Root/
1 | /* |
2 | * Support for IDE interfaces on PowerMacs. |
3 | * |
4 | * These IDE interfaces are memory-mapped and have a DBDMA channel |
5 | * for doing DMA. |
6 | * |
7 | * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt |
8 | * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz |
9 | * |
10 | * This program is free software; you can redistribute it and/or |
11 | * modify it under the terms of the GNU General Public License |
12 | * as published by the Free Software Foundation; either version |
13 | * 2 of the License, or (at your option) any later version. |
14 | * |
15 | * Some code taken from drivers/ide/ide-dma.c: |
16 | * |
17 | * Copyright (c) 1995-1998 Mark Lord |
18 | * |
19 | * TODO: - Use pre-calculated (kauai) timing tables all the time and |
20 | * get rid of the "rounded" tables used previously, so we have the |
21 | * same table format for all controllers and can then just have one |
22 | * big table |
23 | * |
24 | */ |
25 | #include <linux/types.h> |
26 | #include <linux/kernel.h> |
27 | #include <linux/init.h> |
28 | #include <linux/delay.h> |
29 | #include <linux/ide.h> |
30 | #include <linux/notifier.h> |
31 | #include <linux/module.h> |
32 | #include <linux/reboot.h> |
33 | #include <linux/pci.h> |
34 | #include <linux/adb.h> |
35 | #include <linux/pmu.h> |
36 | #include <linux/scatterlist.h> |
37 | #include <linux/slab.h> |
38 | |
39 | #include <asm/prom.h> |
40 | #include <asm/io.h> |
41 | #include <asm/dbdma.h> |
42 | #include <asm/ide.h> |
43 | #include <asm/pci-bridge.h> |
44 | #include <asm/machdep.h> |
45 | #include <asm/pmac_feature.h> |
46 | #include <asm/sections.h> |
47 | #include <asm/irq.h> |
48 | #include <asm/mediabay.h> |
49 | |
50 | #define DRV_NAME "ide-pmac" |
51 | |
52 | #undef IDE_PMAC_DEBUG |
53 | |
54 | #define DMA_WAIT_TIMEOUT 50 |
55 | |
56 | typedef struct pmac_ide_hwif { |
57 | unsigned long regbase; |
58 | int irq; |
59 | int kind; |
60 | int aapl_bus_id; |
61 | unsigned broken_dma : 1; |
62 | unsigned broken_dma_warn : 1; |
63 | struct device_node* node; |
64 | struct macio_dev *mdev; |
65 | u32 timings[4]; |
66 | volatile u32 __iomem * *kauai_fcr; |
67 | ide_hwif_t *hwif; |
68 | |
69 | /* Those fields are duplicating what is in hwif. We currently |
70 | * can't use the hwif ones because of some assumptions that are |
71 | * beeing done by the generic code about the kind of dma controller |
72 | * and format of the dma table. This will have to be fixed though. |
73 | */ |
74 | volatile struct dbdma_regs __iomem * dma_regs; |
75 | struct dbdma_cmd* dma_table_cpu; |
76 | } pmac_ide_hwif_t; |
77 | |
78 | enum { |
79 | controller_ohare, /* OHare based */ |
80 | controller_heathrow, /* Heathrow/Paddington */ |
81 | controller_kl_ata3, /* KeyLargo ATA-3 */ |
82 | controller_kl_ata4, /* KeyLargo ATA-4 */ |
83 | controller_un_ata6, /* UniNorth2 ATA-6 */ |
84 | controller_k2_ata6, /* K2 ATA-6 */ |
85 | controller_sh_ata6, /* Shasta ATA-6 */ |
86 | }; |
87 | |
88 | static const char* model_name[] = { |
89 | "OHare ATA", /* OHare based */ |
90 | "Heathrow ATA", /* Heathrow/Paddington */ |
91 | "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */ |
92 | "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */ |
93 | "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */ |
94 | "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */ |
95 | "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */ |
96 | }; |
97 | |
98 | /* |
99 | * Extra registers, both 32-bit little-endian |
100 | */ |
101 | #define IDE_TIMING_CONFIG 0x200 |
102 | #define IDE_INTERRUPT 0x300 |
103 | |
104 | /* Kauai (U2) ATA has different register setup */ |
105 | #define IDE_KAUAI_PIO_CONFIG 0x200 |
106 | #define IDE_KAUAI_ULTRA_CONFIG 0x210 |
107 | #define IDE_KAUAI_POLL_CONFIG 0x220 |
108 | |
109 | /* |
110 | * Timing configuration register definitions |
111 | */ |
112 | |
113 | /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */ |
114 | #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS) |
115 | #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS) |
116 | #define IDE_SYSCLK_NS 30 /* 33Mhz cell */ |
117 | #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ |
118 | |
119 | /* 133Mhz cell, found in shasta. |
120 | * See comments about 100 Mhz Uninorth 2... |
121 | * Note that PIO_MASK and MDMA_MASK seem to overlap |
122 | */ |
123 | #define TR_133_PIOREG_PIO_MASK 0xff000fff |
124 | #define TR_133_PIOREG_MDMA_MASK 0x00fff800 |
125 | #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff |
126 | #define TR_133_UDMAREG_UDMA_EN 0x00000001 |
127 | |
128 | /* 100Mhz cell, found in Uninorth 2. I don't have much infos about |
129 | * this one yet, it appears as a pci device (106b/0033) on uninorth |
130 | * internal PCI bus and it's clock is controlled like gem or fw. It |
131 | * appears to be an evolution of keylargo ATA4 with a timing register |
132 | * extended to 2 32bits registers and a similar DBDMA channel. Other |
133 | * registers seem to exist but I can't tell much about them. |
134 | * |
135 | * So far, I'm using pre-calculated tables for this extracted from |
136 | * the values used by the MacOS X driver. |
137 | * |
138 | * The "PIO" register controls PIO and MDMA timings, the "ULTRA" |
139 | * register controls the UDMA timings. At least, it seems bit 0 |
140 | * of this one enables UDMA vs. MDMA, and bits 4..7 are the |
141 | * cycle time in units of 10ns. Bits 8..15 are used by I don't |
142 | * know their meaning yet |
143 | */ |
144 | #define TR_100_PIOREG_PIO_MASK 0xff000fff |
145 | #define TR_100_PIOREG_MDMA_MASK 0x00fff000 |
146 | #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff |
147 | #define TR_100_UDMAREG_UDMA_EN 0x00000001 |
148 | |
149 | |
150 | /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on |
151 | * 40 connector cable and to 4 on 80 connector one. |
152 | * Clock unit is 15ns (66Mhz) |
153 | * |
154 | * 3 Values can be programmed: |
155 | * - Write data setup, which appears to match the cycle time. They |
156 | * also call it DIOW setup. |
157 | * - Ready to pause time (from spec) |
158 | * - Address setup. That one is weird. I don't see where exactly |
159 | * it fits in UDMA cycles, I got it's name from an obscure piece |
160 | * of commented out code in Darwin. They leave it to 0, we do as |
161 | * well, despite a comment that would lead to think it has a |
162 | * min value of 45ns. |
163 | * Apple also add 60ns to the write data setup (or cycle time ?) on |
164 | * reads. |
165 | */ |
166 | #define TR_66_UDMA_MASK 0xfff00000 |
167 | #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ |
168 | #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */ |
169 | #define TR_66_UDMA_ADDRSETUP_SHIFT 29 |
170 | #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */ |
171 | #define TR_66_UDMA_RDY2PAUS_SHIFT 25 |
172 | #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */ |
173 | #define TR_66_UDMA_WRDATASETUP_SHIFT 21 |
174 | #define TR_66_MDMA_MASK 0x000ffc00 |
175 | #define TR_66_MDMA_RECOVERY_MASK 0x000f8000 |
176 | #define TR_66_MDMA_RECOVERY_SHIFT 15 |
177 | #define TR_66_MDMA_ACCESS_MASK 0x00007c00 |
178 | #define TR_66_MDMA_ACCESS_SHIFT 10 |
179 | #define TR_66_PIO_MASK 0x000003ff |
180 | #define TR_66_PIO_RECOVERY_MASK 0x000003e0 |
181 | #define TR_66_PIO_RECOVERY_SHIFT 5 |
