Root/
1 | /* |
2 | * The input core |
3 | * |
4 | * Copyright (c) 1999-2002 Vojtech Pavlik |
5 | */ |
6 | |
7 | /* |
8 | * This program is free software; you can redistribute it and/or modify it |
9 | * under the terms of the GNU General Public License version 2 as published by |
10 | * the Free Software Foundation. |
11 | */ |
12 | |
13 | #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt |
14 | |
15 | #include <linux/init.h> |
16 | #include <linux/types.h> |
17 | #include <linux/input/mt.h> |
18 | #include <linux/module.h> |
19 | #include <linux/slab.h> |
20 | #include <linux/random.h> |
21 | #include <linux/major.h> |
22 | #include <linux/proc_fs.h> |
23 | #include <linux/sched.h> |
24 | #include <linux/seq_file.h> |
25 | #include <linux/poll.h> |
26 | #include <linux/device.h> |
27 | #include <linux/mutex.h> |
28 | #include <linux/rcupdate.h> |
29 | #include "input-compat.h" |
30 | |
31 | MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); |
32 | MODULE_DESCRIPTION("Input core"); |
33 | MODULE_LICENSE("GPL"); |
34 | |
35 | #define INPUT_DEVICES 256 |
36 | |
37 | static LIST_HEAD(input_dev_list); |
38 | static LIST_HEAD(input_handler_list); |
39 | |
40 | /* |
41 | * input_mutex protects access to both input_dev_list and input_handler_list. |
42 | * This also causes input_[un]register_device and input_[un]register_handler |
43 | * be mutually exclusive which simplifies locking in drivers implementing |
44 | * input handlers. |
45 | */ |
46 | static DEFINE_MUTEX(input_mutex); |
47 | |
48 | static struct input_handler *input_table[8]; |
49 | |
50 | static inline int is_event_supported(unsigned int code, |
51 | unsigned long *bm, unsigned int max) |
52 | { |
53 | return code <= max && test_bit(code, bm); |
54 | } |
55 | |
56 | static int input_defuzz_abs_event(int value, int old_val, int fuzz) |
57 | { |
58 | if (fuzz) { |
59 | if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) |
60 | return old_val; |
61 | |
62 | if (value > old_val - fuzz && value < old_val + fuzz) |
63 | return (old_val * 3 + value) / 4; |
64 | |
65 | if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) |
66 | return (old_val + value) / 2; |
67 | } |
68 | |
69 | return value; |
70 | } |
71 | |
72 | /* |
73 | * Pass event first through all filters and then, if event has not been |
74 | * filtered out, through all open handles. This function is called with |
75 | * dev->event_lock held and interrupts disabled. |
76 | */ |
77 | static void input_pass_event(struct input_dev *dev, |
78 | unsigned int type, unsigned int code, int value) |
79 | { |
80 | struct input_handler *handler; |
81 | struct input_handle *handle; |
82 | |
83 | rcu_read_lock(); |
84 | |
85 | handle = rcu_dereference(dev->grab); |
86 | if (handle) |
87 | handle->handler->event(handle, type, code, value); |
88 | else { |
89 | bool filtered = false; |
90 | |
91 | list_for_each_entry_rcu(handle, &dev->h_list, d_node) { |
92 | if (!handle->open) |
93 | continue; |
94 | |
95 | handler = handle->handler; |
96 | if (!handler->filter) { |
97 | if (filtered) |
98 | break; |
99 | |
100 | handler->event(handle, type, code, value); |
101 | |
102 | } else if (handler->filter(handle, type, code, value)) |
103 | filtered = true; |
104 | } |
105 | } |
106 | |
107 | rcu_read_unlock(); |
108 | } |
109 | |
110 | /* |
111 | * Generate software autorepeat event. Note that we take |
112 | * dev->event_lock here to avoid racing with input_event |
113 | * which may cause keys get "stuck". |
114 | */ |
115 | static void input_repeat_key(unsigned long data) |
116 | { |
117 | struct input_dev *dev = (void *) data; |
118 | unsigned long flags; |
119 | |
120 | spin_lock_irqsave(&dev->event_lock, flags); |
121 | |
122 | if (test_bit(dev->repeat_key, dev->key) && |
123 | is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { |
124 | |
125 | input_pass_event(dev, EV_KEY, dev->repeat_key, 2); |
126 | |
127 | if (dev->sync) { |
128 | /* |
129 | * Only send SYN_REPORT if we are not in a middle |
130 | * of driver parsing a new hardware packet. |
131 | * Otherwise assume that the driver will send |
132 | * SYN_REPORT once it's done. |
133 | */ |
134 | input_pass_event(dev, EV_SYN, SYN_REPORT, 1); |
135 | } |
136 | |
137 | if (dev->rep[REP_PERIOD]) |
138 | mod_timer(&dev->timer, jiffies + |
139 | msecs_to_jiffies(dev->rep[REP_PERIOD])); |
140 | } |
141 | |
142 | spin_unlock_irqrestore(&dev->event_lock, flags); |
143 | } |
144 | |
145 | static void input_start_autorepeat(struct input_dev *dev, int code) |
146 | { |
147 | if (test_bit(EV_REP, dev->evbit) && |
148 | dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && |
149 | dev->timer.data) { |
150 | dev->repeat_key = code; |
151 | mod_timer(&dev->timer, |
152 | jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); |
153 | } |
154 | } |
155 | |
156 | static void input_stop_autorepeat(struct input_dev *dev) |
157 | { |
158 | del_timer(&dev->timer); |
159 | } |
160 | |
161 | #define INPUT_IGNORE_EVENT 0 |
162 | #define INPUT_PASS_TO_HANDLERS 1 |
163 | #define INPUT_PASS_TO_DEVICE 2 |
164 | #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) |
165 | |
166 | static int input_handle_abs_event(struct input_dev *dev, |
167 | unsigned int code, int *pval) |
168 | { |
169 | bool is_mt_event; |
170 | int *pold; |
171 | |
172 | if (code == ABS_MT_SLOT) { |
173 | /* |
174 | * "Stage" the event; we'll flush it later, when we |
175 | * get actual touch data. |
176 | */ |
177 | if (*pval >= 0 && *pval < dev->mtsize) |
178 | dev->slot = *pval; |
179 | |
180 | return INPUT_IGNORE_EVENT; |
181 | } |
182 | |
183 | is_mt_event = input_is_mt_value(code); |
184 | |
185 | if (!is_mt_event) { |
186 | pold = &dev->absinfo[code].value; |
187 | } else if (dev->mt) { |
188 | struct input_mt_slot *mtslot = &dev->mt[dev->slot]; |
189 | pold = &mtslot->abs[code - ABS_MT_FIRST]; |
190 | } else { |
191 | /* |
192 | * Bypass filtering for multi-touch events when |
193 | * not employing slots. |
194 | */ |
195 | pold = NULL; |
196 | } |
197 | |
198 | if (pold) { |
199 | *pval = input_defuzz_abs_event(*pval, *pold, |
200 | dev->absinfo[code].fuzz); |
201 | if (*pold == *pval) |
202 | return INPUT_IGNORE_EVENT; |
203 | |
204 | *pold = *pval; |
205 | } |
206 | |
207 | /* Flush pending "slot" event */ |
208 | if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { |
209 | input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); |
210 | input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot); |
211 | } |
212 | |
213 | return INPUT_PASS_TO_HANDLERS; |
214 | } |
215 | |
216 | static void input_handle_event(struct input_dev *dev, |
217 | unsigned int type, unsigned int code, int value) |
218 | { |
219 | int disposition = INPUT_IGNORE_EVENT; |
220 | |
221 | switch (type) { |
222 | |
223 | case EV_SYN: |
224 | switch (code) { |
225 | case SYN_CONFIG: |
226 | disposition = INPUT_PASS_TO_ALL; |
227 | break; |
228 | |
229 | case SYN_REPORT: |
230 | if (!dev->sync) { |
231 | dev->sync = true; |
232 | disposition = INPUT_PASS_TO_HANDLERS; |
233 | } |
234 | break; |
235 | case SYN_MT_REPORT: |
236 | dev->sync = false; |
237 | disposition = INPUT_PASS_TO_HANDLERS; |
238 | break; |
239 | } |
240 | break; |
241 | |
242 | case EV_KEY: |
243 | if (is_event_supported(code, dev->keybit, KEY_MAX) && |
244 | !!test_bit(code, dev->key) != value) { |
245 | |
246 | if (value != 2) { |
247 | __change_bit(code, dev->key); |
248 | if (value) |
249 | input_start_autorepeat(dev, code); |
250 | else |
251 | input_stop_autorepeat(dev); |
252 | } |
253 | |
254 | disposition = INPUT_PASS_TO_HANDLERS; |
255 | } |
256 | break; |
257 | |
258 | case EV_SW: |
259 | if (is_event_supported(code, dev->swbit, SW_MAX) && |
260 | !!test_bit(code, dev->sw) != value) { |
261 | |
262 | __change_bit(code, dev->sw); |
263 | disposition = INPUT_PASS_TO_HANDLERS; |
264 | } |
265 | break; |
266 | |
267 | case EV_ABS: |
268 | if (is_event_supported(code, dev->absbit, ABS_MAX)) |
269 | disposition = input_handle_abs_event(dev, code, &value); |
270 | |
271 | break; |
272 | |
273 | case EV_REL: |
274 | if (is_event_supported(code, dev->relbit, REL_MAX) && value) |
275 | disposition = INPUT_PASS_TO_HANDLERS; |
276 | |
277 | break; |
278 | |
279 | case EV_MSC: |
280 | if (is_event_supported(code, dev->mscbit, MSC_MAX)) |
281 | disposition = INPUT_PASS_TO_ALL; |
282 | |
283 | break; |
284 | |
285 | case EV_LED: |
286 | if (is_event_supported(code, dev->ledbit, LED_MAX) && |
287 | !!test_bit(code, dev->led) != value) { |
288 | |
289 | __change_bit(code, dev->led); |
290 | disposition = INPUT_PASS_TO_ALL; |
291 | } |
292 | break; |
