Root/
1 | /* |
2 | * IPv4 over IEEE 1394, per RFC 2734 |
3 | * |
4 | * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> |
5 | * |
6 | * based on eth1394 by Ben Collins et al |
7 | */ |
8 | |
9 | #include <linux/bug.h> |
10 | #include <linux/compiler.h> |
11 | #include <linux/delay.h> |
12 | #include <linux/device.h> |
13 | #include <linux/ethtool.h> |
14 | #include <linux/firewire.h> |
15 | #include <linux/firewire-constants.h> |
16 | #include <linux/highmem.h> |
17 | #include <linux/in.h> |
18 | #include <linux/ip.h> |
19 | #include <linux/jiffies.h> |
20 | #include <linux/mod_devicetable.h> |
21 | #include <linux/module.h> |
22 | #include <linux/moduleparam.h> |
23 | #include <linux/mutex.h> |
24 | #include <linux/netdevice.h> |
25 | #include <linux/skbuff.h> |
26 | #include <linux/slab.h> |
27 | #include <linux/spinlock.h> |
28 | |
29 | #include <asm/unaligned.h> |
30 | #include <net/arp.h> |
31 | |
32 | /* rx limits */ |
33 | #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ |
34 | #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) |
35 | |
36 | /* tx limits */ |
37 | #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ |
38 | #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ |
39 | #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ |
40 | |
41 | #define IEEE1394_BROADCAST_CHANNEL 31 |
42 | #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) |
43 | #define IEEE1394_MAX_PAYLOAD_S100 512 |
44 | #define FWNET_NO_FIFO_ADDR (~0ULL) |
45 | |
46 | #define IANA_SPECIFIER_ID 0x00005eU |
47 | #define RFC2734_SW_VERSION 0x000001U |
48 | |
49 | #define IEEE1394_GASP_HDR_SIZE 8 |
50 | |
51 | #define RFC2374_UNFRAG_HDR_SIZE 4 |
52 | #define RFC2374_FRAG_HDR_SIZE 8 |
53 | #define RFC2374_FRAG_OVERHEAD 4 |
54 | |
55 | #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ |
56 | #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ |
57 | #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ |
58 | #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ |
59 | |
60 | #define RFC2734_HW_ADDR_LEN 16 |
61 | |
62 | struct rfc2734_arp { |
63 | __be16 hw_type; /* 0x0018 */ |
64 | __be16 proto_type; /* 0x0806 */ |
65 | u8 hw_addr_len; /* 16 */ |
66 | u8 ip_addr_len; /* 4 */ |
67 | __be16 opcode; /* ARP Opcode */ |
68 | /* Above is exactly the same format as struct arphdr */ |
69 | |
70 | __be64 s_uniq_id; /* Sender's 64bit EUI */ |
71 | u8 max_rec; /* Sender's max packet size */ |
72 | u8 sspd; /* Sender's max speed */ |
73 | __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ |
74 | __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ |
75 | __be32 sip; /* Sender's IP Address */ |
76 | __be32 tip; /* IP Address of requested hw addr */ |
77 | } __packed; |
78 | |
79 | /* This header format is specific to this driver implementation. */ |
80 | #define FWNET_ALEN 8 |
81 | #define FWNET_HLEN 10 |
82 | struct fwnet_header { |
83 | u8 h_dest[FWNET_ALEN]; /* destination address */ |
84 | __be16 h_proto; /* packet type ID field */ |
85 | } __packed; |
86 | |
87 | /* IPv4 and IPv6 encapsulation header */ |
88 | struct rfc2734_header { |
89 | u32 w0; |
90 | u32 w1; |
91 | }; |
92 | |
93 | #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) |
94 | #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) |
95 | #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) |
96 | #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) |
97 | #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) |
98 | |
99 | #define fwnet_set_hdr_lf(lf) ((lf) << 30) |
100 | #define fwnet_set_hdr_ether_type(et) (et) |
101 | #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) |
102 | #define fwnet_set_hdr_fg_off(fgo) (fgo) |
103 | |
104 | #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) |
105 | |
106 | static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, |
107 | unsigned ether_type) |
108 | { |
109 | hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) |
110 | | fwnet_set_hdr_ether_type(ether_type); |
111 | } |
112 | |
113 | static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, |
114 | unsigned ether_type, unsigned dg_size, unsigned dgl) |
115 | { |
116 | hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) |
117 | | fwnet_set_hdr_dg_size(dg_size) |
118 | | fwnet_set_hdr_ether_type(ether_type); |
119 | hdr->w1 = fwnet_set_hdr_dgl(dgl); |
120 | } |
121 | |
122 | static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, |
123 | unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) |
124 | { |
125 | hdr->w0 = fwnet_set_hdr_lf(lf) |
126 | | fwnet_set_hdr_dg_size(dg_size) |
127 | | fwnet_set_hdr_fg_off(fg_off); |
128 | hdr->w1 = fwnet_set_hdr_dgl(dgl); |
129 | } |
130 | |
131 | /* This list keeps track of what parts of the datagram have been filled in */ |
132 | struct fwnet_fragment_info { |
133 | struct list_head fi_link; |
134 | u16 offset; |
135 | u16 len; |
136 | }; |
137 | |
138 | struct fwnet_partial_datagram { |
139 | struct list_head pd_link; |
140 | struct list_head fi_list; |
141 | struct sk_buff *skb; |
142 | /* FIXME Why not use skb->data? */ |
143 | char *pbuf; |
144 | u16 datagram_label; |
145 | u16 ether_type; |
146 | u16 datagram_size; |
147 | }; |
148 | |
149 | static DEFINE_MUTEX(fwnet_device_mutex); |
150 | static LIST_HEAD(fwnet_device_list); |
151 | |
152 | struct fwnet_device { |
153 | struct list_head dev_link; |
154 | spinlock_t lock; |
155 | enum { |
156 | FWNET_BROADCAST_ERROR, |
157 | FWNET_BROADCAST_RUNNING, |
158 | FWNET_BROADCAST_STOPPED, |
159 | } broadcast_state; |
160 | struct fw_iso_context *broadcast_rcv_context; |
161 | struct fw_iso_buffer broadcast_rcv_buffer; |
162 | void **broadcast_rcv_buffer_ptrs; |
163 | unsigned broadcast_rcv_next_ptr; |
164 | unsigned num_broadcast_rcv_ptrs; |
165 | unsigned rcv_buffer_size; |
166 | /* |
167 | * This value is the maximum unfragmented datagram size that can be |
168 | * sent by the hardware. It already has the GASP overhead and the |
169 | * unfragmented datagram header overhead calculated into it. |
170 | */ |
171 | unsigned broadcast_xmt_max_payload; |
172 | u16 broadcast_xmt_datagramlabel; |
173 | |
174 | /* |
175 | * The CSR address that remote nodes must send datagrams to for us to |
176 | * receive them. |
177 | */ |
178 | struct fw_address_handler handler; |
179 | u64 local_fifo; |
180 | |
181 | /* Number of tx datagrams that have been queued but not yet acked */ |
182 | int queued_datagrams; |
183 | |
184 | int peer_count; |
185 | struct list_head peer_list; |
186 | struct fw_card *card; |
187 | struct net_device *netdev; |
188 | }; |
189 | |
190 | struct fwnet_peer { |
191 | struct list_head peer_link; |
192 | struct fwnet_device *dev; |
193 | u64 guid; |
194 | u64 fifo; |
195 | __be32 ip; |
196 | |
197 | /* guarded by dev->lock */ |
198 | struct list_head pd_list; /* received partial datagrams */ |
199 | unsigned pdg_size; /* pd_list size */ |
200 | |
201 | u16 datagram_label; /* outgoing datagram label */ |
202 | u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ |
203 | int node_id; |
204 | int generation; |
205 | unsigned speed; |
206 | }; |
207 | |
208 | /* This is our task struct. It's used for the packet complete callback. */ |
209 | struct fwnet_packet_task { |
210 | struct fw_transaction transaction; |
211 | struct rfc2734_header hdr; |
212 | struct sk_buff *skb; |
213 | struct fwnet_device *dev; |
214 | |
215 | int outstanding_pkts; |
216 | u64 fifo_addr; |
217 | u16 dest_node; |
218 | u16 max_payload; |
219 | u8 generation; |
220 | u8 speed; |
221 | u8 enqueued; |
222 | }; |
223 | |
224 | /* |
225 | * saddr == NULL means use device source address. |
226 | * daddr == NULL means leave destination address (eg unresolved arp). |
227 | */ |
228 | static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, |
229 | unsigned short type, const void *daddr, |
230 | const void *saddr, unsigned len) |
231 | { |
232 | struct fwnet_header *h; |
233 | |
234 | h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); |
235 | put_unaligned_be16(type, &h->h_proto); |
236 | |
237 | if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { |
238 | memset(h->h_dest, 0, net->addr_len); |
239 | |
240 | return net->hard_header_len; |
241 | } |
242 | |
243 | if (daddr) { |
244 | memcpy(h->h_dest, daddr, net->addr_len); |
245 | |
246 | return net->hard_header_len; |
247 | } |
248 | |
249 | return -net->hard_header_len; |
250 | } |
251 | |
252 | static int fwnet_header_rebuild(struct sk_buff *skb) |
253 | { |
254 | struct fwnet_header *h = (struct fwnet_header *)skb->data; |
255 | |
256 | if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) |
257 | return arp_find((unsigned char *)&h->h_dest, skb); |
258 | |
259 | dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n", |
260 | be16_to_cpu(h->h_proto)); |
261 | return 0; |
262 | } |
263 | |
264 | static int fwnet_header_cache(const struct neighbour *neigh, |
265 | struct hh_cache *hh, __be16 type) |
266 | { |
267 | struct net_device *net; |
268 | struct fwnet_header *h; |
269 | |
270 | if (type == cpu_to_be16(ETH_P_802_3)) |
271 | return -1; |
272 | net = neigh->dev; |
273 | h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); |
274 | h->h_proto = type; |
275 | memcpy(h->h_dest, neigh->ha, net->addr_len); |
276 | hh->hh_len = FWNET_HLEN; |
277 | |
278 | return 0; |
279 | } |
280 | |
281 | /* Called by Address Resolution module to notify changes in address. */ |
282 | static void fwnet_header_cache_update(struct hh_cache *hh, |
283 | const struct net_device *net, const unsigned char *haddr) |
284 | { |
285 | memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); |
286 | } |
287 | |
288 | static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) |
289 | { |
290 | memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); |
291 | |
292 | return FWNET_ALEN; |
293 | } |
294 | |
295 | static const struct header_ops fwnet_header_ops = { |
296 | .create = fwnet_header_create, |
297 | .rebuild = fwnet_header_rebuild, |
298 | .cache = fwnet_header_cache, |
299 | .cache_update = fwnet_header_cache_update, |
300 | .parse = fwnet_header_parse, |
301 | }; |
302 | |
303 | /* FIXME: is this correct for all cases? */ |
304 | static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, |
305 | unsigned offset, unsigned len) |
306 | { |
307 | struct fwnet_fragment_info *fi; |
308 | unsigned end = offset + len; |
309 | |
310 | list_for_each_entry(fi, &pd->fi_list, fi_link) |
311 | if (offset < fi->offset + fi->len && end > fi->offset) |
312 | return true; |
313 | |
314 | return false; |
315 | } |
316 | |
317 | /* Assumes that new fragment does not overlap any existing fragments */ |
318 | static struct fwnet_fragment_info *fwnet_frag_new( |
319 | struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) |
320 | { |
321 | struct fwnet_fragment_info *fi, *fi2, *new; |
322 | struct list_head *list; |
323 | |
324 | list = &pd->fi_list; |
325 | list_for_each_entry(fi, &pd->fi_list, fi_link) { |
326 | if (fi->offset + fi->len == offset) { |
327 | /* The new fragment can be tacked on to the end */ |
328 | /* Did the new fragment plug a hole? */ |
329 | fi2 = list_entry(fi->fi_link.next, |
330 | struct fwnet_fragment_info, fi_link); |
331 | if (fi->offset + fi->len == fi2->offset) { |
332 | /* glue fragments together */ |
333 | fi->len += len + fi2->len; |
334 | list_del(&fi2->fi_link); |
335 | kfree(fi2); |
336 | } else { |
337 | fi->len += len; |
338 | } |
339 | |
340 | return fi; |
341 | } |
342 | if (offset + len == fi->offset) { |
343 | /* The new fragment can be tacked on to the beginning */ |
344 | /* Did the new fragment plug a hole? */ |
345 | fi2 = list_entry(fi->fi_link.prev, |
346 | struct fwnet_fragment_info, fi_link); |
347 | if (fi2->offset + fi2->len == fi->offset) { |
348 | /* glue fragments together */ |
349 | fi2->len += fi->len + len; |
350 | list_del(&fi->fi_link); |
351 | kfree(fi); |
352 | |
353 | return fi2; |
354 | } |
355 | fi->offset = offset; |
356 | fi->len += len; |
357 | |
358 | return fi; |
359 | } |
360 | if (offset > fi->offset + fi->len) { |
361 | list = &fi->fi_link; |
362 | break; |
363 | } |
364 | if (offset + len < fi->offset) { |
365 | list = fi->fi_link.prev; |
366 | break; |
367 | } |
368 | } |
369 | |
370 | new = kmalloc(sizeof(*new), GFP_ATOMIC); |
371 | if (!new) { |
372 | dev_err(&pd->skb->dev->dev, "out of memory\n"); |
373 | return NULL; |
374 | } |
375 | |
376 | new->offset = offset; |
377 | new->len = len; |
378 | list_add(&new->fi_link, list); |
379 | |
380 | return new; |
381 | } |
382 | |
383 | static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, |
384 | struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, |
385 | void *frag_buf, unsigned frag_off, unsigned frag_len) |
386 | { |
387 | struct fwnet_partial_datagram *new; |
388 | struct fwnet_fragment_info *fi; |
389 | |
390 | new = kmalloc(sizeof(*new), GFP_ATOMIC); |
391 | if (!new) |
392 | goto fail; |
393 | |
394 | INIT_LIST_HEAD(&new->fi_list); |
395 | fi = fwnet_frag_new(new, frag_off, frag_len); |
396 | if (fi == NULL) |
397 | goto fail_w_new; |
398 | |
399 | new->datagram_label = datagram_label; |
400 | new->datagram_size = dg_size; |
401 | new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); |
402 | if (new->skb == NULL) |
403 | goto fail_w_fi; |
404 | |
405 | skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); |
406 | new->pbuf = skb_put(new->skb, dg_size); |
407 | memcpy(new->pbuf + frag_off, frag_buf, frag_len); |
408 | list_add_tail(&new->pd_link, &peer->pd_list); |
409 | |
410 | return new; |
411 | |
412 | fail_w_fi: |
413 | kfree(fi); |
414 | fail_w_new: |
415 | kfree(new); |
416 | fail: |
417 | dev_err(&net->dev, "out of memory\n"); |
418 | |
419 | return NULL; |
420 | } |
421 | |
422 | static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, |
423 | u16 datagram_label) |
424 | { |
425 | struct fwnet_partial_datagram *pd; |
426 | |
427 | list_for_each_entry(pd, &peer->pd_list, pd_link) |
428 | if (pd->datagram_label == datagram_label) |