182 | #define TR_66_PIO_ACCESS_MASK 0x0000001f |
183 | #define TR_66_PIO_ACCESS_SHIFT 0 |
184 | |
185 | /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo |
186 | * Can do pio & mdma modes, clock unit is 30ns (33Mhz) |
187 | * |
188 | * The access time and recovery time can be programmed. Some older |
189 | * Darwin code base limit OHare to 150ns cycle time. I decided to do |
190 | * the same here fore safety against broken old hardware ;) |
191 | * The HalfTick bit, when set, adds half a clock (15ns) to the access |
192 | * time and removes one from recovery. It's not supported on KeyLargo |
193 | * implementation afaik. The E bit appears to be set for PIO mode 0 and |
194 | * is used to reach long timings used in this mode. |
195 | */ |
196 | #define TR_33_MDMA_MASK 0x003ff800 |
197 | #define TR_33_MDMA_RECOVERY_MASK 0x001f0000 |
198 | #define TR_33_MDMA_RECOVERY_SHIFT 16 |
199 | #define TR_33_MDMA_ACCESS_MASK 0x0000f800 |
200 | #define TR_33_MDMA_ACCESS_SHIFT 11 |
201 | #define TR_33_MDMA_HALFTICK 0x00200000 |
202 | #define TR_33_PIO_MASK 0x000007ff |
203 | #define TR_33_PIO_E 0x00000400 |
204 | #define TR_33_PIO_RECOVERY_MASK 0x000003e0 |
205 | #define TR_33_PIO_RECOVERY_SHIFT 5 |
206 | #define TR_33_PIO_ACCESS_MASK 0x0000001f |
207 | #define TR_33_PIO_ACCESS_SHIFT 0 |
208 | |
209 | /* |
210 | * Interrupt register definitions |
211 | */ |
212 | #define IDE_INTR_DMA 0x80000000 |
213 | #define IDE_INTR_DEVICE 0x40000000 |
214 | |
215 | /* |
216 | * FCR Register on Kauai. Not sure what bit 0x4 is ... |
217 | */ |
218 | #define KAUAI_FCR_UATA_MAGIC 0x00000004 |
219 | #define KAUAI_FCR_UATA_RESET_N 0x00000002 |
220 | #define KAUAI_FCR_UATA_ENABLE 0x00000001 |
221 | |
222 | /* Rounded Multiword DMA timings |
223 | * |
224 | * I gave up finding a generic formula for all controller |
225 | * types and instead, built tables based on timing values |
226 | * used by Apple in Darwin's implementation. |
227 | */ |
228 | struct mdma_timings_t { |
229 | int accessTime; |
230 | int recoveryTime; |
231 | int cycleTime; |
232 | }; |
233 | |
234 | struct mdma_timings_t mdma_timings_33[] = |
235 | { |
236 | { 240, 240, 480 }, |
237 | { 180, 180, 360 }, |
238 | { 135, 135, 270 }, |
239 | { 120, 120, 240 }, |
240 | { 105, 105, 210 }, |
241 | { 90, 90, 180 }, |
242 | { 75, 75, 150 }, |
243 | { 75, 45, 120 }, |
244 | { 0, 0, 0 } |
245 | }; |
246 | |
247 | struct mdma_timings_t mdma_timings_33k[] = |
248 | { |
249 | { 240, 240, 480 }, |
250 | { 180, 180, 360 }, |
251 | { 150, 150, 300 }, |
252 | { 120, 120, 240 }, |
253 | { 90, 120, 210 }, |
254 | { 90, 90, 180 }, |
255 | { 90, 60, 150 }, |
256 | { 90, 30, 120 }, |
257 | { 0, 0, 0 } |
258 | }; |
259 | |
260 | struct mdma_timings_t mdma_timings_66[] = |
261 | { |
262 | { 240, 240, 480 }, |
263 | { 180, 180, 360 }, |
264 | { 135, 135, 270 }, |
265 | { 120, 120, 240 }, |
266 | { 105, 105, 210 }, |
267 | { 90, 90, 180 }, |
268 | { 90, 75, 165 }, |
269 | { 75, 45, 120 }, |
270 | { 0, 0, 0 } |
271 | }; |
272 | |
273 | /* KeyLargo ATA-4 Ultra DMA timings (rounded) */ |
274 | struct { |
275 | int addrSetup; /* ??? */ |
276 | int rdy2pause; |
277 | int wrDataSetup; |
278 | } kl66_udma_timings[] = |
279 | { |
280 | { 0, 180, 120 }, /* Mode 0 */ |
281 | { 0, 150, 90 }, /* 1 */ |
282 | { 0, 120, 60 }, /* 2 */ |
283 | { 0, 90, 45 }, /* 3 */ |
284 | { 0, 90, 30 } /* 4 */ |
285 | }; |
286 | |
287 | /* UniNorth 2 ATA/100 timings */ |
288 | struct kauai_timing { |
289 | int cycle_time; |
290 | u32 timing_reg; |
291 | }; |
292 | |
293 | static struct kauai_timing kauai_pio_timings[] = |
294 | { |
295 | { 930 , 0x08000fff }, |
296 | { 600 , 0x08000a92 }, |
297 | { 383 , 0x0800060f }, |
298 | { 360 , 0x08000492 }, |
299 | { 330 , 0x0800048f }, |
300 | { 300 , 0x080003cf }, |
301 | { 270 , 0x080003cc }, |
302 | { 240 , 0x0800038b }, |
303 | { 239 , 0x0800030c }, |
304 | { 180 , 0x05000249 }, |
305 | { 120 , 0x04000148 }, |
306 | { 0 , 0 }, |
307 | }; |
308 | |
309 | static struct kauai_timing kauai_mdma_timings[] = |
310 | { |
311 | { 1260 , 0x00fff000 }, |
312 | { 480 , 0x00618000 }, |
313 | { 360 , 0x00492000 }, |
314 | { 270 , 0x0038e000 }, |
315 | { 240 , 0x0030c000 }, |
316 | { 210 , 0x002cb000 }, |
317 | { 180 , 0x00249000 }, |
318 | { 150 , 0x00209000 }, |
319 | { 120 , 0x00148000 }, |
320 | { 0 , 0 }, |
321 | }; |
322 | |
323 | static struct kauai_timing kauai_udma_timings[] = |
324 | { |
325 | { 120 , 0x000070c0 }, |
326 | { 90 , 0x00005d80 }, |
327 | { 60 , 0x00004a60 }, |
328 | { 45 , 0x00003a50 }, |
329 | { 30 , 0x00002a30 }, |
330 | { 20 , 0x00002921 }, |
331 | { 0 , 0 }, |
332 | }; |
333 | |
334 | static struct kauai_timing shasta_pio_timings[] = |
335 | { |
336 | { 930 , 0x08000fff }, |
337 | { 600 , 0x0A000c97 }, |
338 | { 383 , 0x07000712 }, |
339 | { 360 , 0x040003cd }, |
340 | { 330 , 0x040003cd }, |
341 | { 300 , 0x040003cd }, |
342 | { 270 , 0x040003cd }, |
343 | { 240 , 0x040003cd }, |
344 | { 239 , 0x040003cd }, |
345 | { 180 , 0x0400028b }, |
346 | { 120 , 0x0400010a }, |
347 | { 0 , 0 }, |
348 | }; |
349 | |
350 | static struct kauai_timing shasta_mdma_timings[] = |
351 | { |
352 | { 1260 , 0x00fff000 }, |
353 | { 480 , 0x00820800 }, |
354 | { 360 , 0x00820800 }, |
355 | { 270 , 0x00820800 }, |
356 | { 240 , 0x00820800 }, |
357 | { 210 , 0x00820800 }, |
358 | { 180 , 0x00820800 }, |
359 | { 150 , 0x0028b000 }, |
360 | { 120 , 0x001ca000 }, |
361 | { 0 , 0 }, |
362 | }; |
363 | |
364 | static struct kauai_timing shasta_udma133_timings[] = |
365 | { |
366 | { 120 , 0x00035901, }, |
367 | { 90 , 0x000348b1, }, |
368 | { 60 , 0x00033881, }, |
369 | { 45 , 0x00033861, }, |
370 | { 30 , 0x00033841, }, |
371 | { 20 , 0x00033031, }, |
372 | { 15 , 0x00033021, }, |
373 | { 0 , 0 }, |
374 | }; |
375 | |
376 | |
377 | static inline u32 |
378 | kauai_lookup_timing(struct kauai_timing* table, int cycle_time) |
379 | { |
380 | int i; |
381 | |
382 | for (i=0; table[i].cycle_time; i++) |
383 | if (cycle_time > table[i+1].cycle_time) |
384 | return table[i].timing_reg; |
385 | BUG(); |
386 | return 0; |
387 | } |
388 | |
389 | /* allow up to 256 DBDMA commands per xfer */ |
390 | #define MAX_DCMDS 256 |
391 | |
392 | /* |
393 | * Wait 1s for disk to answer on IDE bus after a hard reset |
394 | * of the device (via GPIO/FCR). |
395 | * |
396 | * Some devices seem to "pollute" the bus even after dropping |
397 | * the BSY bit (typically some combo drives slave on the UDMA |
398 | * bus) after a hard reset. Since we hard reset all drives on |
399 | * KeyLargo ATA66, we have to keep that delay around. I may end |
400 | * up not hard resetting anymore on these and keep the delay only |
401 | * for older interfaces instead (we have to reset when coming |
402 | * from MacOS...) --BenH. |
403 | */ |
404 | #define IDE_WAKEUP_DELAY (1*HZ) |
405 | |
406 | static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *); |
407 | |
408 | #define PMAC_IDE_REG(x) \ |
409 | ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x))) |
410 | |
411 | /* |
412 | * Apply the timings of the proper unit (master/slave) to the shared |
413 | * timing register when selecting that unit. This version is for |
414 | * ASICs with a single timing register |
415 | */ |
416 | static void pmac_ide_apply_timings(ide_drive_t *drive) |
417 | { |
418 | ide_hwif_t *hwif = drive->hwif; |
419 | pmac_ide_hwif_t *pmif = |
