Root/
1 | /* |
2 | * Device probing and sysfs code. |
3 | * |
4 | * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License as published by |
8 | * the Free Software Foundation; either version 2 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU General Public License |
17 | * along with this program; if not, write to the Free Software Foundation, |
18 | * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
19 | */ |
20 | |
21 | #include <linux/bug.h> |
22 | #include <linux/ctype.h> |
23 | #include <linux/delay.h> |
24 | #include <linux/device.h> |
25 | #include <linux/errno.h> |
26 | #include <linux/firewire.h> |
27 | #include <linux/firewire-constants.h> |
28 | #include <linux/idr.h> |
29 | #include <linux/jiffies.h> |
30 | #include <linux/kobject.h> |
31 | #include <linux/list.h> |
32 | #include <linux/mod_devicetable.h> |
33 | #include <linux/module.h> |
34 | #include <linux/mutex.h> |
35 | #include <linux/rwsem.h> |
36 | #include <linux/slab.h> |
37 | #include <linux/spinlock.h> |
38 | #include <linux/string.h> |
39 | #include <linux/workqueue.h> |
40 | |
41 | #include <linux/atomic.h> |
42 | #include <asm/byteorder.h> |
43 | |
44 | #include "core.h" |
45 | |
46 | void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) |
47 | { |
48 | ci->p = p + 1; |
49 | ci->end = ci->p + (p[0] >> 16); |
50 | } |
51 | EXPORT_SYMBOL(fw_csr_iterator_init); |
52 | |
53 | int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) |
54 | { |
55 | *key = *ci->p >> 24; |
56 | *value = *ci->p & 0xffffff; |
57 | |
58 | return ci->p++ < ci->end; |
59 | } |
60 | EXPORT_SYMBOL(fw_csr_iterator_next); |
61 | |
62 | static const u32 *search_leaf(const u32 *directory, int search_key) |
63 | { |
64 | struct fw_csr_iterator ci; |
65 | int last_key = 0, key, value; |
66 | |
67 | fw_csr_iterator_init(&ci, directory); |
68 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
69 | if (last_key == search_key && |
70 | key == (CSR_DESCRIPTOR | CSR_LEAF)) |
71 | return ci.p - 1 + value; |
72 | |
73 | last_key = key; |
74 | } |
75 | |
76 | return NULL; |
77 | } |
78 | |
79 | static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) |
80 | { |
81 | unsigned int quadlets, i; |
82 | char c; |
83 | |
84 | if (!size || !buf) |
85 | return -EINVAL; |
86 | |
87 | quadlets = min(block[0] >> 16, 256U); |
88 | if (quadlets < 2) |
89 | return -ENODATA; |
90 | |
91 | if (block[1] != 0 || block[2] != 0) |
92 | /* unknown language/character set */ |
93 | return -ENODATA; |
94 | |
95 | block += 3; |
96 | quadlets -= 2; |
97 | for (i = 0; i < quadlets * 4 && i < size - 1; i++) { |
98 | c = block[i / 4] >> (24 - 8 * (i % 4)); |
99 | if (c == '\0') |
100 | break; |
101 | buf[i] = c; |
102 | } |
103 | buf[i] = '\0'; |
104 | |
105 | return i; |
106 | } |
107 | |
108 | /** |
109 | * fw_csr_string() - reads a string from the configuration ROM |
110 | * @directory: e.g. root directory or unit directory |
111 | * @key: the key of the preceding directory entry |
112 | * @buf: where to put the string |
113 | * @size: size of @buf, in bytes |
114 | * |
115 | * The string is taken from a minimal ASCII text descriptor leaf after |
116 | * the immediate entry with @key. The string is zero-terminated. |
117 | * Returns strlen(buf) or a negative error code. |
118 | */ |
119 | int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) |
120 | { |
121 | const u32 *leaf = search_leaf(directory, key); |
122 | if (!leaf) |
123 | return -ENOENT; |
124 | |
125 | return textual_leaf_to_string(leaf, buf, size); |
126 | } |
127 | EXPORT_SYMBOL(fw_csr_string); |
128 | |
129 | static void get_ids(const u32 *directory, int *id) |
130 | { |
131 | struct fw_csr_iterator ci; |
132 | int key, value; |
133 | |
134 | fw_csr_iterator_init(&ci, directory); |
135 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
136 | switch (key) { |
137 | case CSR_VENDOR: id[0] = value; break; |
138 | case CSR_MODEL: id[1] = value; break; |
139 | case CSR_SPECIFIER_ID: id[2] = value; break; |
140 | case CSR_VERSION: id[3] = value; break; |
141 | } |
142 | } |
143 | } |
144 | |
145 | static void get_modalias_ids(struct fw_unit *unit, int *id) |
146 | { |
147 | get_ids(&fw_parent_device(unit)->config_rom[5], id); |
148 | get_ids(unit->directory, id); |
149 | } |
150 | |
151 | static bool match_ids(const struct ieee1394_device_id *id_table, int *id) |
152 | { |
153 | int match = 0; |
154 | |
155 | if (id[0] == id_table->vendor_id) |
156 | match |= IEEE1394_MATCH_VENDOR_ID; |
157 | if (id[1] == id_table->model_id) |
158 | match |= IEEE1394_MATCH_MODEL_ID; |
159 | if (id[2] == id_table->specifier_id) |
160 | match |= IEEE1394_MATCH_SPECIFIER_ID; |
161 | if (id[3] == id_table->version) |
162 | match |= IEEE1394_MATCH_VERSION; |
163 | |
164 | return (match & id_table->match_flags) == id_table->match_flags; |
165 | } |
166 | |
167 | static bool is_fw_unit(struct device *dev); |
168 | |
169 | static int fw_unit_match(struct device *dev, struct device_driver *drv) |
170 | { |
171 | const struct ieee1394_device_id *id_table = |
172 | container_of(drv, struct fw_driver, driver)->id_table; |
173 | int id[] = {0, 0, 0, 0}; |
174 | |
175 | /* We only allow binding to fw_units. */ |
176 | if (!is_fw_unit(dev)) |
177 | return 0; |
178 | |
179 | get_modalias_ids(fw_unit(dev), id); |
