Root/drivers/ide/hpt366.c

1/*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2009 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@lxorguk.ukuu.org.uk>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * - stop resetting HPT370's state machine before each DMA transfer as that has
118 * caused more harm than good
119 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120 */
121
122#include <linux/types.h>
123#include <linux/module.h>
124#include <linux/kernel.h>
125#include <linux/delay.h>
126#include <linux/blkdev.h>
127#include <linux/interrupt.h>
128#include <linux/pci.h>
129#include <linux/init.h>
130#include <linux/ide.h>
131#include <linux/slab.h>
132
133#include <asm/uaccess.h>
134#include <asm/io.h>
135
136#define DRV_NAME "hpt366"
137
138/* various tuning parameters */
139#undef HPT_RESET_STATE_ENGINE
140#undef HPT_DELAY_INTERRUPT
141
142static const char *bad_ata100_5[] = {
143    "IBM-DTLA-307075",
144    "IBM-DTLA-307060",
145    "IBM-DTLA-307045",
146    "IBM-DTLA-307030",
147    "IBM-DTLA-307020",
148    "IBM-DTLA-307015",
149    "IBM-DTLA-305040",
150    "IBM-DTLA-305030",
151    "IBM-DTLA-305020",
152    "IC35L010AVER07-0",
153    "IC35L020AVER07-0",
154    "IC35L030AVER07-0",
155    "IC35L040AVER07-0",
156    "IC35L060AVER07-0",
157    "WDC AC310200R",
158    NULL
159};
160
161static const char *bad_ata66_4[] = {
162    "IBM-DTLA-307075",
163    "IBM-DTLA-307060",
164    "IBM-DTLA-307045",
165    "IBM-DTLA-307030",
166    "IBM-DTLA-307020",
167    "IBM-DTLA-307015",
168    "IBM-DTLA-305040",
169    "IBM-DTLA-305030",
170    "IBM-DTLA-305020",
171    "IC35L010AVER07-0",
172    "IC35L020AVER07-0",
173    "IC35L030AVER07-0",
174    "IC35L040AVER07-0",
175    "IC35L060AVER07-0",
176    "WDC AC310200R",
177    "MAXTOR STM3320620A",
178    NULL
179};
180
181static const char *bad_ata66_3[] = {
182    "WDC AC310200R",
183    NULL
184};
185
186static const char *bad_ata33[] = {
187    "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188    "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189    "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190    "Maxtor 90510D4",
191    "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192    "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193    "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194    NULL
195};
196
197static u8 xfer_speeds[] = {
198    XFER_UDMA_6,
199    XFER_UDMA_5,
200    XFER_UDMA_4,
201    XFER_UDMA_3,
202    XFER_UDMA_2,
203    XFER_UDMA_1,
204    XFER_UDMA_0,
205
206    XFER_MW_DMA_2,
207    XFER_MW_DMA_1,
208    XFER_MW_DMA_0,
209
210    XFER_PIO_4,
211    XFER_PIO_3,
212    XFER_PIO_2,
213    XFER_PIO_1,
214    XFER_PIO_0
215};
216
217/* Key for bus clock timings
218 * 36x 37x
219 * bits bits
220 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221 * cycles = value + 1
222 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223 * cycles = value + 1
224 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225 * register access.
226 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
227 * register access.
228 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
229 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
230 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
231 * MW DMA xfer.
232 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233 * task file register access.
234 * 28 28 UDMA enable.
235 * 29 29 DMA enable.
236 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
237 * PIO xfer.
238 * 31 31 FIFO enable.
239 */
240
241static u32 forty_base_hpt36x[] = {
242    /* XFER_UDMA_6 */ 0x900fd943,
243    /* XFER_UDMA_5 */ 0x900fd943,
244    /* XFER_UDMA_4 */ 0x900fd943,
245    /* XFER_UDMA_3 */ 0x900ad943,
246    /* XFER_UDMA_2 */ 0x900bd943,
247    /* XFER_UDMA_1 */ 0x9008d943,
248    /* XFER_UDMA_0 */ 0x9008d943,
249
250    /* XFER_MW_DMA_2 */ 0xa008d943,
251    /* XFER_MW_DMA_1 */ 0xa010d955,
252    /* XFER_MW_DMA_0 */ 0xa010d9fc,
253
254    /* XFER_PIO_4 */ 0xc008d963,
255    /* XFER_PIO_3 */ 0xc010d974,
256    /* XFER_PIO_2 */ 0xc010d997,
257    /* XFER_PIO_1 */ 0xc010d9c7,
258    /* XFER_PIO_0 */ 0xc018d9d9
259};
260
261static u32 thirty_three_base_hpt36x[] = {
262    /* XFER_UDMA_6 */ 0x90c9a731,
263    /* XFER_UDMA_5 */ 0x90c9a731,
264    /* XFER_UDMA_4 */ 0x90c9a731,
265    /* XFER_UDMA_3 */ 0x90cfa731,
266    /* XFER_UDMA_2 */ 0x90caa731,
267    /* XFER_UDMA_1 */ 0x90cba731,
268    /* XFER_UDMA_0 */ 0x90c8a731,
269
270    /* XFER_MW_DMA_2 */ 0xa0c8a731,
271    /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
272    /* XFER_MW_DMA_0 */ 0xa0c8a797,
273
274    /* XFER_PIO_4 */ 0xc0c8a731,
275    /* XFER_PIO_3 */ 0xc0c8a742,
276    /* XFER_PIO_2 */ 0xc0d0a753,
277    /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
278    /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
279};
280
281static u32 twenty_five_base_hpt36x[] = {
282    /* XFER_UDMA_6 */ 0x90c98521,
283    /* XFER_UDMA_5 */ 0x90c98521,
284    /* XFER_UDMA_4 */ 0x90c98521,
285    /* XFER_UDMA_3 */ 0x90cf8521,
286    /* XFER_UDMA_2 */ 0x90cf8521,
287    /* XFER_UDMA_1 */ 0x90cb8521,
288    /* XFER_UDMA_0 */ 0x90cb8521,
289
290    /* XFER_MW_DMA_2 */ 0xa0ca8521,
291    /* XFER_MW_DMA_1 */ 0xa0ca8532,
292    /* XFER_MW_DMA_0 */ 0xa0ca8575,
293
294    /* XFER_PIO_4 */ 0xc0ca8521,
295    /* XFER_PIO_3 */ 0xc0ca8532,
296    /* XFER_PIO_2 */ 0xc0ca8542,
297    /* XFER_PIO_1 */ 0xc0d08572,
298    /* XFER_PIO_0 */ 0xc0d08585
299};
300
301/*
302 * The following are the new timing tables with PIO mode data/taskfile transfer
303 * overclocking fixed...