293 | |
294 | case EV_SND: |
295 | if (is_event_supported(code, dev->sndbit, SND_MAX)) { |
296 | |
297 | if (!!test_bit(code, dev->snd) != !!value) |
298 | __change_bit(code, dev->snd); |
299 | disposition = INPUT_PASS_TO_ALL; |
300 | } |
301 | break; |
302 | |
303 | case EV_REP: |
304 | if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { |
305 | dev->rep[code] = value; |
306 | disposition = INPUT_PASS_TO_ALL; |
307 | } |
308 | break; |
309 | |
310 | case EV_FF: |
311 | if (value >= 0) |
312 | disposition = INPUT_PASS_TO_ALL; |
313 | break; |
314 | |
315 | case EV_PWR: |
316 | disposition = INPUT_PASS_TO_ALL; |
317 | break; |
318 | } |
319 | |
320 | if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) |
321 | dev->sync = false; |
322 | |
323 | if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) |
324 | dev->event(dev, type, code, value); |
325 | |
326 | if (disposition & INPUT_PASS_TO_HANDLERS) |
327 | input_pass_event(dev, type, code, value); |
328 | } |
329 | |
330 | /** |
331 | * input_event() - report new input event |
332 | * @dev: device that generated the event |
333 | * @type: type of the event |
334 | * @code: event code |
335 | * @value: value of the event |
336 | * |
337 | * This function should be used by drivers implementing various input |
338 | * devices to report input events. See also input_inject_event(). |
339 | * |
340 | * NOTE: input_event() may be safely used right after input device was |
341 | * allocated with input_allocate_device(), even before it is registered |
342 | * with input_register_device(), but the event will not reach any of the |
343 | * input handlers. Such early invocation of input_event() may be used |
344 | * to 'seed' initial state of a switch or initial position of absolute |
345 | * axis, etc. |
346 | */ |
347 | void input_event(struct input_dev *dev, |
348 | unsigned int type, unsigned int code, int value) |
349 | { |
350 | unsigned long flags; |
351 | |
352 | if (is_event_supported(type, dev->evbit, EV_MAX)) { |
353 | |
354 | spin_lock_irqsave(&dev->event_lock, flags); |
355 | add_input_randomness(type, code, value); |
356 | input_handle_event(dev, type, code, value); |
357 | spin_unlock_irqrestore(&dev->event_lock, flags); |
358 | } |
359 | } |
360 | EXPORT_SYMBOL(input_event); |
361 | |
362 | /** |
363 | * input_inject_event() - send input event from input handler |
364 | * @handle: input handle to send event through |
365 | * @type: type of the event |
366 | * @code: event code |
367 | * @value: value of the event |
368 | * |
369 | * Similar to input_event() but will ignore event if device is |
370 | * "grabbed" and handle injecting event is not the one that owns |
371 | * the device. |
372 | */ |
373 | void input_inject_event(struct input_handle *handle, |
374 | unsigned int type, unsigned int code, int value) |
375 | { |
376 | struct input_dev *dev = handle->dev; |
377 | struct input_handle *grab; |
378 | unsigned long flags; |
379 | |
380 | if (is_event_supported(type, dev->evbit, EV_MAX)) { |
381 | spin_lock_irqsave(&dev->event_lock, flags); |
382 | |
383 | rcu_read_lock(); |
384 | grab = rcu_dereference(dev->grab); |
385 | if (!grab || grab == handle) |
386 | input_handle_event(dev, type, code, value); |
387 | rcu_read_unlock(); |
388 | |
389 | spin_unlock_irqrestore(&dev->event_lock, flags); |
390 | } |
391 | } |
392 | EXPORT_SYMBOL(input_inject_event); |
393 | |
394 | /** |
395 | * input_alloc_absinfo - allocates array of input_absinfo structs |
396 | * @dev: the input device emitting absolute events |
397 | * |
398 | * If the absinfo struct the caller asked for is already allocated, this |
399 | * functions will not do anything. |
400 | */ |
401 | void input_alloc_absinfo(struct input_dev *dev) |
402 | { |
403 | if (!dev->absinfo) |
404 | dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), |
405 | GFP_KERNEL); |
406 | |
407 | WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); |
408 | } |
409 | EXPORT_SYMBOL(input_alloc_absinfo); |
410 | |
411 | void input_set_abs_params(struct input_dev *dev, unsigned int axis, |
412 | int min, int max, int fuzz, int flat) |
413 | { |
414 | struct input_absinfo *absinfo; |
415 | |
416 | input_alloc_absinfo(dev); |
417 | if (!dev->absinfo) |
418 | return; |
419 | |
420 | absinfo = &dev->absinfo[axis]; |
421 | absinfo->minimum = min; |
422 | absinfo->maximum = max; |
423 | absinfo->fuzz = fuzz; |
424 | absinfo->flat = flat; |
425 | |
426 | dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); |
427 | } |
428 | EXPORT_SYMBOL(input_set_abs_params); |
429 | |
430 | |
431 | /** |
432 | * input_grab_device - grabs device for exclusive use |
433 | * @handle: input handle that wants to own the device |
434 | * |
435 | * When a device is grabbed by an input handle all events generated by |
436 | * the device are delivered only to this handle. Also events injected |
437 | * by other input handles are ignored while device is grabbed. |
438 | */ |
439 | int input_grab_device(struct input_handle *handle) |
440 | { |
441 | struct input_dev *dev = handle->dev; |
442 | int retval; |
443 | |
444 | retval = mutex_lock_interruptible(&dev->mutex); |
445 | if (retval) |
446 | return retval; |
447 | |
448 | if (dev->grab) { |
449 | retval = -EBUSY; |
450 | goto out; |
451 | } |
452 | |
453 | rcu_assign_pointer(dev->grab, handle); |
454 | |
455 | out: |
456 | mutex_unlock(&dev->mutex); |
457 | return retval; |
458 | } |
459 | EXPORT_SYMBOL(input_grab_device); |
460 | |
461 | static void __input_release_device(struct input_handle *handle) |
462 | { |
463 | struct input_dev *dev = handle->dev; |
464 | |
465 | if (dev->grab == handle) { |
466 | rcu_assign_pointer(dev->grab, NULL); |
467 | /* Make sure input_pass_event() notices that grab is gone */ |
468 | synchronize_rcu(); |
469 | |
470 | list_for_each_entry(handle, &dev->h_list, d_node) |
471 | if (handle->open && handle->handler->start) |
472 | handle->handler->start(handle); |
473 | } |
474 | } |
475 | |
476 | /** |
477 | * input_release_device - release previously grabbed device |
478 | * @handle: input handle that owns the device |
479 | * |
480 | * Releases previously grabbed device so that other input handles can |
481 | * start receiving input events. Upon release all handlers attached |
482 | * to the device have their start() method called so they have a change |
483 | * to synchronize device state with the rest of the system. |
484 | */ |
485 | void input_release_device(struct input_handle *handle) |
486 | { |
487 | struct input_dev *dev = handle->dev; |
488 | |
489 | mutex_lock(&dev->mutex); |
490 | __input_release_device(handle); |
491 | mutex_unlock(&dev->mutex); |
492 | } |
493 | EXPORT_SYMBOL(input_release_device); |
494 | |
495 | /** |
496 | * input_open_device - open input device |
497 | * @handle: handle through which device is being accessed |
498 | * |
499 | * This function should be called by input handlers when they |
500 | * want to start receive events from given input device. |
501 | */ |
502 | int input_open_device(struct input_handle *handle) |
503 | { |
504 | struct input_dev *dev = handle->dev; |
505 | int retval; |
506 | |
507 | retval = mutex_lock_interruptible(&dev->mutex); |
508 | if (retval) |
509 | return retval; |
510 | |
511 | if (dev->going_away) { |
512 | retval = -ENODEV; |
513 | goto out; |
514 | } |
515 | |
516 | handle->open++; |
517 | |
518 | if (!dev->users++ && dev->open) |
519 | retval = dev->open(dev); |
520 | |
521 | if (retval) { |
522 | dev->users--; |
523 | if (!--handle->open) { |
524 | /* |
525 | * Make sure we are not delivering any more events |
526 | * through this handle |
527 | */ |
528 | synchronize_rcu(); |
529 | } |
530 | } |
531 | |
532 | out: |
533 | mutex_unlock(&dev->mutex); |
534 | return retval; |
535 | } |
536 | EXPORT_SYMBOL(input_open_device); |
537 | |
538 | int input_flush_device(struct input_handle *handle, struct file *file) |
539 | { |
540 | struct input_dev *dev = handle->dev; |
541 | int retval; |
542 | |
543 | retval = mutex_lock_interruptible(&dev->mutex); |
544 | if (retval) |
545 | return retval; |
546 | |
547 | if (dev->flush) |
548 | retval = dev->flush(dev, file); |
549 | |
550 | mutex_unlock(&dev->mutex); |
551 | return retval; |
552 | } |
553 | EXPORT_SYMBOL(input_flush_device); |
554 | |
555 | /** |
556 | * input_close_device - close input device |
557 | * @handle: handle through which device is being accessed |
558 | * |
559 | * This function should be called by input handlers when they |
560 | * want to stop receive events from given input device. |
561 | */ |
562 | void input_close_device(struct input_handle *handle) |
