Root/drivers/firewire/ohci.c

1/*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bitops.h>
22#include <linux/bug.h>
23#include <linux/compiler.h>
24#include <linux/delay.h>
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/firewire.h>
28#include <linux/firewire-constants.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kernel.h>
33#include <linux/list.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/mutex.h>
38#include <linux/pci.h>
39#include <linux/pci_ids.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
43#include <linux/time.h>
44#include <linux/vmalloc.h>
45#include <linux/workqueue.h>
46
47#include <asm/byteorder.h>
48#include <asm/page.h>
49
50#ifdef CONFIG_PPC_PMAC
51#include <asm/pmac_feature.h>
52#endif
53
54#include "core.h"
55#include "ohci.h"
56
57#define DESCRIPTOR_OUTPUT_MORE 0
58#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59#define DESCRIPTOR_INPUT_MORE (2 << 12)
60#define DESCRIPTOR_INPUT_LAST (3 << 12)
61#define DESCRIPTOR_STATUS (1 << 11)
62#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63#define DESCRIPTOR_PING (1 << 7)
64#define DESCRIPTOR_YY (1 << 6)
65#define DESCRIPTOR_NO_IRQ (0 << 4)
66#define DESCRIPTOR_IRQ_ERROR (1 << 4)
67#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69#define DESCRIPTOR_WAIT (3 << 0)
70
71struct descriptor {
72    __le16 req_count;
73    __le16 control;
74    __le32 data_address;
75    __le32 branch_address;
76    __le16 res_count;
77    __le16 transfer_status;
78} __attribute__((aligned(16)));
79
80#define CONTROL_SET(regs) (regs)
81#define CONTROL_CLEAR(regs) ((regs) + 4)
82#define COMMAND_PTR(regs) ((regs) + 12)
83#define CONTEXT_MATCH(regs) ((regs) + 16)
84
85#define AR_BUFFER_SIZE (32*1024)
86#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87/* we need at least two pages for proper list management */
88#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90#define MAX_ASYNC_PAYLOAD 4096
91#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94struct ar_context {
95    struct fw_ohci *ohci;
96    struct page *pages[AR_BUFFERS];
97    void *buffer;
98    struct descriptor *descriptors;
99    dma_addr_t descriptors_bus;
100    void *pointer;
101    unsigned int last_buffer_index;
102    u32 regs;
103    struct tasklet_struct tasklet;
104};
105
106struct context;
107
108typedef int (*descriptor_callback_t)(struct context *ctx,
109                     struct descriptor *d,
110                     struct descriptor *last);
111
112/*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116struct descriptor_buffer {
117    struct list_head list;
118    dma_addr_t buffer_bus;
119    size_t buffer_size;
120    size_t used;
121    struct descriptor buffer[0];
122};
123
124struct context {
125    struct fw_ohci *ohci;
126    u32 regs;
127    int total_allocation;
128    u32 current_bus;
129    bool running;
130    bool flushing;
131
132    /*
133     * List of page-sized buffers for storing DMA descriptors.
134     * Head of list contains buffers in use and tail of list contains
135     * free buffers.
136     */
137    struct list_head buffer_list;
138
139    /*
140     * Pointer to a buffer inside buffer_list that contains the tail
141     * end of the current DMA program.
142     */
143    struct descriptor_buffer *buffer_tail;
144
145    /*
146     * The descriptor containing the branch address of the first
147     * descriptor that has not yet been filled by the device.
148     */
149    struct descriptor *last;
150
151    /*
152     * The last descriptor in the DMA program. It contains the branch
153     * address that must be updated upon appending a new descriptor.
154     */
155    struct descriptor *prev;
156
157    descriptor_callback_t callback;
158
159    struct tasklet_struct tasklet;
160};
161
162#define IT_HEADER_SY(v) ((v) << 0)
163#define IT_HEADER_TCODE(v) ((v) << 4)
164#define IT_HEADER_CHANNEL(v) ((v) << 8)
165#define IT_HEADER_TAG(v) ((v) << 14)
166#define IT_HEADER_SPEED(v) ((v) << 16)
167#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168
169struct iso_context {
170    struct fw_iso_context base;
171    struct context context;
172    void *header;
173    size_t header_length;
174    unsigned long flushing_completions;
175    u32 mc_buffer_bus;
176    u16 mc_completed;
177    u16 last_timestamp;
178    u8 sync;
179    u8 tags;
180};
181
182#define CONFIG_ROM_SIZE 1024
183
184struct fw_ohci {
185    struct fw_card card;
186
187    __iomem char *registers;
188    int node_id;
189    int generation;
190    int request_generation; /* for timestamping incoming requests */
191    unsigned quirks;
192    unsigned int pri_req_max;
193    u32 bus_time;
194    bool bus_time_running;
195    bool is_root;
196    bool csr_state_setclear_abdicate;
197    int n_ir;
198    int n_it;
199    /*
200     * Spinlock for accessing fw_ohci data. Never call out of
201     * this driver with this lock held.
202     */
203    spinlock_t lock;
204
205    struct mutex phy_reg_mutex;
206
207    void *misc_buffer;
208    dma_addr_t misc_buffer_bus;
209
210    struct ar_context ar_request_ctx;
211    struct ar_context ar_response_ctx;
212    struct context at_request_ctx;
213    struct context at_response_ctx;
214
215    u32 it_context_support;
216    u32 it_context_mask; /* unoccupied IT contexts */
217    struct iso_context *it_context_list;
218    u64 ir_context_channels; /* unoccupied channels */
219    u32 ir_context_support;
220    u32 ir_context_mask; /* unoccupied IR contexts */
221    struct iso_context *ir_context_list;
222    u64 mc_channels; /* channels in use by the multichannel IR context */
223    bool mc_allocated;
224
225    __be32 *config_rom;
226    dma_addr_t config_rom_bus;
227    __be32 *next_config_rom;
228    dma_addr_t next_config_rom_bus;
229    __be32 next_header;
230
231    __le32 *self_id_cpu;
232    dma_addr_t self_id_bus;
233    struct work_struct bus_reset_work;
234
235    u32 self_id_buffer[512];
236};
237
238static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239{
240    return container_of(card, struct fw_ohci, card);
241}
242
243#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244#define IR_CONTEXT_BUFFER_FILL 0x80000000
245#define IR_CONTEXT_ISOCH_HEADER 0x40000000
246#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249
250#define CONTEXT_RUN 0x8000
251#define CONTEXT_WAKE 0x1000
252#define CONTEXT_DEAD 0x0800
253#define CONTEXT_ACTIVE 0x0400
254
255#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258
259#define OHCI1394_REGISTER_SIZE 0x800
260#define OHCI1394_PCI_HCI_Control 0x40
261#define SELF_ID_BUF_SIZE 0x800
262#define OHCI_TCODE_PHY_PACKET 0x0e
263#define OHCI_VERSION_1_1 0x010010
264
265static char ohci_driver_name[] = KBUILD_MODNAME;
266
267#define PCI_DEVICE_ID_AGERE_FW643 0x5901
268#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
274
275#define QUIRK_CYCLE_TIMER 1
276#define QUIRK_RESET_PACKET 2
277#define QUIRK_BE_HEADERS 4
278#define QUIRK_NO_1394A 8
279#define QUIRK_NO_MSI 16
280#define QUIRK_TI_SLLZ059 32
281
282/* In case of multiple matches in ohci_quirks[], only the first one is used. */
283static const struct {
284    unsigned short vendor, device, revision, flags;
285} ohci_quirks[] = {
286    {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287        QUIRK_CYCLE_TIMER},
288
289    {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290        QUIRK_BE_HEADERS},
291
292    {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293        QUIRK_NO_MSI},
294
295    {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296        QUIRK_RESET_PACKET},
297
298    {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299        QUIRK_NO_MSI},
300
301    {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302        QUIRK_CYCLE_TIMER},
303
304    {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305        QUIRK_NO_MSI},
306
307    {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308        QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310    {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311        QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313    {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314        QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316    {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317        QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319    {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320        QUIRK_RESET_PACKET},
321
322    {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
323        QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
324};
325
326/* This overrides anything that was found in ohci_quirks[]. */
327static int param_quirks;
328module_param_named(quirks, param_quirks, int, 0644);
329MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
330    ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
331    ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
332    ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
333    ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
334    ", disable MSI = " __stringify(QUIRK_NO_MSI)
335    ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
336    ")");
337
338#define OHCI_PARAM_DEBUG_AT_AR 1
339#define OHCI_PARAM_DEBUG_SELFIDS 2
340#define OHCI_PARAM_DEBUG_IRQS 4
341#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
342
343static int param_debug;
344module_param_named(debug, param_debug, int, 0644);
345MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346    ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347    ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
348    ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
349    ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350    ", or a combination, or all = -1)");
351
352static void log_irqs(struct fw_ohci *ohci, u32 evt)
353{
354    if (likely(!(param_debug &
355            (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
356        return;
357
358    if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359        !(evt & OHCI1394_busReset))
360        return;
361
362    dev_notice(ohci->card.device,
363        "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
364        evt & OHCI1394_selfIDComplete ? " selfID" : "",
365        evt & OHCI1394_RQPkt ? " AR_req" : "",
366        evt & OHCI1394_RSPkt ? " AR_resp" : "",
367        evt & OHCI1394_reqTxComplete ? " AT_req" : "",
368        evt & OHCI1394_respTxComplete ? " AT_resp" : "",
369        evt & OHCI1394_isochRx ? " IR" : "",
370        evt & OHCI1394_isochTx ? " IT" : "",
371        evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
372        evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
373        evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
374        evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
375        evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
376        evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
377        evt & OHCI1394_busReset ? " busReset" : "",
378        evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
379            OHCI1394_RSPkt | OHCI1394_reqTxComplete |
380            OHCI1394_respTxComplete | OHCI1394_isochRx |
381            OHCI1394_isochTx | OHCI1394_postedWriteErr |
382            OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
383            OHCI1394_cycleInconsistent |
384            OHCI1394_regAccessFail | OHCI1394_busReset)
385                        ? " ?" : "");
386}
387
388static const char *speed[] = {
389    [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
390};
391static const char *power[] = {
392    [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393    [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
394};
395static const char port[] = { '.', '-', 'p', 'c', };
396
397static char _p(u32 *s, int shift)
398{
399    return port[*s >> shift & 3];
400}
401
402static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
403{
404    u32 *s;
405
406    if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
407        return;
408
409    dev_notice(ohci->card.device,
410           "%d selfIDs, generation %d, local node ID %04x\n",
411           self_id_count, generation, ohci->node_id);
412
413    for (s = ohci->self_id_buffer; self_id_count--; ++s)
414        if ((*s & 1 << 23) == 0)
415            dev_notice(ohci->card.device,
416                "selfID 0: %08x, phy %d [%c%c%c] "
417                "%s gc=%d %s %s%s%s\n",
418                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
419                speed[*s >> 14 & 3], *s >> 16 & 63,
420                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
421                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
422        else
423            dev_notice(ohci->card.device,
424                "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
425                *s, *s >> 24 & 63,
426                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
427                _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
428}
429
430static const char *evts[] = {
431    [0x00] = "evt_no_status", [0x01] = "-reserved-",
432    [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433    [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434    [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435    [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436    [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437    [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438    [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439    [0x10] = "-reserved-", [0x11] = "ack_complete",
440    [0x12] = "ack_pending ", [0x13] = "-reserved-",
441    [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442    [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443    [0x18] = "-reserved-", [0x19] = "-reserved-",
444    [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445    [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446    [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447    [0x20] = "pending/cancelled",
448};
449static const char *tcodes[] = {
450    [0x0] = "QW req", [0x1] = "BW req",
451    [0x2] = "W resp", [0x3] = "-reserved-",
452    [0x4] = "QR req", [0x5] = "BR req",
453    [0x6] = "QR resp", [0x7] = "BR resp",
454    [0x8] = "cycle start", [0x9] = "Lk req",
455    [0xa] = "async stream packet", [0xb] = "Lk resp",
456    [0xc] = "-reserved-", [0xd] = "-reserved-",
457    [0xe] = "link internal", [0xf] = "-reserved-",
458};
459
460static void log_ar_at_event(struct fw_ohci *ohci,
461                char dir, int speed, u32 *header, int evt)
462{
463    int tcode = header[0] >> 4 & 0xf;
464    char specific[12];
465
466    if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
467        return;
468
469    if (unlikely(evt >= ARRAY_SIZE(evts)))
470            evt = 0x1f;
471
472    if (evt == OHCI1394_evt_bus_reset) {
473        dev_notice(ohci->card.device,
474               "A%c evt_bus_reset, generation %d\n",
475               dir, (header[2] >> 16) & 0xff);
476        return;
477    }
478
479    switch (tcode) {
480    case 0x0: case 0x6: case 0x8:
481        snprintf(specific, sizeof(specific), " = %08x",
482             be32_to_cpu((__force __be32)header[3]));
483        break;
484    case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485        snprintf(specific, sizeof(specific), " %x,%x",
486             header[3] >> 16, header[3] & 0xffff);
487        break;
488    default:
489        specific[0] = '\0';
490    }
491
492    switch (tcode) {
493    case 0xa:
494        dev_notice(ohci->card.device,
495               "A%c %s, %s\n",
496               dir, evts[evt], tcodes[tcode]);
497        break;
498    case 0xe:
499        dev_notice(ohci->card.device,
500               "A%c %s, PHY %08x %08x\n",
501               dir, evts[evt], header[1], header[2]);
502        break;
503    case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504        dev_notice(ohci->card.device,
505               "A%c spd %x tl %02x, "
506               "%04x -> %04x, %s, "
507               "%s, %04x%08x%s\n",
508               dir, speed, header[0] >> 10 & 0x3f,
509               header[1] >> 16, header[0] >> 16, evts[evt],
510               tcodes[tcode], header[1] & 0xffff, header[2], specific);
511        break;
512    default:
513        dev_notice(ohci->card.device,
514               "A%c spd %x tl %02x, "
515               "%04x -> %04x, %s, "
516               "%s%s\n",
517               dir, speed, header[0] >> 10 & 0x3f,
518               header[1] >> 16, header[0] >> 16, evts[evt],
519               tcodes[tcode], specific);
520    }
521}
522
523static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
524{
525    writel(data, ohci->registers + offset);
526}
527
528static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
529{
530    return readl(ohci->registers + offset);
531}
532
533static inline void flush_writes(const struct fw_ohci *ohci)
534{
535    /* Do a dummy read to flush writes. */
536    reg_read(ohci, OHCI1394_Version);
537}
538
539/*
540 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
544 */
545static int read_phy_reg(struct fw_ohci *ohci, int addr)
546{
547    u32 val;
548    int i;
549
550    reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
551    for (i = 0; i < 3 + 100; i++) {
552        val = reg_read(ohci, OHCI1394_PhyControl);
553        if (!~val)
554            return -ENODEV; /* Card was ejected. */
555
556        if (val & OHCI1394_PhyControl_ReadDone)
557            return OHCI1394_PhyControl_ReadData(val);
558
559        /*
560         * Try a few times without waiting. Sleeping is necessary
561         * only when the link/PHY interface is busy.