429 | return pd; |
430 | |
431 | return NULL; |
432 | } |
433 | |
434 | |
435 | static void fwnet_pd_delete(struct fwnet_partial_datagram *old) |
436 | { |
437 | struct fwnet_fragment_info *fi, *n; |
438 | |
439 | list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) |
440 | kfree(fi); |
441 | |
442 | list_del(&old->pd_link); |
443 | dev_kfree_skb_any(old->skb); |
444 | kfree(old); |
445 | } |
446 | |
447 | static bool fwnet_pd_update(struct fwnet_peer *peer, |
448 | struct fwnet_partial_datagram *pd, void *frag_buf, |
449 | unsigned frag_off, unsigned frag_len) |
450 | { |
451 | if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) |
452 | return false; |
453 | |
454 | memcpy(pd->pbuf + frag_off, frag_buf, frag_len); |
455 | |
456 | /* |
457 | * Move list entry to beginning of list so that oldest partial |
458 | * datagrams percolate to the end of the list |
459 | */ |
460 | list_move_tail(&pd->pd_link, &peer->pd_list); |
461 | |
462 | return true; |
463 | } |
464 | |
465 | static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) |
466 | { |
467 | struct fwnet_fragment_info *fi; |
468 | |
469 | fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); |
470 | |
471 | return fi->len == pd->datagram_size; |
472 | } |
473 | |
474 | /* caller must hold dev->lock */ |
475 | static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, |
476 | u64 guid) |
477 | { |
478 | struct fwnet_peer *peer; |
479 | |
480 | list_for_each_entry(peer, &dev->peer_list, peer_link) |
481 | if (peer->guid == guid) |
482 | return peer; |
483 | |
484 | return NULL; |
485 | } |
486 | |
487 | /* caller must hold dev->lock */ |
488 | static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, |
489 | int node_id, int generation) |
490 | { |
491 | struct fwnet_peer *peer; |
492 | |
493 | list_for_each_entry(peer, &dev->peer_list, peer_link) |
494 | if (peer->node_id == node_id && |
495 | peer->generation == generation) |
496 | return peer; |
497 | |
498 | return NULL; |
499 | } |
500 | |
501 | /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ |
502 | static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) |
503 | { |
504 | max_rec = min(max_rec, speed + 8); |
505 | max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */ |
506 | |
507 | return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; |
508 | } |
509 | |
510 | |
511 | static int fwnet_finish_incoming_packet(struct net_device *net, |
512 | struct sk_buff *skb, u16 source_node_id, |
513 | bool is_broadcast, u16 ether_type) |
514 | { |
515 | struct fwnet_device *dev; |
516 | static const __be64 broadcast_hw = cpu_to_be64(~0ULL); |
517 | int status; |
518 | __be64 guid; |
519 | |
520 | dev = netdev_priv(net); |
521 | /* Write metadata, and then pass to the receive level */ |
522 | skb->dev = net; |
523 | skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ |
524 | |
525 | /* |
526 | * Parse the encapsulation header. This actually does the job of |
527 | * converting to an ethernet frame header, as well as arp |
528 | * conversion if needed. ARP conversion is easier in this |
529 | * direction, since we are using ethernet as our backend. |
530 | */ |
531 | /* |
532 | * If this is an ARP packet, convert it. First, we want to make |
533 | * use of some of the fields, since they tell us a little bit |
534 | * about the sending machine. |
535 | */ |
536 | if (ether_type == ETH_P_ARP) { |
537 | struct rfc2734_arp *arp1394; |
538 | struct arphdr *arp; |
539 | unsigned char *arp_ptr; |
540 | u64 fifo_addr; |
541 | u64 peer_guid; |
542 | unsigned sspd; |
543 | u16 max_payload; |
544 | struct fwnet_peer *peer; |
545 | unsigned long flags; |
546 | |
547 | arp1394 = (struct rfc2734_arp *)skb->data; |
548 | arp = (struct arphdr *)skb->data; |
549 | arp_ptr = (unsigned char *)(arp + 1); |
550 | peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); |
551 | fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 |
552 | | get_unaligned_be32(&arp1394->fifo_lo); |
553 | |
554 | sspd = arp1394->sspd; |
555 | /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ |
556 | if (sspd > SCODE_3200) { |
557 | dev_notice(&net->dev, "sspd %x out of range\n", sspd); |
558 | sspd = SCODE_3200; |
559 | } |
560 | max_payload = fwnet_max_payload(arp1394->max_rec, sspd); |
561 | |
562 | spin_lock_irqsave(&dev->lock, flags); |
563 | peer = fwnet_peer_find_by_guid(dev, peer_guid); |
564 | if (peer) { |
565 | peer->fifo = fifo_addr; |
566 | |
567 | if (peer->speed > sspd) |
568 | peer->speed = sspd; |
569 | if (peer->max_payload > max_payload) |
570 | peer->max_payload = max_payload; |
571 | |
572 | peer->ip = arp1394->sip; |
573 | } |
574 | spin_unlock_irqrestore(&dev->lock, flags); |
575 | |
576 | if (!peer) { |
577 | dev_notice(&net->dev, |
578 | "no peer for ARP packet from %016llx\n", |
579 | (unsigned long long)peer_guid); |
580 | goto no_peer; |
581 | } |
582 | |
583 | /* |
584 | * Now that we're done with the 1394 specific stuff, we'll |
585 | * need to alter some of the data. Believe it or not, all |
586 | * that needs to be done is sender_IP_address needs to be |
587 | * moved, the destination hardware address get stuffed |
588 | * in and the hardware address length set to 8. |
589 | * |
590 | * IMPORTANT: The code below overwrites 1394 specific data |
591 | * needed above so keep the munging of the data for the |
592 | * higher level IP stack last. |
593 | */ |
594 | |
595 | arp->ar_hln = 8; |
596 | /* skip over sender unique id */ |
597 | arp_ptr += arp->ar_hln; |
598 | /* move sender IP addr */ |
599 | put_unaligned(arp1394->sip, (u32 *)arp_ptr); |
600 | /* skip over sender IP addr */ |
601 | arp_ptr += arp->ar_pln; |
602 | |
603 | if (arp->ar_op == htons(ARPOP_REQUEST)) |
604 | memset(arp_ptr, 0, sizeof(u64)); |
605 | else |
606 | memcpy(arp_ptr, net->dev_addr, sizeof(u64)); |
607 | } |
608 | |
609 | /* Now add the ethernet header. */ |
610 | guid = cpu_to_be64(dev->card->guid); |
611 | if (dev_hard_header(skb, net, ether_type, |
612 | is_broadcast ? &broadcast_hw : &guid, |
613 | NULL, skb->len) >= 0) { |
614 | struct fwnet_header *eth; |
615 | u16 *rawp; |
616 | __be16 protocol; |
617 | |
618 | skb_reset_mac_header(skb); |
619 | skb_pull(skb, sizeof(*eth)); |
620 | eth = (struct fwnet_header *)skb_mac_header(skb); |
621 | if (*eth->h_dest & 1) { |
622 | if (memcmp(eth->h_dest, net->broadcast, |
623 | net->addr_len) == 0) |
624 | skb->pkt_type = PACKET_BROADCAST; |
625 | #if 0 |
626 | else |
627 | skb->pkt_type = PACKET_MULTICAST; |
628 | #endif |
629 | } else { |
630 | if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) |
631 | skb->pkt_type = PACKET_OTHERHOST; |
632 | } |
633 | if (ntohs(eth->h_proto) >= 1536) { |
634 | protocol = eth->h_proto; |
635 | } else { |
636 | rawp = (u16 *)skb->data; |
637 | if (*rawp == 0xffff) |
638 | protocol = htons(ETH_P_802_3); |
639 | else |
640 | protocol = htons(ETH_P_802_2); |
641 | } |
642 | skb->protocol = protocol; |
643 | } |
644 | status = netif_rx(skb); |
645 | if (status == NET_RX_DROP) { |