563 | { |
564 | struct input_dev *dev = handle->dev; |
565 | |
566 | mutex_lock(&dev->mutex); |
567 | |
568 | __input_release_device(handle); |
569 | |
570 | if (!--dev->users && dev->close) |
571 | dev->close(dev); |
572 | |
573 | if (!--handle->open) { |
574 | /* |
575 | * synchronize_rcu() makes sure that input_pass_event() |
576 | * completed and that no more input events are delivered |
577 | * through this handle |
578 | */ |
579 | synchronize_rcu(); |
580 | } |
581 | |
582 | mutex_unlock(&dev->mutex); |
583 | } |
584 | EXPORT_SYMBOL(input_close_device); |
585 | |
586 | /* |
587 | * Simulate keyup events for all keys that are marked as pressed. |
588 | * The function must be called with dev->event_lock held. |
589 | */ |
590 | static void input_dev_release_keys(struct input_dev *dev) |
591 | { |
592 | int code; |
593 | |
594 | if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { |
595 | for (code = 0; code <= KEY_MAX; code++) { |
596 | if (is_event_supported(code, dev->keybit, KEY_MAX) && |
597 | __test_and_clear_bit(code, dev->key)) { |
598 | input_pass_event(dev, EV_KEY, code, 0); |
599 | } |
600 | } |
601 | input_pass_event(dev, EV_SYN, SYN_REPORT, 1); |
602 | } |
603 | } |
604 | |
605 | /* |
606 | * Prepare device for unregistering |
607 | */ |
608 | static void input_disconnect_device(struct input_dev *dev) |
609 | { |
610 | struct input_handle *handle; |
611 | |
612 | /* |
613 | * Mark device as going away. Note that we take dev->mutex here |
614 | * not to protect access to dev->going_away but rather to ensure |
615 | * that there are no threads in the middle of input_open_device() |
616 | */ |
617 | mutex_lock(&dev->mutex); |
618 | dev->going_away = true; |
619 | mutex_unlock(&dev->mutex); |
620 | |
621 | spin_lock_irq(&dev->event_lock); |
622 | |
623 | /* |
624 | * Simulate keyup events for all pressed keys so that handlers |
625 | * are not left with "stuck" keys. The driver may continue |
626 | * generate events even after we done here but they will not |
627 | * reach any handlers. |
628 | */ |
629 | input_dev_release_keys(dev); |
630 | |
631 | list_for_each_entry(handle, &dev->h_list, d_node) |
632 | handle->open = 0; |
633 | |
634 | spin_unlock_irq(&dev->event_lock); |
635 | } |
636 | |
637 | /** |
638 | * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry |
639 | * @ke: keymap entry containing scancode to be converted. |
640 | * @scancode: pointer to the location where converted scancode should |
641 | * be stored. |
642 | * |
643 | * This function is used to convert scancode stored in &struct keymap_entry |
644 | * into scalar form understood by legacy keymap handling methods. These |
645 | * methods expect scancodes to be represented as 'unsigned int'. |
646 | */ |
647 | int input_scancode_to_scalar(const struct input_keymap_entry *ke, |
648 | unsigned int *scancode) |
649 | { |
650 | switch (ke->len) { |
651 | case 1: |
652 | *scancode = *((u8 *)ke->scancode); |
653 | break; |
654 | |
655 | case 2: |
656 | *scancode = *((u16 *)ke->scancode); |
657 | break; |
658 | |
659 | case 4: |
660 | *scancode = *((u32 *)ke->scancode); |
661 | break; |
662 | |
663 | default: |
664 | return -EINVAL; |
665 | } |
666 | |
667 | return 0; |
668 | } |
669 | EXPORT_SYMBOL(input_scancode_to_scalar); |
670 | |
671 | /* |
672 | * Those routines handle the default case where no [gs]etkeycode() is |
673 | * defined. In this case, an array indexed by the scancode is used. |
674 | */ |
675 | |
676 | static unsigned int input_fetch_keycode(struct input_dev *dev, |
677 | unsigned int index) |
678 | { |
679 | switch (dev->keycodesize) { |
680 | case 1: |
681 | return ((u8 *)dev->keycode)[index]; |
682 | |
683 | case 2: |
684 | return ((u16 *)dev->keycode)[index]; |
685 | |
686 | default: |
687 | return ((u32 *)dev->keycode)[index]; |
688 | } |
689 | } |
690 | |
691 | static int input_default_getkeycode(struct input_dev *dev, |
692 | struct input_keymap_entry *ke) |
693 | { |
694 | unsigned int index; |
695 | int error; |
696 | |
697 | if (!dev->keycodesize) |
698 | return -EINVAL; |
699 | |
700 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) |
701 | index = ke->index; |
702 | else { |
703 | error = input_scancode_to_scalar(ke, &index); |
704 | if (error) |
705 | return error; |
706 | } |
707 | |
708 | if (index >= dev->keycodemax) |
709 | return -EINVAL; |
710 | |
711 | ke->keycode = input_fetch_keycode(dev, index); |
712 | ke->index = index; |
713 | ke->len = sizeof(index); |
714 | memcpy(ke->scancode, &index, sizeof(index)); |
715 | |
716 | return 0; |
717 | } |
718 | |
719 | static int input_default_setkeycode(struct input_dev *dev, |
720 | const struct input_keymap_entry *ke, |
721 | unsigned int *old_keycode) |
722 | { |
723 | unsigned int index; |
724 | int error; |
725 | int i; |
726 | |
727 | if (!dev->keycodesize) |
728 | return -EINVAL; |
729 | |
730 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
731 | index = ke->index; |
732 | } else { |
733 | error = input_scancode_to_scalar(ke, &index); |
734 | if (error) |
735 | return error; |
736 | } |
737 | |
738 | if (index >= dev->keycodemax) |
739 | return -EINVAL; |
740 | |
741 | if (dev->keycodesize < sizeof(ke->keycode) && |
742 | (ke->keycode >> (dev->keycodesize * 8))) |
743 | return -EINVAL; |
744 | |
745 | switch (dev->keycodesize) { |
746 | case 1: { |
747 | u8 *k = (u8 *)dev->keycode; |
748 | *old_keycode = k[index]; |
749 | k[index] = ke->keycode; |
750 | break; |
751 | } |
752 | case 2: { |
753 | u16 *k = (u16 *)dev->keycode; |
754 | *old_keycode = k[index]; |
755 | k[index] = ke->keycode; |
756 | break; |
757 | } |
758 | default: { |
759 | u32 *k = (u32 *)dev->keycode; |
760 | *old_keycode = k[index]; |
761 | k[index] = ke->keycode; |
762 | break; |
763 | } |
764 | } |
765 | |
766 | __clear_bit(*old_keycode, dev->keybit); |
767 | __set_bit(ke->keycode, dev->keybit); |
768 | |
769 | for (i = 0; i < dev->keycodemax; i++) { |
770 | if (input_fetch_keycode(dev, i) == *old_keycode) { |
771 | __set_bit(*old_keycode, dev->keybit); |
772 | break; /* Setting the bit twice is useless, so break */ |
773 | } |
774 | } |
775 | |
776 | return 0; |
777 | } |
778 | |
779 | /** |
780 | * input_get_keycode - retrieve keycode currently mapped to a given scancode |
781 | * @dev: input device which keymap is being queried |
782 | * @ke: keymap entry |
783 | * |
784 | * This function should be called by anyone interested in retrieving current |
785 | * keymap. Presently evdev handlers use it. |
786 | */ |
787 | int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) |
788 | { |
789 | unsigned long flags; |
790 | int retval; |
791 | |
792 | spin_lock_irqsave(&dev->event_lock, flags); |
793 | retval = dev->getkeycode(dev, ke); |
794 | spin_unlock_irqrestore(&dev->event_lock, flags); |
795 | |
796 | return retval; |
797 | } |
798 | EXPORT_SYMBOL(input_get_keycode); |
799 | |
800 | /** |
801 | * input_set_keycode - attribute a keycode to a given scancode |
802 | * @dev: input device which keymap is being updated |
803 | * @ke: new keymap entry |
804 | * |
805 | * This function should be called by anyone needing to update current |
806 | * keymap. Presently keyboard and evdev handlers use it. |
807 | */ |
808 | int input_set_keycode(struct input_dev *dev, |
809 | const struct input_keymap_entry *ke) |
810 | { |
811 | unsigned long flags; |
812 | unsigned int old_keycode; |
813 | int retval; |
814 | |
815 | if (ke->keycode > KEY_MAX) |
816 | return -EINVAL; |
817 | |
818 | spin_lock_irqsave(&dev->event_lock, flags); |
819 | |
820 | retval = dev->setkeycode(dev, ke, &old_keycode); |
821 | if (retval) |
822 | goto out; |
823 | |
824 | /* Make sure KEY_RESERVED did not get enabled. */ |
825 | __clear_bit(KEY_RESERVED, dev->keybit); |
826 | |
827 | /* |
828 | * Simulate keyup event if keycode is not present |
829 | * in the keymap anymore |
830 | */ |
831 | if (test_bit(EV_KEY, dev->evbit) && |
832 | !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && |
833 | __test_and_clear_bit(old_keycode, dev->key)) { |
834 | |
835 | input_pass_event(dev, EV_KEY, old_keycode, 0); |
836 | if (dev->sync) |
837 | input_pass_event(dev, EV_SYN, SYN_REPORT, 1); |
838 | } |
839 | |
840 | out: |
841 | spin_unlock_irqrestore(&dev->event_lock, flags); |
842 | |
843 | return retval; |
844 | } |
845 | EXPORT_SYMBOL(input_set_keycode); |
846 | |
847 | #define MATCH_BIT(bit, max) \ |
848 | for (i = 0; i < BITS_TO_LONGS(max); i++) \ |
849 | if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ |
850 | break; \ |
851 | if (i != BITS_TO_LONGS(max)) \ |
852 | continue; |