180 | |
181 | for (; id_table->match_flags != 0; id_table++) |
182 | if (match_ids(id_table, id)) |
183 | return 1; |
184 | |
185 | return 0; |
186 | } |
187 | |
188 | static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) |
189 | { |
190 | int id[] = {0, 0, 0, 0}; |
191 | |
192 | get_modalias_ids(unit, id); |
193 | |
194 | return snprintf(buffer, buffer_size, |
195 | "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", |
196 | id[0], id[1], id[2], id[3]); |
197 | } |
198 | |
199 | static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) |
200 | { |
201 | struct fw_unit *unit = fw_unit(dev); |
202 | char modalias[64]; |
203 | |
204 | get_modalias(unit, modalias, sizeof(modalias)); |
205 | |
206 | if (add_uevent_var(env, "MODALIAS=%s", modalias)) |
207 | return -ENOMEM; |
208 | |
209 | return 0; |
210 | } |
211 | |
212 | struct bus_type fw_bus_type = { |
213 | .name = "firewire", |
214 | .match = fw_unit_match, |
215 | }; |
216 | EXPORT_SYMBOL(fw_bus_type); |
217 | |
218 | int fw_device_enable_phys_dma(struct fw_device *device) |
219 | { |
220 | int generation = device->generation; |
221 | |
222 | /* device->node_id, accessed below, must not be older than generation */ |
223 | smp_rmb(); |
224 | |
225 | return device->card->driver->enable_phys_dma(device->card, |
226 | device->node_id, |
227 | generation); |
228 | } |
229 | EXPORT_SYMBOL(fw_device_enable_phys_dma); |
230 | |
231 | struct config_rom_attribute { |
232 | struct device_attribute attr; |
233 | u32 key; |
234 | }; |
235 | |
236 | static ssize_t show_immediate(struct device *dev, |
237 | struct device_attribute *dattr, char *buf) |
238 | { |
239 | struct config_rom_attribute *attr = |
240 | container_of(dattr, struct config_rom_attribute, attr); |
241 | struct fw_csr_iterator ci; |
242 | const u32 *dir; |
243 | int key, value, ret = -ENOENT; |
244 | |
245 | down_read(&fw_device_rwsem); |
246 | |
247 | if (is_fw_unit(dev)) |
248 | dir = fw_unit(dev)->directory; |
249 | else |
250 | dir = fw_device(dev)->config_rom + 5; |
251 | |
252 | fw_csr_iterator_init(&ci, dir); |
253 | while (fw_csr_iterator_next(&ci, &key, &value)) |
254 | if (attr->key == key) { |
255 | ret = snprintf(buf, buf ? PAGE_SIZE : 0, |
256 | "0x%06x\n", value); |
257 | break; |
258 | } |
259 | |
260 | up_read(&fw_device_rwsem); |
261 | |
262 | return ret; |
263 | } |
264 | |
265 | #define IMMEDIATE_ATTR(name, key) \ |
266 | { __ATTR(name, S_IRUGO, show_immediate, NULL), key } |
267 | |
268 | static ssize_t show_text_leaf(struct device *dev, |
269 | struct device_attribute *dattr, char *buf) |
270 | { |
271 | struct config_rom_attribute *attr = |
272 | container_of(dattr, struct config_rom_attribute, attr); |
273 | const u32 *dir; |
274 | size_t bufsize; |
275 | char dummy_buf[2]; |
276 | int ret; |
277 | |
278 | down_read(&fw_device_rwsem); |
279 | |
280 | if (is_fw_unit(dev)) |
281 | dir = fw_unit(dev)->directory; |
282 | else |
283 | dir = fw_device(dev)->config_rom + 5; |
284 | |
285 | if (buf) { |
286 | bufsize = PAGE_SIZE - 1; |
287 | } else { |
288 | buf = dummy_buf; |
289 | bufsize = 1; |
290 | } |
291 | |
292 | ret = fw_csr_string(dir, attr->key, buf, bufsize); |
293 | |
294 | if (ret >= 0) { |
295 | /* Strip trailing whitespace and add newline. */ |
296 | while (ret > 0 && isspace(buf[ret - 1])) |
297 | ret--; |
298 | strcpy(buf + ret, "\n"); |
299 | ret++; |
300 | } |
301 | |
302 | up_read(&fw_device_rwsem); |
303 | |
304 | return ret; |
305 | } |
306 | |
307 | #define TEXT_LEAF_ATTR(name, key) \ |
308 | { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } |
309 | |
310 | static struct config_rom_attribute config_rom_attributes[] = { |
311 | IMMEDIATE_ATTR(vendor, CSR_VENDOR), |
312 | IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), |
313 | IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), |
314 | IMMEDIATE_ATTR(version, CSR_VERSION), |
315 | IMMEDIATE_ATTR(model, CSR_MODEL), |
316 | TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), |
317 | TEXT_LEAF_ATTR(model_name, CSR_MODEL), |
318 | TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), |
319 | }; |
320 | |
321 | static void init_fw_attribute_group(struct device *dev, |
322 | struct device_attribute *attrs, |
323 | struct fw_attribute_group *group) |
324 | { |
325 | struct device_attribute *attr; |
326 | int i, j; |
327 | |
328 | for (j = 0; attrs[j].attr.name != NULL; j++) |
329 | group->attrs[j] = &attrs[j].attr; |
330 | |
331 | for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { |
332 | attr = &config_rom_attributes[i].attr; |
333 | if (attr->show(dev, attr, NULL) < 0) |
334 | continue; |
335 | group->attrs[j++] = &attr->attr; |
336 | } |
337 | |
338 | group->attrs[j] = NULL; |
339 | group->groups[0] = &group->group; |
340 | group->groups[1] = NULL; |
341 | group->group.attrs = group->attrs; |
342 | dev->groups = (const struct attribute_group **) group->groups; |
343 | } |
344 | |
345 | static ssize_t modalias_show(struct device *dev, |
346 | struct device_attribute *attr, char *buf) |
347 | { |
348 | struct fw_unit *unit = fw_unit(dev); |
349 | int length; |
350 | |
351 | length = get_modalias(unit, buf, PAGE_SIZE); |
352 | strcpy(buf + length, "\n"); |
353 | |
354 | return length + 1; |
355 | } |
356 | |
357 | static ssize_t rom_index_show(struct device *dev, |