304 */
305
306/* This table is taken from the HPT370 data manual rev. 1.02 */
307static u32 thirty_three_base_hpt37x[] = {
308    /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
309    /* XFER_UDMA_5 */ 0x16455031,
310    /* XFER_UDMA_4 */ 0x16455031,
311    /* XFER_UDMA_3 */ 0x166d5031,
312    /* XFER_UDMA_2 */ 0x16495031,
313    /* XFER_UDMA_1 */ 0x164d5033,
314    /* XFER_UDMA_0 */ 0x16515097,
315
316    /* XFER_MW_DMA_2 */ 0x26515031,
317    /* XFER_MW_DMA_1 */ 0x26515033,
318    /* XFER_MW_DMA_0 */ 0x26515097,
319
320    /* XFER_PIO_4 */ 0x06515021,
321    /* XFER_PIO_3 */ 0x06515022,
322    /* XFER_PIO_2 */ 0x06515033,
323    /* XFER_PIO_1 */ 0x06915065,
324    /* XFER_PIO_0 */ 0x06d1508a
325};
326
327static u32 fifty_base_hpt37x[] = {
328    /* XFER_UDMA_6 */ 0x1a861842,
329    /* XFER_UDMA_5 */ 0x1a861842,
330    /* XFER_UDMA_4 */ 0x1aae1842,
331    /* XFER_UDMA_3 */ 0x1a8e1842,
332    /* XFER_UDMA_2 */ 0x1a0e1842,
333    /* XFER_UDMA_1 */ 0x1a161854,
334    /* XFER_UDMA_0 */ 0x1a1a18ea,
335
336    /* XFER_MW_DMA_2 */ 0x2a821842,
337    /* XFER_MW_DMA_1 */ 0x2a821854,
338    /* XFER_MW_DMA_0 */ 0x2a8218ea,
339
340    /* XFER_PIO_4 */ 0x0a821842,
341    /* XFER_PIO_3 */ 0x0a821843,
342    /* XFER_PIO_2 */ 0x0a821855,
343    /* XFER_PIO_1 */ 0x0ac218a8,
344    /* XFER_PIO_0 */ 0x0b02190c
345};
346
347static u32 sixty_six_base_hpt37x[] = {
348    /* XFER_UDMA_6 */ 0x1c86fe62,
349    /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
350    /* XFER_UDMA_4 */ 0x1c8afe62,
351    /* XFER_UDMA_3 */ 0x1c8efe62,
352    /* XFER_UDMA_2 */ 0x1c92fe62,
353    /* XFER_UDMA_1 */ 0x1c9afe62,
354    /* XFER_UDMA_0 */ 0x1c82fe62,
355
356    /* XFER_MW_DMA_2 */ 0x2c82fe62,
357    /* XFER_MW_DMA_1 */ 0x2c82fe66,
358    /* XFER_MW_DMA_0 */ 0x2c82ff2e,
359
360    /* XFER_PIO_4 */ 0x0c82fe62,
361    /* XFER_PIO_3 */ 0x0c82fe84,
362    /* XFER_PIO_2 */ 0x0c82fea6,
363    /* XFER_PIO_1 */ 0x0d02ff26,
364    /* XFER_PIO_0 */ 0x0d42ff7f
365};
366
367#define HPT371_ALLOW_ATA133_6 1
368#define HPT302_ALLOW_ATA133_6 1
369#define HPT372_ALLOW_ATA133_6 1
370#define HPT370_ALLOW_ATA100_5 0
371#define HPT366_ALLOW_ATA66_4 1
372#define HPT366_ALLOW_ATA66_3 1
373
374/* Supported ATA clock frequencies */
375enum ata_clock {
376    ATA_CLOCK_25MHZ,
377    ATA_CLOCK_33MHZ,
378    ATA_CLOCK_40MHZ,
379    ATA_CLOCK_50MHZ,
380    ATA_CLOCK_66MHZ,
381    NUM_ATA_CLOCKS
382};
383
384struct hpt_timings {
385    u32 pio_mask;
386    u32 dma_mask;
387    u32 ultra_mask;
388    u32 *clock_table[NUM_ATA_CLOCKS];
389};
390
391/*
392 * Hold all the HighPoint chip information in one place.