853 | |
854 | static const struct input_device_id *input_match_device(struct input_handler *handler, |
855 | struct input_dev *dev) |
856 | { |
857 | const struct input_device_id *id; |
858 | int i; |
859 | |
860 | for (id = handler->id_table; id->flags || id->driver_info; id++) { |
861 | |
862 | if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) |
863 | if (id->bustype != dev->id.bustype) |
864 | continue; |
865 | |
866 | if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) |
867 | if (id->vendor != dev->id.vendor) |
868 | continue; |
869 | |
870 | if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) |
871 | if (id->product != dev->id.product) |
872 | continue; |
873 | |
874 | if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) |
875 | if (id->version != dev->id.version) |
876 | continue; |
877 | |
878 | MATCH_BIT(evbit, EV_MAX); |
879 | MATCH_BIT(keybit, KEY_MAX); |
880 | MATCH_BIT(relbit, REL_MAX); |
881 | MATCH_BIT(absbit, ABS_MAX); |
882 | MATCH_BIT(mscbit, MSC_MAX); |
883 | MATCH_BIT(ledbit, LED_MAX); |
884 | MATCH_BIT(sndbit, SND_MAX); |
885 | MATCH_BIT(ffbit, FF_MAX); |
886 | MATCH_BIT(swbit, SW_MAX); |
887 | |
888 | if (!handler->match || handler->match(handler, dev)) |
889 | return id; |
890 | } |
891 | |
892 | return NULL; |
893 | } |
894 | |
895 | static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) |
896 | { |
897 | const struct input_device_id *id; |
898 | int error; |
899 | |
900 | id = input_match_device(handler, dev); |
901 | if (!id) |
902 | return -ENODEV; |
903 | |
904 | error = handler->connect(handler, dev, id); |
905 | if (error && error != -ENODEV) |
906 | pr_err("failed to attach handler %s to device %s, error: %d\n", |
907 | handler->name, kobject_name(&dev->dev.kobj), error); |
908 | |
909 | return error; |
910 | } |
911 | |
912 | #ifdef CONFIG_COMPAT |
913 | |
914 | static int input_bits_to_string(char *buf, int buf_size, |
915 | unsigned long bits, bool skip_empty) |
916 | { |
917 | int len = 0; |
918 | |
919 | if (INPUT_COMPAT_TEST) { |
920 | u32 dword = bits >> 32; |
921 | if (dword || !skip_empty) |
922 | len += snprintf(buf, buf_size, "%x ", dword); |
923 | |
924 | dword = bits & 0xffffffffUL; |
925 | if (dword || !skip_empty || len) |
926 | len += snprintf(buf + len, max(buf_size - len, 0), |
927 | "%x", dword); |
928 | } else { |
929 | if (bits || !skip_empty) |
930 | len += snprintf(buf, buf_size, "%lx", bits); |
931 | } |
932 | |
933 | return len; |
934 | } |
935 | |
936 | #else /* !CONFIG_COMPAT */ |
937 | |
938 | static int input_bits_to_string(char *buf, int buf_size, |
939 | unsigned long bits, bool skip_empty) |
940 | { |
941 | return bits || !skip_empty ? |
942 | snprintf(buf, buf_size, "%lx", bits) : 0; |
943 | } |
944 | |
945 | #endif |
946 | |
947 | #ifdef CONFIG_PROC_FS |
948 | |
949 | static struct proc_dir_entry *proc_bus_input_dir; |
950 | static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); |
951 | static int input_devices_state; |
952 | |
953 | static inline void input_wakeup_procfs_readers(void) |
954 | { |
955 | input_devices_state++; |
956 | wake_up(&input_devices_poll_wait); |
957 | } |
958 | |
959 | static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) |
960 | { |
961 | poll_wait(file, &input_devices_poll_wait, wait); |
962 | if (file->f_version != input_devices_state) { |
963 | file->f_version = input_devices_state; |
964 | return POLLIN | POLLRDNORM; |
965 | } |
966 | |
967 | return 0; |
968 | } |
969 | |
970 | union input_seq_state { |
971 | struct { |
972 | unsigned short pos; |
973 | bool mutex_acquired; |
974 | }; |
975 | void *p; |
976 | }; |
977 | |
978 | static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) |
979 | { |
980 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
981 | int error; |
982 | |
983 | /* We need to fit into seq->private pointer */ |
984 | BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
985 | |
986 | error = mutex_lock_interruptible(&input_mutex); |
987 | if (error) { |
988 | state->mutex_acquired = false; |
989 | return ERR_PTR(error); |
990 | } |
991 | |
992 | state->mutex_acquired = true; |
993 | |
994 | return seq_list_start(&input_dev_list, *pos); |
995 | } |
996 | |
997 | static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
998 | { |
999 | return seq_list_next(v, &input_dev_list, pos); |
1000 | } |
1001 | |
1002 | static void input_seq_stop(struct seq_file *seq, void *v) |
1003 | { |
1004 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1005 | |
1006 | if (state->mutex_acquired) |
1007 | mutex_unlock(&input_mutex); |
1008 | } |
1009 | |
1010 | static void input_seq_print_bitmap(struct seq_file *seq, const char *name, |
1011 | unsigned long *bitmap, int max) |
1012 | { |
1013 | int i; |
1014 | bool skip_empty = true; |
1015 | char buf[18]; |
1016 | |
1017 | seq_printf(seq, "B: %s=", name); |
1018 | |
1019 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1020 | if (input_bits_to_string(buf, sizeof(buf), |
1021 | bitmap[i], skip_empty)) { |
1022 | skip_empty = false; |
1023 | seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); |
1024 | } |
1025 | } |
1026 | |
1027 | /* |
1028 | * If no output was produced print a single 0. |
1029 | */ |
1030 | if (skip_empty) |
1031 | seq_puts(seq, "0"); |
1032 | |
1033 | seq_putc(seq, '\n'); |
1034 | } |
1035 | |
1036 | static int input_devices_seq_show(struct seq_file *seq, void *v) |
1037 | { |
1038 | struct input_dev *dev = container_of(v, struct input_dev, node); |
1039 | const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
1040 | struct input_handle *handle; |
1041 | |
1042 | seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", |
1043 | dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); |
1044 | |
1045 | seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); |
1046 | seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); |
1047 | seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); |
1048 | seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); |
1049 | seq_printf(seq, "H: Handlers="); |
1050 | |
1051 | list_for_each_entry(handle, &dev->h_list, d_node) |
1052 | seq_printf(seq, "%s ", handle->name); |
1053 | seq_putc(seq, '\n'); |
1054 | |
1055 | input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); |
1056 | |
1057 | input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); |
1058 | if (test_bit(EV_KEY, dev->evbit)) |
1059 | input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); |
1060 | if (test_bit(EV_REL, dev->evbit)) |
1061 | input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); |
1062 | if (test_bit(EV_ABS, dev->evbit)) |
1063 | input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); |
1064 | if (test_bit(EV_MSC, dev->evbit)) |
1065 | input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); |
1066 | if (test_bit(EV_LED, dev->evbit)) |
1067 | input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); |
1068 | if (test_bit(EV_SND, dev->evbit)) |
1069 | input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); |
1070 | if (test_bit(EV_FF, dev->evbit)) |
1071 | input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); |
1072 | if (test_bit(EV_SW, dev->evbit)) |
1073 | input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); |
1074 | |
1075 | seq_putc(seq, '\n'); |
1076 | |
1077 | kfree(path); |
1078 | return 0; |
1079 | } |
1080 | |
1081 | static const struct seq_operations input_devices_seq_ops = { |
1082 | .start = input_devices_seq_start, |
1083 | .next = input_devices_seq_next, |
1084 | .stop = input_seq_stop, |
1085 | .show = input_devices_seq_show, |
1086 | }; |
1087 | |
1088 | static int input_proc_devices_open(struct inode *inode, struct file *file) |
1089 | { |
1090 | return seq_open(file, &input_devices_seq_ops); |
1091 | } |
1092 | |
1093 | static const struct file_operations input_devices_fileops = { |
1094 | .owner = THIS_MODULE, |
1095 | .open = input_proc_devices_open, |
1096 | .poll = input_proc_devices_poll, |
1097 | .read = seq_read, |
1098 | .llseek = seq_lseek, |
1099 | .release = seq_release, |
1100 | }; |
1101 | |
1102 | static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) |
1103 | { |
1104 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1105 | int error; |
1106 | |
1107 | /* We need to fit into seq->private pointer */ |
1108 | BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
1109 | |
1110 | error = mutex_lock_interruptible(&input_mutex); |
1111 | if (error) { |
1112 | state->mutex_acquired = false; |
1113 | return ERR_PTR(error); |
1114 | } |
1115 | |
1116 | state->mutex_acquired = true; |