358 | struct device_attribute *attr, char *buf) |
359 | { |
360 | struct fw_device *device = fw_device(dev->parent); |
361 | struct fw_unit *unit = fw_unit(dev); |
362 | |
363 | return snprintf(buf, PAGE_SIZE, "%d\n", |
364 | (int)(unit->directory - device->config_rom)); |
365 | } |
366 | |
367 | static struct device_attribute fw_unit_attributes[] = { |
368 | __ATTR_RO(modalias), |
369 | __ATTR_RO(rom_index), |
370 | __ATTR_NULL, |
371 | }; |
372 | |
373 | static ssize_t config_rom_show(struct device *dev, |
374 | struct device_attribute *attr, char *buf) |
375 | { |
376 | struct fw_device *device = fw_device(dev); |
377 | size_t length; |
378 | |
379 | down_read(&fw_device_rwsem); |
380 | length = device->config_rom_length * 4; |
381 | memcpy(buf, device->config_rom, length); |
382 | up_read(&fw_device_rwsem); |
383 | |
384 | return length; |
385 | } |
386 | |
387 | static ssize_t guid_show(struct device *dev, |
388 | struct device_attribute *attr, char *buf) |
389 | { |
390 | struct fw_device *device = fw_device(dev); |
391 | int ret; |
392 | |
393 | down_read(&fw_device_rwsem); |
394 | ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", |
395 | device->config_rom[3], device->config_rom[4]); |
396 | up_read(&fw_device_rwsem); |
397 | |
398 | return ret; |
399 | } |
400 | |
401 | static ssize_t is_local_show(struct device *dev, |
402 | struct device_attribute *attr, char *buf) |
403 | { |
404 | struct fw_device *device = fw_device(dev); |
405 | |
406 | return sprintf(buf, "%u\n", device->is_local); |
407 | } |
408 | |
409 | static int units_sprintf(char *buf, const u32 *directory) |
410 | { |
411 | struct fw_csr_iterator ci; |
412 | int key, value; |
413 | int specifier_id = 0; |
414 | int version = 0; |
415 | |
416 | fw_csr_iterator_init(&ci, directory); |
417 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
418 | switch (key) { |
419 | case CSR_SPECIFIER_ID: |
420 | specifier_id = value; |
421 | break; |
422 | case CSR_VERSION: |
423 | version = value; |
424 | break; |
425 | } |
426 | } |
427 | |
428 | return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); |
429 | } |
430 | |
431 | static ssize_t units_show(struct device *dev, |
432 | struct device_attribute *attr, char *buf) |
433 | { |
434 | struct fw_device *device = fw_device(dev); |
435 | struct fw_csr_iterator ci; |
436 | int key, value, i = 0; |
437 | |
438 | down_read(&fw_device_rwsem); |
439 | fw_csr_iterator_init(&ci, &device->config_rom[5]); |
440 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
441 | if (key != (CSR_UNIT | CSR_DIRECTORY)) |
442 | continue; |
443 | i += units_sprintf(&buf[i], ci.p + value - 1); |
444 | if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) |
445 | break; |
446 | } |
447 | up_read(&fw_device_rwsem); |
448 | |
449 | if (i) |
450 | buf[i - 1] = '\n'; |
451 | |
452 | return i; |
453 | } |
454 | |
455 | static struct device_attribute fw_device_attributes[] = { |
456 | __ATTR_RO(config_rom), |
457 | __ATTR_RO(guid), |
458 | __ATTR_RO(is_local), |
459 | __ATTR_RO(units), |
460 | __ATTR_NULL, |
461 | }; |
462 | |
463 | static int read_rom(struct fw_device *device, |
464 | int generation, int index, u32 *data) |
465 | { |
466 | u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; |
467 | int i, rcode; |
468 | |
469 | /* device->node_id, accessed below, must not be older than generation */ |
470 | smp_rmb(); |
471 | |
472 | for (i = 10; i < 100; i += 10) { |
473 | rcode = fw_run_transaction(device->card, |
474 | TCODE_READ_QUADLET_REQUEST, device->node_id, |
475 | generation, device->max_speed, offset, data, 4); |
476 | if (rcode != RCODE_BUSY) |
477 | break; |
478 | msleep(i); |
479 | } |
480 | be32_to_cpus(data); |
481 | |
482 | return rcode; |
483 | } |
484 | |
485 | #define MAX_CONFIG_ROM_SIZE 256 |
486 | |
487 | /* |
488 | * Read the bus info block, perform a speed probe, and read all of the rest of |
489 | * the config ROM. We do all this with a cached bus generation. If the bus |
490 | * generation changes under us, read_config_rom will fail and get retried. |
491 | * It's better to start all over in this case because the node from which we |
492 | * are reading the ROM may have changed the ROM during the reset. |
493 | * Returns either a result code or a negative error code. |
494 | */ |
495 | static int read_config_rom(struct fw_device *device, int generation) |
496 | { |
497 | struct fw_card *card = device->card; |
498 | const u32 *old_rom, *new_rom; |
499 | u32 *rom, *stack; |
500 | u32 sp, key; |
501 | int i, end, length, ret; |
502 | |
503 | rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + |
504 | sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); |
505 | if (rom == NULL) |
506 | return -ENOMEM; |
507 | |
508 | stack = &rom[MAX_CONFIG_ROM_SIZE]; |
509 | memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); |
510 | |
511 | device->max_speed = SCODE_100; |
512 | |
513 | /* First read the bus info block. */ |
514 | for (i = 0; i < 5; i++) { |
515 | ret = read_rom(device, generation, i, &rom[i]); |
516 | if (ret != RCODE_COMPLETE) |
517 | goto out; |
518 | /* |
519 | * As per IEEE1212 7.2, during initialization, devices can |
520 | * reply with a 0 for the first quadlet of the config |
521 | * rom to indicate that they are booting (for example, |