562         */
563        if (i >= 3)
564            msleep(1);
565    }
566    dev_err(ohci->card.device, "failed to read phy reg\n");
567
568    return -EBUSY;
569}
570
571static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
572{
573    int i;
574
575    reg_write(ohci, OHCI1394_PhyControl,
576          OHCI1394_PhyControl_Write(addr, val));
577    for (i = 0; i < 3 + 100; i++) {
578        val = reg_read(ohci, OHCI1394_PhyControl);
579        if (!~val)
580            return -ENODEV; /* Card was ejected. */
581
582        if (!(val & OHCI1394_PhyControl_WritePending))
583            return 0;
584
585        if (i >= 3)
586            msleep(1);
587    }
588    dev_err(ohci->card.device, "failed to write phy reg\n");
589
590    return -EBUSY;
591}
592
593static int update_phy_reg(struct fw_ohci *ohci, int addr,
594              int clear_bits, int set_bits)
595{
596    int ret = read_phy_reg(ohci, addr);
597    if (ret < 0)
598        return ret;
599
600    /*
601     * The interrupt status bits are cleared by writing a one bit.
602     * Avoid clearing them unless explicitly requested in set_bits.
603     */
604    if (addr == 5)
605        clear_bits |= PHY_INT_STATUS_BITS;
606
607    return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
608}
609
610static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
611{
612    int ret;
613
614    ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
615    if (ret < 0)
616        return ret;
617
618    return read_phy_reg(ohci, addr);
619}
620
621static int ohci_read_phy_reg(struct fw_card *card, int addr)
622{
623    struct fw_ohci *ohci = fw_ohci(card);
624    int ret;
625
626    mutex_lock(&ohci->phy_reg_mutex);
627    ret = read_phy_reg(ohci, addr);
628    mutex_unlock(&ohci->phy_reg_mutex);
629
630    return ret;
631}
632
633static int ohci_update_phy_reg(struct fw_card *card, int addr,
634                   int clear_bits, int set_bits)
635{
636    struct fw_ohci *ohci = fw_ohci(card);
637    int ret;
638
639    mutex_lock(&ohci->phy_reg_mutex);
640    ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
641    mutex_unlock(&ohci->phy_reg_mutex);
642
643    return ret;
644}
645
646static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
647{
648    return page_private(ctx->pages[i]);
649}
650
651static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
652{
653    struct descriptor *d;
654
655    d = &ctx->descriptors[index];
656    d->branch_address &= cpu_to_le32(~0xf);
657    d->res_count = cpu_to_le16(PAGE_SIZE);
658    d->transfer_status = 0;
659
660    wmb(); /* finish init of new descriptors before branch_address update */
661    d = &ctx->descriptors[ctx->last_buffer_index];
662    d->branch_address |= cpu_to_le32(1);
663
664    ctx->last_buffer_index = index;
665
666    reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
667}
668
669static void ar_context_release(struct ar_context *ctx)
670{
671    unsigned int i;
672
673    if (ctx->buffer)
674        vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
675
676    for (i = 0; i < AR_BUFFERS; i++)
677        if (ctx->pages[i]) {
678            dma_unmap_page(ctx->ohci->card.device,
679                       ar_buffer_bus(ctx, i),
680                       PAGE_SIZE, DMA_FROM_DEVICE);
681            __free_page(ctx->pages[i]);
682        }
683}
684
685static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
686{
687    struct fw_ohci *ohci = ctx->ohci;
688
689    if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
690        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
691        flush_writes(ohci);
692
693        dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
694            error_msg);
695    }
696    /* FIXME: restart? */
697}
698
699static inline unsigned int ar_next_buffer_index(unsigned int index)
700{
701    return (index + 1) % AR_BUFFERS;
702}
703
704static inline unsigned int ar_prev_buffer_index(unsigned int index)
705{
706    return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
707}
708
709static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
710{
711    return ar_next_buffer_index(ctx->last_buffer_index);
712}
713
714/*
715 * We search for the buffer that contains the last AR packet DMA data written
716 * by the controller.
717 */
718static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
719                         unsigned int *buffer_offset)
720{
721    unsigned int i, next_i, last = ctx->last_buffer_index;
722    __le16 res_count, next_res_count;
723
724    i = ar_first_buffer_index(ctx);
725    res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
726
727    /* A buffer that is not yet completely filled must be the last one. */
728    while (i != last && res_count == 0) {
729
730        /* Peek at the next descriptor. */
731        next_i = ar_next_buffer_index(i);
732        rmb(); /* read descriptors in order */
733        next_res_count = ACCESS_ONCE(
734                ctx->descriptors[next_i].res_count);
735        /*
736         * If the next descriptor is still empty, we must stop at this
737         * descriptor.
738         */
739        if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
740            /*
741             * The exception is when the DMA data for one packet is
742             * split over three buffers; in this case, the middle
743             * buffer's descriptor might be never updated by the
744             * controller and look still empty, and we have to peek
745             * at the third one.
746             */
747            if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748                next_i = ar_next_buffer_index(next_i);
749                rmb();
750                next_res_count = ACCESS_ONCE(
751                    ctx->descriptors[next_i].res_count);
752                if (next_res_count != cpu_to_le16(PAGE_SIZE))
753                    goto next_buffer_is_active;
754            }
755
756            break;
757        }
758
759next_buffer_is_active:
760        i = next_i;
761        res_count = next_res_count;
762    }
763
764    rmb(); /* read res_count before the DMA data */
765
766    *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
767    if (*buffer_offset > PAGE_SIZE) {
768        *buffer_offset = 0;
769        ar_context_abort(ctx, "corrupted descriptor");
770    }
771
772    return i;
773}
774
775static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
776                    unsigned int end_buffer_index,
777                    unsigned int end_buffer_offset)
778{
779    unsigned int i;
780
781    i = ar_first_buffer_index(ctx);
782    while (i != end_buffer_index) {
783        dma_sync_single_for_cpu(ctx->ohci->card.device,
784                    ar_buffer_bus(ctx, i),
785                    PAGE_SIZE, DMA_FROM_DEVICE);
786        i = ar_next_buffer_index(i);
787    }
788    if (end_buffer_offset > 0)
789        dma_sync_single_for_cpu(ctx->ohci->card.device,
790                    ar_buffer_bus(ctx, i),
791                    end_buffer_offset, DMA_FROM_DEVICE);
792}
793
794#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795#define cond_le32_to_cpu(v) \
796    (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
797#else
798#define cond_le32_to_cpu(v) le32_to_cpu(v)
799#endif
800
801static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
802{
803    struct fw_ohci *ohci = ctx->ohci;
804    struct fw_packet p;
805    u32 status, length, tcode;
806    int evt;
807
808    p.header[0] = cond_le32_to_cpu(buffer[0]);
809    p.header[1] = cond_le32_to_cpu(buffer[1]);
810    p.header[2] = cond_le32_to_cpu(buffer[2]);
811
812    tcode = (p.header[0] >> 4) & 0x0f;
813    switch (tcode) {
814    case TCODE_WRITE_QUADLET_REQUEST:
815    case TCODE_READ_QUADLET_RESPONSE:
816        p.header[3] = (__force __u32) buffer[3];
817        p.header_length = 16;
818        p.payload_length = 0;
819        break;
820
821    case TCODE_READ_BLOCK_REQUEST :
822        p.header[3] = cond_le32_to_cpu(buffer[3]);
823        p.header_length = 16;
824        p.payload_length = 0;
825        break;
826
827    case TCODE_WRITE_BLOCK_REQUEST:
828    case TCODE_READ_BLOCK_RESPONSE:
829    case TCODE_LOCK_REQUEST:
830    case TCODE_LOCK_RESPONSE:
831        p.header[3] = cond_le32_to_cpu(buffer[3]);
832        p.header_length = 16;
833        p.payload_length = p.header[3] >> 16;
834        if (p.payload_length > MAX_ASYNC_PAYLOAD) {
835            ar_context_abort(ctx, "invalid packet length");
836            return NULL;
837        }
838        break;
839
840    case TCODE_WRITE_RESPONSE:
841    case TCODE_READ_QUADLET_REQUEST:
842    case OHCI_TCODE_PHY_PACKET:
843        p.header_length = 12;
844        p.payload_length = 0;
845        break;
846
847    default:
848        ar_context_abort(ctx, "invalid tcode");
849        return NULL;
850    }
851
852    p.payload = (void *) buffer + p.header_length;
853
854    /* FIXME: What to do about evt_* errors? */
855    length = (p.header_length + p.payload_length + 3) / 4;
856    status = cond_le32_to_cpu(buffer[length]);
857    evt = (status >> 16) & 0x1f;
858
859    p.ack = evt - 16;
860    p.speed = (status >> 21) & 0x7;
861    p.timestamp = status & 0xffff;
862    p.generation = ohci->request_generation;
863
864    log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
865
866    /*
867     * Several controllers, notably from NEC and VIA, forget to
868     * write ack_complete status at PHY packet reception.
869     */
870    if (evt == OHCI1394_evt_no_status &&
871        (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
872        p.ack = ACK_COMPLETE;
873
874    /*
875     * The OHCI bus reset handler synthesizes a PHY packet with
876     * the new generation number when a bus reset happens (see
877     * section 8.4.2.3). This helps us determine when a request
878     * was received and make sure we send the response in the same
879     * generation. We only need this for requests; for responses
880     * we use the unique tlabel for finding the matching
881     * request.
882     *
883     * Alas some chips sometimes emit bus reset packets with a
884     * wrong generation. We set the correct generation for these
885     * at a slightly incorrect time (in bus_reset_work).
886     */
887    if (evt == OHCI1394_evt_bus_reset) {
888        if (!(ohci->quirks & QUIRK_RESET_PACKET))
889            ohci->request_generation = (p.header[2] >> 16) & 0xff;
890    } else if (ctx == &ohci->ar_request_ctx) {
891        fw_core_handle_request(&ohci->card, &p);
892    } else {
893        fw_core_handle_response(&ohci->card, &p);
894    }
895
896    return buffer + length + 1;
897}
898
899static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
900{
901    void *next;
902
903    while (p < end) {
904        next = handle_ar_packet(ctx, p);
905        if (!next)
906            return p;
907        p = next;
908    }
909
910    return p;
911}
912
913static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
914{
915    unsigned int i;
916
917    i = ar_first_buffer_index(ctx);
918    while (i != end_buffer) {
919        dma_sync_single_for_device(ctx->ohci->card.device,
920                       ar_buffer_bus(ctx, i),
921                       PAGE_SIZE, DMA_FROM_DEVICE);
922        ar_context_link_page(ctx, i);
923        i = ar_next_buffer_index(i);
924    }
925}
926
927static void ar_context_tasklet(unsigned long data)
928{
929    struct ar_context *ctx = (struct ar_context *)data;
930    unsigned int end_buffer_index, end_buffer_offset;
931    void *p, *end;
932
933    p = ctx->pointer;
934    if (!p)
935        return;
936
937    end_buffer_index = ar_search_last_active_buffer(ctx,
938                            &end_buffer_offset);
939    ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
940    end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
941
942    if (end_buffer_index < ar_first_buffer_index(ctx)) {
943        /*
944         * The filled part of the overall buffer wraps around; handle
945         * all packets up to the buffer end here. If the last packet
946         * wraps around, its tail will be visible after the buffer end
947         * because the buffer start pages are mapped there again.
948         */
949        void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
950        p = handle_ar_packets(ctx, p, buffer_end);
951        if (p < buffer_end)
952            goto error;
953        /* adjust p to point back into the actual buffer */
954        p -= AR_BUFFERS * PAGE_SIZE;
955    }
956
957    p = handle_ar_packets(ctx, p, end);
958    if (p != end) {
959        if (p > end)
960            ar_context_abort(ctx, "inconsistent descriptor");
961        goto error;
962    }
963
964    ctx->pointer = p;
965    ar_recycle_buffers(ctx, end_buffer_index);
966
967    return;
968
969error:
970    ctx->pointer = NULL;
971}
972
973static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
974               unsigned int descriptors_offset, u32 regs)
975{
976    unsigned int i;
977    dma_addr_t dma_addr;
978    struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979    struct descriptor *d;
980
981    ctx->regs = regs;
982    ctx->ohci = ohci;
983    tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
984
985    for (i = 0; i < AR_BUFFERS; i++) {
986        ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
987        if (!ctx->pages[i])
988            goto out_of_memory;
989        dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
990                    0, PAGE_SIZE, DMA_FROM_DEVICE);
991        if (dma_mapping_error(ohci->card.device, dma_addr)) {
992            __free_page(ctx->pages[i]);
993            ctx->pages[i] = NULL;
994            goto out_of_memory;
995        }
996        set_page_private(ctx->pages[i], dma_addr);
997    }
998
999    for (i = 0; i < AR_BUFFERS; i++)
1000        pages[i] = ctx->pages[i];
1001    for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1002        pages[AR_BUFFERS + i] = ctx->pages[i];
1003    ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1004                 -1, PAGE_KERNEL);
1005    if (!ctx->buffer)
1006        goto out_of_memory;
1007
1008    ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1009    ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1010
1011    for (i = 0; i < AR_BUFFERS; i++) {
1012        d = &ctx->descriptors[i];
1013        d->req_count = cpu_to_le16(PAGE_SIZE);
1014        d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1015                        DESCRIPTOR_STATUS |
1016                        DESCRIPTOR_BRANCH_ALWAYS);
1017        d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1018        d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1019            ar_next_buffer_index(i) * sizeof(struct descriptor));
1020    }
1021
1022    return 0;
1023
1024out_of_memory:
1025    ar_context_release(ctx);
1026
1027    return -ENOMEM;
1028}
1029
1030static void ar_context_run(struct ar_context *ctx)
1031{
1032    unsigned int i;
1033
1034    for (i = 0; i < AR_BUFFERS; i++)
1035        ar_context_link_page(ctx, i);
1036
1037    ctx->pointer = ctx->buffer;
1038
1039    reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1040    reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1041}
1042
1043static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1044{
1045    __le16 branch;
1046
1047    branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1048
1049    /* figure out which descriptor the branch address goes in */
1050    if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1051        return d;
1052    else
1053        return d + z - 1;
1054}
1055
1056static void context_tasklet(unsigned long data)
1057{
1058    struct context *ctx = (struct context *) data;
1059    struct descriptor *d, *last;
1060    u32 address;
1061    int z;
1062    struct descriptor_buffer *desc;
1063
1064    desc = list_entry(ctx->buffer_list.next,
1065            struct descriptor_buffer, list);
1066    last = ctx->last;
1067    while (last->branch_address != 0) {
1068        struct descriptor_buffer *old_desc = desc;
1069        address = le32_to_cpu(last->branch_address);
1070        z = address & 0xf;
1071        address &= ~0xf;
1072        ctx->current_bus = address;
1073
1074        /* If the branch address points to a buffer outside of the
1075         * current buffer, advance to the next buffer. */
1076        if (address < desc->buffer_bus ||
1077                address >= desc->buffer_bus + desc->used)
1078            desc = list_entry(desc->list.next,
1079                    struct descriptor_buffer, list);
1080        d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1081        last = find_branch_descriptor(d, z);
1082
1083        if (!ctx->callback(ctx, d, last))
1084            break;
1085
1086        if (old_desc != desc) {
1087            /* If we've advanced to the next buffer, move the
1088             * previous buffer to the free list. */
1089            unsigned long flags;
1090            old_desc->used = 0;
1091            spin_lock_irqsave(&ctx->ohci->lock, flags);
1092            list_move_tail(&old_desc->list, &ctx->buffer_list);
1093            spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1094        }
1095        ctx->last = last;
1096    }
1097}
1098
1099/*
1100 * Allocate a new buffer and add it to the list of free buffers for this
1101 * context. Must be called with ohci->lock held.