420 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
421 | |
422 | if (drive->dn & 1) |
423 | writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
424 | else |
425 | writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
426 | (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
427 | } |
428 | |
429 | /* |
430 | * Apply the timings of the proper unit (master/slave) to the shared |
431 | * timing register when selecting that unit. This version is for |
432 | * ASICs with a dual timing register (Kauai) |
433 | */ |
434 | static void pmac_ide_kauai_apply_timings(ide_drive_t *drive) |
435 | { |
436 | ide_hwif_t *hwif = drive->hwif; |
437 | pmac_ide_hwif_t *pmif = |
438 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
439 | |
440 | if (drive->dn & 1) { |
441 | writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
442 | writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); |
443 | } else { |
444 | writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
445 | writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); |
446 | } |
447 | (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
448 | } |
449 | |
450 | /* |
451 | * Force an update of controller timing values for a given drive |
452 | */ |
453 | static void |
454 | pmac_ide_do_update_timings(ide_drive_t *drive) |
455 | { |
456 | ide_hwif_t *hwif = drive->hwif; |
457 | pmac_ide_hwif_t *pmif = |
458 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
459 | |
460 | if (pmif->kind == controller_sh_ata6 || |
461 | pmif->kind == controller_un_ata6 || |
462 | pmif->kind == controller_k2_ata6) |
463 | pmac_ide_kauai_apply_timings(drive); |
464 | else |
465 | pmac_ide_apply_timings(drive); |
466 | } |
467 | |
468 | static void pmac_dev_select(ide_drive_t *drive) |
469 | { |
470 | pmac_ide_apply_timings(drive); |
471 | |
472 | writeb(drive->select | ATA_DEVICE_OBS, |
473 | (void __iomem *)drive->hwif->io_ports.device_addr); |
474 | } |
475 | |
476 | static void pmac_kauai_dev_select(ide_drive_t *drive) |
477 | { |
478 | pmac_ide_kauai_apply_timings(drive); |
479 | |
480 | writeb(drive->select | ATA_DEVICE_OBS, |
481 | (void __iomem *)drive->hwif->io_ports.device_addr); |
482 | } |
483 | |
484 | static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd) |
485 | { |
486 | writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); |
487 | (void)readl((void __iomem *)(hwif->io_ports.data_addr |
488 | + IDE_TIMING_CONFIG)); |
489 | } |
490 | |
491 | static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl) |
492 | { |
493 | writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); |
494 | (void)readl((void __iomem *)(hwif->io_ports.data_addr |
495 | + IDE_TIMING_CONFIG)); |
496 | } |
497 | |
498 | /* |
499 | * Old tuning functions (called on hdparm -p), sets up drive PIO timings |
500 | */ |
501 | static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive) |
502 | { |
503 | pmac_ide_hwif_t *pmif = |
504 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
505 | const u8 pio = drive->pio_mode - XFER_PIO_0; |
506 | struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio); |
507 | u32 *timings, t; |
508 | unsigned accessTicks, recTicks; |
509 | unsigned accessTime, recTime; |
510 | unsigned int cycle_time; |
511 | |
512 | /* which drive is it ? */ |
513 | timings = &pmif->timings[drive->dn & 1]; |
514 | t = *timings; |
515 | |
516 | cycle_time = ide_pio_cycle_time(drive, pio); |
517 | |
518 | switch (pmif->kind) { |
519 | case controller_sh_ata6: { |
520 | /* 133Mhz cell */ |
521 | u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time); |
522 | t = (t & ~TR_133_PIOREG_PIO_MASK) | tr; |
523 | break; |
524 | } |
525 | case controller_un_ata6: |
526 | case controller_k2_ata6: { |
527 | /* 100Mhz cell */ |
528 | u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time); |
529 | t = (t & ~TR_100_PIOREG_PIO_MASK) | tr; |
530 | break; |
531 | } |
532 | case controller_kl_ata4: |
533 | /* 66Mhz cell */ |
534 | recTime = cycle_time - tim->active - tim->setup; |
535 | recTime = max(recTime, 150U); |
536 | accessTime = tim->active; |
537 | accessTime = max(accessTime, 150U); |
538 | accessTicks = SYSCLK_TICKS_66(accessTime); |
539 | accessTicks = min(accessTicks, 0x1fU); |
540 | recTicks = SYSCLK_TICKS_66(recTime); |
541 | recTicks = min(recTicks, 0x1fU); |
542 | t = (t & ~TR_66_PIO_MASK) | |
543 | (accessTicks << TR_66_PIO_ACCESS_SHIFT) | |
544 | (recTicks << TR_66_PIO_RECOVERY_SHIFT); |
545 | break; |
546 | default: { |
547 | /* 33Mhz cell */ |
548 | int ebit = 0; |
549 | recTime = cycle_time - tim->active - tim->setup; |
550 | recTime = max(recTime, 150U); |
551 | accessTime = tim->active; |
552 | accessTime = max(accessTime, 150U); |
553 | accessTicks = SYSCLK_TICKS(accessTime); |
554 | accessTicks = min(accessTicks, 0x1fU); |
555 | accessTicks = max(accessTicks, 4U); |
556 | recTicks = SYSCLK_TICKS(recTime); |
557 | recTicks = min(recTicks, 0x1fU); |
558 | recTicks = max(recTicks, 5U) - 4; |
559 | if (recTicks > 9) { |
560 | recTicks--; /* guess, but it's only for PIO0, so... */ |
561 | ebit = 1; |
562 | } |
563 | t = (t & ~TR_33_PIO_MASK) | |
564 | (accessTicks << TR_33_PIO_ACCESS_SHIFT) | |
565 | (recTicks << TR_33_PIO_RECOVERY_SHIFT); |
566 | if (ebit) |
567 | t |= TR_33_PIO_E; |
568 | break; |
569 | } |
570 | } |
571 | |
572 | #ifdef IDE_PMAC_DEBUG |
573 | printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", |
574 | drive->name, pio, *timings); |
575 | #endif |
576 | |
577 | *timings = t; |
578 | pmac_ide_do_update_timings(drive); |
579 | } |
580 | |
581 | /* |
582 | * Calculate KeyLargo ATA/66 UDMA timings |
583 | */ |
584 | static int |
585 | set_timings_udma_ata4(u32 *timings, u8 speed) |
586 | { |
587 | unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; |
588 | |
589 | if (speed > XFER_UDMA_4) |
590 | return 1; |
591 | |
592 | rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); |
593 | wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); |
594 | addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); |
595 | |
596 | *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | |
597 | (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | |
598 | (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | |
599 | (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | |
600 | TR_66_UDMA_EN; |
601 | #ifdef IDE_PMAC_DEBUG |
602 | printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", |
603 | speed & 0xf, *timings); |
604 | #endif |
605 | |
606 | return 0; |
607 | } |
608 | |
609 | /* |
610 | * Calculate Kauai ATA/100 UDMA timings |
611 | */ |
612 | static int |
613 | set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed) |
614 | { |
615 | struct ide_timing *t = ide_timing_find_mode(speed); |
616 | u32 tr; |
617 | |
618 | if (speed > XFER_UDMA_5 || t == NULL) |
619 | return 1; |
620 | tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); |
621 | *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; |
622 | *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; |
623 | |
624 | return 0; |
625 | } |
626 | |
627 | /* |
628 | * Calculate Shasta ATA/133 UDMA timings |
629 | */ |
630 | static int |
631 | set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed) |
632 | { |
633 | struct ide_timing *t = ide_timing_find_mode(speed); |
634 | u32 tr; |
635 | |