646 | net->stats.rx_errors++; |
647 | net->stats.rx_dropped++; |
648 | } else { |
649 | net->stats.rx_packets++; |
650 | net->stats.rx_bytes += skb->len; |
651 | } |
652 | |
653 | return 0; |
654 | |
655 | no_peer: |
656 | net->stats.rx_errors++; |
657 | net->stats.rx_dropped++; |
658 | |
659 | dev_kfree_skb_any(skb); |
660 | |
661 | return -ENOENT; |
662 | } |
663 | |
664 | static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, |
665 | int source_node_id, int generation, |
666 | bool is_broadcast) |
667 | { |
668 | struct sk_buff *skb; |
669 | struct net_device *net = dev->netdev; |
670 | struct rfc2734_header hdr; |
671 | unsigned lf; |
672 | unsigned long flags; |
673 | struct fwnet_peer *peer; |
674 | struct fwnet_partial_datagram *pd; |
675 | int fg_off; |
676 | int dg_size; |
677 | u16 datagram_label; |
678 | int retval; |
679 | u16 ether_type; |
680 | |
681 | hdr.w0 = be32_to_cpu(buf[0]); |
682 | lf = fwnet_get_hdr_lf(&hdr); |
683 | if (lf == RFC2374_HDR_UNFRAG) { |
684 | /* |
685 | * An unfragmented datagram has been received by the ieee1394 |
686 | * bus. Build an skbuff around it so we can pass it to the |
687 | * high level network layer. |
688 | */ |
689 | ether_type = fwnet_get_hdr_ether_type(&hdr); |
690 | buf++; |
691 | len -= RFC2374_UNFRAG_HDR_SIZE; |
692 | |
693 | skb = dev_alloc_skb(len + net->hard_header_len + 15); |
694 | if (unlikely(!skb)) { |
695 | dev_err(&net->dev, "out of memory\n"); |
696 | net->stats.rx_dropped++; |
697 | |
698 | return -ENOMEM; |
699 | } |
700 | skb_reserve(skb, (net->hard_header_len + 15) & ~15); |
701 | memcpy(skb_put(skb, len), buf, len); |
702 | |
703 | return fwnet_finish_incoming_packet(net, skb, source_node_id, |
704 | is_broadcast, ether_type); |
705 | } |
706 | /* A datagram fragment has been received, now the fun begins. */ |
707 | hdr.w1 = ntohl(buf[1]); |
708 | buf += 2; |
709 | len -= RFC2374_FRAG_HDR_SIZE; |
710 | if (lf == RFC2374_HDR_FIRSTFRAG) { |
711 | ether_type = fwnet_get_hdr_ether_type(&hdr); |
712 | fg_off = 0; |
713 | } else { |
714 | ether_type = 0; |
715 | fg_off = fwnet_get_hdr_fg_off(&hdr); |
716 | } |
717 | datagram_label = fwnet_get_hdr_dgl(&hdr); |
718 | dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ |
719 | |
720 | spin_lock_irqsave(&dev->lock, flags); |
721 | |
722 | peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); |
723 | if (!peer) { |
724 | retval = -ENOENT; |
725 | goto fail; |
726 | } |
727 | |
728 | pd = fwnet_pd_find(peer, datagram_label); |
729 | if (pd == NULL) { |
730 | while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { |
731 | /* remove the oldest */ |
732 | fwnet_pd_delete(list_first_entry(&peer->pd_list, |
733 | struct fwnet_partial_datagram, pd_link)); |
734 | peer->pdg_size--; |
735 | } |
736 | pd = fwnet_pd_new(net, peer, datagram_label, |
737 | dg_size, buf, fg_off, len); |
738 | if (pd == NULL) { |
739 | retval = -ENOMEM; |
740 | goto fail; |
741 | } |
742 | peer->pdg_size++; |
743 | } else { |
744 | if (fwnet_frag_overlap(pd, fg_off, len) || |
745 | pd->datagram_size != dg_size) { |
746 | /* |
747 | * Differing datagram sizes or overlapping fragments, |
748 | * discard old datagram and start a new one. |
749 | */ |
750 | fwnet_pd_delete(pd); |
751 | pd = fwnet_pd_new(net, peer, datagram_label, |
752 | dg_size, buf, fg_off, len); |
753 | if (pd == NULL) { |
754 | peer->pdg_size--; |
755 | retval = -ENOMEM; |
756 | goto fail; |
757 | } |
758 | } else { |
759 | if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { |
760 | /* |
761 | * Couldn't save off fragment anyway |
762 | * so might as well obliterate the |
763 | * datagram now. |
764 | */ |
765 | fwnet_pd_delete(pd); |
766 | peer->pdg_size--; |
767 | retval = -ENOMEM; |
768 | goto fail; |
769 | } |
770 | } |
771 | } /* new datagram or add to existing one */ |
772 | |
773 | if (lf == RFC2374_HDR_FIRSTFRAG) |
774 | pd->ether_type = ether_type; |
775 | |
776 | if (fwnet_pd_is_complete(pd)) { |
777 | ether_type = pd->ether_type; |
778 | peer->pdg_size--; |
779 | skb = skb_get(pd->skb); |
780 | fwnet_pd_delete(pd); |
781 | |
782 | spin_unlock_irqrestore(&dev->lock, flags); |
783 | |
784 | return fwnet_finish_incoming_packet(net, skb, source_node_id, |
785 | false, ether_type); |
786 | } |
787 | /* |
788 | * Datagram is not complete, we're done for the |
789 | * moment. |
790 | */ |
791 | retval = 0; |
792 | fail: |
793 | spin_unlock_irqrestore(&dev->lock, flags); |
794 | |
795 | return retval; |
796 | } |
797 | |
798 | static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, |
799 | int tcode, int destination, int source, int generation, |
800 | unsigned long long offset, void *payload, size_t length, |
801 | void *callback_data) |
802 | { |
803 | struct fwnet_device *dev = callback_data; |
804 | int rcode; |
805 | |
806 | if (destination == IEEE1394_ALL_NODES) { |
807 | kfree(r); |
808 | |
809 | return; |
810 | } |
811 | |
812 | if (offset != dev->handler.offset) |
813 | rcode = RCODE_ADDRESS_ERROR; |
814 | else if (tcode != TCODE_WRITE_BLOCK_REQUEST) |
815 | rcode = RCODE_TYPE_ERROR; |
816 | else if (fwnet_incoming_packet(dev, payload, length, |
817 | source, generation, false) != 0) { |
818 | dev_err(&dev->netdev->dev, "incoming packet failure\n"); |
819 | rcode = RCODE_CONFLICT_ERROR; |
820 | } else |
821 | rcode = RCODE_COMPLETE; |
822 | |
823 | fw_send_response(card, r, rcode); |
824 | } |
825 | |
826 | static void fwnet_receive_broadcast(struct fw_iso_context *context, |
827 | u32 cycle, size_t header_length, void *header, void *data) |
828 | { |
829 | struct fwnet_device *dev; |
830 | struct fw_iso_packet packet; |
831 | struct fw_card *card; |
832 | __be16 *hdr_ptr; |
833 | __be32 *buf_ptr; |
834 | int retval; |
835 | u32 length; |
836 | u16 source_node_id; |
837 | u32 specifier_id; |
838 | u32 ver; |
839 | unsigned long offset; |
840 | unsigned long flags; |
841 | |
842 | dev = data; |
843 | card = dev->card; |
844 | hdr_ptr = header; |
845 | length = be16_to_cpup(hdr_ptr); |
846 | |
847 | spin_lock_irqsave(&dev->lock, flags); |
848 | |
849 | offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; |
850 | buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; |
851 | if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) |
852 | dev->broadcast_rcv_next_ptr = 0; |
853 | |
854 | spin_unlock_irqrestore(&dev->lock, flags); |
855 | |
856 | specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 |
857 | | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; |
858 | ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; |
859 | source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; |
860 | |
861 | if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { |
862 | buf_ptr += 2; |
863 | length -= IEEE1394_GASP_HDR_SIZE; |
864 | fwnet_incoming_packet(dev, buf_ptr, length, |
865 | source_node_id, -1, true); |
866 | } |
867 | |
868 | packet.payload_length = dev->rcv_buffer_size; |
869 | packet.interrupt = 1; |
870 | packet.skip = 0; |
871 | packet.tag = 3; |