522 | * if the firmware is on the disk of a external |
523 | * harddisk). In that case we just fail, and the |
524 | * retry mechanism will try again later. |
525 | */ |
526 | if (i == 0 && rom[i] == 0) { |
527 | ret = RCODE_BUSY; |
528 | goto out; |
529 | } |
530 | } |
531 | |
532 | device->max_speed = device->node->max_speed; |
533 | |
534 | /* |
535 | * Determine the speed of |
536 | * - devices with link speed less than PHY speed, |
537 | * - devices with 1394b PHY (unless only connected to 1394a PHYs), |
538 | * - all devices if there are 1394b repeaters. |
539 | * Note, we cannot use the bus info block's link_spd as starting point |
540 | * because some buggy firmwares set it lower than necessary and because |
541 | * 1394-1995 nodes do not have the field. |
542 | */ |
543 | if ((rom[2] & 0x7) < device->max_speed || |
544 | device->max_speed == SCODE_BETA || |
545 | card->beta_repeaters_present) { |
546 | u32 dummy; |
547 | |
548 | /* for S1600 and S3200 */ |
549 | if (device->max_speed == SCODE_BETA) |
550 | device->max_speed = card->link_speed; |
551 | |
552 | while (device->max_speed > SCODE_100) { |
553 | if (read_rom(device, generation, 0, &dummy) == |
554 | RCODE_COMPLETE) |
555 | break; |
556 | device->max_speed--; |
557 | } |
558 | } |
559 | |
560 | /* |
561 | * Now parse the config rom. The config rom is a recursive |
562 | * directory structure so we parse it using a stack of |
563 | * references to the blocks that make up the structure. We |
564 | * push a reference to the root directory on the stack to |
565 | * start things off. |
566 | */ |
567 | length = i; |
568 | sp = 0; |
569 | stack[sp++] = 0xc0000005; |
570 | while (sp > 0) { |
571 | /* |
572 | * Pop the next block reference of the stack. The |
573 | * lower 24 bits is the offset into the config rom, |
574 | * the upper 8 bits are the type of the reference the |
575 | * block. |
576 | */ |
577 | key = stack[--sp]; |
578 | i = key & 0xffffff; |
579 | if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { |
580 | ret = -ENXIO; |
581 | goto out; |
582 | } |
583 | |
584 | /* Read header quadlet for the block to get the length. */ |
585 | ret = read_rom(device, generation, i, &rom[i]); |
586 | if (ret != RCODE_COMPLETE) |
587 | goto out; |
588 | end = i + (rom[i] >> 16) + 1; |
589 | if (end > MAX_CONFIG_ROM_SIZE) { |
590 | /* |
591 | * This block extends outside the config ROM which is |
592 | * a firmware bug. Ignore this whole block, i.e. |
593 | * simply set a fake block length of 0. |
594 | */ |
595 | fw_err(card, "skipped invalid ROM block %x at %llx\n", |
596 | rom[i], |
597 | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); |
598 | rom[i] = 0; |
599 | end = i; |
600 | } |
601 | i++; |
602 | |
603 | /* |
604 | * Now read in the block. If this is a directory |
605 | * block, check the entries as we read them to see if |
606 | * it references another block, and push it in that case. |
607 | */ |
608 | for (; i < end; i++) { |
609 | ret = read_rom(device, generation, i, &rom[i]); |
610 | if (ret != RCODE_COMPLETE) |
611 | goto out; |
612 | |
613 | if ((key >> 30) != 3 || (rom[i] >> 30) < 2) |
614 | continue; |
615 | /* |
616 | * Offset points outside the ROM. May be a firmware |
617 | * bug or an Extended ROM entry (IEEE 1212-2001 clause |
618 | * 7.7.18). Simply overwrite this pointer here by a |
619 | * fake immediate entry so that later iterators over |
620 | * the ROM don't have to check offsets all the time. |
621 | */ |
622 | if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { |
623 | fw_err(card, |
624 | "skipped unsupported ROM entry %x at %llx\n", |
625 | rom[i], |
626 | i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); |
627 | rom[i] = 0; |
628 | continue; |
629 | } |
630 | stack[sp++] = i + rom[i]; |
631 | } |
632 | if (length < i) |
633 | length = i; |
634 | } |
635 | |
636 | old_rom = device->config_rom; |
637 | new_rom = kmemdup(rom, length * 4, GFP_KERNEL); |
638 | if (new_rom == NULL) { |
639 | ret = -ENOMEM; |
640 | goto out; |
641 | } |
642 | |
643 | down_write(&fw_device_rwsem); |
644 | device->config_rom = new_rom; |
645 | device->config_rom_length = length; |
646 | up_write(&fw_device_rwsem); |
647 | |
648 | kfree(old_rom); |
649 | ret = RCODE_COMPLETE; |
650 | device->max_rec = rom[2] >> 12 & 0xf; |
651 | device->cmc = rom[2] >> 30 & 1; |
652 | device->irmc = rom[2] >> 31 & 1; |
653 | out: |
654 | kfree(rom); |
655 | |
656 | return ret; |
657 | } |
658 | |
659 | static void fw_unit_release(struct device *dev) |
660 | { |
661 | struct fw_unit *unit = fw_unit(dev); |
662 | |
663 | fw_device_put(fw_parent_device(unit)); |
664 | kfree(unit); |
665 | } |
666 | |
667 | static struct device_type fw_unit_type = { |
668 | .uevent = fw_unit_uevent, |
669 | .release = fw_unit_release, |
670 | }; |
671 | |
672 | static bool is_fw_unit(struct device *dev) |
673 | { |
674 | return dev->type == &fw_unit_type; |
675 | } |
676 | |
677 | static void create_units(struct fw_device *device) |
678 | { |
679 | struct fw_csr_iterator ci; |
680 | struct fw_unit *unit; |
681 | int key, value, i; |
682 | |
683 | i = 0; |
684 | fw_csr_iterator_init(&ci, &device->config_rom[5]); |
685 | while (fw_csr_iterator_next(&ci, &key, &value)) { |
686 | if (key != (CSR_UNIT | CSR_DIRECTORY)) |