636 | if (speed > XFER_UDMA_6 || t == NULL) |
637 | return 1; |
638 | tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma); |
639 | *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr; |
640 | *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN; |
641 | |
642 | return 0; |
643 | } |
644 | |
645 | /* |
646 | * Calculate MDMA timings for all cells |
647 | */ |
648 | static void |
649 | set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, |
650 | u8 speed) |
651 | { |
652 | u16 *id = drive->id; |
653 | int cycleTime, accessTime = 0, recTime = 0; |
654 | unsigned accessTicks, recTicks; |
655 | struct mdma_timings_t* tm = NULL; |
656 | int i; |
657 | |
658 | /* Get default cycle time for mode */ |
659 | switch(speed & 0xf) { |
660 | case 0: cycleTime = 480; break; |
661 | case 1: cycleTime = 150; break; |
662 | case 2: cycleTime = 120; break; |
663 | default: |
664 | BUG(); |
665 | break; |
666 | } |
667 | |
668 | /* Check if drive provides explicit DMA cycle time */ |
669 | if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME]) |
670 | cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime); |
671 | |
672 | /* OHare limits according to some old Apple sources */ |
673 | if ((intf_type == controller_ohare) && (cycleTime < 150)) |
674 | cycleTime = 150; |
675 | /* Get the proper timing array for this controller */ |
676 | switch(intf_type) { |
677 | case controller_sh_ata6: |
678 | case controller_un_ata6: |
679 | case controller_k2_ata6: |
680 | break; |
681 | case controller_kl_ata4: |
682 | tm = mdma_timings_66; |
683 | break; |
684 | case controller_kl_ata3: |
685 | tm = mdma_timings_33k; |
686 | break; |
687 | default: |
688 | tm = mdma_timings_33; |
689 | break; |
690 | } |
691 | if (tm != NULL) { |
692 | /* Lookup matching access & recovery times */ |
693 | i = -1; |
694 | for (;;) { |
695 | if (tm[i+1].cycleTime < cycleTime) |
696 | break; |
697 | i++; |
698 | } |
699 | cycleTime = tm[i].cycleTime; |
700 | accessTime = tm[i].accessTime; |
701 | recTime = tm[i].recoveryTime; |
702 | |
703 | #ifdef IDE_PMAC_DEBUG |
704 | printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", |
705 | drive->name, cycleTime, accessTime, recTime); |
706 | #endif |
707 | } |
708 | switch(intf_type) { |
709 | case controller_sh_ata6: { |
710 | /* 133Mhz cell */ |
711 | u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime); |
712 | *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr; |
713 | *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN; |
714 | } |
715 | case controller_un_ata6: |
716 | case controller_k2_ata6: { |
717 | /* 100Mhz cell */ |
718 | u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); |
719 | *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; |
720 | *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; |
721 | } |
722 | break; |
723 | case controller_kl_ata4: |
724 | /* 66Mhz cell */ |
725 | accessTicks = SYSCLK_TICKS_66(accessTime); |
726 | accessTicks = min(accessTicks, 0x1fU); |
727 | accessTicks = max(accessTicks, 0x1U); |
728 | recTicks = SYSCLK_TICKS_66(recTime); |
729 | recTicks = min(recTicks, 0x1fU); |
730 | recTicks = max(recTicks, 0x3U); |
731 | /* Clear out mdma bits and disable udma */ |
732 | *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | |
733 | (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | |
734 | (recTicks << TR_66_MDMA_RECOVERY_SHIFT); |
735 | break; |
736 | case controller_kl_ata3: |
737 | /* 33Mhz cell on KeyLargo */ |
738 | accessTicks = SYSCLK_TICKS(accessTime); |
739 | accessTicks = max(accessTicks, 1U); |
740 | accessTicks = min(accessTicks, 0x1fU); |
741 | accessTime = accessTicks * IDE_SYSCLK_NS; |
742 | recTicks = SYSCLK_TICKS(recTime); |
743 | recTicks = max(recTicks, 1U); |
744 | recTicks = min(recTicks, 0x1fU); |
745 | *timings = ((*timings) & ~TR_33_MDMA_MASK) | |
746 | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | |
747 | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); |
748 | break; |
749 | default: { |
750 | /* 33Mhz cell on others */ |
751 | int halfTick = 0; |
752 | int origAccessTime = accessTime; |
753 | int origRecTime = recTime; |
754 | |
755 | accessTicks = SYSCLK_TICKS(accessTime); |
756 | accessTicks = max(accessTicks, 1U); |
757 | accessTicks = min(accessTicks, 0x1fU); |
758 | accessTime = accessTicks * IDE_SYSCLK_NS; |
759 | recTicks = SYSCLK_TICKS(recTime); |
760 | recTicks = max(recTicks, 2U) - 1; |
761 | recTicks = min(recTicks, 0x1fU); |
762 | recTime = (recTicks + 1) * IDE_SYSCLK_NS; |
763 | if ((accessTicks > 1) && |
764 | ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && |
765 | ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { |
766 | halfTick = 1; |
767 | accessTicks--; |
768 | } |
769 | *timings = ((*timings) & ~TR_33_MDMA_MASK) | |
770 | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | |
771 | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); |
772 | if (halfTick) |
773 | *timings |= TR_33_MDMA_HALFTICK; |
774 | } |
775 | } |
776 | #ifdef IDE_PMAC_DEBUG |
777 | printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", |
778 | drive->name, speed & 0xf, *timings); |
779 | #endif |
780 | } |
781 | |
782 | static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive) |
783 | { |
784 | pmac_ide_hwif_t *pmif = |
785 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
786 | int ret = 0; |
787 | u32 *timings, *timings2, tl[2]; |
788 | u8 unit = drive->dn & 1; |
789 | const u8 speed = drive->dma_mode; |
790 | |
791 | timings = &pmif->timings[unit]; |
792 | timings2 = &pmif->timings[unit+2]; |
793 | |
794 | /* Copy timings to local image */ |
795 | tl[0] = *timings; |
796 | tl[1] = *timings2; |
797 | |
798 | if (speed >= XFER_UDMA_0) { |
799 | if (pmif->kind == controller_kl_ata4) |
800 | ret = set_timings_udma_ata4(&tl[0], speed); |
801 | else if (pmif->kind == controller_un_ata6 |
802 | || pmif->kind == controller_k2_ata6) |
803 | ret = set_timings_udma_ata6(&tl[0], &tl[1], speed); |
804 | else if (pmif->kind == controller_sh_ata6) |
805 | ret = set_timings_udma_shasta(&tl[0], &tl[1], speed); |
806 | else |
807 | ret = -1; |
808 | } else |
809 | set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed); |
810 | |
811 | if (ret) |
812 | return; |
813 | |
814 | /* Apply timings to controller */ |
815 | *timings = tl[0]; |
816 | *timings2 = tl[1]; |
817 | |
818 | pmac_ide_do_update_timings(drive); |
819 | } |
820 | |
821 | /* |
822 | * Blast some well known "safe" values to the timing registers at init or |
823 | * wakeup from sleep time, before we do real calculation |
824 | */ |
825 | static void |
826 | sanitize_timings(pmac_ide_hwif_t *pmif) |
827 | { |
828 | unsigned int value, value2 = 0; |
829 | |
830 | switch(pmif->kind) { |
831 | case controller_sh_ata6: |
832 | value = 0x0a820c97; |
833 | value2 = 0x00033031; |
834 | break; |
835 | case controller_un_ata6: |
836 | case controller_k2_ata6: |
837 | value = 0x08618a92; |
838 | value2 = 0x00002921; |
839 | break; |
840 | case controller_kl_ata4: |
841 | value = 0x0008438c; |
842 | break; |
843 | case controller_kl_ata3: |
844 | value = 0x00084526; |
845 | break; |
846 | case controller_heathrow: |
847 | case controller_ohare: |
848 | default: |
849 | value = 0x00074526; |
850 | break; |
851 | } |
852 | pmif->timings[0] = pmif->timings[1] = value; |