872 | packet.sy = 0; |
873 | packet.header_length = IEEE1394_GASP_HDR_SIZE; |
874 | |
875 | spin_lock_irqsave(&dev->lock, flags); |
876 | |
877 | retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, |
878 | &dev->broadcast_rcv_buffer, offset); |
879 | |
880 | spin_unlock_irqrestore(&dev->lock, flags); |
881 | |
882 | if (retval >= 0) |
883 | fw_iso_context_queue_flush(dev->broadcast_rcv_context); |
884 | else |
885 | dev_err(&dev->netdev->dev, "requeue failed\n"); |
886 | } |
887 | |
888 | static struct kmem_cache *fwnet_packet_task_cache; |
889 | |
890 | static void fwnet_free_ptask(struct fwnet_packet_task *ptask) |
891 | { |
892 | dev_kfree_skb_any(ptask->skb); |
893 | kmem_cache_free(fwnet_packet_task_cache, ptask); |
894 | } |
895 | |
896 | /* Caller must hold dev->lock. */ |
897 | static void dec_queued_datagrams(struct fwnet_device *dev) |
898 | { |
899 | if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) |
900 | netif_wake_queue(dev->netdev); |
901 | } |
902 | |
903 | static int fwnet_send_packet(struct fwnet_packet_task *ptask); |
904 | |
905 | static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) |
906 | { |
907 | struct fwnet_device *dev = ptask->dev; |
908 | struct sk_buff *skb = ptask->skb; |
909 | unsigned long flags; |
910 | bool free; |
911 | |
912 | spin_lock_irqsave(&dev->lock, flags); |
913 | |
914 | ptask->outstanding_pkts--; |
915 | |
916 | /* Check whether we or the networking TX soft-IRQ is last user. */ |
917 | free = (ptask->outstanding_pkts == 0 && ptask->enqueued); |
918 | if (free) |
919 | dec_queued_datagrams(dev); |
920 | |
921 | if (ptask->outstanding_pkts == 0) { |
922 | dev->netdev->stats.tx_packets++; |
923 | dev->netdev->stats.tx_bytes += skb->len; |
924 | } |
925 | |
926 | spin_unlock_irqrestore(&dev->lock, flags); |
927 | |
928 | if (ptask->outstanding_pkts > 0) { |
929 | u16 dg_size; |
930 | u16 fg_off; |
931 | u16 datagram_label; |
932 | u16 lf; |
933 | |
934 | /* Update the ptask to point to the next fragment and send it */ |
935 | lf = fwnet_get_hdr_lf(&ptask->hdr); |
936 | switch (lf) { |
937 | case RFC2374_HDR_LASTFRAG: |
938 | case RFC2374_HDR_UNFRAG: |
939 | default: |
940 | dev_err(&dev->netdev->dev, |
941 | "outstanding packet %x lf %x, header %x,%x\n", |
942 | ptask->outstanding_pkts, lf, ptask->hdr.w0, |
943 | ptask->hdr.w1); |
944 | BUG(); |
945 | |
946 | case RFC2374_HDR_FIRSTFRAG: |
947 | /* Set frag type here for future interior fragments */ |
948 | dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); |
949 | fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; |
950 | datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); |
951 | break; |
952 | |
953 | case RFC2374_HDR_INTFRAG: |
954 | dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); |
955 | fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) |
956 | + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; |
957 | datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); |
958 | break; |
959 | } |
960 | |
961 | skb_pull(skb, ptask->max_payload); |
962 | if (ptask->outstanding_pkts > 1) { |
963 | fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, |
964 | dg_size, fg_off, datagram_label); |
965 | } else { |
966 | fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, |
967 | dg_size, fg_off, datagram_label); |
968 | ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; |
969 | } |
970 | fwnet_send_packet(ptask); |
971 | } |
972 | |
973 | if (free) |
974 | fwnet_free_ptask(ptask); |
975 | } |
976 | |
977 | static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) |
978 | { |
979 | struct fwnet_device *dev = ptask->dev; |
980 | unsigned long flags; |
981 | bool free; |
982 | |
983 | spin_lock_irqsave(&dev->lock, flags); |
984 | |
985 | /* One fragment failed; don't try to send remaining fragments. */ |
986 | ptask->outstanding_pkts = 0; |
987 | |
988 | /* Check whether we or the networking TX soft-IRQ is last user. */ |
989 | free = ptask->enqueued; |
990 | if (free) |
991 | dec_queued_datagrams(dev); |
992 | |
993 | dev->netdev->stats.tx_dropped++; |
994 | dev->netdev->stats.tx_errors++; |
995 | |
996 | spin_unlock_irqrestore(&dev->lock, flags); |
997 | |
998 | if (free) |
999 | fwnet_free_ptask(ptask); |
1000 | } |
1001 | |
1002 | static void fwnet_write_complete(struct fw_card *card, int rcode, |
1003 | void *payload, size_t length, void *data) |
1004 | { |
1005 | struct fwnet_packet_task *ptask = data; |
1006 | static unsigned long j; |
1007 | static int last_rcode, errors_skipped; |
1008 | |
1009 | if (rcode == RCODE_COMPLETE) { |
1010 | fwnet_transmit_packet_done(ptask); |
1011 | } else { |
1012 | fwnet_transmit_packet_failed(ptask); |
1013 | |
1014 | if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { |
1015 | dev_err(&ptask->dev->netdev->dev, |
1016 | "fwnet_write_complete failed: %x (skipped %d)\n", |
1017 | rcode, errors_skipped); |
1018 | |
1019 | errors_skipped = 0; |
1020 | last_rcode = rcode; |
1021 | } else |
1022 | errors_skipped++; |
1023 | } |
1024 | } |
1025 | |
1026 | static int fwnet_send_packet(struct fwnet_packet_task *ptask) |
1027 | { |
1028 | struct fwnet_device *dev; |
1029 | unsigned tx_len; |
1030 | struct rfc2734_header *bufhdr; |
1031 | unsigned long flags; |
1032 | bool free; |
1033 | |
1034 | dev = ptask->dev; |
1035 | tx_len = ptask->max_payload; |
1036 | switch (fwnet_get_hdr_lf(&ptask->hdr)) { |
1037 | case RFC2374_HDR_UNFRAG: |
1038 | bufhdr = (struct rfc2734_header *) |
1039 | skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); |
1040 | put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); |
1041 | break; |
1042 | |
1043 | case RFC2374_HDR_FIRSTFRAG: |
1044 | case RFC2374_HDR_INTFRAG: |
1045 | case RFC2374_HDR_LASTFRAG: |
1046 | bufhdr = (struct rfc2734_header *) |
1047 | skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); |
1048 | put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); |
1049 | put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); |
1050 | break; |
1051 | |
1052 | default: |
1053 | BUG(); |
1054 | } |
1055 | if (ptask->dest_node == IEEE1394_ALL_NODES) { |
1056 | u8 *p; |
1057 | int generation; |
1058 | int node_id; |
1059 | |
1060 | /* ptask->generation may not have been set yet */ |
1061 | generation = dev->card->generation; |
1062 | smp_rmb(); |
1063 | node_id = dev->card->node_id; |
1064 | |
1065 | p = skb_push(ptask->skb, 8); |
1066 | put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); |
1067 | put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 |
1068 | | RFC2734_SW_VERSION, &p[4]); |
1069 | |
1070 | /* We should not transmit if broadcast_channel.valid == 0. */ |
1071 | fw_send_request(dev->card, &ptask->transaction, |
1072 | TCODE_STREAM_DATA, |
1073 | fw_stream_packet_destination_id(3, |
1074 | IEEE1394_BROADCAST_CHANNEL, 0), |
1075 | generation, SCODE_100, 0ULL, ptask->skb->data, |
1076 | tx_len + 8, fwnet_write_complete, ptask); |
1077 | |
1078 | spin_lock_irqsave(&dev->lock, flags); |
1079 | |