687 | continue; |
688 | |
689 | /* |
690 | * Get the address of the unit directory and try to |
691 | * match the drivers id_tables against it. |
692 | */ |
693 | unit = kzalloc(sizeof(*unit), GFP_KERNEL); |
694 | if (unit == NULL) { |
695 | fw_err(device->card, "out of memory for unit\n"); |
696 | continue; |
697 | } |
698 | |
699 | unit->directory = ci.p + value - 1; |
700 | unit->device.bus = &fw_bus_type; |
701 | unit->device.type = &fw_unit_type; |
702 | unit->device.parent = &device->device; |
703 | dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); |
704 | |
705 | BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < |
706 | ARRAY_SIZE(fw_unit_attributes) + |
707 | ARRAY_SIZE(config_rom_attributes)); |
708 | init_fw_attribute_group(&unit->device, |
709 | fw_unit_attributes, |
710 | &unit->attribute_group); |
711 | |
712 | if (device_register(&unit->device) < 0) |
713 | goto skip_unit; |
714 | |
715 | fw_device_get(device); |
716 | continue; |
717 | |
718 | skip_unit: |
719 | kfree(unit); |
720 | } |
721 | } |
722 | |
723 | static int shutdown_unit(struct device *device, void *data) |
724 | { |
725 | device_unregister(device); |
726 | |
727 | return 0; |
728 | } |
729 | |
730 | /* |
731 | * fw_device_rwsem acts as dual purpose mutex: |
732 | * - serializes accesses to fw_device_idr, |
733 | * - serializes accesses to fw_device.config_rom/.config_rom_length and |
734 | * fw_unit.directory, unless those accesses happen at safe occasions |
735 | */ |
736 | DECLARE_RWSEM(fw_device_rwsem); |
737 | |
738 | DEFINE_IDR(fw_device_idr); |
739 | int fw_cdev_major; |
740 | |
741 | struct fw_device *fw_device_get_by_devt(dev_t devt) |
742 | { |
743 | struct fw_device *device; |
744 | |
745 | down_read(&fw_device_rwsem); |
746 | device = idr_find(&fw_device_idr, MINOR(devt)); |
747 | if (device) |
748 | fw_device_get(device); |
749 | up_read(&fw_device_rwsem); |
750 | |
751 | return device; |
752 | } |
753 | |
754 | struct workqueue_struct *fw_workqueue; |
755 | EXPORT_SYMBOL(fw_workqueue); |
756 | |
757 | static void fw_schedule_device_work(struct fw_device *device, |
758 | unsigned long delay) |
759 | { |
760 | queue_delayed_work(fw_workqueue, &device->work, delay); |
761 | } |
762 | |
763 | /* |
764 | * These defines control the retry behavior for reading the config |
765 | * rom. It shouldn't be necessary to tweak these; if the device |
766 | * doesn't respond to a config rom read within 10 seconds, it's not |
767 | * going to respond at all. As for the initial delay, a lot of |
768 | * devices will be able to respond within half a second after bus |
769 | * reset. On the other hand, it's not really worth being more |
770 | * aggressive than that, since it scales pretty well; if 10 devices |
771 | * are plugged in, they're all getting read within one second. |
772 | */ |
773 | |
774 | #define MAX_RETRIES 10 |
775 | #define RETRY_DELAY (3 * HZ) |
776 | #define INITIAL_DELAY (HZ / 2) |
777 | #define SHUTDOWN_DELAY (2 * HZ) |
778 | |
779 | static void fw_device_shutdown(struct work_struct *work) |
780 | { |
781 | struct fw_device *device = |
782 | container_of(work, struct fw_device, work.work); |
783 | int minor = MINOR(device->device.devt); |
784 | |
785 | if (time_before64(get_jiffies_64(), |
786 | device->card->reset_jiffies + SHUTDOWN_DELAY) |
787 | && !list_empty(&device->card->link)) { |
788 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
789 | return; |
790 | } |
791 | |
792 | if (atomic_cmpxchg(&device->state, |
793 | FW_DEVICE_GONE, |
794 | FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) |
795 | return; |
796 | |
797 | fw_device_cdev_remove(device); |
798 | device_for_each_child(&device->device, NULL, shutdown_unit); |
799 | device_unregister(&device->device); |
800 | |
801 | down_write(&fw_device_rwsem); |
802 | idr_remove(&fw_device_idr, minor); |
803 | up_write(&fw_device_rwsem); |
804 | |
805 | fw_device_put(device); |
806 | } |
807 | |
808 | static void fw_device_release(struct device *dev) |
809 | { |
810 | struct fw_device *device = fw_device(dev); |
811 | struct fw_card *card = device->card; |
812 | unsigned long flags; |
813 | |
814 | /* |
815 | * Take the card lock so we don't set this to NULL while a |
816 | * FW_NODE_UPDATED callback is being handled or while the |
817 | * bus manager work looks at this node. |
818 | */ |
819 | spin_lock_irqsave(&card->lock, flags); |
820 | device->node->data = NULL; |
821 | spin_unlock_irqrestore(&card->lock, flags); |
822 | |
823 | fw_node_put(device->node); |
824 | kfree(device->config_rom); |
825 | kfree(device); |
826 | fw_card_put(card); |
827 | } |
828 | |
829 | static struct device_type fw_device_type = { |
830 | .release = fw_device_release, |
831 | }; |
832 | |
833 | static bool is_fw_device(struct device *dev) |
834 | { |
835 | return dev->type == &fw_device_type; |
836 | } |
837 | |
838 | static int update_unit(struct device *dev, void *data) |
839 | { |
840 | struct fw_unit *unit = fw_unit(dev); |
841 | struct fw_driver *driver = (struct fw_driver *)dev->driver; |
842 | |
843 | if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { |
844 | device_lock(dev); |
845 | driver->update(unit); |
846 | device_unlock(dev); |
847 | } |
848 | |
849 | return 0; |
850 | } |
851 | |