853 | pmif->timings[2] = pmif->timings[3] = value2; |
854 | } |
855 | |
856 | static int on_media_bay(pmac_ide_hwif_t *pmif) |
857 | { |
858 | return pmif->mdev && pmif->mdev->media_bay != NULL; |
859 | } |
860 | |
861 | /* Suspend call back, should be called after the child devices |
862 | * have actually been suspended |
863 | */ |
864 | static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif) |
865 | { |
866 | /* We clear the timings */ |
867 | pmif->timings[0] = 0; |
868 | pmif->timings[1] = 0; |
869 | |
870 | disable_irq(pmif->irq); |
871 | |
872 | /* The media bay will handle itself just fine */ |
873 | if (on_media_bay(pmif)) |
874 | return 0; |
875 | |
876 | /* Kauai has bus control FCRs directly here */ |
877 | if (pmif->kauai_fcr) { |
878 | u32 fcr = readl(pmif->kauai_fcr); |
879 | fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE); |
880 | writel(fcr, pmif->kauai_fcr); |
881 | } |
882 | |
883 | /* Disable the bus on older machines and the cell on kauai */ |
884 | ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, |
885 | 0); |
886 | |
887 | return 0; |
888 | } |
889 | |
890 | /* Resume call back, should be called before the child devices |
891 | * are resumed |
892 | */ |
893 | static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif) |
894 | { |
895 | /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */ |
896 | if (!on_media_bay(pmif)) { |
897 | ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1); |
898 | ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1); |
899 | msleep(10); |
900 | ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0); |
901 | |
902 | /* Kauai has it different */ |
903 | if (pmif->kauai_fcr) { |
904 | u32 fcr = readl(pmif->kauai_fcr); |
905 | fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE; |
906 | writel(fcr, pmif->kauai_fcr); |
907 | } |
908 | |
909 | msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); |
910 | } |
911 | |
912 | /* Sanitize drive timings */ |
913 | sanitize_timings(pmif); |
914 | |
915 | enable_irq(pmif->irq); |
916 | |
917 | return 0; |
918 | } |
919 | |
920 | static u8 pmac_ide_cable_detect(ide_hwif_t *hwif) |
921 | { |
922 | pmac_ide_hwif_t *pmif = |
923 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
924 | struct device_node *np = pmif->node; |
925 | const char *cable = of_get_property(np, "cable-type", NULL); |
926 | struct device_node *root = of_find_node_by_path("/"); |
927 | const char *model = of_get_property(root, "model", NULL); |
928 | |
929 | /* Get cable type from device-tree. */ |
930 | if (cable && !strncmp(cable, "80-", 3)) { |
931 | /* Some drives fail to detect 80c cable in PowerBook */ |
932 | /* These machine use proprietary short IDE cable anyway */ |
933 | if (!strncmp(model, "PowerBook", 9)) |
934 | return ATA_CBL_PATA40_SHORT; |
935 | else |
936 | return ATA_CBL_PATA80; |
937 | } |
938 | |
939 | /* |
940 | * G5's seem to have incorrect cable type in device-tree. |
941 | * Let's assume they have a 80 conductor cable, this seem |
942 | * to be always the case unless the user mucked around. |
943 | */ |
944 | if (of_device_is_compatible(np, "K2-UATA") || |
945 | of_device_is_compatible(np, "shasta-ata")) |
946 | return ATA_CBL_PATA80; |
947 | |
948 | return ATA_CBL_PATA40; |
949 | } |
950 | |
951 | static void pmac_ide_init_dev(ide_drive_t *drive) |
952 | { |
953 | ide_hwif_t *hwif = drive->hwif; |
954 | pmac_ide_hwif_t *pmif = |
955 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
956 | |
957 | if (on_media_bay(pmif)) { |
958 | if (check_media_bay(pmif->mdev->media_bay) == MB_CD) { |
959 | drive->dev_flags &= ~IDE_DFLAG_NOPROBE; |
960 | return; |
961 | } |
962 | drive->dev_flags |= IDE_DFLAG_NOPROBE; |
963 | } |
964 | } |
965 | |
966 | static const struct ide_tp_ops pmac_tp_ops = { |
967 | .exec_command = pmac_exec_command, |
968 | .read_status = ide_read_status, |
969 | .read_altstatus = ide_read_altstatus, |
970 | .write_devctl = pmac_write_devctl, |
971 | |
972 | .dev_select = pmac_dev_select, |
973 | .tf_load = ide_tf_load, |
974 | .tf_read = ide_tf_read, |
975 | |
976 | .input_data = ide_input_data, |
977 | .output_data = ide_output_data, |
978 | }; |
979 | |
980 | static const struct ide_tp_ops pmac_ata6_tp_ops = { |
981 | .exec_command = pmac_exec_command, |
982 | .read_status = ide_read_status, |
983 | .read_altstatus = ide_read_altstatus, |
984 | .write_devctl = pmac_write_devctl, |
985 | |
986 | .dev_select = pmac_kauai_dev_select, |
987 | .tf_load = ide_tf_load, |
988 | .tf_read = ide_tf_read, |
989 | |
990 | .input_data = ide_input_data, |
991 | .output_data = ide_output_data, |
992 | }; |
993 | |
994 | static const struct ide_port_ops pmac_ide_ata4_port_ops = { |
995 | .init_dev = pmac_ide_init_dev, |
996 | .set_pio_mode = pmac_ide_set_pio_mode, |
997 | .set_dma_mode = pmac_ide_set_dma_mode, |
998 | .cable_detect = pmac_ide_cable_detect, |
999 | }; |
1000 | |
1001 | static const struct ide_port_ops pmac_ide_port_ops = { |
1002 | .init_dev = pmac_ide_init_dev, |
1003 | .set_pio_mode = pmac_ide_set_pio_mode, |
1004 | .set_dma_mode = pmac_ide_set_dma_mode, |
1005 | }; |
1006 | |
1007 | static const struct ide_dma_ops pmac_dma_ops; |
1008 | |
1009 | static const struct ide_port_info pmac_port_info = { |
1010 | .name = DRV_NAME, |
1011 | .init_dma = pmac_ide_init_dma, |
1012 | .chipset = ide_pmac, |
1013 | .tp_ops = &pmac_tp_ops, |
1014 | .port_ops = &pmac_ide_port_ops, |
1015 | .dma_ops = &pmac_dma_ops, |
1016 | .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA | |
1017 | IDE_HFLAG_POST_SET_MODE | |
1018 | IDE_HFLAG_MMIO | |
1019 | IDE_HFLAG_UNMASK_IRQS, |
1020 | .pio_mask = ATA_PIO4, |
1021 | .mwdma_mask = ATA_MWDMA2, |
1022 | }; |
1023 | |
1024 | /* |
1025 | * Setup, register & probe an IDE channel driven by this driver, this is |
1026 | * called by one of the 2 probe functions (macio or PCI). |
1027 | */ |
1028 | static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif, |
1029 | struct ide_hw *hw) |
1030 | { |
1031 | struct device_node *np = pmif->node; |
1032 | const int *bidp; |
1033 | struct ide_host *host; |
1034 | ide_hwif_t *hwif; |
1035 | struct ide_hw *hws[] = { hw }; |
1036 | struct ide_port_info d = pmac_port_info; |
1037 | int rc; |
1038 | |
1039 | pmif->broken_dma = pmif->broken_dma_warn = 0; |
1040 | if (of_device_is_compatible(np, "shasta-ata")) { |
1041 | pmif->kind = controller_sh_ata6; |
1042 | d.tp_ops = &pmac_ata6_tp_ops; |
1043 | d.port_ops = &pmac_ide_ata4_port_ops; |
1044 | d.udma_mask = ATA_UDMA6; |
1045 | } else if (of_device_is_compatible(np, "kauai-ata")) { |
1046 | pmif->kind = controller_un_ata6; |
1047 | d.tp_ops = &pmac_ata6_tp_ops; |
1048 | d.port_ops = &pmac_ide_ata4_port_ops; |
1049 | d.udma_mask = ATA_UDMA5; |
1050 | } else if (of_device_is_compatible(np, "K2-UATA")) { |
1051 | pmif->kind = controller_k2_ata6; |
1052 | d.tp_ops = &pmac_ata6_tp_ops; |
1053 | d.port_ops = &pmac_ide_ata4_port_ops; |
1054 | d.udma_mask = ATA_UDMA5; |
1055 | } else if (of_device_is_compatible(np, "keylargo-ata")) { |
1056 | if (strcmp(np->name, "ata-4") == 0) { |
1057 | pmif->kind = controller_kl_ata4; |
1058 | d.port_ops = &pmac_ide_ata4_port_ops; |
1059 | d.udma_mask = ATA_UDMA4; |
1060 | } else |
1061 | pmif->kind = controller_kl_ata3; |
1062 | } else if (of_device_is_compatible(np, "heathrow-ata")) { |
1063 | pmif->kind = controller_heathrow; |