1102 */
1103static int context_add_buffer(struct context *ctx)
1104{
1105    struct descriptor_buffer *desc;
1106    dma_addr_t uninitialized_var(bus_addr);
1107    int offset;
1108
1109    /*
1110     * 16MB of descriptors should be far more than enough for any DMA
1111     * program. This will catch run-away userspace or DoS attacks.
1112     */
1113    if (ctx->total_allocation >= 16*1024*1024)
1114        return -ENOMEM;
1115
1116    desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1117            &bus_addr, GFP_ATOMIC);
1118    if (!desc)
1119        return -ENOMEM;
1120
1121    offset = (void *)&desc->buffer - (void *)desc;
1122    desc->buffer_size = PAGE_SIZE - offset;
1123    desc->buffer_bus = bus_addr + offset;
1124    desc->used = 0;
1125
1126    list_add_tail(&desc->list, &ctx->buffer_list);
1127    ctx->total_allocation += PAGE_SIZE;
1128
1129    return 0;
1130}
1131
1132static int context_init(struct context *ctx, struct fw_ohci *ohci,
1133            u32 regs, descriptor_callback_t callback)
1134{
1135    ctx->ohci = ohci;
1136    ctx->regs = regs;
1137    ctx->total_allocation = 0;
1138
1139    INIT_LIST_HEAD(&ctx->buffer_list);
1140    if (context_add_buffer(ctx) < 0)
1141        return -ENOMEM;
1142
1143    ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144            struct descriptor_buffer, list);
1145
1146    tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147    ctx->callback = callback;
1148
1149    /*
1150     * We put a dummy descriptor in the buffer that has a NULL
1151     * branch address and looks like it's been sent. That way we
1152     * have a descriptor to append DMA programs to.
1153     */
1154    memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155    ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156    ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157    ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158    ctx->last = ctx->buffer_tail->buffer;
1159    ctx->prev = ctx->buffer_tail->buffer;
1160
1161    return 0;
1162}
1163
1164static void context_release(struct context *ctx)
1165{
1166    struct fw_card *card = &ctx->ohci->card;
1167    struct descriptor_buffer *desc, *tmp;
1168
1169    list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1170        dma_free_coherent(card->device, PAGE_SIZE, desc,
1171            desc->buffer_bus -
1172            ((void *)&desc->buffer - (void *)desc));
1173}
1174
1175/* Must be called with ohci->lock held */
1176static struct descriptor *context_get_descriptors(struct context *ctx,
1177                          int z, dma_addr_t *d_bus)
1178{
1179    struct descriptor *d = NULL;
1180    struct descriptor_buffer *desc = ctx->buffer_tail;
1181
1182    if (z * sizeof(*d) > desc->buffer_size)
1183        return NULL;
1184
1185    if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1186        /* No room for the descriptor in this buffer, so advance to the
1187         * next one. */
1188
1189        if (desc->list.next == &ctx->buffer_list) {
1190            /* If there is no free buffer next in the list,
1191             * allocate one. */
1192            if (context_add_buffer(ctx) < 0)
1193                return NULL;
1194        }
1195        desc = list_entry(desc->list.next,
1196                struct descriptor_buffer, list);
1197        ctx->buffer_tail = desc;
1198    }
1199
1200    d = desc->buffer + desc->used / sizeof(*d);
1201    memset(d, 0, z * sizeof(*d));
1202    *d_bus = desc->buffer_bus + desc->used;
1203
1204    return d;
1205}
1206
1207static void context_run(struct context *ctx, u32 extra)
1208{
1209    struct fw_ohci *ohci = ctx->ohci;
1210
1211    reg_write(ohci, COMMAND_PTR(ctx->regs),
1212          le32_to_cpu(ctx->last->branch_address));
1213    reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1214    reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1215    ctx->running = true;
1216    flush_writes(ohci);
1217}
1218
1219static void context_append(struct context *ctx,
1220               struct descriptor *d, int z, int extra)
1221{
1222    dma_addr_t d_bus;
1223    struct descriptor_buffer *desc = ctx->buffer_tail;
1224
1225    d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226
1227    desc->used += (z + extra) * sizeof(*d);
1228
1229    wmb(); /* finish init of new descriptors before branch_address update */
1230    ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1231    ctx->prev = find_branch_descriptor(d, z);
1232}
1233
1234static void context_stop(struct context *ctx)
1235{
1236    struct fw_ohci *ohci = ctx->ohci;
1237    u32 reg;
1238    int i;
1239
1240    reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1241    ctx->running = false;
1242
1243    for (i = 0; i < 1000; i++) {
1244        reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1245        if ((reg & CONTEXT_ACTIVE) == 0)
1246            return;
1247
1248        if (i)
1249            udelay(10);
1250    }
1251    dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1252}
1253
1254struct driver_data {
1255    u8 inline_data[8];
1256    struct fw_packet *packet;
1257};
1258
1259/*
1260 * This function apppends a packet to the DMA queue for transmission.
1261 * Must always be called with the ochi->lock held to ensure proper
1262 * generation handling and locking around packet queue manipulation.
1263 */
1264static int at_context_queue_packet(struct context *ctx,
1265                   struct fw_packet *packet)
1266{
1267    struct fw_ohci *ohci = ctx->ohci;
1268    dma_addr_t d_bus, uninitialized_var(payload_bus);
1269    struct driver_data *driver_data;
1270    struct descriptor *d, *last;
1271    __le32 *header;
1272    int z, tcode;
1273
1274    d = context_get_descriptors(ctx, 4, &d_bus);
1275    if (d == NULL) {
1276        packet->ack = RCODE_SEND_ERROR;
1277        return -1;
1278    }
1279
1280    d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1281    d[0].res_count = cpu_to_le16(packet->timestamp);
1282
1283    /*
1284     * The DMA format for asyncronous link packets is different
1285     * from the IEEE1394 layout, so shift the fields around
1286     * accordingly.
1287     */
1288
1289    tcode = (packet->header[0] >> 4) & 0x0f;
1290    header = (__le32 *) &d[1];
1291    switch (tcode) {
1292    case TCODE_WRITE_QUADLET_REQUEST:
1293    case TCODE_WRITE_BLOCK_REQUEST:
1294    case TCODE_WRITE_RESPONSE:
1295    case TCODE_READ_QUADLET_REQUEST:
1296    case TCODE_READ_BLOCK_REQUEST:
1297    case TCODE_READ_QUADLET_RESPONSE:
1298    case TCODE_READ_BLOCK_RESPONSE:
1299    case TCODE_LOCK_REQUEST:
1300    case TCODE_LOCK_RESPONSE:
1301        header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1302                    (packet->speed << 16));
1303        header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1304                    (packet->header[0] & 0xffff0000));
1305        header[2] = cpu_to_le32(packet->header[2]);
1306
1307        if (TCODE_IS_BLOCK_PACKET(tcode))
1308            header[3] = cpu_to_le32(packet->header[3]);
1309        else
1310            header[3] = (__force __le32) packet->header[3];
1311
1312        d[0].req_count = cpu_to_le16(packet->header_length);
1313        break;
1314
1315    case TCODE_LINK_INTERNAL:
1316        header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1317                    (packet->speed << 16));
1318        header[1] = cpu_to_le32(packet->header[1]);
1319        header[2] = cpu_to_le32(packet->header[2]);
1320        d[0].req_count = cpu_to_le16(12);
1321
1322        if (is_ping_packet(&packet->header[1]))
1323            d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1324        break;
1325
1326    case TCODE_STREAM_DATA:
1327        header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1328                    (packet->speed << 16));
1329        header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1330        d[0].req_count = cpu_to_le16(8);
1331        break;
1332
1333    default:
1334        /* BUG(); */
1335        packet->ack = RCODE_SEND_ERROR;
1336        return -1;
1337    }
1338
1339    BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1340    driver_data = (struct driver_data *) &d[3];
1341    driver_data->packet = packet;
1342    packet->driver_data = driver_data;
1343
1344    if (packet->payload_length > 0) {
1345        if (packet->payload_length > sizeof(driver_data->inline_data)) {
1346            payload_bus = dma_map_single(ohci->card.device,
1347                             packet->payload,
1348                             packet->payload_length,
1349                             DMA_TO_DEVICE);
1350            if (dma_mapping_error(ohci->card.device, payload_bus)) {
1351                packet->ack = RCODE_SEND_ERROR;
1352                return -1;
1353            }
1354            packet->payload_bus = payload_bus;
1355            packet->payload_mapped = true;
1356        } else {
1357            memcpy(driver_data->inline_data, packet->payload,
1358                   packet->payload_length);
1359            payload_bus = d_bus + 3 * sizeof(*d);
1360        }
1361
1362        d[2].req_count = cpu_to_le16(packet->payload_length);
1363        d[2].data_address = cpu_to_le32(payload_bus);
1364        last = &d[2];
1365        z = 3;
1366    } else {
1367        last = &d[0];
1368        z = 2;
1369    }
1370
1371    last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1372                     DESCRIPTOR_IRQ_ALWAYS |
1373                     DESCRIPTOR_BRANCH_ALWAYS);
1374
1375    /* FIXME: Document how the locking works. */
1376    if (ohci->generation != packet->generation) {
1377        if (packet->payload_mapped)
1378            dma_unmap_single(ohci->card.device, payload_bus,
1379                     packet->payload_length, DMA_TO_DEVICE);
1380        packet->ack = RCODE_GENERATION;
1381        return -1;
1382    }
1383
1384    context_append(ctx, d, z, 4 - z);
1385
1386    if (ctx->running)
1387        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1388    else
1389        context_run(ctx, 0);
1390
1391    return 0;
1392}
1393
1394static void at_context_flush(struct context *ctx)
1395{
1396    tasklet_disable(&ctx->tasklet);
1397
1398    ctx->flushing = true;
1399    context_tasklet((unsigned long)ctx);
1400    ctx->flushing = false;
1401
1402    tasklet_enable(&ctx->tasklet);
1403}
1404
1405static int handle_at_packet(struct context *context,
1406                struct descriptor *d,
1407                struct descriptor *last)
1408{
1409    struct driver_data *driver_data;
1410    struct fw_packet *packet;
1411    struct fw_ohci *ohci = context->ohci;
1412    int evt;
1413
1414    if (last->transfer_status == 0 && !context->flushing)
1415        /* This descriptor isn't done yet, stop iteration. */
1416        return 0;
1417
1418    driver_data = (struct driver_data *) &d[3];
1419    packet = driver_data->packet;
1420    if (packet == NULL)
1421        /* This packet was cancelled, just continue. */
1422        return 1;
1423
1424    if (packet->payload_mapped)
1425        dma_unmap_single(ohci->card.device, packet->payload_bus,
1426                 packet->payload_length, DMA_TO_DEVICE);
1427
1428    evt = le16_to_cpu(last->transfer_status) & 0x1f;
1429    packet->timestamp = le16_to_cpu(last->res_count);
1430
1431    log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1432
1433    switch (evt) {
1434    case OHCI1394_evt_timeout:
1435        /* Async response transmit timed out. */
1436        packet->ack = RCODE_CANCELLED;
1437        break;
1438
1439    case OHCI1394_evt_flushed:
1440        /*
1441         * The packet was flushed should give same error as
1442         * when we try to use a stale generation count.
1443         */
1444        packet->ack = RCODE_GENERATION;
1445        break;
1446
1447    case OHCI1394_evt_missing_ack:
1448        if (context->flushing)
1449            packet->ack = RCODE_GENERATION;
1450        else {
1451            /*
1452             * Using a valid (current) generation count, but the
1453             * node is not on the bus or not sending acks.