393 */
394
395struct hpt_info {
396    char *chip_name; /* Chip name */
397    u8 chip_type; /* Chip type */
398    u8 udma_mask; /* Allowed UltraDMA modes mask. */
399    u8 dpll_clk; /* DPLL clock in MHz */
400    u8 pci_clk; /* PCI clock in MHz */
401    struct hpt_timings *timings; /* Chipset timing data */
402    u8 clock; /* ATA clock selected */
403};
404
405/* Supported HighPoint chips */
406enum {
407    HPT36x,
408    HPT370,
409    HPT370A,
410    HPT374,
411    HPT372,
412    HPT372A,
413    HPT302,
414    HPT371,
415    HPT372N,
416    HPT302N,
417    HPT371N
418};
419
420static struct hpt_timings hpt36x_timings = {
421    .pio_mask = 0xc1f8ffff,
422    .dma_mask = 0x303800ff,
423    .ultra_mask = 0x30070000,
424    .clock_table = {
425        [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426        [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427        [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428        [ATA_CLOCK_50MHZ] = NULL,
429        [ATA_CLOCK_66MHZ] = NULL
430    }
431};
432
433static struct hpt_timings hpt37x_timings = {
434    .pio_mask = 0xcfc3ffff,
435    .dma_mask = 0x31c001ff,
436    .ultra_mask = 0x303c0000,
437    .clock_table = {
438        [ATA_CLOCK_25MHZ] = NULL,
439        [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440        [ATA_CLOCK_40MHZ] = NULL,
441        [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442        [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443    }
444};
445
446static const struct hpt_info hpt36x __devinitdata = {
447    .chip_name = "HPT36x",
448    .chip_type = HPT36x,
449    .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450    .dpll_clk = 0, /* no DPLL */
451    .timings = &hpt36x_timings
452};
453
454static const struct hpt_info hpt370 __devinitdata = {
455    .chip_name = "HPT370",
456    .chip_type = HPT370,
457    .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458    .dpll_clk = 48,
459    .timings = &hpt37x_timings
460};
461
462static const struct hpt_info hpt370a __devinitdata = {
463    .chip_name = "HPT370A",
464    .chip_type = HPT370A,
465    .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466    .dpll_clk = 48,
467    .timings = &hpt37x_timings
468};
469
470static const struct hpt_info hpt374 __devinitdata = {
471    .chip_name = "HPT374",
472    .chip_type = HPT374,
473    .udma_mask = ATA_UDMA5,
474    .dpll_clk = 48,
475    .timings = &hpt37x_timings
476};
477
478static const struct hpt_info hpt372 __devinitdata = {
479    .chip_name = "HPT372",
480    .chip_type = HPT372,
481    .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482    .dpll_clk = 55,
483    .timings = &hpt37x_timings
484};
485
486static const struct hpt_info hpt372a __devinitdata = {
487    .chip_name = "HPT372A",
488    .chip_type = HPT372A,
489    .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490    .dpll_clk = 66,
491    .timings = &hpt37x_timings
492};
493
494static const struct hpt_info hpt302 __devinitdata = {
495    .chip_name = "HPT302",
496    .chip_type = HPT302,
497    .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498    .dpll_clk = 66,
499    .timings = &hpt37x_timings
500};
501
502static const struct hpt_info hpt371 __devinitdata = {
503    .chip_name = "HPT371",
504    .chip_type = HPT371,
505    .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506    .dpll_clk = 66,
507    .timings = &hpt37x_timings
508};
509
510static const struct hpt_info hpt372n __devinitdata = {
511    .chip_name = "HPT372N",
512    .chip_type = HPT372N,
513    .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514    .dpll_clk = 77,
515    .timings = &hpt37x_timings
516};
517
518static const struct hpt_info hpt302n __devinitdata = {
519    .chip_name = "HPT302N",
520    .chip_type = HPT302N,
521    .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522    .dpll_clk = 77,
523    .timings = &hpt37x_timings
524};
525
526static const struct hpt_info hpt371n __devinitdata = {
527    .chip_name = "HPT371N",
528    .chip_type = HPT371N,
529    .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530    .dpll_clk = 77,
531    .timings = &hpt37x_timings
532};
533
534static int check_in_drive_list(ide_drive_t *drive, const char **list)
535{
536    char *m = (char *)&drive->id[ATA_ID_PROD];
537
538    while (*list)
539        if (!strcmp(*list++, m))
540            return 1;
541    return 0;
542}
543
544static struct hpt_info *hpt3xx_get_info(struct device *dev)
545{
546    struct ide_host *host = dev_get_drvdata(dev);
547    struct hpt_info *info = (struct hpt_info *)host->host_priv;
548
549    return dev == host->dev[1] ? info + 1 : info;
550}
551
552/*
553 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
554 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
555 */
556
557static u8 hpt3xx_udma_filter(ide_drive_t *drive)
558{
559    ide_hwif_t *hwif = drive->hwif;
560    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
561    u8 mask = hwif->ultra_mask;
562
563    switch (info->chip_type) {
564    case HPT36x:
565        if (!HPT366_ALLOW_ATA66_4 ||
566            check_in_drive_list(drive, bad_ata66_4))
567            mask = ATA_UDMA3;
568
569        if (!HPT366_ALLOW_ATA66_3 ||
570            check_in_drive_list(drive, bad_ata66_3))
571            mask = ATA_UDMA2;
572        break;
573    case HPT370:
574        if (!HPT370_ALLOW_ATA100_5 ||
575            check_in_drive_list(drive, bad_ata100_5))
576            mask = ATA_UDMA4;
577        break;
578    case HPT370A:
579        if (!HPT370_ALLOW_ATA100_5 ||
580            check_in_drive_list(drive, bad_ata100_5))
581            return ATA_UDMA4;
582    case HPT372 :
583    case HPT372A:
584    case HPT372N:
585    case HPT374 :
586        if (ata_id_is_sata(drive->id))
587            mask &= ~0x0e;
588        /* Fall thru */
589    default:
590        return mask;
591    }
592
593    return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
594}
595
596static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
597{
598    ide_hwif_t *hwif = drive->hwif;
599    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
600
601    switch (info->chip_type) {
602    case HPT372 :
603    case HPT372A:
604    case HPT372N:
605    case HPT374 :
606        if (ata_id_is_sata(drive->id))
607            return 0x00;
608        /* Fall thru */
609    default:
610        return 0x07;
611    }
612}
613
614static u32 get_speed_setting(u8 speed, struct hpt_info *info)
615{
616    int i;
617
618    /*
619     * Lookup the transfer mode table to get the index into
620     * the timing table.
