Root/drivers/ide/pmac.c

1/*
2 * Support for IDE interfaces on PowerMacs.
3 *
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 * Copyright (c) 1995-1998 Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/ide.h>
30#include <linux/notifier.h>
31#include <linux/module.h>
32#include <linux/reboot.h>
33#include <linux/pci.h>
34#include <linux/adb.h>
35#include <linux/pmu.h>
36#include <linux/scatterlist.h>
37#include <linux/slab.h>
38
39#include <asm/prom.h>
40#include <asm/io.h>
41#include <asm/dbdma.h>
42#include <asm/ide.h>
43#include <asm/pci-bridge.h>
44#include <asm/machdep.h>
45#include <asm/pmac_feature.h>
46#include <asm/sections.h>
47#include <asm/irq.h>
48#include <asm/mediabay.h>
49
50#define DRV_NAME "ide-pmac"
51
52#undef IDE_PMAC_DEBUG
53
54#define DMA_WAIT_TIMEOUT 50
55
56typedef struct pmac_ide_hwif {
57    unsigned long regbase;
58    int irq;
59    int kind;
60    int aapl_bus_id;
61    unsigned broken_dma : 1;
62    unsigned broken_dma_warn : 1;
63    struct device_node* node;
64    struct macio_dev *mdev;
65    u32 timings[4];
66    volatile u32 __iomem * *kauai_fcr;
67    ide_hwif_t *hwif;
68
69    /* Those fields are duplicating what is in hwif. We currently
70     * can't use the hwif ones because of some assumptions that are
71     * beeing done by the generic code about the kind of dma controller
72     * and format of the dma table. This will have to be fixed though.
73     */
74    volatile struct dbdma_regs __iomem * dma_regs;
75    struct dbdma_cmd* dma_table_cpu;
76} pmac_ide_hwif_t;
77
78enum {
79    controller_ohare, /* OHare based */
80    controller_heathrow, /* Heathrow/Paddington */
81    controller_kl_ata3, /* KeyLargo ATA-3 */
82    controller_kl_ata4, /* KeyLargo ATA-4 */
83    controller_un_ata6, /* UniNorth2 ATA-6 */
84    controller_k2_ata6, /* K2 ATA-6 */
85    controller_sh_ata6, /* Shasta ATA-6 */
86};
87
88static const char* model_name[] = {
89    "OHare ATA", /* OHare based */
90    "Heathrow ATA", /* Heathrow/Paddington */
91    "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92    "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93    "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94    "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95    "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
96};
97
98/*
99 * Extra registers, both 32-bit little-endian
100 */
101#define IDE_TIMING_CONFIG 0x200
102#define IDE_INTERRUPT 0x300
103
104/* Kauai (U2) ATA has different register setup */
105#define IDE_KAUAI_PIO_CONFIG 0x200
106#define IDE_KAUAI_ULTRA_CONFIG 0x210
107#define IDE_KAUAI_POLL_CONFIG 0x220
108
109/*
110 * Timing configuration register definitions
111 */
112
113/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116#define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
118
119/* 133Mhz cell, found in shasta.
120 * See comments about 100 Mhz Uninorth 2...
121 * Note that PIO_MASK and MDMA_MASK seem to overlap
122 */
123#define TR_133_PIOREG_PIO_MASK 0xff000fff
124#define TR_133_PIOREG_MDMA_MASK 0x00fff800
125#define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126#define TR_133_UDMAREG_UDMA_EN 0x00000001
127
128/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129 * this one yet, it appears as a pci device (106b/0033) on uninorth
130 * internal PCI bus and it's clock is controlled like gem or fw. It
131 * appears to be an evolution of keylargo ATA4 with a timing register
132 * extended to 2 32bits registers and a similar DBDMA channel. Other
133 * registers seem to exist but I can't tell much about them.
134 *
135 * So far, I'm using pre-calculated tables for this extracted from
136 * the values used by the MacOS X driver.
137 *
138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139 * register controls the UDMA timings. At least, it seems bit 0
140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
142 * know their meaning yet
143 */
144#define TR_100_PIOREG_PIO_MASK 0xff000fff
145#define TR_100_PIOREG_MDMA_MASK 0x00fff000
146#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147#define TR_100_UDMAREG_UDMA_EN 0x00000001
148
149
150/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151 * 40 connector cable and to 4 on 80 connector one.
152 * Clock unit is 15ns (66Mhz)
153 *
154 * 3 Values can be programmed:
155 * - Write data setup, which appears to match the cycle time. They
156 * also call it DIOW setup.
157 * - Ready to pause time (from spec)
158 * - Address setup. That one is weird. I don't see where exactly
159 * it fits in UDMA cycles, I got it's name from an obscure piece
160 * of commented out code in Darwin. They leave it to 0, we do as
161 * well, despite a comment that would lead to think it has a
162 * min value of 45ns.
163 * Apple also add 60ns to the write data setup (or cycle time ?) on
164 * reads.
165 */
166#define TR_66_UDMA_MASK 0xfff00000
167#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169#define TR_66_UDMA_ADDRSETUP_SHIFT 29
170#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171#define TR_66_UDMA_RDY2PAUS_SHIFT 25
172#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173#define TR_66_UDMA_WRDATASETUP_SHIFT 21
174#define TR_66_MDMA_MASK 0x000ffc00
175#define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176#define TR_66_MDMA_RECOVERY_SHIFT 15
177#define TR_66_MDMA_ACCESS_MASK 0x00007c00
178#define TR_66_MDMA_ACCESS_SHIFT 10
179#define TR_66_PIO_MASK 0x000003ff
180#define TR_66_PIO_RECOVERY_MASK 0x000003e0
181#define TR_66_PIO_RECOVERY_SHIFT 5
182#define TR_66_PIO_ACCESS_MASK 0x0000001f
183#define TR_66_PIO_ACCESS_SHIFT 0
184
185/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
187 *
188 * The access time and recovery time can be programmed. Some older
189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
190 * the same here fore safety against broken old hardware ;)
191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
192 * time and removes one from recovery. It's not supported on KeyLargo
193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
194 * is used to reach long timings used in this mode.
195 */
196#define TR_33_MDMA_MASK 0x003ff800
197#define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198#define TR_33_MDMA_RECOVERY_SHIFT 16
199#define TR_33_MDMA_ACCESS_MASK 0x0000f800
200#define TR_33_MDMA_ACCESS_SHIFT 11
201#define TR_33_MDMA_HALFTICK 0x00200000
202#define TR_33_PIO_MASK 0x000007ff
203#define TR_33_PIO_E 0x00000400
204#define TR_33_PIO_RECOVERY_MASK 0x000003e0
205#define TR_33_PIO_RECOVERY_SHIFT 5
206#define TR_33_PIO_ACCESS_MASK 0x0000001f
207#define TR_33_PIO_ACCESS_SHIFT 0
208
209/*
210 * Interrupt register definitions
211 */
212#define IDE_INTR_DMA 0x80000000
213#define IDE_INTR_DEVICE 0x40000000
214
215/*
216 * FCR Register on Kauai. Not sure what bit 0x4 is ...