1454             */
1455            packet->ack = RCODE_NO_ACK;
1456        }
1457        break;
1458
1459    case ACK_COMPLETE + 0x10:
1460    case ACK_PENDING + 0x10:
1461    case ACK_BUSY_X + 0x10:
1462    case ACK_BUSY_A + 0x10:
1463    case ACK_BUSY_B + 0x10:
1464    case ACK_DATA_ERROR + 0x10:
1465    case ACK_TYPE_ERROR + 0x10:
1466        packet->ack = evt - 0x10;
1467        break;
1468
1469    case OHCI1394_evt_no_status:
1470        if (context->flushing) {
1471            packet->ack = RCODE_GENERATION;
1472            break;
1473        }
1474        /* fall through */
1475
1476    default:
1477        packet->ack = RCODE_SEND_ERROR;
1478        break;
1479    }
1480
1481    packet->callback(packet, &ohci->card, packet->ack);
1482
1483    return 1;
1484}
1485
1486#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1491
1492static void handle_local_rom(struct fw_ohci *ohci,
1493                 struct fw_packet *packet, u32 csr)
1494{
1495    struct fw_packet response;
1496    int tcode, length, i;
1497
1498    tcode = HEADER_GET_TCODE(packet->header[0]);
1499    if (TCODE_IS_BLOCK_PACKET(tcode))
1500        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501    else
1502        length = 4;
1503
1504    i = csr - CSR_CONFIG_ROM;
1505    if (i + length > CONFIG_ROM_SIZE) {
1506        fw_fill_response(&response, packet->header,
1507                 RCODE_ADDRESS_ERROR, NULL, 0);
1508    } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1509        fw_fill_response(&response, packet->header,
1510                 RCODE_TYPE_ERROR, NULL, 0);
1511    } else {
1512        fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1513                 (void *) ohci->config_rom + i, length);
1514    }
1515
1516    fw_core_handle_response(&ohci->card, &response);
1517}
1518
1519static void handle_local_lock(struct fw_ohci *ohci,
1520                  struct fw_packet *packet, u32 csr)
1521{
1522    struct fw_packet response;
1523    int tcode, length, ext_tcode, sel, try;
1524    __be32 *payload, lock_old;
1525    u32 lock_arg, lock_data;
1526
1527    tcode = HEADER_GET_TCODE(packet->header[0]);
1528    length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1529    payload = packet->payload;
1530    ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1531
1532    if (tcode == TCODE_LOCK_REQUEST &&
1533        ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1534        lock_arg = be32_to_cpu(payload[0]);
1535        lock_data = be32_to_cpu(payload[1]);
1536    } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1537        lock_arg = 0;
1538        lock_data = 0;
1539    } else {
1540        fw_fill_response(&response, packet->header,
1541                 RCODE_TYPE_ERROR, NULL, 0);
1542        goto out;
1543    }
1544
1545    sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1546    reg_write(ohci, OHCI1394_CSRData, lock_data);
1547    reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1548    reg_write(ohci, OHCI1394_CSRControl, sel);
1549
1550    for (try = 0; try < 20; try++)
1551        if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1552            lock_old = cpu_to_be32(reg_read(ohci,
1553                            OHCI1394_CSRData));
1554            fw_fill_response(&response, packet->header,
1555                     RCODE_COMPLETE,
1556                     &lock_old, sizeof(lock_old));
1557            goto out;
1558        }
1559
1560    dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1561    fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1562
1563 out:
1564    fw_core_handle_response(&ohci->card, &response);
1565}
1566
1567static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1568{
1569    u64 offset, csr;
1570
1571    if (ctx == &ctx->ohci->at_request_ctx) {
1572        packet->ack = ACK_PENDING;
1573        packet->callback(packet, &ctx->ohci->card, packet->ack);
1574    }
1575
1576    offset =
1577        ((unsigned long long)
1578         HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1579        packet->header[2];
1580    csr = offset - CSR_REGISTER_BASE;
1581
1582    /* Handle config rom reads. */
1583    if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1584        handle_local_rom(ctx->ohci, packet, csr);
1585    else switch (csr) {
1586    case CSR_BUS_MANAGER_ID:
1587    case CSR_BANDWIDTH_AVAILABLE:
1588    case CSR_CHANNELS_AVAILABLE_HI:
1589    case CSR_CHANNELS_AVAILABLE_LO:
1590        handle_local_lock(ctx->ohci, packet, csr);
1591        break;
1592    default:
1593        if (ctx == &ctx->ohci->at_request_ctx)
1594            fw_core_handle_request(&ctx->ohci->card, packet);
1595        else
1596            fw_core_handle_response(&ctx->ohci->card, packet);
1597        break;
1598    }
1599
1600    if (ctx == &ctx->ohci->at_response_ctx) {
1601        packet->ack = ACK_COMPLETE;
1602        packet->callback(packet, &ctx->ohci->card, packet->ack);
1603    }
1604}
1605
1606static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1607{
1608    unsigned long flags;
1609    int ret;
1610
1611    spin_lock_irqsave(&ctx->ohci->lock, flags);
1612
1613    if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1614        ctx->ohci->generation == packet->generation) {
1615        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1616        handle_local_request(ctx, packet);
1617        return;
1618    }
1619
1620    ret = at_context_queue_packet(ctx, packet);
1621    spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1622
1623    if (ret < 0)
1624        packet->callback(packet, &ctx->ohci->card, packet->ack);
1625
1626}
1627
1628static void detect_dead_context(struct fw_ohci *ohci,
1629                const char *name, unsigned int regs)
1630{
1631    u32 ctl;
1632
1633    ctl = reg_read(ohci, CONTROL_SET(regs));
1634    if (ctl & CONTEXT_DEAD)
1635        dev_err(ohci->card.device,
1636            "DMA context %s has stopped, error code: %s\n",
1637            name, evts[ctl & 0x1f]);
1638}
1639
1640static void handle_dead_contexts(struct fw_ohci *ohci)
1641{
1642    unsigned int i;
1643    char name[8];
1644
1645    detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1646    detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1647    detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1648    detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1649    for (i = 0; i < 32; ++i) {
1650        if (!(ohci->it_context_support & (1 << i)))
1651            continue;
1652        sprintf(name, "IT%u", i);
1653        detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1654    }
1655    for (i = 0; i < 32; ++i) {
1656        if (!(ohci->ir_context_support & (1 << i)))
1657            continue;
1658        sprintf(name, "IR%u", i);
1659        detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1660    }
1661    /* TODO: maybe try to flush and restart the dead contexts */
1662}
1663
1664static u32 cycle_timer_ticks(u32 cycle_timer)
1665{
1666    u32 ticks;
1667
1668    ticks = cycle_timer & 0xfff;
1669    ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1670    ticks += (3072 * 8000) * (cycle_timer >> 25);
1671
1672    return ticks;
1673}
1674
1675/*
1676 * Some controllers exhibit one or more of the following bugs when updating the
1677 * iso cycle timer register:
1678 * - When the lowest six bits are wrapping around to zero, a read that happens
1679 * at the same time will return garbage in the lowest ten bits.
1680 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681 * not incremented for about 60 ns.
1682 * - Occasionally, the entire register reads zero.
1683 *
1684 * To catch these, we read the register three times and ensure that the
1685 * difference between each two consecutive reads is approximately the same, i.e.
1686 * less than twice the other. Furthermore, any negative difference indicates an
1687 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688 * execute, so we have enough precision to compute the ratio of the differences.)
1689 */
1690static u32 get_cycle_time(struct fw_ohci *ohci)
1691{
1692    u32 c0, c1, c2;
1693    u32 t0, t1, t2;
1694    s32 diff01, diff12;
1695    int i;
1696
1697    c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1698
1699    if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1700        i = 0;
1701        c1 = c2;
1702        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1703        do {
1704            c0 = c1;
1705            c1 = c2;
1706            c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1707            t0 = cycle_timer_ticks(c0);
1708            t1 = cycle_timer_ticks(c1);
1709            t2 = cycle_timer_ticks(c2);
1710            diff01 = t1 - t0;
1711            diff12 = t2 - t1;
1712        } while ((diff01 <= 0 || diff12 <= 0 ||
1713              diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1714             && i++ < 20);
1715    }
1716
1717    return c2;
1718}
1719
1720/*
1721 * This function has to be called at least every 64 seconds. The bus_time
1722 * field stores not only the upper 25 bits of the BUS_TIME register but also
1723 * the most significant bit of the cycle timer in bit 6 so that we can detect
1724 * changes in this bit.
1725 */
1726static u32 update_bus_time(struct fw_ohci *ohci)
1727{
1728    u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1729
1730    if (unlikely(!ohci->bus_time_running)) {
1731        reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1732        ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1733                         (cycle_time_seconds & 0x40);
1734        ohci->bus_time_running = true;
1735    }
1736
1737    if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1738        ohci->bus_time += 0x40;
1739
1740    return ohci->bus_time | cycle_time_seconds;
1741}
1742
1743static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1744{
1745    int reg;
1746
1747    mutex_lock(&ohci->phy_reg_mutex);
1748    reg = write_phy_reg(ohci, 7, port_index);
1749    if (reg >= 0)
1750        reg = read_phy_reg(ohci, 8);
1751    mutex_unlock(&ohci->phy_reg_mutex);
1752    if (reg < 0)
1753        return reg;
1754
1755    switch (reg & 0x0f) {
1756    case 0x06:
1757        return 2; /* is child node (connected to parent node) */
1758    case 0x0e:
1759        return 3; /* is parent node (connected to child node) */
1760    }
1761    return 1; /* not connected */
1762}
1763
1764static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1765    int self_id_count)
1766{
1767    int i;
1768    u32 entry;
1769
1770    for (i = 0; i < self_id_count; i++) {
1771        entry = ohci->self_id_buffer[i];
1772        if ((self_id & 0xff000000) == (entry & 0xff000000))
1773            return -1;
1774        if ((self_id & 0xff000000) < (entry & 0xff000000))
1775            return i;
1776    }
1777    return i;
1778}
1779
1780/*
1781 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1782 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1783 * Construct the selfID from phy register contents.
1784 * FIXME: How to determine the selfID.i flag?
1785 */
1786static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1787{
1788    int reg, i, pos, status;
1789    /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1790    u32 self_id = 0x8040c800;
1791
1792    reg = reg_read(ohci, OHCI1394_NodeID);
1793    if (!(reg & OHCI1394_NodeID_idValid)) {
1794        dev_notice(ohci->card.device,
1795               "node ID not valid, new bus reset in progress\n");
1796        return -EBUSY;
1797    }
1798    self_id |= ((reg & 0x3f) << 24); /* phy ID */
1799
1800    reg = ohci_read_phy_reg(&ohci->card, 4);
1801    if (reg < 0)
1802        return reg;
1803    self_id |= ((reg & 0x07) << 8); /* power class */
1804
1805    reg = ohci_read_phy_reg(&ohci->card, 1);
1806    if (reg < 0)
1807        return reg;
1808    self_id |= ((reg & 0x3f) << 16); /* gap count */
1809
1810    for (i = 0; i < 3; i++) {
1811        status = get_status_for_port(ohci, i);
1812        if (status < 0)
1813            return status;
1814        self_id |= ((status & 0x3) << (6 - (i * 2)));
1815    }
1816
1817    pos = get_self_id_pos(ohci, self_id, self_id_count);
1818    if (pos >= 0) {
1819        memmove(&(ohci->self_id_buffer[pos+1]),
1820            &(ohci->self_id_buffer[pos]),
1821            (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1822        ohci->self_id_buffer[pos] = self_id;
1823        self_id_count++;
1824    }
1825    return self_id_count;
1826}
1827
1828static void bus_reset_work(struct work_struct *work)
1829{
1830    struct fw_ohci *ohci =
1831        container_of(work, struct fw_ohci, bus_reset_work);
1832    int self_id_count, generation, new_generation, i, j;
1833    u32 reg;
1834    void *free_rom = NULL;
1835    dma_addr_t free_rom_bus = 0;
1836    bool is_new_root;
1837
1838    reg = reg_read(ohci, OHCI1394_NodeID);
1839    if (!(reg & OHCI1394_NodeID_idValid)) {
1840        dev_notice(ohci->card.device,
1841               "node ID not valid, new bus reset in progress\n");
1842        return;
1843    }
1844    if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1845        dev_notice(ohci->card.device, "malconfigured bus\n");
1846        return;
1847    }
1848    ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1849                   OHCI1394_NodeID_nodeNumber);
1850
1851    is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1852    if (!(ohci->is_root && is_new_root))
1853        reg_write(ohci, OHCI1394_LinkControlSet,
1854              OHCI1394_LinkControl_cycleMaster);
1855    ohci->is_root = is_new_root;
1856
1857    reg = reg_read(ohci, OHCI1394_SelfIDCount);
1858    if (reg & OHCI1394_SelfIDCount_selfIDError) {
1859        dev_notice(ohci->card.device, "inconsistent self IDs\n");
1860        return;
1861    }
1862    /*
1863     * The count in the SelfIDCount register is the number of
1864     * bytes in the self ID receive buffer. Since we also receive
1865     * the inverted quadlets and a header quadlet, we shift one
1866     * bit extra to get the actual number of self IDs.
1867     */
1868    self_id_count = (reg >> 3) & 0xff;
1869
1870    if (self_id_count > 252) {
1871        dev_notice(ohci->card.device, "inconsistent self IDs\n");
1872        return;
1873    }
1874
1875    generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1876    rmb();
1877
1878    for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1879        if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1880            /*
1881             * If the invalid data looks like a cycle start packet,
1882             * it's likely to be the result of the cycle master
1883             * having a wrong gap count. In this case, the self IDs
1884             * so far are valid and should be processed so that the
1885             * bus manager can then correct the gap count.
1886             */
1887            if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1888                            == 0xffff008f) {
1889                dev_notice(ohci->card.device,
1890                       "ignoring spurious self IDs\n");
1891                self_id_count = j;
1892                break;
1893            } else {
1894                dev_notice(ohci->card.device,
1895                       "inconsistent self IDs\n");
1896                return;
1897            }
1898        }
1899        ohci->self_id_buffer[j] =
1900                cond_le32_to_cpu(ohci->self_id_cpu[i]);
1901    }
1902
1903    if (ohci->quirks & QUIRK_TI_SLLZ059) {
1904        self_id_count = find_and_insert_self_id(ohci, self_id_count);
1905        if (self_id_count < 0) {
1906            dev_notice(ohci->card.device,
1907                   "could not construct local self ID\n");
1908            return;
1909        }
1910    }
1911
1912    if (self_id_count == 0) {
1913        dev_notice(ohci->card.device, "inconsistent self IDs\n");
1914        return;
1915    }
1916    rmb();
1917
1918    /*
1919     * Check the consistency of the self IDs we just read. The
1920     * problem we face is that a new bus reset can start while we
1921     * read out the self IDs from the DMA buffer. If this happens,
1922     * the DMA buffer will be overwritten with new self IDs and we
1923     * will read out inconsistent data. The OHCI specification
1924     * (section 11.2) recommends a technique similar to
1925     * linux/seqlock.h, where we remember the generation of the
1926     * self IDs in the buffer before reading them out and compare
1927     * it to the current generation after reading them out. If
1928     * the two generations match we know we have a consistent set
1929     * of self IDs.
1930     */
1931
1932    new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1933    if (new_generation != generation) {
1934        dev_notice(ohci->card.device,
1935               "new bus reset, discarding self ids\n");
1936        return;
1937    }
1938
1939    /* FIXME: Document how the locking works. */
1940    spin_lock_irq(&ohci->lock);
1941
1942    ohci->generation = -1; /* prevent AT packet queueing */
1943    context_stop(&ohci->at_request_ctx);
1944    context_stop(&ohci->at_response_ctx);
1945
1946    spin_unlock_irq(&ohci->lock);
1947
1948    /*
1949     * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1950     * packets in the AT queues and software needs to drain them.
1951     * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1952     */
1953    at_context_flush(&ohci->at_request_ctx);
1954    at_context_flush(&ohci->at_response_ctx);
1955
1956    spin_lock_irq(&ohci->lock);
1957
1958    ohci->generation = generation;
1959    reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1960
1961    if (ohci->quirks & QUIRK_RESET_PACKET)
1962        ohci->request_generation = generation;
1963
1964    /*
1965     * This next bit is unrelated to the AT context stuff but we
1966     * have to do it under the spinlock also. If a new config rom
1967     * was set up before this reset, the old one is now no longer
1968     * in use and we can free it. Update the config rom pointers
1969     * to point to the current config rom and clear the
1970     * next_config_rom pointer so a new update can take place.