1080 | /* If the AT tasklet already ran, we may be last user. */ |
1081 | free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); |
1082 | if (!free) |
1083 | ptask->enqueued = true; |
1084 | else |
1085 | dec_queued_datagrams(dev); |
1086 | |
1087 | spin_unlock_irqrestore(&dev->lock, flags); |
1088 | |
1089 | goto out; |
1090 | } |
1091 | |
1092 | fw_send_request(dev->card, &ptask->transaction, |
1093 | TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, |
1094 | ptask->generation, ptask->speed, ptask->fifo_addr, |
1095 | ptask->skb->data, tx_len, fwnet_write_complete, ptask); |
1096 | |
1097 | spin_lock_irqsave(&dev->lock, flags); |
1098 | |
1099 | /* If the AT tasklet already ran, we may be last user. */ |
1100 | free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); |
1101 | if (!free) |
1102 | ptask->enqueued = true; |
1103 | else |
1104 | dec_queued_datagrams(dev); |
1105 | |
1106 | spin_unlock_irqrestore(&dev->lock, flags); |
1107 | |
1108 | dev->netdev->trans_start = jiffies; |
1109 | out: |
1110 | if (free) |
1111 | fwnet_free_ptask(ptask); |
1112 | |
1113 | return 0; |
1114 | } |
1115 | |
1116 | static int fwnet_broadcast_start(struct fwnet_device *dev) |
1117 | { |
1118 | struct fw_iso_context *context; |
1119 | int retval; |
1120 | unsigned num_packets; |
1121 | unsigned max_receive; |
1122 | struct fw_iso_packet packet; |
1123 | unsigned long offset; |
1124 | unsigned u; |
1125 | |
1126 | if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { |
1127 | dev->handler.length = 4096; |
1128 | dev->handler.address_callback = fwnet_receive_packet; |
1129 | dev->handler.callback_data = dev; |
1130 | |
1131 | retval = fw_core_add_address_handler(&dev->handler, |
1132 | &fw_high_memory_region); |
1133 | if (retval < 0) |
1134 | goto failed_initial; |
1135 | |
1136 | dev->local_fifo = dev->handler.offset; |
1137 | } |
1138 | |
1139 | max_receive = 1U << (dev->card->max_receive + 1); |
1140 | num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; |
1141 | |
1142 | if (!dev->broadcast_rcv_context) { |
1143 | void **ptrptr; |
1144 | |
1145 | context = fw_iso_context_create(dev->card, |
1146 | FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, |
1147 | dev->card->link_speed, 8, fwnet_receive_broadcast, dev); |
1148 | if (IS_ERR(context)) { |
1149 | retval = PTR_ERR(context); |
1150 | goto failed_context_create; |
1151 | } |
1152 | |
1153 | retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, |
1154 | dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); |
1155 | if (retval < 0) |
1156 | goto failed_buffer_init; |
1157 | |
1158 | ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); |
1159 | if (!ptrptr) { |
1160 | retval = -ENOMEM; |
1161 | goto failed_ptrs_alloc; |
1162 | } |
1163 | |
1164 | dev->broadcast_rcv_buffer_ptrs = ptrptr; |
1165 | for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { |
1166 | void *ptr; |
1167 | unsigned v; |
1168 | |
1169 | ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); |
1170 | for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) |
1171 | *ptrptr++ = (void *) |
1172 | ((char *)ptr + v * max_receive); |
1173 | } |
1174 | dev->broadcast_rcv_context = context; |
1175 | } else { |
1176 | context = dev->broadcast_rcv_context; |
1177 | } |
1178 | |
1179 | packet.payload_length = max_receive; |
1180 | packet.interrupt = 1; |
1181 | packet.skip = 0; |
1182 | packet.tag = 3; |
1183 | packet.sy = 0; |
1184 | packet.header_length = IEEE1394_GASP_HDR_SIZE; |
1185 | offset = 0; |
1186 | |
1187 | for (u = 0; u < num_packets; u++) { |
1188 | retval = fw_iso_context_queue(context, &packet, |
1189 | &dev->broadcast_rcv_buffer, offset); |
1190 | if (retval < 0) |
1191 | goto failed_rcv_queue; |
1192 | |
1193 | offset += max_receive; |
1194 | } |
1195 | dev->num_broadcast_rcv_ptrs = num_packets; |
1196 | dev->rcv_buffer_size = max_receive; |
1197 | dev->broadcast_rcv_next_ptr = 0U; |
1198 | retval = fw_iso_context_start(context, -1, 0, |
1199 | FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ |
1200 | if (retval < 0) |
1201 | goto failed_rcv_queue; |
1202 | |
1203 | /* FIXME: adjust it according to the min. speed of all known peers? */ |
1204 | dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 |
1205 | - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; |
1206 | dev->broadcast_state = FWNET_BROADCAST_RUNNING; |
1207 | |
1208 | return 0; |
1209 | |
1210 | failed_rcv_queue: |
1211 | kfree(dev->broadcast_rcv_buffer_ptrs); |
1212 | dev->broadcast_rcv_buffer_ptrs = NULL; |
1213 | failed_ptrs_alloc: |
1214 | fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); |
1215 | failed_buffer_init: |
1216 | fw_iso_context_destroy(context); |
1217 | dev->broadcast_rcv_context = NULL; |
1218 | failed_context_create: |
1219 | fw_core_remove_address_handler(&dev->handler); |
1220 | failed_initial: |
1221 | dev->local_fifo = FWNET_NO_FIFO_ADDR; |
1222 | |
1223 | return retval; |
1224 | } |
1225 | |
1226 | static void set_carrier_state(struct fwnet_device *dev) |
1227 | { |
1228 | if (dev->peer_count > 1) |
1229 | netif_carrier_on(dev->netdev); |
1230 | else |
1231 | netif_carrier_off(dev->netdev); |
1232 | } |
1233 | |
1234 | /* ifup */ |
1235 | static int fwnet_open(struct net_device *net) |
1236 | { |
1237 | struct fwnet_device *dev = netdev_priv(net); |
1238 | int ret; |
1239 | |
1240 | if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { |
1241 | ret = fwnet_broadcast_start(dev); |
1242 | if (ret) |
1243 | return ret; |
1244 | } |
1245 | netif_start_queue(net); |
1246 | |
1247 | spin_lock_irq(&dev->lock); |
1248 | set_carrier_state(dev); |
1249 | spin_unlock_irq(&dev->lock); |
1250 | |
1251 | return 0; |
1252 | } |
1253 | |
1254 | /* ifdown */ |
1255 | static int fwnet_stop(struct net_device *net) |
1256 | { |
1257 | netif_stop_queue(net); |
1258 | |
1259 | /* Deallocate iso context for use by other applications? */ |
1260 | |
1261 | return 0; |
1262 | } |
1263 | |
1264 | static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) |
1265 | { |
1266 | struct fwnet_header hdr_buf; |
1267 | struct fwnet_device *dev = netdev_priv(net); |
1268 | __be16 proto; |
1269 | u16 dest_node; |
1270 | unsigned max_payload; |
1271 | u16 dg_size; |
1272 | u16 *datagram_label_ptr; |
1273 | struct fwnet_packet_task *ptask; |
1274 | struct fwnet_peer *peer; |
1275 | unsigned long flags; |
1276 | |
1277 | spin_lock_irqsave(&dev->lock, flags); |
1278 | |
1279 | /* Can this happen? */ |
1280 | if (netif_queue_stopped(dev->netdev)) { |
1281 | spin_unlock_irqrestore(&dev->lock, flags); |
1282 | |
1283 | return NETDEV_TX_BUSY; |
1284 | } |
1285 | |
1286 | ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); |
1287 | if (ptask == NULL) |
1288 | goto fail; |
1289 | |
1290 | skb = skb_share_check(skb, GFP_ATOMIC); |
1291 | if (!skb) |
1292 | goto fail; |
1293 | |
1294 | /* |
1295 | * Make a copy of the driver-specific header. |
1296 | * We might need to rebuild the header on tx failure. |
1297 | */ |
1298 | memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); |