621     *
622     * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
623     */
624    for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
625        if (xfer_speeds[i] == speed)
626            break;
627
628    return info->timings->clock_table[info->clock][i];
629}
630
631static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
632{
633    struct pci_dev *dev = to_pci_dev(hwif->dev);
634    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
635    struct hpt_timings *t = info->timings;
636    u8 itr_addr = 0x40 + (drive->dn * 4);
637    u32 old_itr = 0;
638    const u8 speed = drive->dma_mode;
639    u32 new_itr = get_speed_setting(speed, info);
640    u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
641                 (speed < XFER_UDMA_0 ? t->dma_mask :
642                              t->ultra_mask);
643
644    pci_read_config_dword(dev, itr_addr, &old_itr);
645    new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
646    /*
647     * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
648     * to avoid problems handling I/O errors later
649     */
650    new_itr &= ~0xc0000000;
651
652    pci_write_config_dword(dev, itr_addr, new_itr);
653}
654
655static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
656{
657    drive->dma_mode = drive->pio_mode;
658    hpt3xx_set_mode(hwif, drive);
659}
660
661static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
662{
663    ide_hwif_t *hwif = drive->hwif;
664    struct pci_dev *dev = to_pci_dev(hwif->dev);
665    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
666
667    if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
668        return;
669
670    if (info->chip_type >= HPT370) {
671        u8 scr1 = 0;
672
673        pci_read_config_byte(dev, 0x5a, &scr1);
674        if (((scr1 & 0x10) >> 4) != mask) {
675            if (mask)
676                scr1 |= 0x10;
677            else
678                scr1 &= ~0x10;
679            pci_write_config_byte(dev, 0x5a, scr1);
680        }
681    } else if (mask)
682        disable_irq(hwif->irq);
683    else
684        enable_irq(hwif->irq);
685}
686
687/*
688 * This is specific to the HPT366 UDMA chipset
689 * by HighPoint|Triones Technologies, Inc.
690 */
691static void hpt366_dma_lost_irq(ide_drive_t *drive)
692{
693    struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
694    u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
695
696    pci_read_config_byte(dev, 0x50, &mcr1);
697    pci_read_config_byte(dev, 0x52, &mcr3);
698    pci_read_config_byte(dev, 0x5a, &scr1);
699    printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
700        drive->name, __func__, mcr1, mcr3, scr1);
701    if (scr1 & 0x10)
702        pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
703    ide_dma_lost_irq(drive);
704}
705
706static void hpt370_clear_engine(ide_drive_t *drive)
707{
708    ide_hwif_t *hwif = drive->hwif;
709    struct pci_dev *dev = to_pci_dev(hwif->dev);
710
711    pci_write_config_byte(dev, hwif->select_data, 0x37);
712    udelay(10);
713}
714
715static void hpt370_irq_timeout(ide_drive_t *drive)
716{
717    ide_hwif_t *hwif = drive->hwif;
718    struct pci_dev *dev = to_pci_dev(hwif->dev);
719    u16 bfifo = 0;
720    u8 dma_cmd;
721
722    pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
723    printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
724
725    /* get DMA command mode */
726    dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
727    /* stop DMA */
728    outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
729    hpt370_clear_engine(drive);
730}
731
732static void hpt370_dma_start(ide_drive_t *drive)
733{
734#ifdef HPT_RESET_STATE_ENGINE
735    hpt370_clear_engine(drive);
736#endif
737    ide_dma_start(drive);
738}
739
740static int hpt370_dma_end(ide_drive_t *drive)
741{
742    ide_hwif_t *hwif = drive->hwif;
743    u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
744
745    if (dma_stat & ATA_DMA_ACTIVE) {
746        /* wait a little */
747        udelay(20);
748        dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
749        if (dma_stat & ATA_DMA_ACTIVE)
750            hpt370_irq_timeout(drive);
751    }
752    return ide_dma_end(drive);
753}
754
755/* returns 1 if DMA IRQ issued, 0 otherwise */
756static int hpt374_dma_test_irq(ide_drive_t *drive)
757{
758    ide_hwif_t *hwif = drive->hwif;
759    struct pci_dev *dev = to_pci_dev(hwif->dev);
760    u16 bfifo = 0;
761    u8 dma_stat;
762
763    pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
764    if (bfifo & 0x1FF) {
765// printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
766        return 0;
767    }
768
769    dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
770    /* return 1 if INTR asserted */
771    if (dma_stat & ATA_DMA_INTR)
772        return 1;
773
774    return 0;
775}
776
777static int hpt374_dma_end(ide_drive_t *drive)
778{
779    ide_hwif_t *hwif = drive->hwif;
780    struct pci_dev *dev = to_pci_dev(hwif->dev);
781    u8 mcr = 0, mcr_addr = hwif->select_data;
782    u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
783
784    pci_read_config_byte(dev, 0x6a, &bwsr);
785    pci_read_config_byte(dev, mcr_addr, &mcr);
786    if (bwsr & mask)
787        pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
788    return ide_dma_end(drive);
789}
790
791/**
792 * hpt3xxn_set_clock - perform clock switching dance
793 * @hwif: hwif to switch
794 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
795 *
796 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
797 */
798
799static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
800{
801    unsigned long base = hwif->extra_base;
802    u8 scr2 = inb(base + 0x6b);
803
804    if ((scr2 & 0x7f) == mode)
805        return;
806
807    /* Tristate the bus */
808    outb(0x80, base + 0x63);
809    outb(0x80, base + 0x67);
810
811    /* Switch clock and reset channels */
812    outb(mode, base + 0x6b);
813    outb(0xc0, base + 0x69);
814
815    /*
816     * Reset the state machines.
817     * NOTE: avoid accidentally enabling the disabled channels.