1064 | } else { |
1065 | pmif->kind = controller_ohare; |
1066 | pmif->broken_dma = 1; |
1067 | } |
1068 | |
1069 | bidp = of_get_property(np, "AAPL,bus-id", NULL); |
1070 | pmif->aapl_bus_id = bidp ? *bidp : 0; |
1071 | |
1072 | /* On Kauai-type controllers, we make sure the FCR is correct */ |
1073 | if (pmif->kauai_fcr) |
1074 | writel(KAUAI_FCR_UATA_MAGIC | |
1075 | KAUAI_FCR_UATA_RESET_N | |
1076 | KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr); |
1077 | |
1078 | /* Make sure we have sane timings */ |
1079 | sanitize_timings(pmif); |
1080 | |
1081 | /* If we are on a media bay, wait for it to settle and lock it */ |
1082 | if (pmif->mdev) |
1083 | lock_media_bay(pmif->mdev->media_bay); |
1084 | |
1085 | host = ide_host_alloc(&d, hws, 1); |
1086 | if (host == NULL) { |
1087 | rc = -ENOMEM; |
1088 | goto bail; |
1089 | } |
1090 | hwif = pmif->hwif = host->ports[0]; |
1091 | |
1092 | if (on_media_bay(pmif)) { |
1093 | /* Fixup bus ID for media bay */ |
1094 | if (!bidp) |
1095 | pmif->aapl_bus_id = 1; |
1096 | } else if (pmif->kind == controller_ohare) { |
1097 | /* The code below is having trouble on some ohare machines |
1098 | * (timing related ?). Until I can put my hand on one of these |
1099 | * units, I keep the old way |
1100 | */ |
1101 | ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); |
1102 | } else { |
1103 | /* This is necessary to enable IDE when net-booting */ |
1104 | ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); |
1105 | ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); |
1106 | msleep(10); |
1107 | ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); |
1108 | msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); |
1109 | } |
1110 | |
1111 | printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), " |
1112 | "bus ID %d%s, irq %d\n", model_name[pmif->kind], |
1113 | pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id, |
1114 | on_media_bay(pmif) ? " (mediabay)" : "", hw->irq); |
1115 | |
1116 | rc = ide_host_register(host, &d, hws); |
1117 | if (rc) |
1118 | pmif->hwif = NULL; |
1119 | |
1120 | if (pmif->mdev) |
1121 | unlock_media_bay(pmif->mdev->media_bay); |
1122 | |
1123 | bail: |
1124 | if (rc && host) |
1125 | ide_host_free(host); |
1126 | return rc; |
1127 | } |
1128 | |
1129 | static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base) |
1130 | { |
1131 | int i; |
1132 | |
1133 | for (i = 0; i < 8; ++i) |
1134 | hw->io_ports_array[i] = base + i * 0x10; |
1135 | |
1136 | hw->io_ports.ctl_addr = base + 0x160; |
1137 | } |
1138 | |
1139 | /* |
1140 | * Attach to a macio probed interface |
1141 | */ |
1142 | static int __devinit |
1143 | pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match) |
1144 | { |
1145 | void __iomem *base; |
1146 | unsigned long regbase; |
1147 | pmac_ide_hwif_t *pmif; |
1148 | int irq, rc; |
1149 | struct ide_hw hw; |
1150 | |
1151 | pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); |
1152 | if (pmif == NULL) |
1153 | return -ENOMEM; |
1154 | |
1155 | if (macio_resource_count(mdev) == 0) { |
1156 | printk(KERN_WARNING "ide-pmac: no address for %s\n", |
1157 | mdev->ofdev.dev.of_node->full_name); |
1158 | rc = -ENXIO; |
1159 | goto out_free_pmif; |
1160 | } |
1161 | |
1162 | /* Request memory resource for IO ports */ |
1163 | if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) { |
1164 | printk(KERN_ERR "ide-pmac: can't request MMIO resource for " |
1165 | "%s!\n", mdev->ofdev.dev.of_node->full_name); |
1166 | rc = -EBUSY; |
1167 | goto out_free_pmif; |
1168 | } |
1169 | |
1170 | /* XXX This is bogus. Should be fixed in the registry by checking |
1171 | * the kind of host interrupt controller, a bit like gatwick |
1172 | * fixes in irq.c. That works well enough for the single case |
1173 | * where that happens though... |
1174 | */ |
1175 | if (macio_irq_count(mdev) == 0) { |
1176 | printk(KERN_WARNING "ide-pmac: no intrs for device %s, using " |
1177 | "13\n", mdev->ofdev.dev.of_node->full_name); |
1178 | irq = irq_create_mapping(NULL, 13); |
1179 | } else |
1180 | irq = macio_irq(mdev, 0); |
1181 | |
1182 | base = ioremap(macio_resource_start(mdev, 0), 0x400); |
1183 | regbase = (unsigned long) base; |
1184 | |
1185 | pmif->mdev = mdev; |
1186 | pmif->node = mdev->ofdev.dev.of_node; |
1187 | pmif->regbase = regbase; |
1188 | pmif->irq = irq; |
1189 | pmif->kauai_fcr = NULL; |
1190 | |
1191 | if (macio_resource_count(mdev) >= 2) { |
1192 | if (macio_request_resource(mdev, 1, "ide-pmac (dma)")) |
1193 | printk(KERN_WARNING "ide-pmac: can't request DMA " |
1194 | "resource for %s!\n", |
1195 | mdev->ofdev.dev.of_node->full_name); |
1196 | else |
1197 | pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000); |
1198 | } else |
1199 | pmif->dma_regs = NULL; |
1200 | |
1201 | dev_set_drvdata(&mdev->ofdev.dev, pmif); |
1202 | |
1203 | memset(&hw, 0, sizeof(hw)); |
1204 | pmac_ide_init_ports(&hw, pmif->regbase); |
1205 | hw.irq = irq; |
1206 | hw.dev = &mdev->bus->pdev->dev; |
1207 | hw.parent = &mdev->ofdev.dev; |
1208 | |
1209 | rc = pmac_ide_setup_device(pmif, &hw); |
1210 | if (rc != 0) { |
1211 | /* The inteface is released to the common IDE layer */ |
1212 | dev_set_drvdata(&mdev->ofdev.dev, NULL); |
1213 | iounmap(base); |
1214 | if (pmif->dma_regs) { |
1215 | iounmap(pmif->dma_regs); |
1216 | macio_release_resource(mdev, 1); |
1217 | } |
1218 | macio_release_resource(mdev, 0); |
1219 | kfree(pmif); |
1220 | } |
1221 | |
1222 | return rc; |
1223 | |
1224 | out_free_pmif: |
1225 | kfree(pmif); |
1226 | return rc; |
1227 | } |
1228 | |
1229 | static int |
1230 | pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg) |
1231 | { |
1232 | pmac_ide_hwif_t *pmif = |
1233 | (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); |
1234 | int rc = 0; |
1235 | |
1236 | if (mesg.event != mdev->ofdev.dev.power.power_state.event |
1237 | && (mesg.event & PM_EVENT_SLEEP)) { |
1238 | rc = pmac_ide_do_suspend(pmif); |
1239 | if (rc == 0) |
1240 | mdev->ofdev.dev.power.power_state = mesg; |
1241 | } |
1242 | |
1243 | return rc; |
1244 | } |
1245 | |
1246 | static int |
1247 | pmac_ide_macio_resume(struct macio_dev *mdev) |
1248 | { |
1249 | pmac_ide_hwif_t *pmif = |
1250 | (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); |
1251 | int rc = 0; |
1252 | |
1253 | if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) { |
1254 | rc = pmac_ide_do_resume(pmif); |
1255 | if (rc == 0) |
1256 | mdev->ofdev.dev.power.power_state = PMSG_ON; |
1257 | } |
1258 | |
1259 | return rc; |
1260 | } |
1261 | |
1262 | /* |
1263 | * Attach to a PCI probed interface |
1264 | */ |
1265 | static int __devinit |
1266 | pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id) |
1267 | { |
1268 | struct device_node *np; |
1269 | pmac_ide_hwif_t *pmif; |
1270 | void __iomem *base; |
1271 | unsigned long rbase, rlen; |
1272 | int rc; |
1273 | struct ide_hw hw; |
1274 | |
1275 | np = pci_device_to_OF_node(pdev); |
1276 | if (np == NULL) { |
1277 | printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n"); |
1278 | return -ENODEV; |
1279 | } |
1280 | |
1281 | pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); |
1282 | if (pmif == NULL) |
1283 | return -ENOMEM; |
1284 | |
1285 | if (pci_enable_device(pdev)) { |
1286 | printk(KERN_WARNING "ide-pmac: Can't enable PCI device for " |