217 */
218#define KAUAI_FCR_UATA_MAGIC 0x00000004
219#define KAUAI_FCR_UATA_RESET_N 0x00000002
220#define KAUAI_FCR_UATA_ENABLE 0x00000001
221
222/* Rounded Multiword DMA timings
223 *
224 * I gave up finding a generic formula for all controller
225 * types and instead, built tables based on timing values
226 * used by Apple in Darwin's implementation.
227 */
228struct mdma_timings_t {
229    int accessTime;
230    int recoveryTime;
231    int cycleTime;
232};
233
234struct mdma_timings_t mdma_timings_33[] =
235{
236    { 240, 240, 480 },
237    { 180, 180, 360 },
238    { 135, 135, 270 },
239    { 120, 120, 240 },
240    { 105, 105, 210 },
241    { 90, 90, 180 },
242    { 75, 75, 150 },
243    { 75, 45, 120 },
244    { 0, 0, 0 }
245};
246
247struct mdma_timings_t mdma_timings_33k[] =
248{
249    { 240, 240, 480 },
250    { 180, 180, 360 },
251    { 150, 150, 300 },
252    { 120, 120, 240 },
253    { 90, 120, 210 },
254    { 90, 90, 180 },
255    { 90, 60, 150 },
256    { 90, 30, 120 },
257    { 0, 0, 0 }
258};
259
260struct mdma_timings_t mdma_timings_66[] =
261{
262    { 240, 240, 480 },
263    { 180, 180, 360 },
264    { 135, 135, 270 },
265    { 120, 120, 240 },
266    { 105, 105, 210 },
267    { 90, 90, 180 },
268    { 90, 75, 165 },
269    { 75, 45, 120 },
270    { 0, 0, 0 }
271};
272
273/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274struct {
275    int addrSetup; /* ??? */
276    int rdy2pause;
277    int wrDataSetup;
278} kl66_udma_timings[] =
279{
280    { 0, 180, 120 }, /* Mode 0 */
281    { 0, 150, 90 }, /* 1 */
282    { 0, 120, 60 }, /* 2 */
283    { 0, 90, 45 }, /* 3 */
284    { 0, 90, 30 } /* 4 */
285};
286
287/* UniNorth 2 ATA/100 timings */
288struct kauai_timing {
289    int cycle_time;
290    u32 timing_reg;
291};
292
293static struct kauai_timing kauai_pio_timings[] =
294{
295    { 930 , 0x08000fff },
296    { 600 , 0x08000a92 },
297    { 383 , 0x0800060f },
298    { 360 , 0x08000492 },
299    { 330 , 0x0800048f },
300    { 300 , 0x080003cf },
301    { 270 , 0x080003cc },
302    { 240 , 0x0800038b },
303    { 239 , 0x0800030c },
304    { 180 , 0x05000249 },
305    { 120 , 0x04000148 },
306    { 0 , 0 },
307};
308
309static struct kauai_timing kauai_mdma_timings[] =
310{
311    { 1260 , 0x00fff000 },
312    { 480 , 0x00618000 },
313    { 360 , 0x00492000 },
314    { 270 , 0x0038e000 },
315    { 240 , 0x0030c000 },
316    { 210 , 0x002cb000 },
317    { 180 , 0x00249000 },
318    { 150 , 0x00209000 },
319    { 120 , 0x00148000 },
320    { 0 , 0 },
321};
322
323static struct kauai_timing kauai_udma_timings[] =
324{
325    { 120 , 0x000070c0 },
326    { 90 , 0x00005d80 },
327    { 60 , 0x00004a60 },
328    { 45 , 0x00003a50 },
329    { 30 , 0x00002a30 },
330    { 20 , 0x00002921 },
331    { 0 , 0 },
332};
333
334static struct kauai_timing shasta_pio_timings[] =
335{
336    { 930 , 0x08000fff },
337    { 600 , 0x0A000c97 },
338    { 383 , 0x07000712 },
339    { 360 , 0x040003cd },
340    { 330 , 0x040003cd },
341    { 300 , 0x040003cd },
342    { 270 , 0x040003cd },
343    { 240 , 0x040003cd },
344    { 239 , 0x040003cd },
345    { 180 , 0x0400028b },
346    { 120 , 0x0400010a },
347    { 0 , 0 },
348};
349
350static struct kauai_timing shasta_mdma_timings[] =
351{
352    { 1260 , 0x00fff000 },
353    { 480 , 0x00820800 },
354    { 360 , 0x00820800 },
355    { 270 , 0x00820800 },
356    { 240 , 0x00820800 },
357    { 210 , 0x00820800 },
358    { 180 , 0x00820800 },
359    { 150 , 0x0028b000 },
360    { 120 , 0x001ca000 },
361    { 0 , 0 },
362};
363
364static struct kauai_timing shasta_udma133_timings[] =
365{
366    { 120 , 0x00035901, },
367    { 90 , 0x000348b1, },
368    { 60 , 0x00033881, },
369    { 45 , 0x00033861, },
370    { 30 , 0x00033841, },
371    { 20 , 0x00033031, },
372    { 15 , 0x00033021, },
373    { 0 , 0 },
374};
375
376
377static inline u32
378kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
379{
380    int i;
381    
382    for (i=0; table[i].cycle_time; i++)
383        if (cycle_time > table[i+1].cycle_time)
384            return table[i].timing_reg;
385    BUG();
386    return 0;
387}
388
389/* allow up to 256 DBDMA commands per xfer */
390#define MAX_DCMDS 256
391
392/*
393 * Wait 1s for disk to answer on IDE bus after a hard reset
394 * of the device (via GPIO/FCR).
395 *
396 * Some devices seem to "pollute" the bus even after dropping
397 * the BSY bit (typically some combo drives slave on the UDMA
398 * bus) after a hard reset. Since we hard reset all drives on
399 * KeyLargo ATA66, we have to keep that delay around. I may end
400 * up not hard resetting anymore on these and keep the delay only
401 * for older interfaces instead (we have to reset when coming
402 * from MacOS...) --BenH.