818     */
819    outb(inb(base + 0x60) | 0x32, base + 0x60);
820    outb(inb(base + 0x64) | 0x32, base + 0x64);
821
822    /* Complete reset */
823    outb(0x00, base + 0x69);
824
825    /* Reconnect channels to bus */
826    outb(0x00, base + 0x63);
827    outb(0x00, base + 0x67);
828}
829
830/**
831 * hpt3xxn_rw_disk - prepare for I/O
832 * @drive: drive for command
833 * @rq: block request structure
834 *
835 * This is called when a disk I/O is issued to HPT3xxN.
836 * We need it because of the clock switching.
837 */
838
839static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
840{
841    hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
842}
843
844/**
845 * hpt37x_calibrate_dpll - calibrate the DPLL
846 * @dev: PCI device
847 *
848 * Perform a calibration cycle on the DPLL.
849 * Returns 1 if this succeeds
850 */
851static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
852{
853    u32 dpll = (f_high << 16) | f_low | 0x100;
854    u8 scr2;
855    int i;
856
857    pci_write_config_dword(dev, 0x5c, dpll);
858
859    /* Wait for oscillator ready */
860    for(i = 0; i < 0x5000; ++i) {
861        udelay(50);
862        pci_read_config_byte(dev, 0x5b, &scr2);
863        if (scr2 & 0x80)
864            break;
865    }
866    /* See if it stays ready (we'll just bail out if it's not yet) */
867    for(i = 0; i < 0x1000; ++i) {
868        pci_read_config_byte(dev, 0x5b, &scr2);
869        /* DPLL destabilized? */
870        if(!(scr2 & 0x80))
871            return 0;
872    }
873    /* Turn off tuning, we have the DPLL set */
874    pci_read_config_dword (dev, 0x5c, &dpll);
875    pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
876    return 1;
877}
878
879static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
880{
881    struct ide_host *host = pci_get_drvdata(dev);
882    struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]);
883    u8 chip_type = info->chip_type;
884    u8 new_mcr, old_mcr = 0;
885
886    /*
887     * Disable the "fast interrupt" prediction. Don't hold off
888     * on interrupts. (== 0x01 despite what the docs say)
889     */
890    pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
891
892    if (chip_type >= HPT374)
893        new_mcr = old_mcr & ~0x07;
894    else if (chip_type >= HPT370) {
895        new_mcr = old_mcr;
896        new_mcr &= ~0x02;
897#ifdef HPT_DELAY_INTERRUPT
898        new_mcr &= ~0x01;
899#else
900        new_mcr |= 0x01;
901#endif
902    } else /* HPT366 and HPT368 */
903        new_mcr = old_mcr & ~0x80;
904
905    if (new_mcr != old_mcr)
906        pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
907}
908
909static int init_chipset_hpt366(struct pci_dev *dev)
910{
911    unsigned long io_base = pci_resource_start(dev, 4);
912    struct hpt_info *info = hpt3xx_get_info(&dev->dev);
913    const char *name = DRV_NAME;
914    u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
915    u8 chip_type;
916    enum ata_clock clock;
917
918    chip_type = info->chip_type;
919
920    pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
921    pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
922    pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
923    pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
924
925    /*
926     * First, try to estimate the PCI clock frequency...
927     */
928    if (chip_type >= HPT370) {
929        u8 scr1 = 0;
930        u16 f_cnt = 0;
931        u32 temp = 0;
932
933        /* Interrupt force enable. */
934        pci_read_config_byte(dev, 0x5a, &scr1);
935        if (scr1 & 0x10)
936            pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
937
938        /*
939         * HighPoint does this for HPT372A.
940         * NOTE: This register is only writeable via I/O space.
941         */
942        if (chip_type == HPT372A)
943            outb(0x0e, io_base + 0x9c);
944
945        /*
946         * Default to PCI clock. Make sure MA15/16 are set to output
947         * to prevent drives having problems with 40-pin cables.
948         */
949        pci_write_config_byte(dev, 0x5b, 0x23);
950
951        /*
952         * We'll have to read f_CNT value in order to determine
953         * the PCI clock frequency according to the following ratio:
954         *
955         * f_CNT = Fpci * 192 / Fdpll
956         *
957         * First try reading the register in which the HighPoint BIOS
958         * saves f_CNT value before reprogramming the DPLL from its
959         * default setting (which differs for the various chips).
960         *
961         * NOTE: This register is only accessible via I/O space;
962         * HPT374 BIOS only saves it for the function 0, so we have to
963         * always read it from there -- no need to check the result of
964         * pci_get_slot() for the function 0 as the whole device has
965         * been already "pinned" (via function 1) in init_setup_hpt374()
966         */
967        if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
968            struct pci_dev *dev1 = pci_get_slot(dev->bus,
969                                 dev->devfn - 1);
970            unsigned long io_base = pci_resource_start(dev1, 4);
971
972            temp = inl(io_base + 0x90);
973            pci_dev_put(dev1);
974        } else
975            temp = inl(io_base + 0x90);
976
977        /*
978         * In case the signature check fails, we'll have to
979         * resort to reading the f_CNT register itself in hopes
980         * that nobody has touched the DPLL yet...