1117 | state->pos = *pos; |
1118 | |
1119 | return seq_list_start(&input_handler_list, *pos); |
1120 | } |
1121 | |
1122 | static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
1123 | { |
1124 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1125 | |
1126 | state->pos = *pos + 1; |
1127 | return seq_list_next(v, &input_handler_list, pos); |
1128 | } |
1129 | |
1130 | static int input_handlers_seq_show(struct seq_file *seq, void *v) |
1131 | { |
1132 | struct input_handler *handler = container_of(v, struct input_handler, node); |
1133 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1134 | |
1135 | seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); |
1136 | if (handler->filter) |
1137 | seq_puts(seq, " (filter)"); |
1138 | if (handler->fops) |
1139 | seq_printf(seq, " Minor=%d", handler->minor); |
1140 | seq_putc(seq, '\n'); |
1141 | |
1142 | return 0; |
1143 | } |
1144 | |
1145 | static const struct seq_operations input_handlers_seq_ops = { |
1146 | .start = input_handlers_seq_start, |
1147 | .next = input_handlers_seq_next, |
1148 | .stop = input_seq_stop, |
1149 | .show = input_handlers_seq_show, |
1150 | }; |
1151 | |
1152 | static int input_proc_handlers_open(struct inode *inode, struct file *file) |
1153 | { |
1154 | return seq_open(file, &input_handlers_seq_ops); |
1155 | } |
1156 | |
1157 | static const struct file_operations input_handlers_fileops = { |
1158 | .owner = THIS_MODULE, |
1159 | .open = input_proc_handlers_open, |
1160 | .read = seq_read, |
1161 | .llseek = seq_lseek, |
1162 | .release = seq_release, |
1163 | }; |
1164 | |
1165 | static int __init input_proc_init(void) |
1166 | { |
1167 | struct proc_dir_entry *entry; |
1168 | |
1169 | proc_bus_input_dir = proc_mkdir("bus/input", NULL); |
1170 | if (!proc_bus_input_dir) |
1171 | return -ENOMEM; |
1172 | |
1173 | entry = proc_create("devices", 0, proc_bus_input_dir, |
1174 | &input_devices_fileops); |
1175 | if (!entry) |
1176 | goto fail1; |
1177 | |
1178 | entry = proc_create("handlers", 0, proc_bus_input_dir, |
1179 | &input_handlers_fileops); |
1180 | if (!entry) |
1181 | goto fail2; |
1182 | |
1183 | return 0; |
1184 | |
1185 | fail2: remove_proc_entry("devices", proc_bus_input_dir); |
1186 | fail1: remove_proc_entry("bus/input", NULL); |
1187 | return -ENOMEM; |
1188 | } |
1189 | |
1190 | static void input_proc_exit(void) |
1191 | { |
1192 | remove_proc_entry("devices", proc_bus_input_dir); |
1193 | remove_proc_entry("handlers", proc_bus_input_dir); |
1194 | remove_proc_entry("bus/input", NULL); |
1195 | } |
1196 | |
1197 | #else /* !CONFIG_PROC_FS */ |
1198 | static inline void input_wakeup_procfs_readers(void) { } |
1199 | static inline int input_proc_init(void) { return 0; } |
1200 | static inline void input_proc_exit(void) { } |
1201 | #endif |
1202 | |
1203 | #define INPUT_DEV_STRING_ATTR_SHOW(name) \ |
1204 | static ssize_t input_dev_show_##name(struct device *dev, \ |
1205 | struct device_attribute *attr, \ |
1206 | char *buf) \ |
1207 | { \ |
1208 | struct input_dev *input_dev = to_input_dev(dev); \ |
1209 | \ |
1210 | return scnprintf(buf, PAGE_SIZE, "%s\n", \ |
1211 | input_dev->name ? input_dev->name : ""); \ |
1212 | } \ |
1213 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) |
1214 | |
1215 | INPUT_DEV_STRING_ATTR_SHOW(name); |
1216 | INPUT_DEV_STRING_ATTR_SHOW(phys); |
1217 | INPUT_DEV_STRING_ATTR_SHOW(uniq); |
1218 | |
1219 | static int input_print_modalias_bits(char *buf, int size, |
1220 | char name, unsigned long *bm, |
1221 | unsigned int min_bit, unsigned int max_bit) |
1222 | { |
1223 | int len = 0, i; |
1224 | |
1225 | len += snprintf(buf, max(size, 0), "%c", name); |
1226 | for (i = min_bit; i < max_bit; i++) |
1227 | if (bm[BIT_WORD(i)] & BIT_MASK(i)) |
1228 | len += snprintf(buf + len, max(size - len, 0), "%X,", i); |
1229 | return len; |
1230 | } |
1231 | |
1232 | static int input_print_modalias(char *buf, int size, struct input_dev *id, |
1233 | int add_cr) |
1234 | { |
1235 | int len; |
1236 | |
1237 | len = snprintf(buf, max(size, 0), |
1238 | "input:b%04Xv%04Xp%04Xe%04X-", |
1239 | id->id.bustype, id->id.vendor, |
1240 | id->id.product, id->id.version); |
1241 | |
1242 | len += input_print_modalias_bits(buf + len, size - len, |
1243 | 'e', id->evbit, 0, EV_MAX); |
1244 | len += input_print_modalias_bits(buf + len, size - len, |
1245 | 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); |
1246 | len += input_print_modalias_bits(buf + len, size - len, |
1247 | 'r', id->relbit, 0, REL_MAX); |
1248 | len += input_print_modalias_bits(buf + len, size - len, |
1249 | 'a', id->absbit, 0, ABS_MAX); |
1250 | len += input_print_modalias_bits(buf + len, size - len, |
1251 | 'm', id->mscbit, 0, MSC_MAX); |
1252 | len += input_print_modalias_bits(buf + len, size - len, |
1253 | 'l', id->ledbit, 0, LED_MAX); |
1254 | len += input_print_modalias_bits(buf + len, size - len, |
1255 | 's', id->sndbit, 0, SND_MAX); |
1256 | len += input_print_modalias_bits(buf + len, size - len, |
1257 | 'f', id->ffbit, 0, FF_MAX); |
1258 | len += input_print_modalias_bits(buf + len, size - len, |
1259 | 'w', id->swbit, 0, SW_MAX); |
1260 | |
1261 | if (add_cr) |
1262 | len += snprintf(buf + len, max(size - len, 0), "\n"); |
1263 | |
1264 | return len; |
1265 | } |
1266 | |
1267 | static ssize_t input_dev_show_modalias(struct device *dev, |
1268 | struct device_attribute *attr, |
1269 | char *buf) |
1270 | { |
1271 | struct input_dev *id = to_input_dev(dev); |
1272 | ssize_t len; |
1273 | |
1274 | len = input_print_modalias(buf, PAGE_SIZE, id, 1); |
1275 | |
1276 | return min_t(int, len, PAGE_SIZE); |
1277 | } |
1278 | static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); |
1279 | |
1280 | static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, |
1281 | int max, int add_cr); |
1282 | |
1283 | static ssize_t input_dev_show_properties(struct device *dev, |
1284 | struct device_attribute *attr, |
1285 | char *buf) |
1286 | { |
1287 | struct input_dev *input_dev = to_input_dev(dev); |
1288 | int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, |
1289 | INPUT_PROP_MAX, true); |
1290 | return min_t(int, len, PAGE_SIZE); |
1291 | } |
1292 | static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); |
1293 | |
1294 | static struct attribute *input_dev_attrs[] = { |
1295 | &dev_attr_name.attr, |
1296 | &dev_attr_phys.attr, |
1297 | &dev_attr_uniq.attr, |
1298 | &dev_attr_modalias.attr, |
1299 | &dev_attr_properties.attr, |
1300 | NULL |
1301 | }; |
1302 | |
1303 | static struct attribute_group input_dev_attr_group = { |
1304 | .attrs = input_dev_attrs, |
1305 | }; |
1306 | |
1307 | #define INPUT_DEV_ID_ATTR(name) \ |
1308 | static ssize_t input_dev_show_id_##name(struct device *dev, \ |
1309 | struct device_attribute *attr, \ |
1310 | char *buf) \ |
1311 | { \ |
1312 | struct input_dev *input_dev = to_input_dev(dev); \ |
1313 | return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ |
1314 | } \ |
1315 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) |
1316 | |
1317 | INPUT_DEV_ID_ATTR(bustype); |
1318 | INPUT_DEV_ID_ATTR(vendor); |
1319 | INPUT_DEV_ID_ATTR(product); |
1320 | INPUT_DEV_ID_ATTR(version); |
1321 | |
1322 | static struct attribute *input_dev_id_attrs[] = { |
1323 | &dev_attr_bustype.attr, |
1324 | &dev_attr_vendor.attr, |
1325 | &dev_attr_product.attr, |
1326 | &dev_attr_version.attr, |
1327 | NULL |
1328 | }; |
1329 | |
1330 | static struct attribute_group input_dev_id_attr_group = { |
1331 | .name = "id", |
1332 | .attrs = input_dev_id_attrs, |
1333 | }; |
1334 | |
1335 | static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, |
1336 | int max, int add_cr) |
1337 | { |
1338 | int i; |
1339 | int len = 0; |
1340 | bool skip_empty = true; |
1341 | |
1342 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1343 | len += input_bits_to_string(buf + len, max(buf_size - len, 0), |
1344 | bitmap[i], skip_empty); |
1345 | if (len) { |
1346 | skip_empty = false; |
1347 | if (i > 0) |
1348 | len += snprintf(buf + len, max(buf_size - len, 0), " "); |
1349 | } |
1350 | } |
1351 | |
1352 | /* |
1353 | * If no output was produced print a single 0. |
1354 | */ |
1355 | if (len == 0) |
1356 | len = snprintf(buf, buf_size, "%d", 0); |
1357 | |
1358 | if (add_cr) |
1359 | len += snprintf(buf + len, max(buf_size - len, 0), "\n"); |
1360 | |
1361 | return len; |
1362 | } |
1363 | |
1364 | #define INPUT_DEV_CAP_ATTR(ev, bm) \ |
1365 | static ssize_t input_dev_show_cap_##bm(struct device *dev, \ |
1366 | struct device_attribute *attr, \ |
1367 | char *buf) \ |
1368 | { \ |
1369 | struct input_dev *input_dev = to_input_dev(dev); \ |