403 */
404#define IDE_WAKEUP_DELAY (1*HZ)
405
406static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407
408#define PMAC_IDE_REG(x) \
409    ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410
411/*
412 * Apply the timings of the proper unit (master/slave) to the shared
413 * timing register when selecting that unit. This version is for
414 * ASICs with a single timing register
415 */
416static void pmac_ide_apply_timings(ide_drive_t *drive)
417{
418    ide_hwif_t *hwif = drive->hwif;
419    pmac_ide_hwif_t *pmif =
420        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
421
422    if (drive->dn & 1)
423        writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424    else
425        writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
426    (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
427}
428
429/*
430 * Apply the timings of the proper unit (master/slave) to the shared
431 * timing register when selecting that unit. This version is for
432 * ASICs with a dual timing register (Kauai)
433 */
434static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
435{
436    ide_hwif_t *hwif = drive->hwif;
437    pmac_ide_hwif_t *pmif =
438        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
439
440    if (drive->dn & 1) {
441        writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
442        writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
443    } else {
444        writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
445        writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
446    }
447    (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
448}
449
450/*
451 * Force an update of controller timing values for a given drive
452 */
453static void
454pmac_ide_do_update_timings(ide_drive_t *drive)
455{
456    ide_hwif_t *hwif = drive->hwif;
457    pmac_ide_hwif_t *pmif =
458        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
459
460    if (pmif->kind == controller_sh_ata6 ||
461        pmif->kind == controller_un_ata6 ||
462        pmif->kind == controller_k2_ata6)
463        pmac_ide_kauai_apply_timings(drive);
464    else
465        pmac_ide_apply_timings(drive);
466}
467
468static void pmac_dev_select(ide_drive_t *drive)
469{
470    pmac_ide_apply_timings(drive);
471
472    writeb(drive->select | ATA_DEVICE_OBS,
473           (void __iomem *)drive->hwif->io_ports.device_addr);
474}
475
476static void pmac_kauai_dev_select(ide_drive_t *drive)
477{
478    pmac_ide_kauai_apply_timings(drive);
479
480    writeb(drive->select | ATA_DEVICE_OBS,
481           (void __iomem *)drive->hwif->io_ports.device_addr);
482}
483
484static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
485{
486    writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
487    (void)readl((void __iomem *)(hwif->io_ports.data_addr
488                     + IDE_TIMING_CONFIG));
489}
490
491static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
492{
493    writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
494    (void)readl((void __iomem *)(hwif->io_ports.data_addr
495                     + IDE_TIMING_CONFIG));
496}
497
498/*
499 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
500 */
501static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
502{
503    pmac_ide_hwif_t *pmif =
504        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
505    const u8 pio = drive->pio_mode - XFER_PIO_0;
506    struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
507    u32 *timings, t;
508    unsigned accessTicks, recTicks;
509    unsigned accessTime, recTime;
510    unsigned int cycle_time;
511
512    /* which drive is it ? */
513    timings = &pmif->timings[drive->dn & 1];
514    t = *timings;
515
516    cycle_time = ide_pio_cycle_time(drive, pio);
517
518    switch (pmif->kind) {
519    case controller_sh_ata6: {
520        /* 133Mhz cell */
521        u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
522        t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
523        break;
524        }
525    case controller_un_ata6:
526    case controller_k2_ata6: {
527        /* 100Mhz cell */
528        u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
529        t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
530        break;
531        }
532    case controller_kl_ata4:
533        /* 66Mhz cell */
534        recTime = cycle_time - tim->active - tim->setup;
535        recTime = max(recTime, 150U);
536        accessTime = tim->active;
537        accessTime = max(accessTime, 150U);
538        accessTicks = SYSCLK_TICKS_66(accessTime);
539        accessTicks = min(accessTicks, 0x1fU);
540        recTicks = SYSCLK_TICKS_66(recTime);
541        recTicks = min(recTicks, 0x1fU);
542        t = (t & ~TR_66_PIO_MASK) |
543            (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
544            (recTicks << TR_66_PIO_RECOVERY_SHIFT);
545        break;
546    default: {
547        /* 33Mhz cell */
548        int ebit = 0;
549        recTime = cycle_time - tim->active - tim->setup;
550        recTime = max(recTime, 150U);
551        accessTime = tim->active;
552        accessTime = max(accessTime, 150U);
553        accessTicks = SYSCLK_TICKS(accessTime);
554        accessTicks = min(accessTicks, 0x1fU);
555        accessTicks = max(accessTicks, 4U);
556        recTicks = SYSCLK_TICKS(recTime);
557        recTicks = min(recTicks, 0x1fU);
558        recTicks = max(recTicks, 5U) - 4;
559        if (recTicks > 9) {
560            recTicks--; /* guess, but it's only for PIO0, so... */
561            ebit = 1;
562        }
563        t = (t & ~TR_33_PIO_MASK) |
564                (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
565                (recTicks << TR_33_PIO_RECOVERY_SHIFT);
566        if (ebit)
567            t |= TR_33_PIO_E;
568        break;
569        }
570    }
571
572#ifdef IDE_PMAC_DEBUG
573    printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
574        drive->name, pio, *timings);
575#endif
576
577    *timings = t;
578    pmac_ide_do_update_timings(drive);
579}
580
581/*
582 * Calculate KeyLargo ATA/66 UDMA timings
583 */
584static int
585set_timings_udma_ata4(u32 *timings, u8 speed)
586{
587    unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
588
589    if (speed > XFER_UDMA_4)
590        return 1;
591
592    rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
593    wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
594    addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
595
596    *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
597            (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
598            (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
599            (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
600            TR_66_UDMA_EN;
601#ifdef IDE_PMAC_DEBUG
602    printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603        speed & 0xf, *timings);
604#endif
605
606    return 0;
607}
608
609/*
610 * Calculate Kauai ATA/100 UDMA timings
611 */
612static int
613set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
614{
615    struct ide_timing *t = ide_timing_find_mode(speed);
616    u32 tr;
617
618    if (speed > XFER_UDMA_5 || t == NULL)
619        return 1;
620    tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
621    *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
622    *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
623
624    return 0;
625}
626
627/*
628 * Calculate Shasta ATA/133 UDMA timings
629 */
630static int
631set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
632{
633    struct ide_timing *t = ide_timing_find_mode(speed);
634    u32 tr;
635
636    if (speed > XFER_UDMA_6 || t == NULL)
637        return 1;
638    tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
639    *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
640    *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
641
642    return 0;
643}
644
645/*
646 * Calculate MDMA timings for all cells
647 */
648static void
649set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
650             u8 speed)
651{
652    u16 *id = drive->id;
653    int cycleTime, accessTime = 0, recTime = 0;
654    unsigned accessTicks, recTicks;
655    struct mdma_timings_t* tm = NULL;
656    int i;
657
658    /* Get default cycle time for mode */
659    switch(speed & 0xf) {
660        case 0: cycleTime = 480; break;
661        case 1: cycleTime = 150; break;
662        case 2: cycleTime = 120; break;
663        default:
664            BUG();
665            break;
666    }
667
668    /* Check if drive provides explicit DMA cycle time */
669    if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
670        cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
671
672    /* OHare limits according to some old Apple sources */
673    if ((intf_type == controller_ohare) && (cycleTime < 150))
674        cycleTime = 150;
675    /* Get the proper timing array for this controller */
676    switch(intf_type) {
677            case controller_sh_ata6:
678        case controller_un_ata6:
679        case controller_k2_ata6:
680            break;
681        case controller_kl_ata4:
682            tm = mdma_timings_66;
683            break;
684        case controller_kl_ata3:
685            tm = mdma_timings_33k;
686            break;
687        default:
688            tm = mdma_timings_33;
689            break;
690    }
691    if (tm != NULL) {
692        /* Lookup matching access & recovery times */
693        i = -1;
694        for (;;) {
695            if (tm[i+1].cycleTime < cycleTime)
696                break;
697            i++;
698        }
699        cycleTime = tm[i].cycleTime;
700        accessTime = tm[i].accessTime;
701        recTime = tm[i].recoveryTime;
702
703#ifdef IDE_PMAC_DEBUG
704        printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705            drive->name, cycleTime, accessTime, recTime);
706#endif
707    }
708    switch(intf_type) {
709    case controller_sh_ata6: {
710        /* 133Mhz cell */
711        u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
712        *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
713        *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
714        }
715    case controller_un_ata6:
716    case controller_k2_ata6: {
717        /* 100Mhz cell */
718        u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
719        *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
720        *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
721        }
722        break;
723    case controller_kl_ata4:
724        /* 66Mhz cell */
725        accessTicks = SYSCLK_TICKS_66(accessTime);
726        accessTicks = min(accessTicks, 0x1fU);
727        accessTicks = max(accessTicks, 0x1U);
728        recTicks = SYSCLK_TICKS_66(recTime);
729        recTicks = min(recTicks, 0x1fU);
730        recTicks = max(recTicks, 0x3U);
731        /* Clear out mdma bits and disable udma */
732        *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
733            (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
734            (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735        break;
736    case controller_kl_ata3:
737        /* 33Mhz cell on KeyLargo */
738        accessTicks = SYSCLK_TICKS(accessTime);
739        accessTicks = max(accessTicks, 1U);
740        accessTicks = min(accessTicks, 0x1fU);
741        accessTime = accessTicks * IDE_SYSCLK_NS;
742        recTicks = SYSCLK_TICKS(recTime);
743        recTicks = max(recTicks, 1U);
744        recTicks = min(recTicks, 0x1fU);
745        *timings = ((*timings) & ~TR_33_MDMA_MASK) |
746                (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
747                (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748        break;
749    default: {
750        /* 33Mhz cell on others */
751        int halfTick = 0;
752        int origAccessTime = accessTime;
753        int origRecTime = recTime;
754        
755        accessTicks = SYSCLK_TICKS(accessTime);
756        accessTicks = max(accessTicks, 1U);
757        accessTicks = min(accessTicks, 0x1fU);
758        accessTime = accessTicks * IDE_SYSCLK_NS;
759        recTicks = SYSCLK_TICKS(recTime);
760        recTicks = max(recTicks, 2U) - 1;
761        recTicks = min(recTicks, 0x1fU);
762        recTime = (recTicks + 1) * IDE_SYSCLK_NS;
763        if ((accessTicks > 1) &&
764            ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
765            ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
766                    halfTick = 1;
767            accessTicks--;
768        }
769        *timings = ((*timings) & ~TR_33_MDMA_MASK) |
770                (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
771                (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772        if (halfTick)
773            *timings |= TR_33_MDMA_HALFTICK;
774        }
775    }
776#ifdef IDE_PMAC_DEBUG
777    printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778        drive->name, speed & 0xf, *timings);
779#endif
780}
781
782static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
783{
784    pmac_ide_hwif_t *pmif =
785        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
786    int ret = 0;
787    u32 *timings, *timings2, tl[2];
788    u8 unit = drive->dn & 1;
789    const u8 speed = drive->dma_mode;
790
791    timings = &pmif->timings[unit];
792    timings2 = &pmif->timings[unit+2];
793
794    /* Copy timings to local image */
795    tl[0] = *timings;
796    tl[1] = *timings2;
797
798    if (speed >= XFER_UDMA_0) {
799        if (pmif->kind == controller_kl_ata4)
800            ret = set_timings_udma_ata4(&tl[0], speed);
801        else if (pmif->kind == controller_un_ata6
802             || pmif->kind == controller_k2_ata6)
803            ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
804        else if (pmif->kind == controller_sh_ata6)
805            ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
806        else
807            ret = -1;
808    } else
809        set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
810
811    if (ret)
812        return;
813
814    /* Apply timings to controller */
815    *timings = tl[0];
816    *timings2 = tl[1];
817
818    pmac_ide_do_update_timings(drive);
819}
820
821/*
822 * Blast some well known "safe" values to the timing registers at init or
823 * wakeup from sleep time, before we do real calculation
824 */
825static void
826sanitize_timings(pmac_ide_hwif_t *pmif)
827{
828    unsigned int value, value2 = 0;
829    
830    switch(pmif->kind) {
831        case controller_sh_ata6:
832            value = 0x0a820c97;
833            value2 = 0x00033031;
834            break;
835        case controller_un_ata6:
836        case controller_k2_ata6:
837            value = 0x08618a92;
838            value2 = 0x00002921;
839            break;
840        case controller_kl_ata4:
841            value = 0x0008438c;
842            break;
843        case controller_kl_ata3:
844            value = 0x00084526;
845            break;
846        case controller_heathrow:
847        case controller_ohare:
848        default:
849            value = 0x00074526;
850            break;
851    }
852    pmif->timings[0] = pmif->timings[1] = value;
853    pmif->timings[2] = pmif->timings[3] = value2;
854}
855
856static int on_media_bay(pmac_ide_hwif_t *pmif)
857{
858    return pmif->mdev && pmif->mdev->media_bay != NULL;
859}
860
861/* Suspend call back, should be called after the child devices
862 * have actually been suspended
863 */
864static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
865{
866    /* We clear the timings */
867    pmif->timings[0] = 0;
868    pmif->timings[1] = 0;
869    
870    disable_irq(pmif->irq);
871
872    /* The media bay will handle itself just fine */
873    if (on_media_bay(pmif))
874        return 0;
875    
876    /* Kauai has bus control FCRs directly here */
877    if (pmif->kauai_fcr) {
878        u32 fcr = readl(pmif->kauai_fcr);
879        fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
880        writel(fcr, pmif->kauai_fcr);
881    }
882
883    /* Disable the bus on older machines and the cell on kauai */
884    ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
885                0);
886
887    return 0;
888}
889
890/* Resume call back, should be called before the child devices
891 * are resumed
892 */
893static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
894{
895    /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
896    if (!on_media_bay(pmif)) {
897        ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
898        ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
899        msleep(10);
900        ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
901
902        /* Kauai has it different */
903        if (pmif->kauai_fcr) {
904            u32 fcr = readl(pmif->kauai_fcr);
905            fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
906            writel(fcr, pmif->kauai_fcr);
907        }
908
909        msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
910    }
911
912    /* Sanitize drive timings */
913    sanitize_timings(pmif);
914
915    enable_irq(pmif->irq);
916
917    return 0;
918}
919
920static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
921{
922    pmac_ide_hwif_t *pmif =
923        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
924    struct device_node *np = pmif->node;
925    const char *cable = of_get_property(np, "cable-type", NULL);
926    struct device_node *root = of_find_node_by_path("/");
927    const char *model = of_get_property(root, "model", NULL);
928
929    /* Get cable type from device-tree. */
930    if (cable && !strncmp(cable, "80-", 3)) {
931        /* Some drives fail to detect 80c cable in PowerBook */
932        /* These machine use proprietary short IDE cable anyway */
933        if (!strncmp(model, "PowerBook", 9))
934            return ATA_CBL_PATA40_SHORT;
935        else
936            return ATA_CBL_PATA80;
937    }
938
939    /*
940     * G5's seem to have incorrect cable type in device-tree.