1971     */
1972
1973    if (ohci->next_config_rom != NULL) {
1974        if (ohci->next_config_rom != ohci->config_rom) {
1975            free_rom = ohci->config_rom;
1976            free_rom_bus = ohci->config_rom_bus;
1977        }
1978        ohci->config_rom = ohci->next_config_rom;
1979        ohci->config_rom_bus = ohci->next_config_rom_bus;
1980        ohci->next_config_rom = NULL;
1981
1982        /*
1983         * Restore config_rom image and manually update
1984         * config_rom registers. Writing the header quadlet
1985         * will indicate that the config rom is ready, so we
1986         * do that last.
1987         */
1988        reg_write(ohci, OHCI1394_BusOptions,
1989              be32_to_cpu(ohci->config_rom[2]));
1990        ohci->config_rom[0] = ohci->next_header;
1991        reg_write(ohci, OHCI1394_ConfigROMhdr,
1992              be32_to_cpu(ohci->next_header));
1993    }
1994
1995#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1996    reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1997    reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1998#endif
1999
2000    spin_unlock_irq(&ohci->lock);
2001
2002    if (free_rom)
2003        dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2004                  free_rom, free_rom_bus);
2005
2006    log_selfids(ohci, generation, self_id_count);
2007
2008    fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2009                 self_id_count, ohci->self_id_buffer,
2010                 ohci->csr_state_setclear_abdicate);
2011    ohci->csr_state_setclear_abdicate = false;
2012}
2013
2014static irqreturn_t irq_handler(int irq, void *data)
2015{
2016    struct fw_ohci *ohci = data;
2017    u32 event, iso_event;
2018    int i;
2019
2020    event = reg_read(ohci, OHCI1394_IntEventClear);
2021
2022    if (!event || !~event)
2023        return IRQ_NONE;
2024
2025    /*
2026     * busReset and postedWriteErr must not be cleared yet
2027     * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2028     */
2029    reg_write(ohci, OHCI1394_IntEventClear,
2030          event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2031    log_irqs(ohci, event);
2032
2033    if (event & OHCI1394_selfIDComplete)
2034        queue_work(fw_workqueue, &ohci->bus_reset_work);
2035
2036    if (event & OHCI1394_RQPkt)
2037        tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2038
2039    if (event & OHCI1394_RSPkt)
2040        tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2041
2042    if (event & OHCI1394_reqTxComplete)
2043        tasklet_schedule(&ohci->at_request_ctx.tasklet);
2044
2045    if (event & OHCI1394_respTxComplete)
2046        tasklet_schedule(&ohci->at_response_ctx.tasklet);
2047
2048    if (event & OHCI1394_isochRx) {
2049        iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2050        reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2051
2052        while (iso_event) {
2053            i = ffs(iso_event) - 1;
2054            tasklet_schedule(
2055                &ohci->ir_context_list[i].context.tasklet);
2056            iso_event &= ~(1 << i);
2057        }
2058    }
2059
2060    if (event & OHCI1394_isochTx) {
2061        iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2062        reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2063
2064        while (iso_event) {
2065            i = ffs(iso_event) - 1;
2066            tasklet_schedule(
2067                &ohci->it_context_list[i].context.tasklet);
2068            iso_event &= ~(1 << i);
2069        }
2070    }
2071
2072    if (unlikely(event & OHCI1394_regAccessFail))
2073        dev_err(ohci->card.device, "register access failure\n");
2074
2075    if (unlikely(event & OHCI1394_postedWriteErr)) {
2076        reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2077        reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2078        reg_write(ohci, OHCI1394_IntEventClear,
2079              OHCI1394_postedWriteErr);
2080        if (printk_ratelimit())
2081            dev_err(ohci->card.device, "PCI posted write error\n");
2082    }
2083
2084    if (unlikely(event & OHCI1394_cycleTooLong)) {
2085        if (printk_ratelimit())
2086            dev_notice(ohci->card.device,
2087                   "isochronous cycle too long\n");
2088        reg_write(ohci, OHCI1394_LinkControlSet,
2089              OHCI1394_LinkControl_cycleMaster);
2090    }
2091
2092    if (unlikely(event & OHCI1394_cycleInconsistent)) {
2093        /*
2094         * We need to clear this event bit in order to make
2095         * cycleMatch isochronous I/O work. In theory we should
2096         * stop active cycleMatch iso contexts now and restart
2097         * them at least two cycles later. (FIXME?)
2098         */
2099        if (printk_ratelimit())
2100            dev_notice(ohci->card.device,
2101                   "isochronous cycle inconsistent\n");
2102    }
2103
2104    if (unlikely(event & OHCI1394_unrecoverableError))
2105        handle_dead_contexts(ohci);
2106
2107    if (event & OHCI1394_cycle64Seconds) {
2108        spin_lock(&ohci->lock);
2109        update_bus_time(ohci);
2110        spin_unlock(&ohci->lock);
2111    } else
2112        flush_writes(ohci);
2113
2114    return IRQ_HANDLED;
2115}
2116
2117static int software_reset(struct fw_ohci *ohci)
2118{
2119    u32 val;
2120    int i;
2121
2122    reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2123    for (i = 0; i < 500; i++) {
2124        val = reg_read(ohci, OHCI1394_HCControlSet);
2125        if (!~val)
2126            return -ENODEV; /* Card was ejected. */
2127
2128        if (!(val & OHCI1394_HCControl_softReset))
2129            return 0;
2130
2131        msleep(1);
2132    }
2133
2134    return -EBUSY;
2135}
2136
2137static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2138{
2139    size_t size = length * 4;
2140
2141    memcpy(dest, src, size);
2142    if (size < CONFIG_ROM_SIZE)
2143        memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2144}
2145
2146static int configure_1394a_enhancements(struct fw_ohci *ohci)
2147{
2148    bool enable_1394a;
2149    int ret, clear, set, offset;
2150
2151    /* Check if the driver should configure link and PHY. */
2152    if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2153          OHCI1394_HCControl_programPhyEnable))
2154        return 0;
2155
2156    /* Paranoia: check whether the PHY supports 1394a, too. */
2157    enable_1394a = false;
2158    ret = read_phy_reg(ohci, 2);
2159    if (ret < 0)
2160        return ret;
2161    if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2162        ret = read_paged_phy_reg(ohci, 1, 8);
2163        if (ret < 0)
2164            return ret;
2165        if (ret >= 1)
2166            enable_1394a = true;
2167    }
2168
2169    if (ohci->quirks & QUIRK_NO_1394A)
2170        enable_1394a = false;
2171
2172    /* Configure PHY and link consistently. */
2173    if (enable_1394a) {
2174        clear = 0;
2175        set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2176    } else {
2177        clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2178        set = 0;
2179    }
2180    ret = update_phy_reg(ohci, 5, clear, set);
2181    if (ret < 0)
2182        return ret;
2183
2184    if (enable_1394a)
2185        offset = OHCI1394_HCControlSet;
2186    else
2187        offset = OHCI1394_HCControlClear;
2188    reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2189
2190    /* Clean up: configuration has been taken care of. */
2191    reg_write(ohci, OHCI1394_HCControlClear,
2192          OHCI1394_HCControl_programPhyEnable);
2193
2194    return 0;
2195}
2196
2197static int probe_tsb41ba3d(struct fw_ohci *ohci)
2198{
2199    /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2200    static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2201    int reg, i;
2202
2203    reg = read_phy_reg(ohci, 2);
2204    if (reg < 0)
2205        return reg;
2206    if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2207        return 0;
2208
2209    for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2210        reg = read_paged_phy_reg(ohci, 1, i + 10);
2211        if (reg < 0)
2212            return reg;
2213        if (reg != id[i])
2214            return 0;
2215    }
2216    return 1;
2217}
2218
2219static int ohci_enable(struct fw_card *card,
2220               const __be32 *config_rom, size_t length)
2221{
2222    struct fw_ohci *ohci = fw_ohci(card);
2223    struct pci_dev *dev = to_pci_dev(card->device);
2224    u32 lps, version, irqs;
2225    int i, ret;
2226
2227    if (software_reset(ohci)) {
2228        dev_err(card->device, "failed to reset ohci card\n");
2229        return -EBUSY;
2230    }
2231
2232    /*
2233     * Now enable LPS, which we need in order to start accessing
2234     * most of the registers. In fact, on some cards (ALI M5251),
2235     * accessing registers in the SClk domain without LPS enabled
2236     * will lock up the machine. Wait 50msec to make sure we have
2237     * full link enabled. However, with some cards (well, at least
2238     * a JMicron PCIe card), we have to try again sometimes.
2239     */
2240    reg_write(ohci, OHCI1394_HCControlSet,
2241          OHCI1394_HCControl_LPS |
2242          OHCI1394_HCControl_postedWriteEnable);
2243    flush_writes(ohci);
2244
2245    for (lps = 0, i = 0; !lps && i < 3; i++) {
2246        msleep(50);
2247        lps = reg_read(ohci, OHCI1394_HCControlSet) &
2248              OHCI1394_HCControl_LPS;
2249    }
2250
2251    if (!lps) {
2252        dev_err(card->device, "failed to set Link Power Status\n");
2253        return -EIO;
2254    }
2255
2256    if (ohci->quirks & QUIRK_TI_SLLZ059) {
2257        ret = probe_tsb41ba3d(ohci);
2258        if (ret < 0)
2259            return ret;
2260        if (ret)
2261            dev_notice(card->device, "local TSB41BA3D phy\n");
2262        else
2263            ohci->quirks &= ~QUIRK_TI_SLLZ059;
2264    }
2265
2266    reg_write(ohci, OHCI1394_HCControlClear,
2267          OHCI1394_HCControl_noByteSwapData);
2268
2269    reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2270    reg_write(ohci, OHCI1394_LinkControlSet,
2271          OHCI1394_LinkControl_cycleTimerEnable |
2272          OHCI1394_LinkControl_cycleMaster);
2273
2274    reg_write(ohci, OHCI1394_ATRetries,
2275          OHCI1394_MAX_AT_REQ_RETRIES |
2276          (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2277          (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2278          (200 << 16));
2279
2280    ohci->bus_time_running = false;
2281
2282    for (i = 0; i < 32; i++)
2283        if (ohci->ir_context_support & (1 << i))
2284            reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2285                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2286
2287    version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2288    if (version >= OHCI_VERSION_1_1) {
2289        reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2290              0xfffffffe);
2291        card->broadcast_channel_auto_allocated = true;
2292    }
2293
2294    /* Get implemented bits of the priority arbitration request counter. */
2295    reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2296    ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2297    reg_write(ohci, OHCI1394_FairnessControl, 0);
2298    card->priority_budget_implemented = ohci->pri_req_max != 0;
2299
2300    reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2301    reg_write(ohci, OHCI1394_IntEventClear, ~0);
2302    reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2303
2304    ret = configure_1394a_enhancements(ohci);
2305    if (ret < 0)
2306        return ret;
2307
2308    /* Activate link_on bit and contender bit in our self ID packets.*/
2309    ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2310    if (ret < 0)
2311        return ret;
2312
2313    /*
2314     * When the link is not yet enabled, the atomic config rom
2315     * update mechanism described below in ohci_set_config_rom()
2316     * is not active. We have to update ConfigRomHeader and
2317     * BusOptions manually, and the write to ConfigROMmap takes
2318     * effect immediately. We tie this to the enabling of the
2319     * link, so we have a valid config rom before enabling - the
2320     * OHCI requires that ConfigROMhdr and BusOptions have valid
2321     * values before enabling.
2322     *
2323     * However, when the ConfigROMmap is written, some controllers
2324     * always read back quadlets 0 and 2 from the config rom to
2325     * the ConfigRomHeader and BusOptions registers on bus reset.
2326     * They shouldn't do that in this initial case where the link
2327     * isn't enabled. This means we have to use the same
2328     * workaround here, setting the bus header to 0 and then write
2329     * the right values in the bus reset tasklet.
2330     */
2331
2332    if (config_rom) {
2333        ohci->next_config_rom =
2334            dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2335                       &ohci->next_config_rom_bus,
2336                       GFP_KERNEL);
2337        if (ohci->next_config_rom == NULL)
2338            return -ENOMEM;
2339
2340        copy_config_rom(ohci->next_config_rom, config_rom, length);
2341    } else {
2342        /*
2343         * In the suspend case, config_rom is NULL, which
2344         * means that we just reuse the old config rom.
2345         */
2346        ohci->next_config_rom = ohci->config_rom;
2347        ohci->next_config_rom_bus = ohci->config_rom_bus;
2348    }
2349
2350    ohci->next_header = ohci->next_config_rom[0];
2351    ohci->next_config_rom[0] = 0;
2352    reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2353    reg_write(ohci, OHCI1394_BusOptions,
2354          be32_to_cpu(ohci->next_config_rom[2]));
2355    reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2356
2357    reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2358
2359    if (!(ohci->quirks & QUIRK_NO_MSI))
2360        pci_enable_msi(dev);
2361    if (request_irq(dev->irq, irq_handler,
2362            pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2363            ohci_driver_name, ohci)) {
2364        dev_err(card->device, "failed to allocate interrupt %d\n",
2365            dev->irq);
2366        pci_disable_msi(dev);
2367
2368        if (config_rom) {
2369            dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2370                      ohci->next_config_rom,
2371                      ohci->next_config_rom_bus);
2372            ohci->next_config_rom = NULL;
2373        }
2374        return -EIO;
2375    }
2376
2377    irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2378        OHCI1394_RQPkt | OHCI1394_RSPkt |
2379        OHCI1394_isochTx | OHCI1394_isochRx |
2380        OHCI1394_postedWriteErr |
2381        OHCI1394_selfIDComplete |
2382        OHCI1394_regAccessFail |
2383        OHCI1394_cycleInconsistent |
2384        OHCI1394_unrecoverableError |
2385        OHCI1394_cycleTooLong |
2386        OHCI1394_masterIntEnable;
2387    if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2388        irqs |= OHCI1394_busReset;
2389    reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2390
2391    reg_write(ohci, OHCI1394_HCControlSet,
2392          OHCI1394_HCControl_linkEnable |
2393          OHCI1394_HCControl_BIBimageValid);
2394
2395    reg_write(ohci, OHCI1394_LinkControlSet,
2396          OHCI1394_LinkControl_rcvSelfID |
2397          OHCI1394_LinkControl_rcvPhyPkt);
2398
2399    ar_context_run(&ohci->ar_request_ctx);
2400    ar_context_run(&ohci->ar_response_ctx);
2401
2402    flush_writes(ohci);
2403
2404    /* We are ready to go, reset bus to finish initialization. */
2405    fw_schedule_bus_reset(&ohci->card, false, true);
2406
2407    return 0;
2408}
2409
2410static int ohci_set_config_rom(struct fw_card *card,
2411                   const __be32 *config_rom, size_t length)
2412{
2413    struct fw_ohci *ohci;
2414    __be32 *next_config_rom;
2415    dma_addr_t uninitialized_var(next_config_rom_bus);
2416
2417    ohci = fw_ohci(card);
2418
2419    /*
2420     * When the OHCI controller is enabled, the config rom update
2421     * mechanism is a bit tricky, but easy enough to use. See
2422     * section 5.5.6 in the OHCI specification.