1299 | skb_pull(skb, sizeof(hdr_buf)); |
1300 | |
1301 | proto = hdr_buf.h_proto; |
1302 | dg_size = skb->len; |
1303 | |
1304 | /* |
1305 | * Set the transmission type for the packet. ARP packets and IP |
1306 | * broadcast packets are sent via GASP. |
1307 | */ |
1308 | if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 |
1309 | || proto == htons(ETH_P_ARP) |
1310 | || (proto == htons(ETH_P_IP) |
1311 | && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { |
1312 | max_payload = dev->broadcast_xmt_max_payload; |
1313 | datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; |
1314 | |
1315 | ptask->fifo_addr = FWNET_NO_FIFO_ADDR; |
1316 | ptask->generation = 0; |
1317 | ptask->dest_node = IEEE1394_ALL_NODES; |
1318 | ptask->speed = SCODE_100; |
1319 | } else { |
1320 | __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); |
1321 | u8 generation; |
1322 | |
1323 | peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); |
1324 | if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) |
1325 | goto fail; |
1326 | |
1327 | generation = peer->generation; |
1328 | dest_node = peer->node_id; |
1329 | max_payload = peer->max_payload; |
1330 | datagram_label_ptr = &peer->datagram_label; |
1331 | |
1332 | ptask->fifo_addr = peer->fifo; |
1333 | ptask->generation = generation; |
1334 | ptask->dest_node = dest_node; |
1335 | ptask->speed = peer->speed; |
1336 | } |
1337 | |
1338 | /* If this is an ARP packet, convert it */ |
1339 | if (proto == htons(ETH_P_ARP)) { |
1340 | struct arphdr *arp = (struct arphdr *)skb->data; |
1341 | unsigned char *arp_ptr = (unsigned char *)(arp + 1); |
1342 | struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; |
1343 | __be32 ipaddr; |
1344 | |
1345 | ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); |
1346 | |
1347 | arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; |
1348 | arp1394->max_rec = dev->card->max_receive; |
1349 | arp1394->sspd = dev->card->link_speed; |
1350 | |
1351 | put_unaligned_be16(dev->local_fifo >> 32, |
1352 | &arp1394->fifo_hi); |
1353 | put_unaligned_be32(dev->local_fifo & 0xffffffff, |
1354 | &arp1394->fifo_lo); |
1355 | put_unaligned(ipaddr, &arp1394->sip); |
1356 | } |
1357 | |
1358 | ptask->hdr.w0 = 0; |
1359 | ptask->hdr.w1 = 0; |
1360 | ptask->skb = skb; |
1361 | ptask->dev = dev; |
1362 | |
1363 | /* Does it all fit in one packet? */ |
1364 | if (dg_size <= max_payload) { |
1365 | fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); |
1366 | ptask->outstanding_pkts = 1; |
1367 | max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; |
1368 | } else { |
1369 | u16 datagram_label; |
1370 | |
1371 | max_payload -= RFC2374_FRAG_OVERHEAD; |
1372 | datagram_label = (*datagram_label_ptr)++; |
1373 | fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, |
1374 | datagram_label); |
1375 | ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); |
1376 | max_payload += RFC2374_FRAG_HDR_SIZE; |
1377 | } |
1378 | |
1379 | if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) |
1380 | netif_stop_queue(dev->netdev); |
1381 | |
1382 | spin_unlock_irqrestore(&dev->lock, flags); |
1383 | |
1384 | ptask->max_payload = max_payload; |
1385 | ptask->enqueued = 0; |
1386 | |
1387 | fwnet_send_packet(ptask); |
1388 | |
1389 | return NETDEV_TX_OK; |
1390 | |
1391 | fail: |
1392 | spin_unlock_irqrestore(&dev->lock, flags); |
1393 | |
1394 | if (ptask) |
1395 | kmem_cache_free(fwnet_packet_task_cache, ptask); |
1396 | |
1397 | if (skb != NULL) |
1398 | dev_kfree_skb(skb); |
1399 | |
1400 | net->stats.tx_dropped++; |
1401 | net->stats.tx_errors++; |
1402 | |
1403 | /* |
1404 | * FIXME: According to a patch from 2003-02-26, "returning non-zero |
1405 | * causes serious problems" here, allegedly. Before that patch, |
1406 | * -ERRNO was returned which is not appropriate under Linux 2.6. |
1407 | * Perhaps more needs to be done? Stop the queue in serious |
1408 | * conditions and restart it elsewhere? |
1409 | */ |
1410 | return NETDEV_TX_OK; |
1411 | } |
1412 | |
1413 | static int fwnet_change_mtu(struct net_device *net, int new_mtu) |
1414 | { |
1415 | if (new_mtu < 68) |
1416 | return -EINVAL; |
1417 | |
1418 | net->mtu = new_mtu; |
1419 | return 0; |
1420 | } |
1421 | |
1422 | static const struct ethtool_ops fwnet_ethtool_ops = { |
1423 | .get_link = ethtool_op_get_link, |
1424 | }; |
1425 | |
1426 | static const struct net_device_ops fwnet_netdev_ops = { |
1427 | .ndo_open = fwnet_open, |
1428 | .ndo_stop = fwnet_stop, |
1429 | .ndo_start_xmit = fwnet_tx, |
1430 | .ndo_change_mtu = fwnet_change_mtu, |
1431 | }; |
1432 | |
1433 | static void fwnet_init_dev(struct net_device *net) |
1434 | { |
1435 | net->header_ops = &fwnet_header_ops; |
1436 | net->netdev_ops = &fwnet_netdev_ops; |
1437 | net->watchdog_timeo = 2 * HZ; |
1438 | net->flags = IFF_BROADCAST | IFF_MULTICAST; |
1439 | net->features = NETIF_F_HIGHDMA; |
1440 | net->addr_len = FWNET_ALEN; |
1441 | net->hard_header_len = FWNET_HLEN; |
1442 | net->type = ARPHRD_IEEE1394; |
1443 | net->tx_queue_len = FWNET_TX_QUEUE_LEN; |
1444 | net->ethtool_ops = &fwnet_ethtool_ops; |
1445 | } |
1446 | |
1447 | /* caller must hold fwnet_device_mutex */ |
1448 | static struct fwnet_device *fwnet_dev_find(struct fw_card *card) |
1449 | { |
1450 | struct fwnet_device *dev; |
1451 | |
1452 | list_for_each_entry(dev, &fwnet_device_list, dev_link) |
1453 | if (dev->card == card) |
1454 | return dev; |
1455 | |
1456 | return NULL; |
1457 | } |
1458 | |
1459 | static int fwnet_add_peer(struct fwnet_device *dev, |
1460 | struct fw_unit *unit, struct fw_device *device) |
1461 | { |
1462 | struct fwnet_peer *peer; |
1463 | |
1464 | peer = kmalloc(sizeof(*peer), GFP_KERNEL); |
1465 | if (!peer) |
1466 | return -ENOMEM; |
1467 | |
1468 | dev_set_drvdata(&unit->device, peer); |
1469 | |
1470 | peer->dev = dev; |
1471 | peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; |
1472 | peer->fifo = FWNET_NO_FIFO_ADDR; |
1473 | peer->ip = 0; |
1474 | INIT_LIST_HEAD(&peer->pd_list); |
1475 | peer->pdg_size = 0; |
1476 | peer->datagram_label = 0; |
1477 | peer->speed = device->max_speed; |
1478 | peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); |
1479 | |
1480 | peer->generation = device->generation; |
1481 | smp_rmb(); |
1482 | peer->node_id = device->node_id; |
1483 | |
1484 | spin_lock_irq(&dev->lock); |
1485 | list_add_tail(&peer->peer_link, &dev->peer_list); |
1486 | dev->peer_count++; |
1487 | set_carrier_state(dev); |
1488 | spin_unlock_irq(&dev->lock); |
1489 | |
1490 | return 0; |
1491 | } |
1492 | |
1493 | static int fwnet_probe(struct device *_dev) |
1494 | { |
1495 | struct fw_unit *unit = fw_unit(_dev); |
1496 | struct fw_device *device = fw_parent_device(unit); |
1497 | struct fw_card *card = device->card; |
1498 | struct net_device *net; |
1499 | bool allocated_netdev = false; |
1500 | struct fwnet_device *dev; |
1501 | unsigned max_mtu; |
1502 | int ret; |
1503 | |
1504 | mutex_lock(&fwnet_device_mutex); |