941     * Let's assume they have a 80 conductor cable, this seem
942     * to be always the case unless the user mucked around.
943     */
944    if (of_device_is_compatible(np, "K2-UATA") ||
945        of_device_is_compatible(np, "shasta-ata"))
946        return ATA_CBL_PATA80;
947
948    return ATA_CBL_PATA40;
949}
950
951static void pmac_ide_init_dev(ide_drive_t *drive)
952{
953    ide_hwif_t *hwif = drive->hwif;
954    pmac_ide_hwif_t *pmif =
955        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
956
957    if (on_media_bay(pmif)) {
958        if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
959            drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
960            return;
961        }
962        drive->dev_flags |= IDE_DFLAG_NOPROBE;
963    }
964}
965
966static const struct ide_tp_ops pmac_tp_ops = {
967    .exec_command = pmac_exec_command,
968    .read_status = ide_read_status,
969    .read_altstatus = ide_read_altstatus,
970    .write_devctl = pmac_write_devctl,
971
972    .dev_select = pmac_dev_select,
973    .tf_load = ide_tf_load,
974    .tf_read = ide_tf_read,
975
976    .input_data = ide_input_data,
977    .output_data = ide_output_data,
978};
979
980static const struct ide_tp_ops pmac_ata6_tp_ops = {
981    .exec_command = pmac_exec_command,
982    .read_status = ide_read_status,
983    .read_altstatus = ide_read_altstatus,
984    .write_devctl = pmac_write_devctl,
985
986    .dev_select = pmac_kauai_dev_select,
987    .tf_load = ide_tf_load,
988    .tf_read = ide_tf_read,
989
990    .input_data = ide_input_data,
991    .output_data = ide_output_data,
992};
993
994static const struct ide_port_ops pmac_ide_ata4_port_ops = {
995    .init_dev = pmac_ide_init_dev,
996    .set_pio_mode = pmac_ide_set_pio_mode,
997    .set_dma_mode = pmac_ide_set_dma_mode,
998    .cable_detect = pmac_ide_cable_detect,
999};
1000
1001static const struct ide_port_ops pmac_ide_port_ops = {
1002    .init_dev = pmac_ide_init_dev,
1003    .set_pio_mode = pmac_ide_set_pio_mode,
1004    .set_dma_mode = pmac_ide_set_dma_mode,
1005};
1006
1007static const struct ide_dma_ops pmac_dma_ops;
1008
1009static const struct ide_port_info pmac_port_info = {
1010    .name = DRV_NAME,
1011    .init_dma = pmac_ide_init_dma,
1012    .chipset = ide_pmac,
1013    .tp_ops = &pmac_tp_ops,
1014    .port_ops = &pmac_ide_port_ops,
1015    .dma_ops = &pmac_dma_ops,
1016    .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1017                  IDE_HFLAG_POST_SET_MODE |
1018                  IDE_HFLAG_MMIO |
1019                  IDE_HFLAG_UNMASK_IRQS,
1020    .pio_mask = ATA_PIO4,
1021    .mwdma_mask = ATA_MWDMA2,
1022};
1023
1024/*
1025 * Setup, register & probe an IDE channel driven by this driver, this is
1026 * called by one of the 2 probe functions (macio or PCI).