1370 | int len = input_print_bitmap(buf, PAGE_SIZE, \ |
1371 | input_dev->bm##bit, ev##_MAX, \ |
1372 | true); \ |
1373 | return min_t(int, len, PAGE_SIZE); \ |
1374 | } \ |
1375 | static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) |
1376 | |
1377 | INPUT_DEV_CAP_ATTR(EV, ev); |
1378 | INPUT_DEV_CAP_ATTR(KEY, key); |
1379 | INPUT_DEV_CAP_ATTR(REL, rel); |
1380 | INPUT_DEV_CAP_ATTR(ABS, abs); |
1381 | INPUT_DEV_CAP_ATTR(MSC, msc); |
1382 | INPUT_DEV_CAP_ATTR(LED, led); |
1383 | INPUT_DEV_CAP_ATTR(SND, snd); |
1384 | INPUT_DEV_CAP_ATTR(FF, ff); |
1385 | INPUT_DEV_CAP_ATTR(SW, sw); |
1386 | |
1387 | static struct attribute *input_dev_caps_attrs[] = { |
1388 | &dev_attr_ev.attr, |
1389 | &dev_attr_key.attr, |
1390 | &dev_attr_rel.attr, |
1391 | &dev_attr_abs.attr, |
1392 | &dev_attr_msc.attr, |
1393 | &dev_attr_led.attr, |
1394 | &dev_attr_snd.attr, |
1395 | &dev_attr_ff.attr, |
1396 | &dev_attr_sw.attr, |
1397 | NULL |
1398 | }; |
1399 | |
1400 | static struct attribute_group input_dev_caps_attr_group = { |
1401 | .name = "capabilities", |
1402 | .attrs = input_dev_caps_attrs, |
1403 | }; |
1404 | |
1405 | static const struct attribute_group *input_dev_attr_groups[] = { |
1406 | &input_dev_attr_group, |
1407 | &input_dev_id_attr_group, |
1408 | &input_dev_caps_attr_group, |
1409 | NULL |
1410 | }; |
1411 | |
1412 | static void input_dev_release(struct device *device) |
1413 | { |
1414 | struct input_dev *dev = to_input_dev(device); |
1415 | |
1416 | input_ff_destroy(dev); |
1417 | input_mt_destroy_slots(dev); |
1418 | kfree(dev->absinfo); |
1419 | kfree(dev); |
1420 | |
1421 | module_put(THIS_MODULE); |
1422 | } |
1423 | |
1424 | /* |
1425 | * Input uevent interface - loading event handlers based on |
1426 | * device bitfields. |
1427 | */ |
1428 | static int input_add_uevent_bm_var(struct kobj_uevent_env *env, |
1429 | const char *name, unsigned long *bitmap, int max) |
1430 | { |
1431 | int len; |
1432 | |
1433 | if (add_uevent_var(env, "%s", name)) |
1434 | return -ENOMEM; |
1435 | |
1436 | len = input_print_bitmap(&env->buf[env->buflen - 1], |
1437 | sizeof(env->buf) - env->buflen, |
1438 | bitmap, max, false); |
1439 | if (len >= (sizeof(env->buf) - env->buflen)) |
1440 | return -ENOMEM; |
1441 | |
1442 | env->buflen += len; |
1443 | return 0; |
1444 | } |
1445 | |
1446 | static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, |
1447 | struct input_dev *dev) |
1448 | { |
1449 | int len; |
1450 | |
1451 | if (add_uevent_var(env, "MODALIAS=")) |
1452 | return -ENOMEM; |
1453 | |
1454 | len = input_print_modalias(&env->buf[env->buflen - 1], |
1455 | sizeof(env->buf) - env->buflen, |
1456 | dev, 0); |
1457 | if (len >= (sizeof(env->buf) - env->buflen)) |
1458 | return -ENOMEM; |
1459 | |
1460 | env->buflen += len; |
1461 | return 0; |
1462 | } |
1463 | |
1464 | #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ |
1465 | do { \ |
1466 | int err = add_uevent_var(env, fmt, val); \ |
1467 | if (err) \ |
1468 | return err; \ |
1469 | } while (0) |
1470 | |
1471 | #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ |
1472 | do { \ |
1473 | int err = input_add_uevent_bm_var(env, name, bm, max); \ |
1474 | if (err) \ |
1475 | return err; \ |
1476 | } while (0) |
1477 | |
1478 | #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ |
1479 | do { \ |
1480 | int err = input_add_uevent_modalias_var(env, dev); \ |
1481 | if (err) \ |
1482 | return err; \ |
1483 | } while (0) |
1484 | |
1485 | static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) |
1486 | { |
1487 | struct input_dev *dev = to_input_dev(device); |
1488 | |
1489 | INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", |
1490 | dev->id.bustype, dev->id.vendor, |
1491 | dev->id.product, dev->id.version); |
1492 | if (dev->name) |
1493 | INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); |
1494 | if (dev->phys) |
1495 | INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); |
1496 | if (dev->uniq) |
1497 | INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); |
1498 | |
1499 | INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); |
1500 | |
1501 | INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); |
1502 | if (test_bit(EV_KEY, dev->evbit)) |
1503 | INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); |
1504 | if (test_bit(EV_REL, dev->evbit)) |
1505 | INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); |
1506 | if (test_bit(EV_ABS, dev->evbit)) |
1507 | INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); |
1508 | if (test_bit(EV_MSC, dev->evbit)) |
1509 | INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); |
1510 | if (test_bit(EV_LED, dev->evbit)) |
1511 | INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); |
1512 | if (test_bit(EV_SND, dev->evbit)) |
1513 | INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); |
1514 | if (test_bit(EV_FF, dev->evbit)) |
1515 | INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); |
1516 | if (test_bit(EV_SW, dev->evbit)) |
1517 | INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); |
1518 | |
1519 | INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); |
1520 | |
1521 | return 0; |
1522 | } |
1523 | |
1524 | #define INPUT_DO_TOGGLE(dev, type, bits, on) \ |
1525 | do { \ |
1526 | int i; \ |
1527 | bool active; \ |
1528 | \ |
1529 | if (!test_bit(EV_##type, dev->evbit)) \ |
1530 | break; \ |
1531 | \ |
1532 | for (i = 0; i < type##_MAX; i++) { \ |
1533 | if (!test_bit(i, dev->bits##bit)) \ |
1534 | continue; \ |
1535 | \ |
1536 | active = test_bit(i, dev->bits); \ |
1537 | if (!active && !on) \ |
1538 | continue; \ |
1539 | \ |
1540 | dev->event(dev, EV_##type, i, on ? active : 0); \ |
1541 | } \ |
1542 | } while (0) |
1543 | |
1544 | static void input_dev_toggle(struct input_dev *dev, bool activate) |
1545 | { |
1546 | if (!dev->event) |
1547 | return; |
1548 | |
1549 | INPUT_DO_TOGGLE(dev, LED, led, activate); |
1550 | INPUT_DO_TOGGLE(dev, SND, snd, activate); |
1551 | |
1552 | if (activate && test_bit(EV_REP, dev->evbit)) { |
1553 | dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); |
1554 | dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); |
1555 | } |
1556 | } |
1557 | |
1558 | /** |
1559 | * input_reset_device() - reset/restore the state of input device |
1560 | * @dev: input device whose state needs to be reset |
1561 | * |
1562 | * This function tries to reset the state of an opened input device and |
1563 | * bring internal state and state if the hardware in sync with each other. |
1564 | * We mark all keys as released, restore LED state, repeat rate, etc. |
1565 | */ |
1566 | void input_reset_device(struct input_dev *dev) |
1567 | { |
1568 | mutex_lock(&dev->mutex); |
1569 | |
1570 | if (dev->users) { |
1571 | input_dev_toggle(dev, true); |
1572 | |
1573 | /* |
1574 | * Keys that have been pressed at suspend time are unlikely |
1575 | * to be still pressed when we resume. |
1576 | */ |
1577 | spin_lock_irq(&dev->event_lock); |
1578 | input_dev_release_keys(dev); |
1579 | spin_unlock_irq(&dev->event_lock); |
1580 | } |
1581 | |
1582 | mutex_unlock(&dev->mutex); |
1583 | } |
1584 | EXPORT_SYMBOL(input_reset_device); |
1585 | |
1586 | #ifdef CONFIG_PM |
1587 | static int input_dev_suspend(struct device *dev) |
1588 | { |
1589 | struct input_dev *input_dev = to_input_dev(dev); |
1590 | |
1591 | mutex_lock(&input_dev->mutex); |
1592 | |
1593 | if (input_dev->users) |
1594 | input_dev_toggle(input_dev, false); |
1595 | |
1596 | mutex_unlock(&input_dev->mutex); |
1597 | |
1598 | return 0; |
1599 | } |
1600 | |
1601 | static int input_dev_resume(struct device *dev) |
1602 | { |
1603 | struct input_dev *input_dev = to_input_dev(dev); |
1604 | |
1605 | input_reset_device(input_dev); |
1606 | |
1607 | return 0; |
1608 | } |
1609 | |
1610 | static const struct dev_pm_ops input_dev_pm_ops = { |
1611 | .suspend = input_dev_suspend, |
1612 | .resume = input_dev_resume, |
1613 | .poweroff = input_dev_suspend, |
1614 | .restore = input_dev_resume, |
1615 | }; |
1616 | #endif /* CONFIG_PM */ |
1617 | |
1618 | static struct device_type input_dev_type = { |
1619 | .groups = input_dev_attr_groups, |
1620 | .release = input_dev_release, |
1621 | .uevent = input_dev_uevent, |
1622 | #ifdef CONFIG_PM |
1623 | .pm = &input_dev_pm_ops, |
1624 | #endif |
1625 | }; |
1626 | |
1627 | static char *input_devnode(struct device *dev, umode_t *mode) |
1628 | { |
1629 | return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); |
1630 | } |
1631 | |
1632 | struct class input_class = { |
1633 | .name = "input", |
1634 | .devnode = input_devnode, |