1505 | |
1506 | dev = fwnet_dev_find(card); |
1507 | if (dev) { |
1508 | net = dev->netdev; |
1509 | goto have_dev; |
1510 | } |
1511 | |
1512 | net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); |
1513 | if (net == NULL) { |
1514 | ret = -ENOMEM; |
1515 | goto out; |
1516 | } |
1517 | |
1518 | allocated_netdev = true; |
1519 | SET_NETDEV_DEV(net, card->device); |
1520 | dev = netdev_priv(net); |
1521 | |
1522 | spin_lock_init(&dev->lock); |
1523 | dev->broadcast_state = FWNET_BROADCAST_ERROR; |
1524 | dev->broadcast_rcv_context = NULL; |
1525 | dev->broadcast_xmt_max_payload = 0; |
1526 | dev->broadcast_xmt_datagramlabel = 0; |
1527 | dev->local_fifo = FWNET_NO_FIFO_ADDR; |
1528 | dev->queued_datagrams = 0; |
1529 | INIT_LIST_HEAD(&dev->peer_list); |
1530 | dev->card = card; |
1531 | dev->netdev = net; |
1532 | |
1533 | /* |
1534 | * Use the RFC 2734 default 1500 octets or the maximum payload |
1535 | * as initial MTU |
1536 | */ |
1537 | max_mtu = (1 << (card->max_receive + 1)) |
1538 | - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; |
1539 | net->mtu = min(1500U, max_mtu); |
1540 | |
1541 | /* Set our hardware address while we're at it */ |
1542 | put_unaligned_be64(card->guid, net->dev_addr); |
1543 | put_unaligned_be64(~0ULL, net->broadcast); |
1544 | ret = register_netdev(net); |
1545 | if (ret) |
1546 | goto out; |
1547 | |
1548 | list_add_tail(&dev->dev_link, &fwnet_device_list); |
1549 | dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n", |
1550 | dev_name(card->device)); |
1551 | have_dev: |
1552 | ret = fwnet_add_peer(dev, unit, device); |
1553 | if (ret && allocated_netdev) { |
1554 | unregister_netdev(net); |
1555 | list_del(&dev->dev_link); |
1556 | } |
1557 | out: |
1558 | if (ret && allocated_netdev) |
1559 | free_netdev(net); |
1560 | |
1561 | mutex_unlock(&fwnet_device_mutex); |
1562 | |
1563 | return ret; |
1564 | } |
1565 | |
1566 | static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) |
1567 | { |
1568 | struct fwnet_partial_datagram *pd, *pd_next; |
1569 | |
1570 | spin_lock_irq(&dev->lock); |
1571 | list_del(&peer->peer_link); |
1572 | dev->peer_count--; |
1573 | set_carrier_state(dev); |
1574 | spin_unlock_irq(&dev->lock); |
1575 | |
1576 | list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) |
1577 | fwnet_pd_delete(pd); |
1578 | |
1579 | kfree(peer); |
1580 | } |
1581 | |
1582 | static int fwnet_remove(struct device *_dev) |
1583 | { |
1584 | struct fwnet_peer *peer = dev_get_drvdata(_dev); |
1585 | struct fwnet_device *dev = peer->dev; |
1586 | struct net_device *net; |
1587 | int i; |
1588 | |
1589 | mutex_lock(&fwnet_device_mutex); |
1590 | |
1591 | net = dev->netdev; |
1592 | if (net && peer->ip) |
1593 | arp_invalidate(net, peer->ip); |
1594 | |
1595 | fwnet_remove_peer(peer, dev); |
1596 | |
1597 | if (list_empty(&dev->peer_list)) { |
1598 | unregister_netdev(net); |
1599 | |
1600 | if (dev->local_fifo != FWNET_NO_FIFO_ADDR) |
1601 | fw_core_remove_address_handler(&dev->handler); |
1602 | if (dev->broadcast_rcv_context) { |
1603 | fw_iso_context_stop(dev->broadcast_rcv_context); |
1604 | fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, |
1605 | dev->card); |
1606 | fw_iso_context_destroy(dev->broadcast_rcv_context); |
1607 | } |
1608 | for (i = 0; dev->queued_datagrams && i < 5; i++) |
1609 | ssleep(1); |
1610 | WARN_ON(dev->queued_datagrams); |
1611 | list_del(&dev->dev_link); |
1612 | |
1613 | free_netdev(net); |
1614 | } |
1615 | |
1616 | mutex_unlock(&fwnet_device_mutex); |
1617 | |
1618 | return 0; |
1619 | } |
1620 | |
1621 | /* |
1622 | * FIXME abort partially sent fragmented datagrams, |
1623 | * discard partially received fragmented datagrams |
1624 | */ |
1625 | static void fwnet_update(struct fw_unit *unit) |
1626 | { |
1627 | struct fw_device *device = fw_parent_device(unit); |
1628 | struct fwnet_peer *peer = dev_get_drvdata(&unit->device); |
1629 | int generation; |
1630 | |
1631 | generation = device->generation; |
1632 | |
1633 | spin_lock_irq(&peer->dev->lock); |
1634 | peer->node_id = device->node_id; |
1635 | peer->generation = generation; |
1636 | spin_unlock_irq(&peer->dev->lock); |
1637 | } |
1638 | |
1639 | static const struct ieee1394_device_id fwnet_id_table[] = { |
1640 | { |
1641 | .match_flags = IEEE1394_MATCH_SPECIFIER_ID | |
1642 | IEEE1394_MATCH_VERSION, |
1643 | .specifier_id = IANA_SPECIFIER_ID, |
1644 | .version = RFC2734_SW_VERSION, |
1645 | }, |
1646 | { } |
1647 | }; |
1648 | |
1649 | static struct fw_driver fwnet_driver = { |
1650 | .driver = { |
1651 | .owner = THIS_MODULE, |
1652 | .name = KBUILD_MODNAME, |
1653 | .bus = &fw_bus_type, |
1654 | .probe = fwnet_probe, |
1655 | .remove = fwnet_remove, |
1656 | }, |
1657 | .update = fwnet_update, |
1658 | .id_table = fwnet_id_table, |
1659 | }; |
1660 | |
1661 | static const u32 rfc2374_unit_directory_data[] = { |
1662 | 0x00040000, /* directory_length */ |
1663 | 0x1200005e, /* unit_specifier_id: IANA */ |
1664 | 0x81000003, /* textual descriptor offset */ |
1665 | 0x13000001, /* unit_sw_version: RFC 2734 */ |
1666 | 0x81000005, /* textual descriptor offset */ |
1667 | 0x00030000, /* descriptor_length */ |
1668 | 0x00000000, /* text */ |
1669 | 0x00000000, /* minimal ASCII, en */ |
1670 | 0x49414e41, /* I A N A */ |
1671 | 0x00030000, /* descriptor_length */ |
1672 | 0x00000000, /* text */ |
1673 | 0x00000000, /* minimal ASCII, en */ |
1674 | 0x49507634, /* I P v 4 */ |
1675 | }; |
1676 | |
1677 | static struct fw_descriptor rfc2374_unit_directory = { |
1678 | .length = ARRAY_SIZE(rfc2374_unit_directory_data), |
1679 | .key = (CSR_DIRECTORY | CSR_UNIT) << 24, |
1680 | .data = rfc2374_unit_directory_data |
1681 | }; |
1682 | |
1683 | static int __init fwnet_init(void) |
1684 | { |
1685 | int err; |
1686 | |
1687 | err = fw_core_add_descriptor(&rfc2374_unit_directory); |
1688 | if (err) |
1689 | return err; |
1690 | |
1691 | fwnet_packet_task_cache = kmem_cache_create("packet_task", |
1692 | sizeof(struct fwnet_packet_task), 0, 0, NULL); |
1693 | if (!fwnet_packet_task_cache) { |
1694 | err = -ENOMEM; |
1695 | goto out; |
1696 | } |
1697 | |
1698 | err = driver_register(&fwnet_driver.driver); |
1699 | if (!err) |
1700 | return 0; |
1701 | |
1702 | kmem_cache_destroy(fwnet_packet_task_cache); |
1703 | out: |
1704 | fw_core_remove_descriptor(&rfc2374_unit_directory); |
1705 | |
1706 | return err; |
1707 | } |
1708 | module_init(fwnet_init); |
1709 | |
1710 | static void __exit fwnet_cleanup(void) |
1711 | { |
1712 | driver_unregister(&fwnet_driver.driver); |
1713 | kmem_cache_destroy(fwnet_packet_task_cache); |
1714 | fw_core_remove_descriptor(&rfc2374_unit_directory); |
1715 | } |
1716 | module_exit(fwnet_cleanup); |
1717 | |
1718 | MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); |
1719 | MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); |
1720 | MODULE_LICENSE("GPL"); |
1721 | MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); |
1722 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9