1027 */
1028static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1029                       struct ide_hw *hw)
1030{
1031    struct device_node *np = pmif->node;
1032    const int *bidp;
1033    struct ide_host *host;
1034    ide_hwif_t *hwif;
1035    struct ide_hw *hws[] = { hw };
1036    struct ide_port_info d = pmac_port_info;
1037    int rc;
1038
1039    pmif->broken_dma = pmif->broken_dma_warn = 0;
1040    if (of_device_is_compatible(np, "shasta-ata")) {
1041        pmif->kind = controller_sh_ata6;
1042        d.tp_ops = &pmac_ata6_tp_ops;
1043        d.port_ops = &pmac_ide_ata4_port_ops;
1044        d.udma_mask = ATA_UDMA6;
1045    } else if (of_device_is_compatible(np, "kauai-ata")) {
1046        pmif->kind = controller_un_ata6;
1047        d.tp_ops = &pmac_ata6_tp_ops;
1048        d.port_ops = &pmac_ide_ata4_port_ops;
1049        d.udma_mask = ATA_UDMA5;
1050    } else if (of_device_is_compatible(np, "K2-UATA")) {
1051        pmif->kind = controller_k2_ata6;
1052        d.tp_ops = &pmac_ata6_tp_ops;
1053        d.port_ops = &pmac_ide_ata4_port_ops;
1054        d.udma_mask = ATA_UDMA5;
1055    } else if (of_device_is_compatible(np, "keylargo-ata")) {
1056        if (strcmp(np->name, "ata-4") == 0) {
1057            pmif->kind = controller_kl_ata4;
1058            d.port_ops = &pmac_ide_ata4_port_ops;
1059            d.udma_mask = ATA_UDMA4;
1060        } else
1061            pmif->kind = controller_kl_ata3;
1062    } else if (of_device_is_compatible(np, "heathrow-ata")) {
1063        pmif->kind = controller_heathrow;
1064    } else {
1065        pmif->kind = controller_ohare;
1066        pmif->broken_dma = 1;
1067    }
1068
1069    bidp = of_get_property(np, "AAPL,bus-id", NULL);
1070    pmif->aapl_bus_id = bidp ? *bidp : 0;
1071
1072    /* On Kauai-type controllers, we make sure the FCR is correct */
1073    if (pmif->kauai_fcr)
1074        writel(KAUAI_FCR_UATA_MAGIC |
1075               KAUAI_FCR_UATA_RESET_N |
1076               KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1077    
1078    /* Make sure we have sane timings */
1079    sanitize_timings(pmif);
1080
1081    /* If we are on a media bay, wait for it to settle and lock it */
1082    if (pmif->mdev)
1083        lock_media_bay(pmif->mdev->media_bay);
1084
1085    host = ide_host_alloc(&d, hws, 1);
1086    if (host == NULL) {
1087        rc = -ENOMEM;
1088        goto bail;
1089    }
1090    hwif = pmif->hwif = host->ports[0];
1091
1092    if (on_media_bay(pmif)) {
1093        /* Fixup bus ID for media bay */
1094        if (!bidp)
1095            pmif->aapl_bus_id = 1;
1096    } else if (pmif->kind == controller_ohare) {
1097        /* The code below is having trouble on some ohare machines
1098         * (timing related ?). Until I can put my hand on one of these
1099         * units, I keep the old way
1100         */
1101        ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1102    } else {
1103         /* This is necessary to enable IDE when net-booting */
1104        ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1105        ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1106        msleep(10);
1107        ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1108        msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1109    }
1110
1111    printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1112           "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1113           pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1114           on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1115
1116    rc = ide_host_register(host, &d, hws);
1117    if (rc)
1118        pmif->hwif = NULL;
1119
1120    if (pmif->mdev)
1121        unlock_media_bay(pmif->mdev->media_bay);
1122
1123 bail:
1124    if (rc && host)
1125        ide_host_free(host);
1126    return rc;
1127}
1128
1129static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1130{
1131    int i;
1132
1133    for (i = 0; i < 8; ++i)
1134        hw->io_ports_array[i] = base + i * 0x10;
1135
1136    hw->io_ports.ctl_addr = base + 0x160;
1137}
1138
1139/*
1140 * Attach to a macio probed interface
1141 */
1142static int __devinit
1143pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1144{
1145    void __iomem *base;
1146    unsigned long regbase;
1147    pmac_ide_hwif_t *pmif;
1148    int irq, rc;
1149    struct ide_hw hw;
1150
1151    pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1152    if (pmif == NULL)
1153        return -ENOMEM;
1154
1155    if (macio_resource_count(mdev) == 0) {
1156        printk(KERN_WARNING "ide-pmac: no address for %s\n",
1157                    mdev->ofdev.dev.of_node->full_name);
1158        rc = -ENXIO;
1159        goto out_free_pmif;
1160    }
1161
1162    /* Request memory resource for IO ports */
1163    if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1164        printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1165                "%s!\n", mdev->ofdev.dev.of_node->full_name);
1166        rc = -EBUSY;
1167        goto out_free_pmif;
1168    }
1169            
1170    /* XXX This is bogus. Should be fixed in the registry by checking
1171     * the kind of host interrupt controller, a bit like gatwick
1172     * fixes in irq.c. That works well enough for the single case
1173     * where that happens though...
1174     */
1175    if (macio_irq_count(mdev) == 0) {
1176        printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1177                    "13\n", mdev->ofdev.dev.of_node->full_name);
1178        irq = irq_create_mapping(NULL, 13);
1179    } else
1180        irq = macio_irq(mdev, 0);
1181
1182    base = ioremap(macio_resource_start(mdev, 0), 0x400);
1183    regbase = (unsigned long) base;
1184
1185    pmif->mdev = mdev;
1186    pmif->node = mdev->ofdev.dev.of_node;
1187    pmif->regbase = regbase;
1188    pmif->irq = irq;
1189    pmif->kauai_fcr = NULL;
1190
1191    if (macio_resource_count(mdev) >= 2) {
1192        if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1193            printk(KERN_WARNING "ide-pmac: can't request DMA "
1194                        "resource for %s!\n",
1195                        mdev->ofdev.dev.of_node->full_name);
1196        else
1197            pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1198    } else
1199        pmif->dma_regs = NULL;
1200
1201    dev_set_drvdata(&mdev->ofdev.dev, pmif);
1202
1203    memset(&hw, 0, sizeof(hw));
1204    pmac_ide_init_ports(&hw, pmif->regbase);
1205    hw.irq = irq;
1206    hw.dev = &mdev->bus->pdev->dev;
1207    hw.parent = &mdev->ofdev.dev;
1208
1209    rc = pmac_ide_setup_device(pmif, &hw);
1210    if (rc != 0) {
1211        /* The inteface is released to the common IDE layer */
1212        dev_set_drvdata(&mdev->ofdev.dev, NULL);
1213        iounmap(base);
1214        if (pmif->dma_regs) {
1215            iounmap(pmif->dma_regs);