1287 | "%s\n", np->full_name); |
1288 | rc = -ENXIO; |
1289 | goto out_free_pmif; |
1290 | } |
1291 | pci_set_master(pdev); |
1292 | |
1293 | if (pci_request_regions(pdev, "Kauai ATA")) { |
1294 | printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for " |
1295 | "%s\n", np->full_name); |
1296 | rc = -ENXIO; |
1297 | goto out_free_pmif; |
1298 | } |
1299 | |
1300 | pmif->mdev = NULL; |
1301 | pmif->node = np; |
1302 | |
1303 | rbase = pci_resource_start(pdev, 0); |
1304 | rlen = pci_resource_len(pdev, 0); |
1305 | |
1306 | base = ioremap(rbase, rlen); |
1307 | pmif->regbase = (unsigned long) base + 0x2000; |
1308 | pmif->dma_regs = base + 0x1000; |
1309 | pmif->kauai_fcr = base; |
1310 | pmif->irq = pdev->irq; |
1311 | |
1312 | pci_set_drvdata(pdev, pmif); |
1313 | |
1314 | memset(&hw, 0, sizeof(hw)); |
1315 | pmac_ide_init_ports(&hw, pmif->regbase); |
1316 | hw.irq = pdev->irq; |
1317 | hw.dev = &pdev->dev; |
1318 | |
1319 | rc = pmac_ide_setup_device(pmif, &hw); |
1320 | if (rc != 0) { |
1321 | /* The inteface is released to the common IDE layer */ |
1322 | pci_set_drvdata(pdev, NULL); |
1323 | iounmap(base); |
1324 | pci_release_regions(pdev); |
1325 | kfree(pmif); |
1326 | } |
1327 | |
1328 | return rc; |
1329 | |
1330 | out_free_pmif: |
1331 | kfree(pmif); |
1332 | return rc; |
1333 | } |
1334 | |
1335 | static int |
1336 | pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) |
1337 | { |
1338 | pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); |
1339 | int rc = 0; |
1340 | |
1341 | if (mesg.event != pdev->dev.power.power_state.event |
1342 | && (mesg.event & PM_EVENT_SLEEP)) { |
1343 | rc = pmac_ide_do_suspend(pmif); |
1344 | if (rc == 0) |
1345 | pdev->dev.power.power_state = mesg; |
1346 | } |
1347 | |
1348 | return rc; |
1349 | } |
1350 | |
1351 | static int |
1352 | pmac_ide_pci_resume(struct pci_dev *pdev) |
1353 | { |
1354 | pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); |
1355 | int rc = 0; |
1356 | |
1357 | if (pdev->dev.power.power_state.event != PM_EVENT_ON) { |
1358 | rc = pmac_ide_do_resume(pmif); |
1359 | if (rc == 0) |
1360 | pdev->dev.power.power_state = PMSG_ON; |
1361 | } |
1362 | |
1363 | return rc; |
1364 | } |
1365 | |
1366 | #ifdef CONFIG_PMAC_MEDIABAY |
1367 | static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state) |
1368 | { |
1369 | pmac_ide_hwif_t *pmif = |
1370 | (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); |
1371 | |
1372 | switch(mb_state) { |
1373 | case MB_CD: |
1374 | if (!pmif->hwif->present) |
1375 | ide_port_scan(pmif->hwif); |
1376 | break; |
1377 | default: |
1378 | if (pmif->hwif->present) |
1379 | ide_port_unregister_devices(pmif->hwif); |
1380 | } |
1381 | } |
1382 | #endif /* CONFIG_PMAC_MEDIABAY */ |
1383 | |
1384 | |
1385 | static struct of_device_id pmac_ide_macio_match[] = |
1386 | { |
1387 | { |
1388 | .name = "IDE", |
1389 | }, |
1390 | { |
1391 | .name = "ATA", |
1392 | }, |
1393 | { |
1394 | .type = "ide", |
1395 | }, |
1396 | { |
1397 | .type = "ata", |
1398 | }, |
1399 | {}, |
1400 | }; |
1401 | |
1402 | static struct macio_driver pmac_ide_macio_driver = |
1403 | { |
1404 | .driver = { |
1405 | .name = "ide-pmac", |
1406 | .owner = THIS_MODULE, |
1407 | .of_match_table = pmac_ide_macio_match, |
1408 | }, |
1409 | .probe = pmac_ide_macio_attach, |
1410 | .suspend = pmac_ide_macio_suspend, |
1411 | .resume = pmac_ide_macio_resume, |
1412 | #ifdef CONFIG_PMAC_MEDIABAY |
1413 | .mediabay_event = pmac_ide_macio_mb_event, |
1414 | #endif |
1415 | }; |
1416 | |
1417 | static const struct pci_device_id pmac_ide_pci_match[] = { |
1418 | { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 }, |
1419 | { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 }, |
1420 | { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 }, |
1421 | { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 }, |
1422 | { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 }, |
1423 | {}, |
1424 | }; |
1425 | |
1426 | static struct pci_driver pmac_ide_pci_driver = { |
1427 | .name = "ide-pmac", |
1428 | .id_table = pmac_ide_pci_match, |
1429 | .probe = pmac_ide_pci_attach, |
1430 | .suspend = pmac_ide_pci_suspend, |
1431 | .resume = pmac_ide_pci_resume, |
1432 | }; |
1433 | MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match); |
1434 | |
1435 | int __init pmac_ide_probe(void) |
1436 | { |
1437 | int error; |
1438 | |
1439 | if (!machine_is(powermac)) |
1440 | return -ENODEV; |
1441 | |
1442 | #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST |
1443 | error = pci_register_driver(&pmac_ide_pci_driver); |
1444 | if (error) |
1445 | goto out; |
1446 | error = macio_register_driver(&pmac_ide_macio_driver); |
1447 | if (error) { |
1448 | pci_unregister_driver(&pmac_ide_pci_driver); |
1449 | goto out; |
1450 | } |
1451 | #else |
1452 | error = macio_register_driver(&pmac_ide_macio_driver); |
1453 | if (error) |
1454 | goto out; |
1455 | error = pci_register_driver(&pmac_ide_pci_driver); |
1456 | if (error) { |
1457 | macio_unregister_driver(&pmac_ide_macio_driver); |
1458 | goto out; |
1459 | } |
1460 | #endif |
1461 | out: |
1462 | return error; |
1463 | } |
1464 | |
1465 | /* |
1466 | * pmac_ide_build_dmatable builds the DBDMA command list |
1467 | * for a transfer and sets the DBDMA channel to point to it. |
1468 | */ |
1469 | static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd) |
1470 | { |
1471 | ide_hwif_t *hwif = drive->hwif; |
1472 | pmac_ide_hwif_t *pmif = |
1473 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1474 | struct dbdma_cmd *table; |
1475 | volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; |
1476 | struct scatterlist *sg; |
1477 | int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE); |
1478 | int i = cmd->sg_nents, count = 0; |
1479 | |
1480 | /* DMA table is already aligned */ |
1481 | table = (struct dbdma_cmd *) pmif->dma_table_cpu; |
1482 | |
1483 | /* Make sure DMA controller is stopped (necessary ?) */ |
1484 | writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control); |
1485 | while (readl(&dma->status) & RUN) |
1486 | udelay(1); |
1487 | |
1488 | /* Build DBDMA commands list */ |
1489 | sg = hwif->sg_table; |
1490 | while (i && sg_dma_len(sg)) { |
1491 | u32 cur_addr; |
1492 | u32 cur_len; |
1493 | |
1494 | cur_addr = sg_dma_address(sg); |
1495 | cur_len = sg_dma_len(sg); |
1496 | |
1497 | if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) { |
1498 | if (pmif->broken_dma_warn == 0) { |
1499 | printk(KERN_WARNING "%s: DMA on non aligned address, " |
1500 | "switching to PIO on Ohare chipset\n", drive->name); |
1501 | pmif->broken_dma_warn = 1; |
1502 | } |
1503 | return 0; |
1504 | } |
1505 | while (cur_len) { |
1506 | unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; |
1507 | |
1508 | if (count++ >= MAX_DCMDS) { |
1509 | printk(KERN_WARNING "%s: DMA table too small\n", |
1510 | drive->name); |
1511 | return 0; |
1512 | } |
1513 | st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE); |
1514 | st_le16(&table->req_count, tc); |
1515 | st_le32(&table->phy_addr, cur_addr); |
1516 | table->cmd_dep = 0; |
1517 | table->xfer_status = 0; |
1518 | table->res_count = 0; |
1519 | cur_addr += tc; |
1520 | cur_len -= tc; |
1521 | ++table; |
1522 | } |
1523 | sg = sg_next(sg); |
1524 | i--; |
1525 | } |
1526 | |