852 | static void fw_device_update(struct work_struct *work) |
853 | { |
854 | struct fw_device *device = |
855 | container_of(work, struct fw_device, work.work); |
856 | |
857 | fw_device_cdev_update(device); |
858 | device_for_each_child(&device->device, NULL, update_unit); |
859 | } |
860 | |
861 | /* |
862 | * If a device was pending for deletion because its node went away but its |
863 | * bus info block and root directory header matches that of a newly discovered |
864 | * device, revive the existing fw_device. |
865 | * The newly allocated fw_device becomes obsolete instead. |
866 | */ |
867 | static int lookup_existing_device(struct device *dev, void *data) |
868 | { |
869 | struct fw_device *old = fw_device(dev); |
870 | struct fw_device *new = data; |
871 | struct fw_card *card = new->card; |
872 | int match = 0; |
873 | |
874 | if (!is_fw_device(dev)) |
875 | return 0; |
876 | |
877 | down_read(&fw_device_rwsem); /* serialize config_rom access */ |
878 | spin_lock_irq(&card->lock); /* serialize node access */ |
879 | |
880 | if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && |
881 | atomic_cmpxchg(&old->state, |
882 | FW_DEVICE_GONE, |
883 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { |
884 | struct fw_node *current_node = new->node; |
885 | struct fw_node *obsolete_node = old->node; |
886 | |
887 | new->node = obsolete_node; |
888 | new->node->data = new; |
889 | old->node = current_node; |
890 | old->node->data = old; |
891 | |
892 | old->max_speed = new->max_speed; |
893 | old->node_id = current_node->node_id; |
894 | smp_wmb(); /* update node_id before generation */ |
895 | old->generation = card->generation; |
896 | old->config_rom_retries = 0; |
897 | fw_notice(card, "rediscovered device %s\n", dev_name(dev)); |
898 | |
899 | PREPARE_DELAYED_WORK(&old->work, fw_device_update); |
900 | fw_schedule_device_work(old, 0); |
901 | |
902 | if (current_node == card->root_node) |
903 | fw_schedule_bm_work(card, 0); |
904 | |
905 | match = 1; |
906 | } |
907 | |
908 | spin_unlock_irq(&card->lock); |
909 | up_read(&fw_device_rwsem); |
910 | |
911 | return match; |
912 | } |
913 | |
914 | enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; |
915 | |
916 | static void set_broadcast_channel(struct fw_device *device, int generation) |
917 | { |
918 | struct fw_card *card = device->card; |
919 | __be32 data; |
920 | int rcode; |
921 | |
922 | if (!card->broadcast_channel_allocated) |
923 | return; |
924 | |
925 | /* |
926 | * The Broadcast_Channel Valid bit is required by nodes which want to |
927 | * transmit on this channel. Such transmissions are practically |
928 | * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required |
929 | * to be IRM capable and have a max_rec of 8 or more. We use this fact |
930 | * to narrow down to which nodes we send Broadcast_Channel updates. |
931 | */ |
932 | if (!device->irmc || device->max_rec < 8) |
933 | return; |
934 | |
935 | /* |
936 | * Some 1394-1995 nodes crash if this 1394a-2000 register is written. |
937 | * Perform a read test first. |
938 | */ |
939 | if (device->bc_implemented == BC_UNKNOWN) { |
940 | rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, |
941 | device->node_id, generation, device->max_speed, |
942 | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, |
943 | &data, 4); |
944 | switch (rcode) { |
945 | case RCODE_COMPLETE: |
946 | if (data & cpu_to_be32(1 << 31)) { |
947 | device->bc_implemented = BC_IMPLEMENTED; |
948 | break; |
949 | } |
950 | /* else fall through to case address error */ |
951 | case RCODE_ADDRESS_ERROR: |
952 | device->bc_implemented = BC_UNIMPLEMENTED; |
953 | } |
954 | } |
955 | |
956 | if (device->bc_implemented == BC_IMPLEMENTED) { |
957 | data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | |
958 | BROADCAST_CHANNEL_VALID); |
959 | fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, |
960 | device->node_id, generation, device->max_speed, |
961 | CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, |
962 | &data, 4); |
963 | } |
964 | } |
965 | |
966 | int fw_device_set_broadcast_channel(struct device *dev, void *gen) |
967 | { |
968 | if (is_fw_device(dev)) |
969 | set_broadcast_channel(fw_device(dev), (long)gen); |
970 | |
971 | return 0; |
972 | } |
973 | |
974 | static void fw_device_init(struct work_struct *work) |
975 | { |
976 | struct fw_device *device = |
977 | container_of(work, struct fw_device, work.work); |
978 | struct fw_card *card = device->card; |
979 | struct device *revived_dev; |
980 | int minor, ret; |
981 | |
982 | /* |
983 | * All failure paths here set node->data to NULL, so that we |
984 | * don't try to do device_for_each_child() on a kfree()'d |
985 | * device. |
986 | */ |
987 | |
988 | ret = read_config_rom(device, device->generation); |
989 | if (ret != RCODE_COMPLETE) { |
990 | if (device->config_rom_retries < MAX_RETRIES && |
991 | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { |
992 | device->config_rom_retries++; |
993 | fw_schedule_device_work(device, RETRY_DELAY); |
994 | } else { |
995 | if (device->node->link_on) |
996 | fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", |
997 | device->node_id, |
998 | fw_rcode_string(ret)); |
999 | if (device->node == card->root_node) |
1000 | fw_schedule_bm_work(card, 0); |