1216            macio_release_resource(mdev, 1);
1217        }
1218        macio_release_resource(mdev, 0);
1219        kfree(pmif);
1220    }
1221
1222    return rc;
1223
1224out_free_pmif:
1225    kfree(pmif);
1226    return rc;
1227}
1228
1229static int
1230pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1231{
1232    pmac_ide_hwif_t *pmif =
1233        (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1234    int rc = 0;
1235
1236    if (mesg.event != mdev->ofdev.dev.power.power_state.event
1237            && (mesg.event & PM_EVENT_SLEEP)) {
1238        rc = pmac_ide_do_suspend(pmif);
1239        if (rc == 0)
1240            mdev->ofdev.dev.power.power_state = mesg;
1241    }
1242
1243    return rc;
1244}
1245
1246static int
1247pmac_ide_macio_resume(struct macio_dev *mdev)
1248{
1249    pmac_ide_hwif_t *pmif =
1250        (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1251    int rc = 0;
1252
1253    if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1254        rc = pmac_ide_do_resume(pmif);
1255        if (rc == 0)
1256            mdev->ofdev.dev.power.power_state = PMSG_ON;
1257    }
1258
1259    return rc;
1260}
1261
1262/*
1263 * Attach to a PCI probed interface
1264 */
1265static int __devinit
1266pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1267{
1268    struct device_node *np;
1269    pmac_ide_hwif_t *pmif;
1270    void __iomem *base;
1271    unsigned long rbase, rlen;
1272    int rc;
1273    struct ide_hw hw;
1274
1275    np = pci_device_to_OF_node(pdev);
1276    if (np == NULL) {
1277        printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1278        return -ENODEV;
1279    }
1280
1281    pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1282    if (pmif == NULL)
1283        return -ENOMEM;
1284
1285    if (pci_enable_device(pdev)) {
1286        printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1287                    "%s\n", np->full_name);
1288        rc = -ENXIO;
1289        goto out_free_pmif;
1290    }
1291    pci_set_master(pdev);
1292            
1293    if (pci_request_regions(pdev, "Kauai ATA")) {
1294        printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1295                "%s\n", np->full_name);
1296        rc = -ENXIO;
1297        goto out_free_pmif;
1298    }
1299
1300    pmif->mdev = NULL;
1301    pmif->node = np;
1302
1303    rbase = pci_resource_start(pdev, 0);
1304    rlen = pci_resource_len(pdev, 0);
1305
1306    base = ioremap(rbase, rlen);
1307    pmif->regbase = (unsigned long) base + 0x2000;
1308    pmif->dma_regs = base + 0x1000;
1309    pmif->kauai_fcr = base;
1310    pmif->irq = pdev->irq;
1311
1312    pci_set_drvdata(pdev, pmif);
1313
1314    memset(&hw, 0, sizeof(hw));
1315    pmac_ide_init_ports(&hw, pmif->regbase);
1316    hw.irq = pdev->irq;
1317    hw.dev = &pdev->dev;
1318
1319    rc = pmac_ide_setup_device(pmif, &hw);
1320    if (rc != 0) {
1321        /* The inteface is released to the common IDE layer */
1322        pci_set_drvdata(pdev, NULL);
1323        iounmap(base);
1324        pci_release_regions(pdev);
1325        kfree(pmif);
1326    }
1327
1328    return rc;
1329
1330out_free_pmif:
1331    kfree(pmif);
1332    return rc;
1333}
1334
1335static int
1336pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1337{
1338    pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1339    int rc = 0;
1340
1341    if (mesg.event != pdev->dev.power.power_state.event
1342            && (mesg.event & PM_EVENT_SLEEP)) {
1343        rc = pmac_ide_do_suspend(pmif);
1344        if (rc == 0)
1345            pdev->dev.power.power_state = mesg;
1346    }
1347
1348    return rc;
1349}
1350
1351static int
1352pmac_ide_pci_resume(struct pci_dev *pdev)
1353{
1354    pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1355    int rc = 0;
1356
1357    if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1358        rc = pmac_ide_do_resume(pmif);
1359        if (rc == 0)
1360            pdev->dev.power.power_state = PMSG_ON;
1361    }
1362
1363    return rc;
1364}
1365
1366#ifdef CONFIG_PMAC_MEDIABAY
1367static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1368{
1369    pmac_ide_hwif_t *pmif =
1370        (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1371
1372    switch(mb_state) {
1373    case MB_CD:
1374        if (!pmif->hwif->present)
1375            ide_port_scan(pmif->hwif);
1376        break;
1377    default:
1378        if (pmif->hwif->present)
1379            ide_port_unregister_devices(pmif->hwif);
1380    }
1381}
1382#endif /* CONFIG_PMAC_MEDIABAY */
1383
1384
1385static struct of_device_id pmac_ide_macio_match[] =
1386{
1387    {
1388    .name = "IDE",
1389    },
1390    {
1391    .name = "ATA",
1392    },
1393    {
1394    .type = "ide",
1395    },
1396    {
1397    .type = "ata",
1398    },
1399    {},
1400};
1401
1402static struct macio_driver pmac_ide_macio_driver =
1403{
1404    .driver = {
1405        .name = "ide-pmac",
1406        .owner = THIS_MODULE,
1407        .of_match_table = pmac_ide_macio_match,
1408    },
1409    .probe = pmac_ide_macio_attach,
1410    .suspend = pmac_ide_macio_suspend,
1411    .resume = pmac_ide_macio_resume,
1412#ifdef CONFIG_PMAC_MEDIABAY
1413    .mediabay_event = pmac_ide_macio_mb_event,
1414#endif
1415};
1416
1417static const struct pci_device_id pmac_ide_pci_match[] = {
1418    { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1419    { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1420    { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1421    { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1422    { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1423    {},
1424};
1425
1426static struct pci_driver pmac_ide_pci_driver = {
1427    .name = "ide-pmac",
1428    .id_table = pmac_ide_pci_match,
1429    .probe = pmac_ide_pci_attach,
1430    .suspend = pmac_ide_pci_suspend,
1431    .resume = pmac_ide_pci_resume,
1432};
1433MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1434
1435int __init pmac_ide_probe(void)
1436{
1437    int error;
1438
1439    if (!machine_is(powermac))
1440        return -ENODEV;
1441
1442#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1443    error = pci_register_driver(&pmac_ide_pci_driver);
1444    if (error)
1445        goto out;
1446    error = macio_register_driver(&pmac_ide_macio_driver);
1447    if (error) {
1448        pci_unregister_driver(&pmac_ide_pci_driver);
1449        goto out;
1450    }
1451#else
1452    error = macio_register_driver(&pmac_ide_macio_driver);
1453    if (error)
1454        goto out;
1455    error = pci_register_driver(&pmac_ide_pci_driver);
1456    if (error) {
1457        macio_unregister_driver(&pmac_ide_macio_driver);
1458        goto out;
1459    }
1460#endif
1461out:
1462    return error;
1463}
1464
1465/*
1466 * pmac_ide_build_dmatable builds the DBDMA command list
1467 * for a transfer and sets the DBDMA channel to point to it.