981         */
982        if ((temp & 0xFFFFF000) != 0xABCDE000) {
983            int i;
984
985            printk(KERN_WARNING "%s %s: no clock data saved by "
986                "BIOS\n", name, pci_name(dev));
987
988            /* Calculate the average value of f_CNT. */
989            for (temp = i = 0; i < 128; i++) {
990                pci_read_config_word(dev, 0x78, &f_cnt);
991                temp += f_cnt & 0x1ff;
992                mdelay(1);
993            }
994            f_cnt = temp / 128;
995        } else
996            f_cnt = temp & 0x1ff;
997
998        dpll_clk = info->dpll_clk;
999        pci_clk = (f_cnt * dpll_clk) / 192;
1000
1001        /* Clamp PCI clock to bands. */
1002        if (pci_clk < 40)
1003            pci_clk = 33;
1004        else if(pci_clk < 45)
1005            pci_clk = 40;
1006        else if(pci_clk < 55)
1007            pci_clk = 50;
1008        else
1009            pci_clk = 66;
1010
1011        printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1012            "assuming %d MHz PCI\n", name, pci_name(dev),
1013            dpll_clk, f_cnt, pci_clk);
1014    } else {
1015        u32 itr1 = 0;
1016
1017        pci_read_config_dword(dev, 0x40, &itr1);
1018
1019        /* Detect PCI clock by looking at cmd_high_time. */
1020        switch((itr1 >> 8) & 0x07) {
1021            case 0x09:
1022                pci_clk = 40;
1023                break;
1024            case 0x05:
1025                pci_clk = 25;
1026                break;
1027            case 0x07:
1028            default:
1029                pci_clk = 33;
1030                break;
1031        }
1032    }
1033
1034    /* Let's assume we'll use PCI clock for the ATA clock... */
1035    switch (pci_clk) {
1036        case 25:
1037            clock = ATA_CLOCK_25MHZ;
1038            break;
1039        case 33:
1040        default:
1041            clock = ATA_CLOCK_33MHZ;
1042            break;
1043        case 40:
1044            clock = ATA_CLOCK_40MHZ;
1045            break;
1046        case 50:
1047            clock = ATA_CLOCK_50MHZ;
1048            break;
1049        case 66:
1050            clock = ATA_CLOCK_66MHZ;
1051            break;
1052    }
1053
1054    /*
1055     * Only try the DPLL if we don't have a table for the PCI clock that
1056     * we are running at for HPT370/A, always use it for anything newer...
1057     *
1058     * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1059     * We also don't like using the DPLL because this causes glitches
1060     * on PRST-/SRST- when the state engine gets reset...
1061     */
1062    if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1063        u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1064        int adjust;
1065
1066         /*
1067          * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1068          * supported/enabled, use 50 MHz DPLL clock otherwise...
1069          */
1070        if (info->udma_mask == ATA_UDMA6) {
1071            dpll_clk = 66;
1072            clock = ATA_CLOCK_66MHZ;
1073        } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1074            dpll_clk = 50;
1075            clock = ATA_CLOCK_50MHZ;
1076        }
1077
1078        if (info->timings->clock_table[clock] == NULL) {
1079            printk(KERN_ERR "%s %s: unknown bus timing!\n",
1080                name, pci_name(dev));
1081            return -EIO;
1082        }
1083
1084        /* Select the DPLL clock. */
1085        pci_write_config_byte(dev, 0x5b, 0x21);
1086
1087        /*
1088         * Adjust the DPLL based upon PCI clock, enable it,
1089         * and wait for stabilization...
1090         */
1091        f_low = (pci_clk * 48) / dpll_clk;
1092
1093        for (adjust = 0; adjust < 8; adjust++) {
1094            if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1095                break;
1096
1097            /*
1098             * See if it'll settle at a fractionally different clock
1099             */
1100            if (adjust & 1)
1101                f_low -= adjust >> 1;
1102            else
1103                f_low += adjust >> 1;
1104        }
1105        if (adjust == 8) {
1106            printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1107                name, pci_name(dev));
1108            return -EIO;
1109        }
1110
1111        printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1112            name, pci_name(dev), dpll_clk);
1113    } else {
1114        /* Mark the fact that we're not using the DPLL. */
1115        dpll_clk = 0;
1116
1117        printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1118            name, pci_name(dev), pci_clk);
1119    }
1120
1121    /* Store the clock frequencies. */
1122    info->dpll_clk = dpll_clk;
1123    info->pci_clk = pci_clk;
1124    info->clock = clock;
1125
1126    if (chip_type >= HPT370) {
1127        u8 mcr1, mcr4;
1128
1129        /*
1130         * Reset the state engines.
1131         * NOTE: Avoid accidentally enabling the disabled channels.
1132         */
1133        pci_read_config_byte (dev, 0x50, &mcr1);
1134        pci_read_config_byte (dev, 0x54, &mcr4);
1135        pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1136        pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1137        udelay(100);
1138    }
1139
1140    /*
1141     * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1142     * the MISC. register to stretch the UltraDMA Tss timing.
1143     * NOTE: This register is only writeable via I/O space.
1144     */
1145    if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1146        outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1147
1148    hpt3xx_disable_fast_irq(dev, 0x50);
1149    hpt3xx_disable_fast_irq(dev, 0x54);
1150
1151    return 0;
1152}
1153
1154static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1155{
1156    struct pci_dev *dev = to_pci_dev(hwif->dev);
1157    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1158    u8 chip_type = info->chip_type;
1159    u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1160
1161    /*
1162     * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1163     * address lines to access an external EEPROM. To read valid
1164     * cable detect state the pins must be enabled as inputs.