2423     *
2424     * The OHCI controller caches the new config rom address in a
2425     * shadow register (ConfigROMmapNext) and needs a bus reset
2426     * for the changes to take place. When the bus reset is
2427     * detected, the controller loads the new values for the
2428     * ConfigRomHeader and BusOptions registers from the specified
2429     * config rom and loads ConfigROMmap from the ConfigROMmapNext
2430     * shadow register. All automatically and atomically.
2431     *
2432     * Now, there's a twist to this story. The automatic load of
2433     * ConfigRomHeader and BusOptions doesn't honor the
2434     * noByteSwapData bit, so with a be32 config rom, the
2435     * controller will load be32 values in to these registers
2436     * during the atomic update, even on litte endian
2437     * architectures. The workaround we use is to put a 0 in the
2438     * header quadlet; 0 is endian agnostic and means that the
2439     * config rom isn't ready yet. In the bus reset tasklet we
2440     * then set up the real values for the two registers.
2441     *
2442     * We use ohci->lock to avoid racing with the code that sets
2443     * ohci->next_config_rom to NULL (see bus_reset_work).
2444     */
2445
2446    next_config_rom =
2447        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2448                   &next_config_rom_bus, GFP_KERNEL);
2449    if (next_config_rom == NULL)
2450        return -ENOMEM;
2451
2452    spin_lock_irq(&ohci->lock);
2453
2454    /*
2455     * If there is not an already pending config_rom update,
2456     * push our new allocation into the ohci->next_config_rom
2457     * and then mark the local variable as null so that we
2458     * won't deallocate the new buffer.
2459     *
2460     * OTOH, if there is a pending config_rom update, just
2461     * use that buffer with the new config_rom data, and
2462     * let this routine free the unused DMA allocation.
2463     */
2464
2465    if (ohci->next_config_rom == NULL) {
2466        ohci->next_config_rom = next_config_rom;
2467        ohci->next_config_rom_bus = next_config_rom_bus;
2468        next_config_rom = NULL;
2469    }
2470
2471    copy_config_rom(ohci->next_config_rom, config_rom, length);
2472
2473    ohci->next_header = config_rom[0];
2474    ohci->next_config_rom[0] = 0;
2475
2476    reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2477
2478    spin_unlock_irq(&ohci->lock);
2479
2480    /* If we didn't use the DMA allocation, delete it. */
2481    if (next_config_rom != NULL)
2482        dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483                  next_config_rom, next_config_rom_bus);
2484
2485    /*
2486     * Now initiate a bus reset to have the changes take
2487     * effect. We clean up the old config rom memory and DMA
2488     * mappings in the bus reset tasklet, since the OHCI
2489     * controller could need to access it before the bus reset
2490     * takes effect.
2491     */
2492
2493    fw_schedule_bus_reset(&ohci->card, true, true);
2494
2495    return 0;
2496}
2497
2498static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2499{
2500    struct fw_ohci *ohci = fw_ohci(card);
2501
2502    at_context_transmit(&ohci->at_request_ctx, packet);
2503}
2504
2505static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2506{
2507    struct fw_ohci *ohci = fw_ohci(card);
2508
2509    at_context_transmit(&ohci->at_response_ctx, packet);
2510}
2511
2512static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2513{
2514    struct fw_ohci *ohci = fw_ohci(card);
2515    struct context *ctx = &ohci->at_request_ctx;
2516    struct driver_data *driver_data = packet->driver_data;
2517    int ret = -ENOENT;
2518
2519    tasklet_disable(&ctx->tasklet);
2520
2521    if (packet->ack != 0)
2522        goto out;
2523
2524    if (packet->payload_mapped)
2525        dma_unmap_single(ohci->card.device, packet->payload_bus,
2526                 packet->payload_length, DMA_TO_DEVICE);
2527
2528    log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2529    driver_data->packet = NULL;
2530    packet->ack = RCODE_CANCELLED;
2531    packet->callback(packet, &ohci->card, packet->ack);
2532    ret = 0;
2533 out:
2534    tasklet_enable(&ctx->tasklet);
2535
2536    return ret;
2537}
2538
2539static int ohci_enable_phys_dma(struct fw_card *card,
2540                int node_id, int generation)
2541{
2542#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2543    return 0;
2544#else
2545    struct fw_ohci *ohci = fw_ohci(card);
2546    unsigned long flags;
2547    int n, ret = 0;
2548
2549    /*
2550     * FIXME: Make sure this bitmask is cleared when we clear the busReset
2551     * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2552     */
2553
2554    spin_lock_irqsave(&ohci->lock, flags);
2555
2556    if (ohci->generation != generation) {
2557        ret = -ESTALE;
2558        goto out;
2559    }
2560
2561    /*
2562     * Note, if the node ID contains a non-local bus ID, physical DMA is
2563     * enabled for _all_ nodes on remote buses.
2564     */
2565
2566    n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2567    if (n < 32)
2568        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2569    else
2570        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2571
2572    flush_writes(ohci);
2573 out:
2574    spin_unlock_irqrestore(&ohci->lock, flags);
2575
2576    return ret;
2577#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2578}
2579
2580static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2581{
2582    struct fw_ohci *ohci = fw_ohci(card);
2583    unsigned long flags;
2584    u32 value;
2585
2586    switch (csr_offset) {
2587    case CSR_STATE_CLEAR:
2588    case CSR_STATE_SET:
2589        if (ohci->is_root &&
2590            (reg_read(ohci, OHCI1394_LinkControlSet) &
2591             OHCI1394_LinkControl_cycleMaster))
2592            value = CSR_STATE_BIT_CMSTR;
2593        else
2594            value = 0;
2595        if (ohci->csr_state_setclear_abdicate)
2596            value |= CSR_STATE_BIT_ABDICATE;
2597
2598        return value;
2599
2600    case CSR_NODE_IDS:
2601        return reg_read(ohci, OHCI1394_NodeID) << 16;
2602
2603    case CSR_CYCLE_TIME:
2604        return get_cycle_time(ohci);
2605
2606    case CSR_BUS_TIME:
2607        /*
2608         * We might be called just after the cycle timer has wrapped
2609         * around but just before the cycle64Seconds handler, so we
2610         * better check here, too, if the bus time needs to be updated.
2611         */
2612        spin_lock_irqsave(&ohci->lock, flags);
2613        value = update_bus_time(ohci);
2614        spin_unlock_irqrestore(&ohci->lock, flags);
2615        return value;
2616
2617    case CSR_BUSY_TIMEOUT:
2618        value = reg_read(ohci, OHCI1394_ATRetries);
2619        return (value >> 4) & 0x0ffff00f;
2620
2621    case CSR_PRIORITY_BUDGET:
2622        return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2623            (ohci->pri_req_max << 8);
2624
2625    default:
2626        WARN_ON(1);
2627        return 0;
2628    }
2629}
2630
2631static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2632{
2633    struct fw_ohci *ohci = fw_ohci(card);
2634    unsigned long flags;
2635
2636    switch (csr_offset) {
2637    case CSR_STATE_CLEAR:
2638        if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2639            reg_write(ohci, OHCI1394_LinkControlClear,
2640                  OHCI1394_LinkControl_cycleMaster);
2641            flush_writes(ohci);
2642        }
2643        if (value & CSR_STATE_BIT_ABDICATE)
2644            ohci->csr_state_setclear_abdicate = false;
2645        break;
2646
2647    case CSR_STATE_SET:
2648        if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2649            reg_write(ohci, OHCI1394_LinkControlSet,
2650                  OHCI1394_LinkControl_cycleMaster);
2651            flush_writes(ohci);
2652        }
2653        if (value & CSR_STATE_BIT_ABDICATE)
2654            ohci->csr_state_setclear_abdicate = true;
2655        break;
2656
2657    case CSR_NODE_IDS:
2658        reg_write(ohci, OHCI1394_NodeID, value >> 16);
2659        flush_writes(ohci);
2660        break;
2661
2662    case CSR_CYCLE_TIME:
2663        reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2664        reg_write(ohci, OHCI1394_IntEventSet,
2665              OHCI1394_cycleInconsistent);
2666        flush_writes(ohci);
2667        break;
2668
2669    case CSR_BUS_TIME:
2670        spin_lock_irqsave(&ohci->lock, flags);
2671        ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2672                         (value & ~0x7f);
2673        spin_unlock_irqrestore(&ohci->lock, flags);
2674        break;
2675
2676    case CSR_BUSY_TIMEOUT:
2677        value = (value & 0xf) | ((value & 0xf) << 4) |
2678            ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2679        reg_write(ohci, OHCI1394_ATRetries, value);
2680        flush_writes(ohci);
2681        break;
2682
2683    case CSR_PRIORITY_BUDGET:
2684        reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2685        flush_writes(ohci);
2686        break;
2687
2688    default:
2689        WARN_ON(1);
2690        break;
2691    }
2692}
2693
2694static void flush_iso_completions(struct iso_context *ctx)
2695{
2696    ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2697                  ctx->header_length, ctx->header,
2698                  ctx->base.callback_data);
2699    ctx->header_length = 0;
2700}
2701
2702static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2703{
2704    u32 *ctx_hdr;
2705
2706    if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2707        flush_iso_completions(ctx);
2708
2709    ctx_hdr = ctx->header + ctx->header_length;
2710    ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2711
2712    /*
2713     * The two iso header quadlets are byteswapped to little
2714     * endian by the controller, but we want to present them
2715     * as big endian for consistency with the bus endianness.
2716     */
2717    if (ctx->base.header_size > 0)
2718        ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2719    if (ctx->base.header_size > 4)
2720        ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2721    if (ctx->base.header_size > 8)
2722        memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2723    ctx->header_length += ctx->base.header_size;
2724}
2725
2726static int handle_ir_packet_per_buffer(struct context *context,
2727                       struct descriptor *d,
2728                       struct descriptor *last)
2729{
2730    struct iso_context *ctx =
2731        container_of(context, struct iso_context, context);
2732    struct descriptor *pd;
2733    u32 buffer_dma;
2734
2735    for (pd = d; pd <= last; pd++)
2736        if (pd->transfer_status)
2737            break;
2738    if (pd > last)
2739        /* Descriptor(s) not done yet, stop iteration */
2740        return 0;
2741
2742    while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2743        d++;
2744        buffer_dma = le32_to_cpu(d->data_address);
2745        dma_sync_single_range_for_cpu(context->ohci->card.device,
2746                          buffer_dma & PAGE_MASK,
2747                          buffer_dma & ~PAGE_MASK,
2748                          le16_to_cpu(d->req_count),
2749                          DMA_FROM_DEVICE);
2750    }
2751
2752    copy_iso_headers(ctx, (u32 *) (last + 1));
2753
2754    if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2755        flush_iso_completions(ctx);
2756
2757    return 1;
2758}
2759
2760/* d == last because each descriptor block is only a single descriptor. */
2761static int handle_ir_buffer_fill(struct context *context,
2762                 struct descriptor *d,
2763                 struct descriptor *last)
2764{
2765    struct iso_context *ctx =
2766        container_of(context, struct iso_context, context);
2767    unsigned int req_count, res_count, completed;
2768    u32 buffer_dma;
2769
2770    req_count = le16_to_cpu(last->req_count);
2771    res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2772    completed = req_count - res_count;
2773    buffer_dma = le32_to_cpu(last->data_address);
2774
2775    if (completed > 0) {
2776        ctx->mc_buffer_bus = buffer_dma;
2777        ctx->mc_completed = completed;
2778    }
2779
2780    if (res_count != 0)
2781        /* Descriptor(s) not done yet, stop iteration */
2782        return 0;
2783
2784    dma_sync_single_range_for_cpu(context->ohci->card.device,
2785                      buffer_dma & PAGE_MASK,
2786                      buffer_dma & ~PAGE_MASK,
2787                      completed, DMA_FROM_DEVICE);
2788
2789    if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2790        ctx->base.callback.mc(&ctx->base,
2791                      buffer_dma + completed,
2792                      ctx->base.callback_data);
2793        ctx->mc_completed = 0;
2794    }
2795
2796    return 1;
2797}
2798
2799static void flush_ir_buffer_fill(struct iso_context *ctx)
2800{
2801    dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2802                      ctx->mc_buffer_bus & PAGE_MASK,
2803                      ctx->mc_buffer_bus & ~PAGE_MASK,
2804                      ctx->mc_completed, DMA_FROM_DEVICE);
2805
2806    ctx->base.callback.mc(&ctx->base,
2807                  ctx->mc_buffer_bus + ctx->mc_completed,
2808                  ctx->base.callback_data);
2809    ctx->mc_completed = 0;
2810}
2811
2812static inline void sync_it_packet_for_cpu(struct context *context,
2813                      struct descriptor *pd)
2814{
2815    __le16 control;
2816    u32 buffer_dma;
2817
2818    /* only packets beginning with OUTPUT_MORE* have data buffers */
2819    if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2820        return;
2821
2822    /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2823    pd += 2;
2824
2825    /*
2826     * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2827     * data buffer is in the context program's coherent page and must not
2828     * be synced.