1468 */
1469static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1470{
1471    ide_hwif_t *hwif = drive->hwif;
1472    pmac_ide_hwif_t *pmif =
1473        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1474    struct dbdma_cmd *table;
1475    volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1476    struct scatterlist *sg;
1477    int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1478    int i = cmd->sg_nents, count = 0;
1479
1480    /* DMA table is already aligned */
1481    table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1482
1483    /* Make sure DMA controller is stopped (necessary ?) */
1484    writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1485    while (readl(&dma->status) & RUN)
1486        udelay(1);
1487
1488    /* Build DBDMA commands list */
1489    sg = hwif->sg_table;
1490    while (i && sg_dma_len(sg)) {
1491        u32 cur_addr;
1492        u32 cur_len;
1493
1494        cur_addr = sg_dma_address(sg);
1495        cur_len = sg_dma_len(sg);
1496
1497        if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1498            if (pmif->broken_dma_warn == 0) {
1499                printk(KERN_WARNING "%s: DMA on non aligned address, "
1500                       "switching to PIO on Ohare chipset\n", drive->name);
1501                pmif->broken_dma_warn = 1;
1502            }
1503            return 0;
1504        }
1505        while (cur_len) {
1506            unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1507
1508            if (count++ >= MAX_DCMDS) {
1509                printk(KERN_WARNING "%s: DMA table too small\n",
1510                       drive->name);
1511                return 0;
1512            }
1513            st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1514            st_le16(&table->req_count, tc);
1515            st_le32(&table->phy_addr, cur_addr);
1516            table->cmd_dep = 0;
1517            table->xfer_status = 0;
1518            table->res_count = 0;
1519            cur_addr += tc;
1520            cur_len -= tc;
1521            ++table;
1522        }
1523        sg = sg_next(sg);
1524        i--;
1525    }
1526
1527    /* convert the last command to an input/output last command */
1528    if (count) {
1529        st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1530        /* add the stop command to the end of the list */
1531        memset(table, 0, sizeof(struct dbdma_cmd));
1532        st_le16(&table->command, DBDMA_STOP);
1533        mb();
1534        writel(hwif->dmatable_dma, &dma->cmdptr);
1535        return 1;
1536    }
1537
1538    printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1539
1540    return 0; /* revert to PIO for this request */
1541}
1542
1543/*
1544 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1545 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1546 */
1547static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1548{
1549    ide_hwif_t *hwif = drive->hwif;
1550    pmac_ide_hwif_t *pmif =
1551        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1552    u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1553    u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1554
1555    if (pmac_ide_build_dmatable(drive, cmd) == 0)
1556        return 1;
1557
1558    /* Apple adds 60ns to wrDataSetup on reads */
1559    if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1560        writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1561            PMAC_IDE_REG(IDE_TIMING_CONFIG));
1562        (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1563    }
1564
1565    return 0;
1566}
1567
1568/*
1569 * Kick the DMA controller into life after the DMA command has been issued
1570 * to the drive.
1571 */
1572static void
1573pmac_ide_dma_start(ide_drive_t *drive)
1574{
1575    ide_hwif_t *hwif = drive->hwif;
1576    pmac_ide_hwif_t *pmif =
1577        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1578    volatile struct dbdma_regs __iomem *dma;
1579
1580    dma = pmif->dma_regs;
1581
1582    writel((RUN << 16) | RUN, &dma->control);
1583    /* Make sure it gets to the controller right now */
1584    (void)readl(&dma->control);
1585}
1586
1587/*
1588 * After a DMA transfer, make sure the controller is stopped
1589 */
1590static int
1591pmac_ide_dma_end (ide_drive_t *drive)
1592{
1593    ide_hwif_t *hwif = drive->hwif;
1594    pmac_ide_hwif_t *pmif =
1595        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1596    volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1597    u32 dstat;
1598
1599    dstat = readl(&dma->status);
1600    writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1601
1602    /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1603     * in theory, but with ATAPI decices doing buffer underruns, that would
1604     * cause us to disable DMA, which isn't what we want
1605     */
1606    return (dstat & (RUN|DEAD)) != RUN;
1607}
1608
1609/*
1610 * Check out that the interrupt we got was for us. We can't always know this
1611 * for sure with those Apple interfaces (well, we could on the recent ones but
1612 * that's not implemented yet), on the other hand, we don't have shared interrupts
1613 * so it's not really a problem
1614 */
1615static int
1616pmac_ide_dma_test_irq (ide_drive_t *drive)
1617{
1618    ide_hwif_t *hwif = drive->hwif;
1619    pmac_ide_hwif_t *pmif =
1620        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1621    volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1622    unsigned long status, timeout;
1623
1624    /* We have to things to deal with here:
1625     *
1626     * - The dbdma won't stop if the command was started
1627     * but completed with an error without transferring all
1628     * datas. This happens when bad blocks are met during
1629     * a multi-block transfer.
1630     *
1631     * - The dbdma fifo hasn't yet finished flushing to
1632     * to system memory when the disk interrupt occurs.
1633     *
1634     */
1635
1636    /* If ACTIVE is cleared, the STOP command have passed and
1637     * transfer is complete.
1638     */
1639    status = readl(&dma->status);
1640    if (!(status & ACTIVE))
1641        return 1;
1642
1643    /* If dbdma didn't execute the STOP command yet, the
1644     * active bit is still set. We consider that we aren't
1645     * sharing interrupts (which is hopefully the case with
1646     * those controllers) and so we just try to flush the
1647     * channel for pending data in the fifo
1648     */
1649    udelay(1);
1650    writel((FLUSH << 16) | FLUSH, &dma->control);
1651    timeout = 0;
1652    for (;;) {
1653        udelay(1);
1654        status = readl(&dma->status);
1655        if ((status & FLUSH) == 0)
1656            break;
1657        if (++timeout > 100) {
1658            printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1659                   hwif->index);
1660            break;
1661        }
1662    }
1663    return 1;
1664}
1665
1666static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1667{
1668}
1669
1670static void
1671pmac_ide_dma_lost_irq (ide_drive_t *drive)
1672{
1673    ide_hwif_t *hwif = drive->hwif;
1674    pmac_ide_hwif_t *pmif =
1675        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1676    volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1677    unsigned long status = readl(&dma->status);
1678
1679    printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1680}
1681
1682static const struct ide_dma_ops pmac_dma_ops = {
1683    .dma_host_set = pmac_ide_dma_host_set,
1684    .dma_setup = pmac_ide_dma_setup,
1685    .dma_start = pmac_ide_dma_start,
1686    .dma_end = pmac_ide_dma_end,
1687    .dma_test_irq = pmac_ide_dma_test_irq,
1688    .dma_lost_irq = pmac_ide_dma_lost_irq,
1689};
1690
1691/*
1692 * Allocate the data structures needed for using DMA with an interface
1693 * and fill the proper list of functions pointers
1694 */
1695static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1696                       const struct ide_port_info *d)
1697{
1698    pmac_ide_hwif_t *pmif =
1699        (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1700    struct pci_dev *dev = to_pci_dev(hwif->dev);
1701
1702    /* We won't need pci_dev if we switch to generic consistent
1703     * DMA routines ...
1704     */
1705    if (dev == NULL || pmif->dma_regs == 0)
1706        return -ENODEV;
1707    /*
1708     * Allocate space for the DBDMA commands.
1709     * The +2 is +1 for the stop command and +1 to allow for
1710     * aligning the start address to a multiple of 16 bytes.
1711     */
1712    pmif->dma_table_cpu = pci_alloc_consistent(
1713        dev,
1714        (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1715        &hwif->dmatable_dma);
1716    if (pmif->dma_table_cpu == NULL) {
1717        printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1718               hwif->name);
1719        return -ENOMEM;
1720    }
1721
1722    hwif->sg_max_nents = MAX_DCMDS;
1723
1724    return 0;
1725}
1726
1727module_init(pmac_ide_probe);
1728
1729MODULE_LICENSE("GPL");
1730

Archive Download this file



interactive