1165     */
1166    if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1167        /*
1168         * HPT374 PCI function 1
1169         * - set bit 15 of reg 0x52 to enable TCBLID as input
1170         * - set bit 15 of reg 0x56 to enable FCBLID as input
1171         */
1172        u8 mcr_addr = hwif->select_data + 2;
1173        u16 mcr;
1174
1175        pci_read_config_word(dev, mcr_addr, &mcr);
1176        pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1177        /* Debounce, then read cable ID register */
1178        udelay(10);
1179        pci_read_config_byte(dev, 0x5a, &scr1);
1180        pci_write_config_word(dev, mcr_addr, mcr);
1181    } else if (chip_type >= HPT370) {
1182        /*
1183         * HPT370/372 and 374 pcifn 0
1184         * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1185         */
1186        u8 scr2 = 0;
1187
1188        pci_read_config_byte(dev, 0x5b, &scr2);
1189        pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1190        /* Debounce, then read cable ID register */
1191        udelay(10);
1192        pci_read_config_byte(dev, 0x5a, &scr1);
1193        pci_write_config_byte(dev, 0x5b, scr2);
1194    } else
1195        pci_read_config_byte(dev, 0x5a, &scr1);
1196
1197    return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1198}
1199
1200static void __devinit init_hwif_hpt366(ide_hwif_t *hwif)
1201{
1202    struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1203    u8 chip_type = info->chip_type;
1204
1205    /* Cache the channel's MISC. control registers' offset */
1206    hwif->select_data = hwif->channel ? 0x54 : 0x50;
1207
1208    /*
1209     * HPT3xxN chips have some complications:
1210     *
1211     * - on 33 MHz PCI we must clock switch
1212     * - on 66 MHz PCI we must NOT use the PCI clock
1213     */
1214    if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1215        /*
1216         * Clock is shared between the channels,
1217         * so we'll have to serialize them... :-(
1218         */
1219        hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1220        hwif->rw_disk = &hpt3xxn_rw_disk;
1221    }
1222}
1223
1224static int __devinit init_dma_hpt366(ide_hwif_t *hwif,
1225                     const struct ide_port_info *d)
1226{
1227    struct pci_dev *dev = to_pci_dev(hwif->dev);
1228    unsigned long flags, base = ide_pci_dma_base(hwif, d);
1229    u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1230
1231    if (base == 0)
1232        return -1;
1233
1234    hwif->dma_base = base;
1235
1236    if (ide_pci_check_simplex(hwif, d) < 0)
1237        return -1;
1238
1239    if (ide_pci_set_master(dev, d->name) < 0)
1240        return -1;
1241
1242    dma_old = inb(base + 2);
1243
1244    local_irq_save(flags);
1245
1246    dma_new = dma_old;
1247    pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1248    pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1249
1250    if (masterdma & 0x30) dma_new |= 0x20;
1251    if ( slavedma & 0x30) dma_new |= 0x40;
1252    if (dma_new != dma_old)
1253        outb(dma_new, base + 2);
1254
1255    local_irq_restore(flags);
1256
1257    printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n",
1258             hwif->name, base, base + 7);
1259
1260    hwif->extra_base = base + (hwif->channel ? 8 : 16);
1261
1262    if (ide_allocate_dma_engine(hwif))
1263        return -1;
1264
1265    return 0;
1266}
1267
1268static void __devinit hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1269{
1270    if (dev2->irq != dev->irq) {
1271        /* FIXME: we need a core pci_set_interrupt() */
1272        dev2->irq = dev->irq;
1273        printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1274            "fixed\n", pci_name(dev2));
1275    }
1276}
1277
1278static void __devinit hpt371_init(struct pci_dev *dev)
1279{
1280    u8 mcr1 = 0;
1281
1282    /*
1283     * HPT371 chips physically have only one channel, the secondary one,
1284     * but the primary channel registers do exist! Go figure...
1285     * So, we manually disable the non-existing channel here
1286     * (if the BIOS hasn't done this already).
1287     */
1288    pci_read_config_byte(dev, 0x50, &mcr1);
1289    if (mcr1 & 0x04)
1290        pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1291}
1292
1293static int __devinit hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1294{
1295    u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1296
1297    /*
1298     * Now we'll have to force both channels enabled if
1299     * at least one of them has been enabled by BIOS...
1300     */
1301    pci_read_config_byte(dev, 0x50, &mcr1);
1302    if (mcr1 & 0x30)
1303        pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1304
1305    pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1306    pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1307
1308    if (pin1 != pin2 && dev->irq == dev2->irq) {
1309        printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1310            "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1311        return 1;
1312    }
1313
1314    return 0;
1315}
1316
1317#define IDE_HFLAGS_HPT3XX \
1318    (IDE_HFLAG_NO_ATAPI_DMA | \
1319     IDE_HFLAG_OFF_BOARD)
1320
1321static const struct ide_port_ops hpt3xx_port_ops = {
1322    .set_pio_mode = hpt3xx_set_pio_mode,
1323    .set_dma_mode = hpt3xx_set_mode,
1324    .maskproc = hpt3xx_maskproc,
1325    .mdma_filter = hpt3xx_mdma_filter,
1326    .udma_filter = hpt3xx_udma_filter,
1327    .cable_detect = hpt3xx_cable_detect,
1328};
1329
1330static const struct ide_dma_ops hpt37x_dma_ops = {
1331    .dma_host_set = ide_dma_host_set,
1332    .dma_setup = ide_dma_setup,
1333    .dma_start = ide_dma_start,
1334    .dma_end = hpt374_dma_end,
1335    .dma_test_irq = hpt374_dma_test_irq,
1336    .dma_lost_irq = ide_dma_lost_irq,
1337    .dma_timer_expiry = ide_dma_sff_timer_expiry,
1338    .dma_sff_read_status = ide_dma_sff_read_status,
1339};
1340
1341static const struct ide_dma_ops hpt370_dma_ops = {
1342    .dma_host_set = ide_dma_host_set,
1343    .dma_setup = ide_dma_setup,
1344    .dma_start = hpt370_dma_start,
1345    .dma_end = hpt370_dma_end,
1346    .dma_test_irq = ide_dma_test_irq,
1347    .dma_lost_irq = ide_dma_lost_irq,
1348    .dma_timer_expiry = ide_dma_sff_timer_expiry,
1349    .dma_clear = hpt370_irq_timeout,
1350    .dma_sff_read_status = ide_dma_sff_read_status,
1351};
1352
1353static const struct ide_dma_ops hpt36x_dma_ops = {
1354    .dma_host_set = ide_dma_host_set,
1355    .dma_setup = ide_dma_setup,
1356    .dma_start = ide_dma_start,
1357    .dma_end = ide_dma_end,
1358    .dma_test_irq = ide_dma_test_irq,
1359    .dma_lost_irq = hpt366_dma_lost_irq,
1360    .dma_timer_expiry = ide_dma_sff_timer_expiry,
1361    .dma_sff_read_status = ide_dma_sff_read_status,
1362};
1363
1364static const struct ide_port_info hpt366_chipsets[] __devinitdata = {
1365    { /* 0: HPT36x */
1366        .name = DRV_NAME,
1367        .init_chipset = init_chipset_hpt366,
1368        .init_hwif = init_hwif_hpt366,
1369        .init_dma = init_dma_hpt366,
1370        /*
1371         * HPT36x chips have one channel per function and have
1372         * both channel enable bits located differently and visible
1373         * to both functions -- really stupid design decision... :-(
1374         * Bit 4 is for the primary channel, bit 5 for the secondary.