1001 | fw_device_release(&device->device); |
1002 | } |
1003 | return; |
1004 | } |
1005 | |
1006 | revived_dev = device_find_child(card->device, |
1007 | device, lookup_existing_device); |
1008 | if (revived_dev) { |
1009 | put_device(revived_dev); |
1010 | fw_device_release(&device->device); |
1011 | |
1012 | return; |
1013 | } |
1014 | |
1015 | device_initialize(&device->device); |
1016 | |
1017 | fw_device_get(device); |
1018 | down_write(&fw_device_rwsem); |
1019 | ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? |
1020 | idr_get_new(&fw_device_idr, device, &minor) : |
1021 | -ENOMEM; |
1022 | up_write(&fw_device_rwsem); |
1023 | |
1024 | if (ret < 0) |
1025 | goto error; |
1026 | |
1027 | device->device.bus = &fw_bus_type; |
1028 | device->device.type = &fw_device_type; |
1029 | device->device.parent = card->device; |
1030 | device->device.devt = MKDEV(fw_cdev_major, minor); |
1031 | dev_set_name(&device->device, "fw%d", minor); |
1032 | |
1033 | BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < |
1034 | ARRAY_SIZE(fw_device_attributes) + |
1035 | ARRAY_SIZE(config_rom_attributes)); |
1036 | init_fw_attribute_group(&device->device, |
1037 | fw_device_attributes, |
1038 | &device->attribute_group); |
1039 | |
1040 | if (device_add(&device->device)) { |
1041 | fw_err(card, "failed to add device\n"); |
1042 | goto error_with_cdev; |
1043 | } |
1044 | |
1045 | create_units(device); |
1046 | |
1047 | /* |
1048 | * Transition the device to running state. If it got pulled |
1049 | * out from under us while we did the intialization work, we |
1050 | * have to shut down the device again here. Normally, though, |
1051 | * fw_node_event will be responsible for shutting it down when |
1052 | * necessary. We have to use the atomic cmpxchg here to avoid |
1053 | * racing with the FW_NODE_DESTROYED case in |
1054 | * fw_node_event(). |
1055 | */ |
1056 | if (atomic_cmpxchg(&device->state, |
1057 | FW_DEVICE_INITIALIZING, |
1058 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { |
1059 | PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); |
1060 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
1061 | } else { |
1062 | fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", |
1063 | dev_name(&device->device), |
1064 | device->config_rom[3], device->config_rom[4], |
1065 | 1 << device->max_speed); |
1066 | device->config_rom_retries = 0; |
1067 | |
1068 | set_broadcast_channel(device, device->generation); |
1069 | } |
1070 | |
1071 | /* |
1072 | * Reschedule the IRM work if we just finished reading the |
1073 | * root node config rom. If this races with a bus reset we |
1074 | * just end up running the IRM work a couple of extra times - |
1075 | * pretty harmless. |
1076 | */ |
1077 | if (device->node == card->root_node) |
1078 | fw_schedule_bm_work(card, 0); |
1079 | |
1080 | return; |
1081 | |
1082 | error_with_cdev: |
1083 | down_write(&fw_device_rwsem); |
1084 | idr_remove(&fw_device_idr, minor); |
1085 | up_write(&fw_device_rwsem); |
1086 | error: |
1087 | fw_device_put(device); /* fw_device_idr's reference */ |
1088 | |
1089 | put_device(&device->device); /* our reference */ |
1090 | } |
1091 | |
1092 | /* Reread and compare bus info block and header of root directory */ |
1093 | static int reread_config_rom(struct fw_device *device, int generation, |
1094 | bool *changed) |
1095 | { |
1096 | u32 q; |
1097 | int i, rcode; |
1098 | |
1099 | for (i = 0; i < 6; i++) { |
1100 | rcode = read_rom(device, generation, i, &q); |
1101 | if (rcode != RCODE_COMPLETE) |
1102 | return rcode; |
1103 | |
1104 | if (i == 0 && q == 0) |
1105 | /* inaccessible (see read_config_rom); retry later */ |
1106 | return RCODE_BUSY; |
1107 | |
1108 | if (q != device->config_rom[i]) { |
1109 | *changed = true; |
1110 | return RCODE_COMPLETE; |
1111 | } |
1112 | } |
1113 | |
1114 | *changed = false; |
1115 | return RCODE_COMPLETE; |
1116 | } |
1117 | |
1118 | static void fw_device_refresh(struct work_struct *work) |
1119 | { |
1120 | struct fw_device *device = |
1121 | container_of(work, struct fw_device, work.work); |
1122 | struct fw_card *card = device->card; |
1123 | int ret, node_id = device->node_id; |
1124 | bool changed; |
1125 | |
1126 | ret = reread_config_rom(device, device->generation, &changed); |
1127 | if (ret != RCODE_COMPLETE) |
1128 | goto failed_config_rom; |
1129 | |
1130 | if (!changed) { |
1131 | if (atomic_cmpxchg(&device->state, |
1132 | FW_DEVICE_INITIALIZING, |
1133 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) |
1134 | goto gone; |
1135 | |
1136 | fw_device_update(work); |
1137 | device->config_rom_retries = 0; |
1138 | goto out; |
1139 | } |
1140 | |
1141 | /* |
1142 | * Something changed. We keep things simple and don't investigate |
1143 | * further. We just destroy all previous units and create new ones. |
1144 | */ |
1145 | device_for_each_child(&device->device, NULL, shutdown_unit); |
1146 | |
1147 | ret = read_config_rom(device, device->generation); |
1148 | if (ret != RCODE_COMPLETE) |
1149 | goto failed_config_rom; |
1150 | |
1151 | fw_device_cdev_update(device); |
1152 | create_units(device); |
1153 | |
1154 | /* Userspace may want to re-read attributes. */ |
1155 | kobject_uevent(&device->device.kobj, KOBJ_CHANGE); |
1156 | |
