count; i++)
1510        sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1511}
1512
1513/*
1514 * sbridge_mce_check_error Replicates mcelog routine to get errors
1515 * This routine simply queues mcelog errors, and
1516 * return. The error itself should be handled later
1517 * by sbridge_check_error.
1518 * WARNING: As this routine should be called at NMI time, extra care should
1519 * be taken to avoid deadlocks, and to be as fast as possible.
1520 */
1521static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1522                   void *data)
1523{
1524    struct mce *mce = (struct mce *)data;
1525    struct mem_ctl_info *mci;
1526    struct sbridge_pvt *pvt;
1527
1528    mci = get_mci_for_node_id(mce->socketid);
1529    if (!mci)
1530        return NOTIFY_BAD;
1531    pvt = mci->pvt_info;
1532
1533    /*
1534     * Just let mcelog handle it if the error is
1535     * outside the memory controller. A memory error
1536     * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1537     * bit 12 has an special meaning.
1538     */
1539    if ((mce->status & 0xefff) >> 7 != 1)
1540        return NOTIFY_DONE;
1541
1542    printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1543
1544    printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1545           mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1546    printk("TSC %llx ", mce->tsc);
1547    printk("ADDR %llx ", mce->addr);
1548    printk("MISC %llx ", mce->misc);
1549
1550    printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1551        mce->cpuvendor, mce->cpuid, mce->time,
1552        mce->socketid, mce->apicid);
1553
1554    /* Only handle if it is the right mc controller */
1555    if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1556        return NOTIFY_DONE;
1557
1558    smp_rmb();
1559    if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1560        smp_wmb();
1561        pvt->mce_overrun++;
1562        return NOTIFY_DONE;
1563    }
1564
1565    /* Copy memory error at the ringbuffer */
1566    memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1567    smp_wmb();
1568    pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1569
1570    /* Handle fatal errors immediately */
1571    if (mce->mcgstatus & 1)
1572        sbridge_check_error(mci);
1573
1574    /* Advice mcelog that the error were handled */
1575    return NOTIFY_STOP;
1576}
1577
1578static struct notifier_block sbridge_mce_dec = {
1579    .notifier_call = sbridge_mce_check_error,
1580};
1581
1582/****************************************************************************
1583            EDAC register/unregister logic
1584 ****************************************************************************/
1585
1586static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1587{
1588    struct mem_ctl_info *mci = sbridge_dev->mci;
1589    struct sbridge_pvt *pvt;
1590
1591    if (unlikely(!mci || !mci->pvt_info)) {
1592        edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1593
1594        sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1595        return;
1596    }
1597
1598    pvt = mci->pvt_info;
1599
1600    edac_dbg(0, "MC: mci = %p, dev = %p\n",
1601         mci, &sbridge_dev->pdev[0]->dev);
1602
1603    /* Remove MC sysfs nodes */
1604    edac_mc_del_mc(mci->pdev);
1605
1606    edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1607    kfree(mci->ctl_name);
1608    edac_mc_free(mci);
1609    sbridge_dev->mci = NULL;
1610}
1611
1612static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1613{
1614    struct mem_ctl_info *mci;
1615    struct edac_mc_layer layers[2];
1616    struct sbridge_pvt *pvt;
1617    int rc;
1618
1619    /* Check the number of active and not disabled channels */
1620    rc = check_if_ecc_is_active(sbridge_dev->bus);
1621    if (unlikely(rc < 0))
1622        return rc;
1623
1624    /* allocate a new MC control structure */
1625    layers[0].type = EDAC_MC_LAYER_CHANNEL;
1626    layers[0].size = NUM_CHANNELS;
1627    layers[0].is_virt_csrow = false;
1628    layers[1].type = EDAC_MC_LAYER_SLOT;
1629    layers[1].size = MAX_DIMMS;
1630    layers[1].is_virt_csrow = true;
1631    mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1632                sizeof(*pvt));
1633
1634    if (unlikely(!mci))
1635        return -ENOMEM;
1636
1637    edac_dbg(0, "MC: mci = %p, dev = %p\n",
1638         mci, &sbridge_dev->pdev[0]->dev);
1639
1640    pvt = mci->pvt_info;
1641    memset(pvt, 0, sizeof(*pvt));
1642
1643    /* Associate sbridge_dev and mci for future usage */
1644    pvt->sbridge_dev = sbridge_dev;
1645    sbridge_dev->mci = mci;
1646
1647    mci->mtype_cap = MEM_FLAG_DDR3;
1648    mci->edac_ctl_cap = EDAC_FLAG_NONE;
1649    mci->edac_cap = EDAC_FLAG_NONE;
1650    mci->mod_name = "sbridge_edac.c";
1651    mci->mod_ver = SBRIDGE_REVISION;
1652    mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1653    mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1654    mci->ctl_page_to_phys = NULL;
1655
1656    /* Set the function pointer to an actual operation function */
1657    mci->edac_check = sbridge_check_error;
1658
1659    /* Store pci devices at mci for faster access */
1660    rc = mci_bind_devs(mci, sbridge_dev);
1661    if (unlikely(rc < 0))
1662        goto fail0;
1663
1664    /* Get dimm basic config and the memory layout */
1665    get_dimm_config(mci);
1666    get_memory_layout(mci);
1667
1668    /* record ptr to the generic device */
1669    mci->pdev = &sbridge_dev->pdev[0]->dev;
1670
1671    /* add this new MC control structure to EDAC's list of MCs */
1672    if (unlikely(edac_mc_add_mc(mci))) {
1673        edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1674        rc = -EINVAL;
1675        goto fail0;
1676    }
1677
1678    return 0;
1679
1680fail0:
1681    kfree(mci->ctl_name);
1682    edac_mc_free(mci);
1683    sbridge_dev->mci = NULL;
1684    return rc;
1685}
1686
1687/*
1688 * sbridge_probe Probe for ONE instance of device to see if it is
1689 * present.