1375         */
1376        .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1377        .port_ops = &hpt3xx_port_ops,
1378        .dma_ops = &hpt36x_dma_ops,
1379        .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1380        .pio_mask = ATA_PIO4,
1381        .mwdma_mask = ATA_MWDMA2,
1382    },
1383    { /* 1: HPT3xx */
1384        .name = DRV_NAME,
1385        .init_chipset = init_chipset_hpt366,
1386        .init_hwif = init_hwif_hpt366,
1387        .init_dma = init_dma_hpt366,
1388        .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1389        .port_ops = &hpt3xx_port_ops,
1390        .dma_ops = &hpt37x_dma_ops,
1391        .host_flags = IDE_HFLAGS_HPT3XX,
1392        .pio_mask = ATA_PIO4,
1393        .mwdma_mask = ATA_MWDMA2,
1394    }
1395};
1396
1397/**
1398 * hpt366_init_one - called when an HPT366 is found
1399 * @dev: the hpt366 device
1400 * @id: the matching pci id
1401 *
1402 * Called when the PCI registration layer (or the IDE initialization)
1403 * finds a device matching our IDE device tables.
1404 */
1405static int __devinit hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1406{
1407    const struct hpt_info *info = NULL;
1408    struct hpt_info *dyn_info;
1409    struct pci_dev *dev2 = NULL;
1410    struct ide_port_info d;
1411    u8 idx = id->driver_data;
1412    u8 rev = dev->revision;
1413    int ret;
1414
1415    if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1416        return -ENODEV;
1417
1418    switch (idx) {
1419    case 0:
1420        if (rev < 3)
1421            info = &hpt36x;
1422        else {
1423            switch (min_t(u8, rev, 6)) {
1424            case 3: info = &hpt370; break;
1425            case 4: info = &hpt370a; break;
1426            case 5: info = &hpt372; break;
1427            case 6: info = &hpt372n; break;
1428            }
1429            idx++;
1430        }
1431        break;
1432    case 1:
1433        info = (rev > 1) ? &hpt372n : &hpt372a;
1434        break;
1435    case 2:
1436        info = (rev > 1) ? &hpt302n : &hpt302;
1437        break;
1438    case 3:
1439        hpt371_init(dev);
1440        info = (rev > 1) ? &hpt371n : &hpt371;
1441        break;
1442    case 4:
1443        info = &hpt374;
1444        break;
1445    case 5:
1446        info = &hpt372n;
1447        break;
1448    }
1449
1450    printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1451
1452    d = hpt366_chipsets[min_t(u8, idx, 1)];
1453
1454    d.udma_mask = info->udma_mask;
1455
1456    /* fixup ->dma_ops for HPT370/HPT370A */
1457    if (info == &hpt370 || info == &hpt370a)
1458        d.dma_ops = &hpt370_dma_ops;
1459
1460    if (info == &hpt36x || info == &hpt374)
1461        dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1462
1463    dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1464    if (dyn_info == NULL) {
1465        printk(KERN_ERR "%s %s: out of memory!\n",
1466            d.name, pci_name(dev));
1467        pci_dev_put(dev2);
1468        return -ENOMEM;
1469    }
1470
1471    /*
1472     * Copy everything from a static "template" structure
1473     * to just allocated per-chip hpt_info structure.
1474     */
1475    memcpy(dyn_info, info, sizeof(*dyn_info));
1476
1477    if (dev2) {
1478        memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1479
1480        if (info == &hpt374)
1481            hpt374_init(dev, dev2);
1482        else {
1483            if (hpt36x_init(dev, dev2))
1484                d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1485        }
1486
1487        ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1488        if (ret < 0) {
1489            pci_dev_put(dev2);
1490            kfree(dyn_info);
1491        }
1492        return ret;
1493    }
1494
1495    ret = ide_pci_init_one(dev, &d, dyn_info);
1496    if (ret < 0)
1497        kfree(dyn_info);
1498
1499    return ret;
1500}
1501
1502static void __devexit hpt366_remove(struct pci_dev *dev)
1503{
1504    struct ide_host *host = pci_get_drvdata(dev);
1505    struct ide_info *info = host->host_priv;
1506    struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1507
1508    ide_pci_remove(dev);
1509    pci_dev_put(dev2);
1510    kfree(info);
1511}
1512
1513static const struct pci_device_id hpt366_pci_tbl[] __devinitconst = {
1514    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1515    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1516    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1517    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1518    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1519    { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1520    { 0, },
1521};
1522MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1523
1524static struct pci_driver hpt366_pci_driver = {
1525    .name = "HPT366_IDE",
1526    .id_table = hpt366_pci_tbl,
1527    .probe = hpt366_init_one,
1528    .remove = __devexit_p(hpt366_remove),
1529    .suspend = ide_pci_suspend,
1530    .resume = ide_pci_resume,
1531};
1532
1533static int __init hpt366_ide_init(void)
1534{
1535    return ide_pci_register_driver(&hpt366_pci_driver);
1536}
1537
1538static void __exit hpt366_ide_exit(void)
1539{
1540    pci_unregister_driver(&hpt366_pci_driver);
1541}
1542
1543module_init(hpt366_ide_init);
1544module_exit(hpt366_ide_exit);
1545
1546MODULE_AUTHOR("Andre Hedrick");
1547MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1548MODULE_LICENSE("GPL");
1549

Archive Download this file



interactive