1527 | /* convert the last command to an input/output last command */ |
1528 | if (count) { |
1529 | st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST); |
1530 | /* add the stop command to the end of the list */ |
1531 | memset(table, 0, sizeof(struct dbdma_cmd)); |
1532 | st_le16(&table->command, DBDMA_STOP); |
1533 | mb(); |
1534 | writel(hwif->dmatable_dma, &dma->cmdptr); |
1535 | return 1; |
1536 | } |
1537 | |
1538 | printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name); |
1539 | |
1540 | return 0; /* revert to PIO for this request */ |
1541 | } |
1542 | |
1543 | /* |
1544 | * Prepare a DMA transfer. We build the DMA table, adjust the timings for |
1545 | * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion |
1546 | */ |
1547 | static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd) |
1548 | { |
1549 | ide_hwif_t *hwif = drive->hwif; |
1550 | pmac_ide_hwif_t *pmif = |
1551 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1552 | u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4); |
1553 | u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE); |
1554 | |
1555 | if (pmac_ide_build_dmatable(drive, cmd) == 0) |
1556 | return 1; |
1557 | |
1558 | /* Apple adds 60ns to wrDataSetup on reads */ |
1559 | if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { |
1560 | writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL), |
1561 | PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
1562 | (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
1563 | } |
1564 | |
1565 | return 0; |
1566 | } |
1567 | |
1568 | /* |
1569 | * Kick the DMA controller into life after the DMA command has been issued |
1570 | * to the drive. |
1571 | */ |
1572 | static void |
1573 | pmac_ide_dma_start(ide_drive_t *drive) |
1574 | { |
1575 | ide_hwif_t *hwif = drive->hwif; |
1576 | pmac_ide_hwif_t *pmif = |
1577 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1578 | volatile struct dbdma_regs __iomem *dma; |
1579 | |
1580 | dma = pmif->dma_regs; |
1581 | |
1582 | writel((RUN << 16) | RUN, &dma->control); |
1583 | /* Make sure it gets to the controller right now */ |
1584 | (void)readl(&dma->control); |
1585 | } |
1586 | |
1587 | /* |
1588 | * After a DMA transfer, make sure the controller is stopped |
1589 | */ |
1590 | static int |
1591 | pmac_ide_dma_end (ide_drive_t *drive) |
1592 | { |
1593 | ide_hwif_t *hwif = drive->hwif; |
1594 | pmac_ide_hwif_t *pmif = |
1595 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1596 | volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; |
1597 | u32 dstat; |
1598 | |
1599 | dstat = readl(&dma->status); |
1600 | writel(((RUN|WAKE|DEAD) << 16), &dma->control); |
1601 | |
1602 | /* verify good dma status. we don't check for ACTIVE beeing 0. We should... |
1603 | * in theory, but with ATAPI decices doing buffer underruns, that would |
1604 | * cause us to disable DMA, which isn't what we want |
1605 | */ |
1606 | return (dstat & (RUN|DEAD)) != RUN; |
1607 | } |
1608 | |
1609 | /* |
1610 | * Check out that the interrupt we got was for us. We can't always know this |
1611 | * for sure with those Apple interfaces (well, we could on the recent ones but |
1612 | * that's not implemented yet), on the other hand, we don't have shared interrupts |
1613 | * so it's not really a problem |
1614 | */ |
1615 | static int |
1616 | pmac_ide_dma_test_irq (ide_drive_t *drive) |
1617 | { |
1618 | ide_hwif_t *hwif = drive->hwif; |
1619 | pmac_ide_hwif_t *pmif = |
1620 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1621 | volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; |
1622 | unsigned long status, timeout; |
1623 | |
1624 | /* We have to things to deal with here: |
1625 | * |
1626 | * - The dbdma won't stop if the command was started |
1627 | * but completed with an error without transferring all |
1628 | * datas. This happens when bad blocks are met during |
1629 | * a multi-block transfer. |
1630 | * |
1631 | * - The dbdma fifo hasn't yet finished flushing to |
1632 | * to system memory when the disk interrupt occurs. |
1633 | * |
1634 | */ |
1635 | |
1636 | /* If ACTIVE is cleared, the STOP command have passed and |
1637 | * transfer is complete. |
1638 | */ |
1639 | status = readl(&dma->status); |
1640 | if (!(status & ACTIVE)) |
1641 | return 1; |
1642 | |
1643 | /* If dbdma didn't execute the STOP command yet, the |
1644 | * active bit is still set. We consider that we aren't |
1645 | * sharing interrupts (which is hopefully the case with |
1646 | * those controllers) and so we just try to flush the |
1647 | * channel for pending data in the fifo |
1648 | */ |
1649 | udelay(1); |
1650 | writel((FLUSH << 16) | FLUSH, &dma->control); |
1651 | timeout = 0; |
1652 | for (;;) { |
1653 | udelay(1); |
1654 | status = readl(&dma->status); |
1655 | if ((status & FLUSH) == 0) |
1656 | break; |
1657 | if (++timeout > 100) { |
1658 | printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n", |
1659 | hwif->index); |
1660 | break; |
1661 | } |
1662 | } |
1663 | return 1; |
1664 | } |
1665 | |
1666 | static void pmac_ide_dma_host_set(ide_drive_t *drive, int on) |
1667 | { |
1668 | } |
1669 | |
1670 | static void |
1671 | pmac_ide_dma_lost_irq (ide_drive_t *drive) |
1672 | { |
1673 | ide_hwif_t *hwif = drive->hwif; |
1674 | pmac_ide_hwif_t *pmif = |
1675 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1676 | volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; |
1677 | unsigned long status = readl(&dma->status); |
1678 | |
1679 | printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status); |
1680 | } |
1681 | |
1682 | static const struct ide_dma_ops pmac_dma_ops = { |
1683 | .dma_host_set = pmac_ide_dma_host_set, |
1684 | .dma_setup = pmac_ide_dma_setup, |
1685 | .dma_start = pmac_ide_dma_start, |
1686 | .dma_end = pmac_ide_dma_end, |
1687 | .dma_test_irq = pmac_ide_dma_test_irq, |
1688 | .dma_lost_irq = pmac_ide_dma_lost_irq, |
1689 | }; |
1690 | |
1691 | /* |
1692 | * Allocate the data structures needed for using DMA with an interface |
1693 | * and fill the proper list of functions pointers |
1694 | */ |
1695 | static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif, |
1696 | const struct ide_port_info *d) |
1697 | { |
1698 | pmac_ide_hwif_t *pmif = |
1699 | (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent); |
1700 | struct pci_dev *dev = to_pci_dev(hwif->dev); |
1701 | |
1702 | /* We won't need pci_dev if we switch to generic consistent |
1703 | * DMA routines ... |
1704 | */ |
1705 | if (dev == NULL || pmif->dma_regs == 0) |
1706 | return -ENODEV; |
1707 | /* |
1708 | * Allocate space for the DBDMA commands. |
1709 | * The +2 is +1 for the stop command and +1 to allow for |
1710 | * aligning the start address to a multiple of 16 bytes. |
1711 | */ |
1712 | pmif->dma_table_cpu = pci_alloc_consistent( |
1713 | dev, |
1714 | (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), |
1715 | &hwif->dmatable_dma); |
1716 | if (pmif->dma_table_cpu == NULL) { |
1717 | printk(KERN_ERR "%s: unable to allocate DMA command list\n", |
1718 | hwif->name); |
1719 | return -ENOMEM; |
1720 | } |
1721 | |
1722 | hwif->sg_max_nents = MAX_DCMDS; |
1723 | |
1724 | return 0; |
1725 | } |
1726 | |
1727 | module_init(pmac_ide_probe); |
1728 | |
1729 | MODULE_LICENSE("GPL"); |
1730 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9