1157 | if (atomic_cmpxchg(&device->state, |
1158 | FW_DEVICE_INITIALIZING, |
1159 | FW_DEVICE_RUNNING) == FW_DEVICE_GONE) |
1160 | goto gone; |
1161 | |
1162 | fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); |
1163 | device->config_rom_retries = 0; |
1164 | goto out; |
1165 | |
1166 | failed_config_rom: |
1167 | if (device->config_rom_retries < MAX_RETRIES && |
1168 | atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { |
1169 | device->config_rom_retries++; |
1170 | fw_schedule_device_work(device, RETRY_DELAY); |
1171 | return; |
1172 | } |
1173 | |
1174 | fw_notice(card, "giving up on refresh of device %s: %s\n", |
1175 | dev_name(&device->device), fw_rcode_string(ret)); |
1176 | gone: |
1177 | atomic_set(&device->state, FW_DEVICE_GONE); |
1178 | PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); |
1179 | fw_schedule_device_work(device, SHUTDOWN_DELAY); |
1180 | out: |
1181 | if (node_id == card->root_node->node_id) |
1182 | fw_schedule_bm_work(card, 0); |
1183 | } |
1184 | |
1185 | void fw_node_event(struct fw_card *card, struct fw_node *node, int event) |
1186 | { |
1187 | struct fw_device *device; |
1188 | |
1189 | switch (event) { |
1190 | case FW_NODE_CREATED: |
1191 | /* |
1192 | * Attempt to scan the node, regardless whether its self ID has |
1193 | * the L (link active) flag set or not. Some broken devices |
1194 | * send L=0 but have an up-and-running link; others send L=1 |
1195 | * without actually having a link. |
1196 | */ |
1197 | create: |
1198 | device = kzalloc(sizeof(*device), GFP_ATOMIC); |
1199 | if (device == NULL) |
1200 | break; |
1201 | |
1202 | /* |
1203 | * Do minimal intialization of the device here, the |
1204 | * rest will happen in fw_device_init(). |
1205 | * |
1206 | * Attention: A lot of things, even fw_device_get(), |
1207 | * cannot be done before fw_device_init() finished! |
1208 | * You can basically just check device->state and |
1209 | * schedule work until then, but only while holding |
1210 | * card->lock. |
1211 | */ |
1212 | atomic_set(&device->state, FW_DEVICE_INITIALIZING); |
1213 | device->card = fw_card_get(card); |
1214 | device->node = fw_node_get(node); |
1215 | device->node_id = node->node_id; |
1216 | device->generation = card->generation; |
1217 | device->is_local = node == card->local_node; |
1218 | mutex_init(&device->client_list_mutex); |
1219 | INIT_LIST_HEAD(&device->client_list); |
1220 | |
1221 | /* |
1222 | * Set the node data to point back to this device so |
1223 | * FW_NODE_UPDATED callbacks can update the node_id |
1224 | * and generation for the device. |
1225 | */ |
1226 | node->data = device; |
1227 | |
1228 | /* |
1229 | * Many devices are slow to respond after bus resets, |
1230 | * especially if they are bus powered and go through |
1231 | * power-up after getting plugged in. We schedule the |
1232 | * first config rom scan half a second after bus reset. |
1233 | */ |
1234 | INIT_DELAYED_WORK(&device->work, fw_device_init); |
1235 | fw_schedule_device_work(device, INITIAL_DELAY); |
1236 | break; |
1237 | |
1238 | case FW_NODE_INITIATED_RESET: |
1239 | case FW_NODE_LINK_ON: |
1240 | device = node->data; |
1241 | if (device == NULL) |
1242 | goto create; |
1243 | |
1244 | device->node_id = node->node_id; |
1245 | smp_wmb(); /* update node_id before generation */ |
1246 | device->generation = card->generation; |
1247 | if (atomic_cmpxchg(&device->state, |
1248 | FW_DEVICE_RUNNING, |
1249 | FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { |
1250 | PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); |
1251 | fw_schedule_device_work(device, |
1252 | device->is_local ? 0 : INITIAL_DELAY); |
1253 | } |
1254 | break; |
1255 | |
1256 | case FW_NODE_UPDATED: |
1257 | device = node->data; |
1258 | if (device == NULL) |
1259 | break; |
1260 | |
1261 | device->node_id = node->node_id; |
1262 | smp_wmb(); /* update node_id before generation */ |
1263 | device->generation = card->generation; |
1264 | if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { |
1265 | PREPARE_DELAYED_WORK(&device->work, fw_device_update); |
1266 | fw_schedule_device_work(device, 0); |
1267 | } |
1268 | break; |
1269 | |
1270 | case FW_NODE_DESTROYED: |
1271 | case FW_NODE_LINK_OFF: |
1272 | if (!node->data) |
1273 | break; |
1274 | |
1275 | /* |
1276 | * Destroy the device associated with the node. There |
1277 | * are two cases here: either the device is fully |
1278 | * initialized (FW_DEVICE_RUNNING) or we're in the |
1279 | * process of reading its config rom |
1280 | * (FW_DEVICE_INITIALIZING). If it is fully |
1281 | * initialized we can reuse device->work to schedule a |
1282 | * full fw_device_shutdown(). If not, there's work |
1283 | * scheduled to read it's config rom, and we just put |
1284 | * the device in shutdown state to have that code fail |
1285 | * to create the device. |
1286 | */ |
1287 | device = node->data; |
1288 | if (atomic_xchg(&device->state, |
1289 | FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { |
1290 | PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); |
1291 | fw_schedule_device_work(device, |
1292 | list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); |
1293 | } |
1294 | break; |
1295 | } |
1296 | } |
1297 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9