1635 | }; |
1636 | EXPORT_SYMBOL_GPL(input_class); |
1637 | |
1638 | /** |
1639 | * input_allocate_device - allocate memory for new input device |
1640 | * |
1641 | * Returns prepared struct input_dev or NULL. |
1642 | * |
1643 | * NOTE: Use input_free_device() to free devices that have not been |
1644 | * registered; input_unregister_device() should be used for already |
1645 | * registered devices. |
1646 | */ |
1647 | struct input_dev *input_allocate_device(void) |
1648 | { |
1649 | struct input_dev *dev; |
1650 | |
1651 | dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); |
1652 | if (dev) { |
1653 | dev->dev.type = &input_dev_type; |
1654 | dev->dev.class = &input_class; |
1655 | device_initialize(&dev->dev); |
1656 | mutex_init(&dev->mutex); |
1657 | spin_lock_init(&dev->event_lock); |
1658 | INIT_LIST_HEAD(&dev->h_list); |
1659 | INIT_LIST_HEAD(&dev->node); |
1660 | |
1661 | __module_get(THIS_MODULE); |
1662 | } |
1663 | |
1664 | return dev; |
1665 | } |
1666 | EXPORT_SYMBOL(input_allocate_device); |
1667 | |
1668 | /** |
1669 | * input_free_device - free memory occupied by input_dev structure |
1670 | * @dev: input device to free |
1671 | * |
1672 | * This function should only be used if input_register_device() |
1673 | * was not called yet or if it failed. Once device was registered |
1674 | * use input_unregister_device() and memory will be freed once last |
1675 | * reference to the device is dropped. |
1676 | * |
1677 | * Device should be allocated by input_allocate_device(). |
1678 | * |
1679 | * NOTE: If there are references to the input device then memory |
1680 | * will not be freed until last reference is dropped. |
1681 | */ |
1682 | void input_free_device(struct input_dev *dev) |
1683 | { |
1684 | if (dev) |
1685 | input_put_device(dev); |
1686 | } |
1687 | EXPORT_SYMBOL(input_free_device); |
1688 | |
1689 | /** |
1690 | * input_set_capability - mark device as capable of a certain event |
1691 | * @dev: device that is capable of emitting or accepting event |
1692 | * @type: type of the event (EV_KEY, EV_REL, etc...) |
1693 | * @code: event code |
1694 | * |
1695 | * In addition to setting up corresponding bit in appropriate capability |
1696 | * bitmap the function also adjusts dev->evbit. |
1697 | */ |
1698 | void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) |
1699 | { |
1700 | switch (type) { |
1701 | case EV_KEY: |
1702 | __set_bit(code, dev->keybit); |
1703 | break; |
1704 | |
1705 | case EV_REL: |
1706 | __set_bit(code, dev->relbit); |
1707 | break; |
1708 | |
1709 | case EV_ABS: |
1710 | __set_bit(code, dev->absbit); |
1711 | break; |
1712 | |
1713 | case EV_MSC: |
1714 | __set_bit(code, dev->mscbit); |
1715 | break; |
1716 | |
1717 | case EV_SW: |
1718 | __set_bit(code, dev->swbit); |
1719 | break; |
1720 | |
1721 | case EV_LED: |
1722 | __set_bit(code, dev->ledbit); |
1723 | break; |
1724 | |
1725 | case EV_SND: |
1726 | __set_bit(code, dev->sndbit); |
1727 | break; |
1728 | |
1729 | case EV_FF: |
1730 | __set_bit(code, dev->ffbit); |
1731 | break; |
1732 | |
1733 | case EV_PWR: |
1734 | /* do nothing */ |
1735 | break; |
1736 | |
1737 | default: |
1738 | pr_err("input_set_capability: unknown type %u (code %u)\n", |
1739 | type, code); |
1740 | dump_stack(); |
1741 | return; |
1742 | } |
1743 | |
1744 | __set_bit(type, dev->evbit); |
1745 | } |
1746 | EXPORT_SYMBOL(input_set_capability); |
1747 | |
1748 | static unsigned int input_estimate_events_per_packet(struct input_dev *dev) |
1749 | { |
1750 | int mt_slots; |
1751 | int i; |
1752 | unsigned int events; |
1753 | |
1754 | if (dev->mtsize) { |
1755 | mt_slots = dev->mtsize; |
1756 | } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { |
1757 | mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - |
1758 | dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, |
1759 | mt_slots = clamp(mt_slots, 2, 32); |
1760 | } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { |
1761 | mt_slots = 2; |
1762 | } else { |
1763 | mt_slots = 0; |
1764 | } |
1765 | |
1766 | events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ |
1767 | |
1768 | for (i = 0; i < ABS_CNT; i++) { |
1769 | if (test_bit(i, dev->absbit)) { |
1770 | if (input_is_mt_axis(i)) |
1771 | events += mt_slots; |
1772 | else |
1773 | events++; |
1774 | } |
1775 | } |
1776 | |
1777 | for (i = 0; i < REL_CNT; i++) |
1778 | if (test_bit(i, dev->relbit)) |
1779 | events++; |
1780 | |
1781 | return events; |
1782 | } |
1783 | |
1784 | #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ |
1785 | do { \ |
1786 | if (!test_bit(EV_##type, dev->evbit)) \ |
1787 | memset(dev->bits##bit, 0, \ |
1788 | sizeof(dev->bits##bit)); \ |
1789 | } while (0) |
1790 | |
1791 | static void input_cleanse_bitmasks(struct input_dev *dev) |
1792 | { |
1793 | INPUT_CLEANSE_BITMASK(dev, KEY, key); |
1794 | INPUT_CLEANSE_BITMASK(dev, REL, rel); |
1795 | INPUT_CLEANSE_BITMASK(dev, ABS, abs); |
1796 | INPUT_CLEANSE_BITMASK(dev, MSC, msc); |
1797 | INPUT_CLEANSE_BITMASK(dev, LED, led); |
1798 | INPUT_CLEANSE_BITMASK(dev, SND, snd); |
1799 | INPUT_CLEANSE_BITMASK(dev, FF, ff); |
1800 | INPUT_CLEANSE_BITMASK(dev, SW, sw); |
1801 | } |
1802 | |
1803 | /** |
1804 | * input_register_device - register device with input core |
1805 | * @dev: device to be registered |
1806 | * |
1807 | * This function registers device with input core. The device must be |
1808 | * allocated with input_allocate_device() and all it's capabilities |
1809 | * set up before registering. |
1810 | * If function fails the device must be freed with input_free_device(). |
1811 | * Once device has been successfully registered it can be unregistered |
1812 | * with input_unregister_device(); input_free_device() should not be |
1813 | * called in this case. |
1814 | */ |
1815 | int input_register_device(struct input_dev *dev) |
1816 | { |
1817 | static atomic_t input_no = ATOMIC_INIT(0); |
1818 | struct input_handler *handler; |
1819 | const char *path; |
1820 | int error; |
1821 | |
1822 | /* Every input device generates EV_SYN/SYN_REPORT events. */ |
1823 | __set_bit(EV_SYN, dev->evbit); |
1824 | |
1825 | /* KEY_RESERVED is not supposed to be transmitted to userspace. */ |
1826 | __clear_bit(KEY_RESERVED, dev->keybit); |
1827 | |
1828 | /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ |
1829 | input_cleanse_bitmasks(dev); |
1830 | |
1831 | if (!dev->hint_events_per_packet) |
1832 | dev->hint_events_per_packet = |
1833 | input_estimate_events_per_packet(dev); |
1834 | |
1835 | /* |
1836 | * If delay and period are pre-set by the driver, then autorepeating |
1837 | * is handled by the driver itself and we don't do it in input.c. |
1838 | */ |
1839 | init_timer(&dev->timer); |
1840 | if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { |
1841 | dev->timer.data = (long) dev; |
1842 | dev->timer.function = input_repeat_key; |
1843 | dev->rep[REP_DELAY] = 250; |
1844 | dev->rep[REP_PERIOD] = 33; |
1845 | } |
1846 | |
1847 | if (!dev->getkeycode) |
1848 | dev->getkeycode = input_default_getkeycode; |
1849 | |
1850 | if (!dev->setkeycode) |
1851 | dev->setkeycode = input_default_setkeycode; |
1852 | |
1853 | dev_set_name(&dev->dev, "input%ld", |
1854 | (unsigned long) atomic_inc_return(&input_no) - 1); |
1855 | |
1856 | error = device_add(&dev->dev); |
1857 | if (error) |
1858 | return error; |
1859 | |
1860 | path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
1861 | pr_info("%s as %s\n", |
1862 | dev->name ? dev->name : "Unspecified device", |
1863 | path ? path : "N/A"); |
1864 | kfree(path); |
1865 | |
1866 | error = mutex_lock_interruptible(&input_mutex); |
1867 | if (error) { |
1868 | device_del(&dev->dev); |
1869 | return error; |
1870 | } |
1871 | |
1872 | list_add_tail(&dev->node, &input_dev_list); |
1873 | |
1874 | list_for_each_entry(handler, &input_handler_list, node) |
1875 | input_attach_handler(dev, handler); |
1876 | |
1877 | input_wakeup_procfs_readers(); |
1878 | |
1879 | mutex_unlock(&input_mutex); |
1880 | |
1881 | return 0; |
1882 | } |
1883 | EXPORT_SYMBOL(input_register_device); |
1884 | |
1885 | /** |
1886 | * input_unregister_device - unregister previously registered device |
1887 | * @dev: device to be unregistered |
1888 | * |
1889 | * This function unregisters an input device. Once device is unregistered |
1890 | * the caller should not try to access it as it may get freed at any moment. |
1891 | */ |
1892 | void input_unregister_device(struct input_dev *dev) |
1893 | { |
1894 | struct input_handle *handle, *next; |
1895 | |
1896 | input_disconnect_device(dev); |
1897 | |