2829     */
2830    if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2831        (context->current_bus & PAGE_MASK)) {
2832        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2833            return;
2834        pd++;
2835    }
2836
2837    do {
2838        buffer_dma = le32_to_cpu(pd->data_address);
2839        dma_sync_single_range_for_cpu(context->ohci->card.device,
2840                          buffer_dma & PAGE_MASK,
2841                          buffer_dma & ~PAGE_MASK,
2842                          le16_to_cpu(pd->req_count),
2843                          DMA_TO_DEVICE);
2844        control = pd->control;
2845        pd++;
2846    } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2847}
2848
2849static int handle_it_packet(struct context *context,
2850                struct descriptor *d,
2851                struct descriptor *last)
2852{
2853    struct iso_context *ctx =
2854        container_of(context, struct iso_context, context);
2855    struct descriptor *pd;
2856    __be32 *ctx_hdr;
2857
2858    for (pd = d; pd <= last; pd++)
2859        if (pd->transfer_status)
2860            break;
2861    if (pd > last)
2862        /* Descriptor(s) not done yet, stop iteration */
2863        return 0;
2864
2865    sync_it_packet_for_cpu(context, d);
2866
2867    if (ctx->header_length + 4 > PAGE_SIZE)
2868        flush_iso_completions(ctx);
2869
2870    ctx_hdr = ctx->header + ctx->header_length;
2871    ctx->last_timestamp = le16_to_cpu(last->res_count);
2872    /* Present this value as big-endian to match the receive code */
2873    *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2874                   le16_to_cpu(pd->res_count));
2875    ctx->header_length += 4;
2876
2877    if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2878        flush_iso_completions(ctx);
2879
2880    return 1;
2881}
2882
2883static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2884{
2885    u32 hi = channels >> 32, lo = channels;
2886
2887    reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2888    reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2889    reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2890    reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2891    mmiowb();
2892    ohci->mc_channels = channels;
2893}
2894
2895static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2896                int type, int channel, size_t header_size)
2897{
2898    struct fw_ohci *ohci = fw_ohci(card);
2899    struct iso_context *uninitialized_var(ctx);
2900    descriptor_callback_t uninitialized_var(callback);
2901    u64 *uninitialized_var(channels);
2902    u32 *uninitialized_var(mask), uninitialized_var(regs);
2903    int index, ret = -EBUSY;
2904
2905    spin_lock_irq(&ohci->lock);
2906
2907    switch (type) {
2908    case FW_ISO_CONTEXT_TRANSMIT:
2909        mask = &ohci->it_context_mask;
2910        callback = handle_it_packet;
2911        index = ffs(*mask) - 1;
2912        if (index >= 0) {
2913            *mask &= ~(1 << index);
2914            regs = OHCI1394_IsoXmitContextBase(index);
2915            ctx = &ohci->it_context_list[index];
2916        }
2917        break;
2918
2919    case FW_ISO_CONTEXT_RECEIVE:
2920        channels = &ohci->ir_context_channels;
2921        mask = &ohci->ir_context_mask;
2922        callback = handle_ir_packet_per_buffer;
2923        index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2924        if (index >= 0) {
2925            *channels &= ~(1ULL << channel);
2926            *mask &= ~(1 << index);
2927            regs = OHCI1394_IsoRcvContextBase(index);
2928            ctx = &ohci->ir_context_list[index];
2929        }
2930        break;
2931
2932    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2933        mask = &ohci->ir_context_mask;
2934        callback = handle_ir_buffer_fill;
2935        index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2936        if (index >= 0) {
2937            ohci->mc_allocated = true;
2938            *mask &= ~(1 << index);
2939            regs = OHCI1394_IsoRcvContextBase(index);
2940            ctx = &ohci->ir_context_list[index];
2941        }
2942        break;
2943
2944    default:
2945        index = -1;
2946        ret = -ENOSYS;
2947    }
2948
2949    spin_unlock_irq(&ohci->lock);
2950
2951    if (index < 0)
2952        return ERR_PTR(ret);
2953
2954    memset(ctx, 0, sizeof(*ctx));
2955    ctx->header_length = 0;
2956    ctx->header = (void *) __get_free_page(GFP_KERNEL);
2957    if (ctx->header == NULL) {
2958        ret = -ENOMEM;
2959        goto out;
2960    }
2961    ret = context_init(&ctx->context, ohci, regs, callback);
2962    if (ret < 0)
2963        goto out_with_header;
2964
2965    if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2966        set_multichannel_mask(ohci, 0);
2967        ctx->mc_completed = 0;
2968    }
2969
2970    return &ctx->base;
2971
2972 out_with_header:
2973    free_page((unsigned long)ctx->header);
2974 out:
2975    spin_lock_irq(&ohci->lock);
2976
2977    switch (type) {
2978    case FW_ISO_CONTEXT_RECEIVE:
2979        *channels |= 1ULL << channel;
2980        break;
2981
2982    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2983        ohci->mc_allocated = false;
2984        break;
2985    }
2986    *mask |= 1 << index;
2987
2988    spin_unlock_irq(&ohci->lock);
2989
2990    return ERR_PTR(ret);
2991}
2992
2993static int ohci_start_iso(struct fw_iso_context *base,
2994              s32 cycle, u32 sync, u32 tags)
2995{
2996    struct iso_context *ctx = container_of(base, struct iso_context, base);
2997    struct fw_ohci *ohci = ctx->context.ohci;
2998    u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2999    int index;
3000
3001    /* the controller cannot start without any queued packets */
3002    if (ctx->context.last->branch_address == 0)
3003        return -ENODATA;
3004
3005    switch (ctx->base.type) {
3006    case FW_ISO_CONTEXT_TRANSMIT:
3007        index = ctx - ohci->it_context_list;
3008        match = 0;
3009        if (cycle >= 0)
3010            match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3011                (cycle & 0x7fff) << 16;
3012
3013        reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3014        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3015        context_run(&ctx->context, match);
3016        break;
3017
3018    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3019        control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3020        /* fall through */
3021    case FW_ISO_CONTEXT_RECEIVE:
3022        index = ctx - ohci->ir_context_list;
3023        match = (tags << 28) | (sync << 8) | ctx->base.channel;
3024        if (cycle >= 0) {
3025            match |= (cycle & 0x07fff) << 12;
3026            control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3027        }
3028
3029        reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3030        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3031        reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3032        context_run(&ctx->context, control);
3033
3034        ctx->sync = sync;
3035        ctx->tags = tags;
3036
3037        break;
3038    }
3039
3040    return 0;
3041}
3042
3043static int ohci_stop_iso(struct fw_iso_context *base)
3044{
3045    struct fw_ohci *ohci = fw_ohci(base->card);
3046    struct iso_context *ctx = container_of(base, struct iso_context, base);
3047    int index;
3048
3049    switch (ctx->base.type) {
3050    case FW_ISO_CONTEXT_TRANSMIT:
3051        index = ctx - ohci->it_context_list;
3052        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3053        break;
3054
3055    case FW_ISO_CONTEXT_RECEIVE:
3056    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3057        index = ctx - ohci->ir_context_list;
3058        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3059        break;
3060    }
3061    flush_writes(ohci);
3062    context_stop(&ctx->context);
3063    tasklet_kill(&ctx->context.tasklet);
3064
3065    return 0;
3066}
3067
3068static void ohci_free_iso_context(struct fw_iso_context *base)
3069{
3070    struct fw_ohci *ohci = fw_ohci(base->card);
3071    struct iso_context *ctx = container_of(base, struct iso_context, base);
3072    unsigned long flags;
3073    int index;
3074
3075    ohci_stop_iso(base);
3076    context_release(&ctx->context);
3077    free_page((unsigned long)ctx->header);
3078
3079    spin_lock_irqsave(&ohci->lock, flags);
3080
3081    switch (base->type) {
3082    case FW_ISO_CONTEXT_TRANSMIT:
3083        index = ctx - ohci->it_context_list;
3084        ohci->it_context_mask |= 1 << index;
3085        break;
3086
3087    case FW_ISO_CONTEXT_RECEIVE:
3088        index = ctx - ohci->ir_context_list;
3089        ohci->ir_context_mask |= 1 << index;
3090        ohci->ir_context_channels |= 1ULL << base->channel;
3091        break;
3092
3093    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094        index = ctx - ohci->ir_context_list;
3095        ohci->ir_context_mask |= 1 << index;
3096        ohci->ir_context_channels |= ohci->mc_channels;
3097        ohci->mc_channels = 0;
3098        ohci->mc_allocated = false;
3099        break;
3100    }
3101
3102    spin_unlock_irqrestore(&ohci->lock, flags);
3103}
3104
3105static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3106{
3107    struct fw_ohci *ohci = fw_ohci(base->card);
3108    unsigned long flags;
3109    int ret;
3110
3111    switch (base->type) {
3112    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3113
3114        spin_lock_irqsave(&ohci->lock, flags);
3115
3116        /* Don't allow multichannel to grab other contexts' channels. */
3117        if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3118            *channels = ohci->ir_context_channels;
3119            ret = -EBUSY;
3120        } else {
3121            set_multichannel_mask(ohci, *channels);
3122            ret = 0;
3123        }
3124
3125        spin_unlock_irqrestore(&ohci->lock, flags);
3126
3127        break;
3128    default:
3129        ret = -EINVAL;
3130    }
3131
3132    return ret;
3133}
3134
3135#ifdef CONFIG_PM
3136static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3137{
3138    int i;
3139    struct iso_context *ctx;
3140
3141    for (i = 0 ; i < ohci->n_ir ; i++) {
3142        ctx = &ohci->ir_context_list[i];
3143        if (ctx->context.running)
3144            ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3145    }
3146
3147    for (i = 0 ; i < ohci->n_it ; i++) {
3148        ctx = &ohci->it_context_list[i];
3149        if (ctx->context.running)
3150            ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3151    }
3152}
3153#endif
3154
3155static int queue_iso_transmit(struct iso_context *ctx,
3156                  struct fw_iso_packet *packet,
3157                  struct fw_iso_buffer *buffer,
3158                  unsigned long payload)
3159{
3160    struct descriptor *d, *last, *pd;
3161    struct fw_iso_packet *p;
3162    __le32 *header;
3163    dma_addr_t d_bus, page_bus;
3164    u32 z, header_z, payload_z, irq;
3165    u32 payload_index, payload_end_index, next_page_index;
3166    int page, end_page, i, length, offset;
3167
3168    p = packet;
3169    payload_index = payload;
3170
3171    if (p->skip)
3172        z = 1;
3173    else
3174        z = 2;
3175    if (p->header_length > 0)
3176        z++;
3177
3178    /* Determine the first page the payload isn't contained in. */
3179    end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3180    if (p->payload_length > 0)
3181        payload_z = end_page - (payload_index >> PAGE_SHIFT);
3182    else
3183        payload_z = 0;
3184
3185    z += payload_z;
3186
3187    /* Get header size in number of descriptors. */
3188    header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3189
3190    d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3191    if (d == NULL)
3192        return -ENOMEM;
3193
3194    if (!p->skip) {
3195        d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3196        d[0].req_count = cpu_to_le16(8);
3197        /*
3198         * Link the skip address to this descriptor itself. This causes
3199         * a context to skip a cycle whenever lost cycles or FIFO
3200         * overruns occur, without dropping the data. The application
3201         * should then decide whether this is an error condition or not.
3202         * FIXME: Make the context's cycle-lost behaviour configurable?
3203         */
3204        d[0].branch_address = cpu_to_le32(d_bus | z);
3205
3206        header = (__le32 *) &d[1];
3207        header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3208                    IT_HEADER_TAG(p->tag) |
3209                    IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3210                    IT_HEADER_CHANNEL(ctx->base.channel) |
3211                    IT_HEADER_SPEED(ctx->base.speed));
3212        header[1] =
3213            cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3214                              p->payload_length));
3215    }
3216
3217    if (p->header_length > 0) {
3218        d[2].req_count = cpu_to_le16(p->header_length);
3219        d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3220        memcpy(&d[z], p->header, p->header_length);
3221    }
3222
3223    pd = d + z - payload_z;
3224    payload_end_index = payload_index + p->payload_length;
3225    for (i = 0; i < payload_z; i++) {
3226        page = payload_index >> PAGE_SHIFT;
3227        offset = payload_index & ~PAGE_MASK;
3228        next_page_index = (page + 1) << PAGE_SHIFT;
3229        length =
3230            min(next_page_index, payload_end_index) - payload_index;
3231        pd[i].req_count = cpu_to_le16(length);
3232
3233        page_bus = page_private(buffer->pages[page]);
3234        pd[i].data_address = cpu_to_le32(page_bus + offset);
3235
3236        dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3237                         page_bus, offset, length,
3238                         DMA_TO_DEVICE);
3239
3240        payload_index += length;
3241    }
3242
3243    if (p->interrupt)
3244        irq = DESCRIPTOR_IRQ_ALWAYS;
3245    else
3246        irq = DESCRIPTOR_NO_IRQ;
3247
3248    last = z == 2 ? d : d + z - 1;
3249    last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3250                     DESCRIPTOR_STATUS |
3251                     DESCRIPTOR_BRANCH_ALWAYS |
3252                     irq);
3253
3254    context_append(&ctx->context, d, z, header_z);
3255
3256    return 0;
3257}
3258
3259static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3260                       struct fw_iso_packet *packet,
3261                       struct fw_iso_buffer *buffer,
3262                       unsigned long payload)
3263{
3264    struct device *device = ctx->context.ohci->card.device;
3265    struct descriptor *d, *pd;
3266    dma_addr_t d_bus, page_bus;
3267    u32 z, header_z, rest;
3268    int i, j, length;
3269    int page, offset, packet_count, header_size, payload_per_buffer;
3270
3271    /*
3272     * The OHCI controller puts the isochronous header and trailer in the
3273     * buffer, so we need at least 8 bytes.