1690 * return:
1691 * 0 for FOUND a device
1692 * < 0 for error code
1693 */
1694
1695static int __devinit sbridge_probe(struct pci_dev *pdev,
1696                  const struct pci_device_id *id)
1697{
1698    int rc;
1699    u8 mc, num_mc = 0;
1700    struct sbridge_dev *sbridge_dev;
1701
1702    /* get the pci devices we want to reserve for our use */
1703    mutex_lock(&sbridge_edac_lock);
1704
1705    /*
1706     * All memory controllers are allocated at the first pass.
1707     */
1708    if (unlikely(probed >= 1)) {
1709        mutex_unlock(&sbridge_edac_lock);
1710        return -ENODEV;
1711    }
1712    probed++;
1713
1714    rc = sbridge_get_all_devices(&num_mc);
1715    if (unlikely(rc < 0))
1716        goto fail0;
1717    mc = 0;
1718
1719    list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1720        edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1721             mc, mc + 1, num_mc);
1722        sbridge_dev->mc = mc++;
1723        rc = sbridge_register_mci(sbridge_dev);
1724        if (unlikely(rc < 0))
1725            goto fail1;
1726    }
1727
1728    sbridge_printk(KERN_INFO, "Driver loaded.\n");
1729
1730    mutex_unlock(&sbridge_edac_lock);
1731    return 0;
1732
1733fail1:
1734    list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1735        sbridge_unregister_mci(sbridge_dev);
1736
1737    sbridge_put_all_devices();
1738fail0:
1739    mutex_unlock(&sbridge_edac_lock);
1740    return rc;
1741}
1742
1743/*
1744 * sbridge_remove destructor for one instance of device
1745 *
1746 */
1747static void __devexit sbridge_remove(struct pci_dev *pdev)
1748{
1749    struct sbridge_dev *sbridge_dev;
1750
1751    edac_dbg(0, "\n");
1752
1753    /*
1754     * we have a trouble here: pdev value for removal will be wrong, since
1755     * it will point to the X58 register used to detect that the machine
1756     * is a Nehalem or upper design. However, due to the way several PCI
1757     * devices are grouped together to provide MC functionality, we need
1758     * to use a different method for releasing the devices
1759     */
1760
1761    mutex_lock(&sbridge_edac_lock);
1762
1763    if (unlikely(!probed)) {
1764        mutex_unlock(&sbridge_edac_lock);
1765        return;
1766    }
1767
1768    list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1769        sbridge_unregister_mci(sbridge_dev);
1770
1771    /* Release PCI resources */
1772    sbridge_put_all_devices();
1773
1774    probed--;
1775
1776    mutex_unlock(&sbridge_edac_lock);
1777}
1778
1779MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1780
1781/*
1782 * sbridge_driver pci_driver structure for this module
1783 *
1784 */
1785static struct pci_driver sbridge_driver = {
1786    .name = "sbridge_edac",
1787    .probe = sbridge_probe,
1788    .remove = __devexit_p(sbridge_remove),
1789    .id_table = sbridge_pci_tbl,
1790};
1791
1792/*
1793 * sbridge_init Module entry function
1794 * Try to initialize this module for its devices
1795 */
1796static int __init sbridge_init(void)
1797{
1798    int pci_rc;
1799
1800    edac_dbg(2, "\n");
1801
1802    /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1803    opstate_init();
1804
1805    pci_rc = pci_register_driver(&sbridge_driver);
1806
1807    if (pci_rc >= 0) {
1808        mce_register_decode_chain(&sbridge_mce_dec);
1809        return 0;
1810    }
1811
1812    sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1813              pci_rc);
1814
1815    return pci_rc;
1816}
1817
1818/*
1819 * sbridge_exit() Module exit function
1820 * Unregister the driver
1821 */
1822static void __exit sbridge_exit(void)
1823{
1824    edac_dbg(2, "\n");
1825    pci_unregister_driver(&sbridge_driver);
1826    mce_unregister_decode_chain(&sbridge_mce_dec);
1827}
1828
1829module_init(sbridge_init);
1830module_exit(sbridge_exit);
1831
1832module_param(edac_op_state, int, 0444);
1833MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1834
1835MODULE_LICENSE("GPL");
1836MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1837MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1838MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1839           SBRIDGE_REVISION);
1840

Archive Download this file



interactive