1898 | mutex_lock(&input_mutex); |
1899 | |
1900 | list_for_each_entry_safe(handle, next, &dev->h_list, d_node) |
1901 | handle->handler->disconnect(handle); |
1902 | WARN_ON(!list_empty(&dev->h_list)); |
1903 | |
1904 | del_timer_sync(&dev->timer); |
1905 | list_del_init(&dev->node); |
1906 | |
1907 | input_wakeup_procfs_readers(); |
1908 | |
1909 | mutex_unlock(&input_mutex); |
1910 | |
1911 | device_unregister(&dev->dev); |
1912 | } |
1913 | EXPORT_SYMBOL(input_unregister_device); |
1914 | |
1915 | /** |
1916 | * input_register_handler - register a new input handler |
1917 | * @handler: handler to be registered |
1918 | * |
1919 | * This function registers a new input handler (interface) for input |
1920 | * devices in the system and attaches it to all input devices that |
1921 | * are compatible with the handler. |
1922 | */ |
1923 | int input_register_handler(struct input_handler *handler) |
1924 | { |
1925 | struct input_dev *dev; |
1926 | int retval; |
1927 | |
1928 | retval = mutex_lock_interruptible(&input_mutex); |
1929 | if (retval) |
1930 | return retval; |
1931 | |
1932 | INIT_LIST_HEAD(&handler->h_list); |
1933 | |
1934 | if (handler->fops != NULL) { |
1935 | if (input_table[handler->minor >> 5]) { |
1936 | retval = -EBUSY; |
1937 | goto out; |
1938 | } |
1939 | input_table[handler->minor >> 5] = handler; |
1940 | } |
1941 | |
1942 | list_add_tail(&handler->node, &input_handler_list); |
1943 | |
1944 | list_for_each_entry(dev, &input_dev_list, node) |
1945 | input_attach_handler(dev, handler); |
1946 | |
1947 | input_wakeup_procfs_readers(); |
1948 | |
1949 | out: |
1950 | mutex_unlock(&input_mutex); |
1951 | return retval; |
1952 | } |
1953 | EXPORT_SYMBOL(input_register_handler); |
1954 | |
1955 | /** |
1956 | * input_unregister_handler - unregisters an input handler |
1957 | * @handler: handler to be unregistered |
1958 | * |
1959 | * This function disconnects a handler from its input devices and |
1960 | * removes it from lists of known handlers. |
1961 | */ |
1962 | void input_unregister_handler(struct input_handler *handler) |
1963 | { |
1964 | struct input_handle *handle, *next; |
1965 | |
1966 | mutex_lock(&input_mutex); |
1967 | |
1968 | list_for_each_entry_safe(handle, next, &handler->h_list, h_node) |
1969 | handler->disconnect(handle); |
1970 | WARN_ON(!list_empty(&handler->h_list)); |
1971 | |
1972 | list_del_init(&handler->node); |
1973 | |
1974 | if (handler->fops != NULL) |
1975 | input_table[handler->minor >> 5] = NULL; |
1976 | |
1977 | input_wakeup_procfs_readers(); |
1978 | |
1979 | mutex_unlock(&input_mutex); |
1980 | } |
1981 | EXPORT_SYMBOL(input_unregister_handler); |
1982 | |
1983 | /** |
1984 | * input_handler_for_each_handle - handle iterator |
1985 | * @handler: input handler to iterate |
1986 | * @data: data for the callback |
1987 | * @fn: function to be called for each handle |
1988 | * |
1989 | * Iterate over @bus's list of devices, and call @fn for each, passing |
1990 | * it @data and stop when @fn returns a non-zero value. The function is |
1991 | * using RCU to traverse the list and therefore may be usind in atonic |
1992 | * contexts. The @fn callback is invoked from RCU critical section and |
1993 | * thus must not sleep. |
1994 | */ |
1995 | int input_handler_for_each_handle(struct input_handler *handler, void *data, |
1996 | int (*fn)(struct input_handle *, void *)) |
1997 | { |
1998 | struct input_handle *handle; |
1999 | int retval = 0; |
2000 | |
2001 | rcu_read_lock(); |
2002 | |
2003 | list_for_each_entry_rcu(handle, &handler->h_list, h_node) { |
2004 | retval = fn(handle, data); |
2005 | if (retval) |
2006 | break; |
2007 | } |
2008 | |
2009 | rcu_read_unlock(); |
2010 | |
2011 | return retval; |
2012 | } |
2013 | EXPORT_SYMBOL(input_handler_for_each_handle); |
2014 | |
2015 | /** |
2016 | * input_register_handle - register a new input handle |
2017 | * @handle: handle to register |
2018 | * |
2019 | * This function puts a new input handle onto device's |
2020 | * and handler's lists so that events can flow through |
2021 | * it once it is opened using input_open_device(). |
2022 | * |
2023 | * This function is supposed to be called from handler's |
2024 | * connect() method. |
2025 | */ |
2026 | int input_register_handle(struct input_handle *handle) |
2027 | { |
2028 | struct input_handler *handler = handle->handler; |
2029 | struct input_dev *dev = handle->dev; |
2030 | int error; |
2031 | |
2032 | /* |
2033 | * We take dev->mutex here to prevent race with |
2034 | * input_release_device(). |
2035 | */ |
2036 | error = mutex_lock_interruptible(&dev->mutex); |
2037 | if (error) |
2038 | return error; |
2039 | |
2040 | /* |
2041 | * Filters go to the head of the list, normal handlers |
2042 | * to the tail. |
2043 | */ |
2044 | if (handler->filter) |
2045 | list_add_rcu(&handle->d_node, &dev->h_list); |
2046 | else |
2047 | list_add_tail_rcu(&handle->d_node, &dev->h_list); |
2048 | |
2049 | mutex_unlock(&dev->mutex); |
2050 | |
2051 | /* |
2052 | * Since we are supposed to be called from ->connect() |
2053 | * which is mutually exclusive with ->disconnect() |
2054 | * we can't be racing with input_unregister_handle() |
2055 | * and so separate lock is not needed here. |
2056 | */ |
2057 | list_add_tail_rcu(&handle->h_node, &handler->h_list); |
2058 | |
2059 | if (handler->start) |
2060 | handler->start(handle); |
2061 | |
2062 | return 0; |
2063 | } |
2064 | EXPORT_SYMBOL(input_register_handle); |
2065 | |
2066 | /** |
2067 | * input_unregister_handle - unregister an input handle |
2068 | * @handle: handle to unregister |
2069 | * |
2070 | * This function removes input handle from device's |
2071 | * and handler's lists. |
2072 | * |
2073 | * This function is supposed to be called from handler's |
2074 | * disconnect() method. |
2075 | */ |
2076 | void input_unregister_handle(struct input_handle *handle) |
2077 | { |
2078 | struct input_dev *dev = handle->dev; |
2079 | |
2080 | list_del_rcu(&handle->h_node); |
2081 | |
2082 | /* |
2083 | * Take dev->mutex to prevent race with input_release_device(). |
2084 | */ |
2085 | mutex_lock(&dev->mutex); |
2086 | list_del_rcu(&handle->d_node); |
2087 | mutex_unlock(&dev->mutex); |
2088 | |
2089 | synchronize_rcu(); |
2090 | } |
2091 | EXPORT_SYMBOL(input_unregister_handle); |
2092 | |
2093 | static int input_open_file(struct inode *inode, struct file *file) |
2094 | { |
2095 | struct input_handler *handler; |
2096 | const struct file_operations *old_fops, *new_fops = NULL; |
2097 | int err; |
2098 | |
2099 | err = mutex_lock_interruptible(&input_mutex); |
2100 | if (err) |
2101 | return err; |
2102 | |
2103 | /* No load-on-demand here? */ |
2104 | handler = input_table[iminor(inode) >> 5]; |
2105 | if (handler) |
2106 | new_fops = fops_get(handler->fops); |
2107 | |
2108 | mutex_unlock(&input_mutex); |
2109 | |
2110 | /* |
2111 | * That's _really_ odd. Usually NULL ->open means "nothing special", |
2112 | * not "no device". Oh, well... |
2113 | */ |
2114 | if (!new_fops || !new_fops->open) { |
2115 | fops_put(new_fops); |
2116 | err = -ENODEV; |
2117 | goto out; |
2118 | } |
2119 | |
2120 | old_fops = file->f_op; |
2121 | file->f_op = new_fops; |
2122 | |
2123 | err = new_fops->open(inode, file); |
2124 | if (err) { |
2125 | fops_put(file->f_op); |
2126 | file->f_op = fops_get(old_fops); |
2127 | } |
2128 | fops_put(old_fops); |
2129 | out: |
2130 | return err; |
2131 | } |
2132 | |
2133 | static const struct file_operations input_fops = { |
2134 | .owner = THIS_MODULE, |
2135 | .open = input_open_file, |
2136 | .llseek = noop_llseek, |
2137 | }; |
2138 | |
2139 | static int __init input_init(void) |
2140 | { |
2141 | int err; |
2142 | |
2143 | err = class_register(&input_class); |
2144 | if (err) { |
2145 | pr_err("unable to register input_dev class\n"); |
2146 | return err; |
2147 | } |
2148 | |
2149 | err = input_proc_init(); |
2150 | if (err) |
2151 | goto fail1; |
2152 | |
2153 | err = register_chrdev(INPUT_MAJOR, "input", &input_fops); |
2154 | if (err) { |
2155 | pr_err("unable to register char major %d", INPUT_MAJOR); |
2156 | goto fail2; |
2157 | } |
2158 | |
2159 | return 0; |
2160 | |
2161 | fail2: input_proc_exit(); |
2162 | fail1: class_unregister(&input_class); |
2163 | return err; |
2164 | } |
2165 | |
2166 | static void __exit input_exit(void) |
2167 | { |
2168 | input_proc_exit(); |
2169 | unregister_chrdev(INPUT_MAJOR, "input"); |
2170 | class_unregister(&input_class); |
2171 | } |
2172 | |
2173 | subsys_initcall(input_init); |
2174 | module_exit(input_exit); |
2175 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9