3274     */
3275    packet_count = packet->header_length / ctx->base.header_size;
3276    header_size = max(ctx->base.header_size, (size_t)8);
3277
3278    /* Get header size in number of descriptors. */
3279    header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3280    page = payload >> PAGE_SHIFT;
3281    offset = payload & ~PAGE_MASK;
3282    payload_per_buffer = packet->payload_length / packet_count;
3283
3284    for (i = 0; i < packet_count; i++) {
3285        /* d points to the header descriptor */
3286        z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3287        d = context_get_descriptors(&ctx->context,
3288                z + header_z, &d_bus);
3289        if (d == NULL)
3290            return -ENOMEM;
3291
3292        d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3293                          DESCRIPTOR_INPUT_MORE);
3294        if (packet->skip && i == 0)
3295            d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3296        d->req_count = cpu_to_le16(header_size);
3297        d->res_count = d->req_count;
3298        d->transfer_status = 0;
3299        d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3300
3301        rest = payload_per_buffer;
3302        pd = d;
3303        for (j = 1; j < z; j++) {
3304            pd++;
3305            pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3306                          DESCRIPTOR_INPUT_MORE);
3307
3308            if (offset + rest < PAGE_SIZE)
3309                length = rest;
3310            else
3311                length = PAGE_SIZE - offset;
3312            pd->req_count = cpu_to_le16(length);
3313            pd->res_count = pd->req_count;
3314            pd->transfer_status = 0;
3315
3316            page_bus = page_private(buffer->pages[page]);
3317            pd->data_address = cpu_to_le32(page_bus + offset);
3318
3319            dma_sync_single_range_for_device(device, page_bus,
3320                             offset, length,
3321                             DMA_FROM_DEVICE);
3322
3323            offset = (offset + length) & ~PAGE_MASK;
3324            rest -= length;
3325            if (offset == 0)
3326                page++;
3327        }
3328        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3329                      DESCRIPTOR_INPUT_LAST |
3330                      DESCRIPTOR_BRANCH_ALWAYS);
3331        if (packet->interrupt && i == packet_count - 1)
3332            pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3333
3334        context_append(&ctx->context, d, z, header_z);
3335    }
3336
3337    return 0;
3338}
3339
3340static int queue_iso_buffer_fill(struct iso_context *ctx,
3341                 struct fw_iso_packet *packet,
3342                 struct fw_iso_buffer *buffer,
3343                 unsigned long payload)
3344{
3345    struct descriptor *d;
3346    dma_addr_t d_bus, page_bus;
3347    int page, offset, rest, z, i, length;
3348
3349    page = payload >> PAGE_SHIFT;
3350    offset = payload & ~PAGE_MASK;
3351    rest = packet->payload_length;
3352
3353    /* We need one descriptor for each page in the buffer. */
3354    z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3355
3356    if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3357        return -EFAULT;
3358
3359    for (i = 0; i < z; i++) {
3360        d = context_get_descriptors(&ctx->context, 1, &d_bus);
3361        if (d == NULL)
3362            return -ENOMEM;
3363
3364        d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3365                     DESCRIPTOR_BRANCH_ALWAYS);
3366        if (packet->skip && i == 0)
3367            d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3368        if (packet->interrupt && i == z - 1)
3369            d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3370
3371        if (offset + rest < PAGE_SIZE)
3372            length = rest;
3373        else
3374            length = PAGE_SIZE - offset;
3375        d->req_count = cpu_to_le16(length);
3376        d->res_count = d->req_count;
3377        d->transfer_status = 0;
3378
3379        page_bus = page_private(buffer->pages[page]);
3380        d->data_address = cpu_to_le32(page_bus + offset);
3381
3382        dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3383                         page_bus, offset, length,
3384                         DMA_FROM_DEVICE);
3385
3386        rest -= length;
3387        offset = 0;
3388        page++;
3389
3390        context_append(&ctx->context, d, 1, 0);
3391    }
3392
3393    return 0;
3394}
3395
3396static int ohci_queue_iso(struct fw_iso_context *base,
3397              struct fw_iso_packet *packet,
3398              struct fw_iso_buffer *buffer,
3399              unsigned long payload)
3400{
3401    struct iso_context *ctx = container_of(base, struct iso_context, base);
3402    unsigned long flags;
3403    int ret = -ENOSYS;
3404
3405    spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3406    switch (base->type) {
3407    case FW_ISO_CONTEXT_TRANSMIT:
3408        ret = queue_iso_transmit(ctx, packet, buffer, payload);
3409        break;
3410    case FW_ISO_CONTEXT_RECEIVE:
3411        ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3412        break;
3413    case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3414        ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3415        break;
3416    }
3417    spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3418
3419    return ret;
3420}
3421
3422static void ohci_flush_queue_iso(struct fw_iso_context *base)
3423{
3424    struct context *ctx =
3425            &container_of(base, struct iso_context, base)->context;
3426
3427    reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3428}
3429
3430static int ohci_flush_iso_completions(struct fw_iso_context *base)
3431{
3432    struct iso_context *ctx = container_of(base, struct iso_context, base);
3433    int ret = 0;
3434
3435    tasklet_disable(&ctx->context.tasklet);
3436
3437    if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3438        context_tasklet((unsigned long)&ctx->context);
3439
3440        switch (base->type) {
3441        case FW_ISO_CONTEXT_TRANSMIT:
3442        case FW_ISO_CONTEXT_RECEIVE:
3443            if (ctx->header_length != 0)
3444                flush_iso_completions(ctx);
3445            break;
3446        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447            if (ctx->mc_completed != 0)
3448                flush_ir_buffer_fill(ctx);
3449            break;
3450        default:
3451            ret = -ENOSYS;
3452        }
3453
3454        clear_bit_unlock(0, &ctx->flushing_completions);
3455        smp_mb__after_clear_bit();
3456    }
3457
3458    tasklet_enable(&ctx->context.tasklet);
3459
3460    return ret;
3461}
3462
3463static const struct fw_card_driver ohci_driver = {
3464    .enable = ohci_enable,
3465    .read_phy_reg = ohci_read_phy_reg,
3466    .update_phy_reg = ohci_update_phy_reg,
3467    .set_config_rom = ohci_set_config_rom,
3468    .send_request = ohci_send_request,
3469    .send_response = ohci_send_response,
3470    .cancel_packet = ohci_cancel_packet,
3471    .enable_phys_dma = ohci_enable_phys_dma,
3472    .read_csr = ohci_read_csr,
3473    .write_csr = ohci_write_csr,
3474
3475    .allocate_iso_context = ohci_allocate_iso_context,
3476    .free_iso_context = ohci_free_iso_context,
3477    .set_iso_channels = ohci_set_iso_channels,
3478    .queue_iso = ohci_queue_iso,
3479    .flush_queue_iso = ohci_flush_queue_iso,
3480    .flush_iso_completions = ohci_flush_iso_completions,
3481    .start_iso = ohci_start_iso,
3482    .stop_iso = ohci_stop_iso,
3483};
3484
3485#ifdef CONFIG_PPC_PMAC
3486static void pmac_ohci_on(struct pci_dev *dev)
3487{
3488    if (machine_is(powermac)) {
3489        struct device_node *ofn = pci_device_to_OF_node(dev);
3490
3491        if (ofn) {
3492            pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3493            pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3494        }
3495    }
3496}
3497
3498static void pmac_ohci_off(struct pci_dev *dev)
3499{
3500    if (machine_is(powermac)) {
3501        struct device_node *ofn = pci_device_to_OF_node(dev);
3502
3503        if (ofn) {
3504            pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3505            pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3506        }
3507    }
3508}
3509#else
3510static inline void pmac_ohci_on(struct pci_dev *dev) {}
3511static inline void pmac_ohci_off(struct pci_dev *dev) {}
3512#endif /* CONFIG_PPC_PMAC */
3513
3514static int __devinit pci_probe(struct pci_dev *dev,
3515                   const struct pci_device_id *ent)
3516{
3517    struct fw_ohci *ohci;
3518    u32 bus_options, max_receive, link_speed, version;
3519    u64 guid;
3520    int i, err;
3521    size_t size;
3522
3523    if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3524        dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3525        return -ENOSYS;
3526    }
3527
3528    ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3529    if (ohci == NULL) {
3530        err = -ENOMEM;
3531        goto fail;
3532    }
3533
3534    fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3535
3536    pmac_ohci_on(dev);
3537
3538    err = pci_enable_device(dev);
3539    if (err) {
3540        dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3541        goto fail_free;
3542    }
3543
3544    pci_set_master(dev);
3545    pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3546    pci_set_drvdata(dev, ohci);
3547
3548    spin_lock_init(&ohci->lock);
3549    mutex_init(&ohci->phy_reg_mutex);
3550
3551    INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3552
3553    if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3554        pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3555        dev_err(&dev->dev, "invalid MMIO resource\n");
3556        err = -ENXIO;
3557        goto fail_disable;
3558    }
3559
3560    err = pci_request_region(dev, 0, ohci_driver_name);
3561    if (err) {
3562        dev_err(&dev->dev, "MMIO resource unavailable\n");
3563        goto fail_disable;
3564    }
3565
3566    ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3567    if (ohci->registers == NULL) {
3568        dev_err(&dev->dev, "failed to remap registers\n");
3569        err = -ENXIO;
3570        goto fail_iomem;
3571    }
3572
3573    for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3574        if ((ohci_quirks[i].vendor == dev->vendor) &&
3575            (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3576             ohci_quirks[i].device == dev->device) &&
3577            (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3578             ohci_quirks[i].revision >= dev->revision)) {
3579            ohci->quirks = ohci_quirks[i].flags;
3580            break;
3581        }
3582    if (param_quirks)
3583        ohci->quirks = param_quirks;
3584
3585    /*
3586     * Because dma_alloc_coherent() allocates at least one page,
3587     * we save space by using a common buffer for the AR request/
3588     * response descriptors and the self IDs buffer.
3589     */
3590    BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3591    BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3592    ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3593                           PAGE_SIZE,
3594                           &ohci->misc_buffer_bus,
3595                           GFP_KERNEL);
3596    if (!ohci->misc_buffer) {
3597        err = -ENOMEM;
3598        goto fail_iounmap;
3599    }
3600
3601    err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3602                  OHCI1394_AsReqRcvContextControlSet);
3603    if (err < 0)
3604        goto fail_misc_buf;
3605
3606    err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3607                  OHCI1394_AsRspRcvContextControlSet);
3608    if (err < 0)
3609        goto fail_arreq_ctx;
3610
3611    err = context_init(&ohci->at_request_ctx, ohci,
3612               OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3613    if (err < 0)
3614        goto fail_arrsp_ctx;
3615
3616    err = context_init(&ohci->at_response_ctx, ohci,
3617               OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3618    if (err < 0)
3619        goto fail_atreq_ctx;
3620
3621    reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3622    ohci->ir_context_channels = ~0ULL;
3623    ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3624    reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3625    ohci->ir_context_mask = ohci->ir_context_support;
3626    ohci->n_ir = hweight32(ohci->ir_context_mask);
3627    size = sizeof(struct iso_context) * ohci->n_ir;
3628    ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3629
3630    reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3631    ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3632    reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3633    ohci->it_context_mask = ohci->it_context_support;
3634    ohci->n_it = hweight32(ohci->it_context_mask);
3635    size = sizeof(struct iso_context) * ohci->n_it;
3636    ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3637
3638    if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3639        err = -ENOMEM;
3640        goto fail_contexts;
3641    }
3642
3643    ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3644    ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3645
3646    bus_options = reg_read(ohci, OHCI1394_BusOptions);
3647    max_receive = (bus_options >> 12) & 0xf;
3648    link_speed = bus_options & 0x7;
3649    guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3650        reg_read(ohci, OHCI1394_GUIDLo);
3651
3652    err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3653    if (err)
3654        goto fail_contexts;
3655
3656    version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3657    dev_notice(&dev->dev,
3658          "added OHCI v%x.%x device as card %d, "
3659          "%d IR + %d IT contexts, quirks 0x%x\n",
3660          version >> 16, version & 0xff, ohci->card.index,
3661          ohci->n_ir, ohci->n_it, ohci->quirks);
3662
3663    return 0;
3664
3665 fail_contexts:
3666    kfree(ohci->ir_context_list);
3667    kfree(ohci->it_context_list);
3668    context_release(&ohci->at_response_ctx);
3669 fail_atreq_ctx:
3670    context_release(&ohci->at_request_ctx);
3671 fail_arrsp_ctx:
3672    ar_context_release(&ohci->ar_response_ctx);
3673 fail_arreq_ctx:
3674    ar_context_release(&ohci->ar_request_ctx);
3675 fail_misc_buf:
3676    dma_free_coherent(ohci->card.device, PAGE_SIZE,
3677              ohci->misc_buffer, ohci->misc_buffer_bus);
3678 fail_iounmap:
3679    pci_iounmap(dev, ohci->registers);
3680 fail_iomem:
3681    pci_release_region(dev, 0);
3682 fail_disable:
3683    pci_disable_device(dev);
3684 fail_free:
3685    kfree(ohci);
3686    pmac_ohci_off(dev);
3687 fail:
3688    if (err == -ENOMEM)
3689        dev_err(&dev->dev, "out of memory\n");
3690
3691    return err;
3692}
3693
3694static void pci_remove(struct pci_dev *dev)
3695{
3696    struct fw_ohci *ohci;
3697
3698    ohci = pci_get_drvdata(dev);
3699    reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3700    flush_writes(ohci);
3701    cancel_work_sync(&ohci->bus_reset_work);
3702    fw_core_remove_card(&ohci->card);
3703
3704    /*
3705     * FIXME: Fail all pending packets here, now that the upper
3706     * layers can't queue any more.
3707     */
3708
3709    software_reset(ohci);
3710    free_irq(dev->irq, ohci);
3711
3712    if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3713        dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3714                  ohci->next_config_rom, ohci->next_config_rom_bus);
3715    if (ohci->config_rom)
3716        dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3717                  ohci->config_rom, ohci->config_rom_bus);
3718    ar_context_release(&ohci->ar_request_ctx);
3719    ar_context_release(&ohci->ar_response_ctx);
3720    dma_free_coherent(ohci->card.device, PAGE_SIZE,
3721              ohci->misc_buffer, ohci->misc_buffer_bus);
3722    context_release(&ohci->at_request_ctx);
3723    context_release(&ohci->at_response_ctx);
3724    kfree(ohci->it_context_list);
3725    kfree(ohci->ir_context_list);
3726    pci_disable_msi(dev);
3727    pci_iounmap(dev, ohci->registers);
3728    pci_release_region(dev, 0);
3729    pci_disable_device(dev);
3730    kfree(ohci);
3731    pmac_ohci_off(dev);
3732
3733    dev_notice(&dev->dev, "removed fw-ohci device\n");
3734}
3735
3736#ifdef CONFIG_PM
3737static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3738{
3739    struct fw_ohci *ohci = pci_get_drvdata(dev);
3740    int err;
3741
3742    software_reset(ohci);
3743    free_irq(dev->irq, ohci);
3744    pci_disable_msi(dev);
3745    err = pci_save_state(dev);
3746    if (err) {
3747        dev_err(&dev->dev, "pci_save_state failed\n");
3748        return err;
3749    }
3750    err = pci_set_power_state(dev, pci_choose_state(dev, state));
3751    if (err)
3752        dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3753    pmac_ohci_off(dev);
3754
3755    return 0;
3756}
3757
3758static int pci_resume(struct pci_dev *dev)
3759{
3760    struct fw_ohci *ohci = pci_get_drvdata(dev);
3761    int err;
3762
3763    pmac_ohci_on(dev);
3764    pci_set_power_state(dev, PCI_D0);
3765    pci_restore_state(dev);
3766    err = pci_enable_device(dev);
3767    if (err) {
3768        dev_err(&dev->dev, "pci_enable_device failed\n");
3769        return err;
3770    }
3771
3772    /* Some systems don't setup GUID register on resume from ram */
3773    if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3774                    !reg_read(ohci, OHCI1394_GUIDHi)) {
3775        reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3776        reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3777    }
3778
3779    err = ohci_enable(&ohci->card, NULL, 0);
3780    if (err)
3781        return err;
3782
3783    ohci_resume_iso_dma(ohci);
3784
3785    return 0;
3786}
3787#endif
3788
3789static const struct pci_device_id pci_table[] = {
3790    { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3791    { }
3792};
3793
3794MODULE_DEVICE_TABLE(pci, pci_table);
3795
3796static struct pci_driver fw_ohci_pci_driver = {
3797    .name = ohci_driver_name,
3798    .id_table = pci_table,
3799    .probe = pci_probe,
3800    .remove = pci_remove,
3801#ifdef CONFIG_PM
3802    .resume = pci_resume,
3803    .suspend = pci_suspend,
3804#endif
3805};
3806
3807module_pci_driver(fw_ohci_pci_driver);
3808
3809MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3810MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3811MODULE_LICENSE("GPL");
3812
3813/* Provide a module alias so root-on-sbp2 initrds don't break. */
3814#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3815MODULE_ALIAS("ohci1394");
3816#endif
3817

Archive Download this file



interactive