Root/
1 | /* |
2 | * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
3 | * Author: Joerg Roedel <joerg.roedel@amd.com> |
4 | * Leo Duran <leo.duran@amd.com> |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify it |
7 | * under the terms of the GNU General Public License version 2 as published |
8 | * by the Free Software Foundation. |
9 | * |
10 | * This program is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | * GNU General Public License for more details. |
14 | * |
15 | * You should have received a copy of the GNU General Public License |
16 | * along with this program; if not, write to the Free Software |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
18 | */ |
19 | |
20 | #include <linux/ratelimit.h> |
21 | #include <linux/pci.h> |
22 | #include <linux/pci-ats.h> |
23 | #include <linux/bitmap.h> |
24 | #include <linux/slab.h> |
25 | #include <linux/debugfs.h> |
26 | #include <linux/scatterlist.h> |
27 | #include <linux/dma-mapping.h> |
28 | #include <linux/iommu-helper.h> |
29 | #include <linux/iommu.h> |
30 | #include <linux/delay.h> |
31 | #include <linux/amd-iommu.h> |
32 | #include <linux/notifier.h> |
33 | #include <linux/export.h> |
34 | #include <asm/msidef.h> |
35 | #include <asm/proto.h> |
36 | #include <asm/iommu.h> |
37 | #include <asm/gart.h> |
38 | #include <asm/dma.h> |
39 | |
40 | #include "amd_iommu_proto.h" |
41 | #include "amd_iommu_types.h" |
42 | |
43 | #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
44 | |
45 | #define LOOP_TIMEOUT 100000 |
46 | |
47 | /* |
48 | * This bitmap is used to advertise the page sizes our hardware support |
49 | * to the IOMMU core, which will then use this information to split |
50 | * physically contiguous memory regions it is mapping into page sizes |
51 | * that we support. |
52 | * |
53 | * Traditionally the IOMMU core just handed us the mappings directly, |
54 | * after making sure the size is an order of a 4KiB page and that the |
55 | * mapping has natural alignment. |
56 | * |
57 | * To retain this behavior, we currently advertise that we support |
58 | * all page sizes that are an order of 4KiB. |
59 | * |
60 | * If at some point we'd like to utilize the IOMMU core's new behavior, |
61 | * we could change this to advertise the real page sizes we support. |
62 | */ |
63 | #define AMD_IOMMU_PGSIZES (~0xFFFUL) |
64 | |
65 | static DEFINE_RWLOCK(amd_iommu_devtable_lock); |
66 | |
67 | /* A list of preallocated protection domains */ |
68 | static LIST_HEAD(iommu_pd_list); |
69 | static DEFINE_SPINLOCK(iommu_pd_list_lock); |
70 | |
71 | /* List of all available dev_data structures */ |
72 | static LIST_HEAD(dev_data_list); |
73 | static DEFINE_SPINLOCK(dev_data_list_lock); |
74 | |
75 | /* |
76 | * Domain for untranslated devices - only allocated |
77 | * if iommu=pt passed on kernel cmd line. |
78 | */ |
79 | static struct protection_domain *pt_domain; |
80 | |
81 | static struct iommu_ops amd_iommu_ops; |
82 | |
83 | static ATOMIC_NOTIFIER_HEAD(ppr_notifier); |
84 | int amd_iommu_max_glx_val = -1; |
85 | |
86 | static struct dma_map_ops amd_iommu_dma_ops; |
87 | |
88 | /* |
89 | * general struct to manage commands send to an IOMMU |
90 | */ |
91 | struct iommu_cmd { |
92 | u32 data[4]; |
93 | }; |
94 | |
95 | static void update_domain(struct protection_domain *domain); |
96 | static int __init alloc_passthrough_domain(void); |
97 | |
98 | /**************************************************************************** |
99 | * |
100 | * Helper functions |
101 | * |
102 | ****************************************************************************/ |
103 | |
104 | static struct iommu_dev_data *alloc_dev_data(u16 devid) |
105 | { |
106 | struct iommu_dev_data *dev_data; |
107 | unsigned long flags; |
108 | |
109 | dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); |
110 | if (!dev_data) |
111 | return NULL; |
112 | |
113 | dev_data->devid = devid; |
114 | atomic_set(&dev_data->bind, 0); |
115 | |
116 | spin_lock_irqsave(&dev_data_list_lock, flags); |
117 | list_add_tail(&dev_data->dev_data_list, &dev_data_list); |
118 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
119 | |
120 | return dev_data; |
121 | } |
122 | |
123 | static void free_dev_data(struct iommu_dev_data *dev_data) |
124 | { |
125 | unsigned long flags; |
126 | |
127 | spin_lock_irqsave(&dev_data_list_lock, flags); |
128 | list_del(&dev_data->dev_data_list); |
129 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
130 | |
131 | kfree(dev_data); |
132 | } |
133 | |
134 | static struct iommu_dev_data *search_dev_data(u16 devid) |
135 | { |
136 | struct iommu_dev_data *dev_data; |
137 | unsigned long flags; |
138 | |
139 | spin_lock_irqsave(&dev_data_list_lock, flags); |
140 | list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { |
141 | if (dev_data->devid == devid) |
142 | goto out_unlock; |
143 | } |
144 | |
145 | dev_data = NULL; |
146 | |
147 | out_unlock: |
148 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
149 | |
150 | return dev_data; |
151 | } |
152 | |
153 | static struct iommu_dev_data *find_dev_data(u16 devid) |
154 | { |
155 | struct iommu_dev_data *dev_data; |
156 | |
157 | dev_data = search_dev_data(devid); |
158 | |
159 | if (dev_data == NULL) |
160 | dev_data = alloc_dev_data(devid); |
161 | |
162 | return dev_data; |
163 | } |
164 | |
165 | static inline u16 get_device_id(struct device *dev) |
166 | { |
167 | struct pci_dev *pdev = to_pci_dev(dev); |
168 | |
169 | return calc_devid(pdev->bus->number, pdev->devfn); |
170 | } |
171 | |
172 | static struct iommu_dev_data *get_dev_data(struct device *dev) |
173 | { |
174 | return dev->archdata.iommu; |
175 | } |
176 | |
177 | static bool pci_iommuv2_capable(struct pci_dev *pdev) |
178 | { |
179 | static const int caps[] = { |
180 | PCI_EXT_CAP_ID_ATS, |
181 | PCI_EXT_CAP_ID_PRI, |
182 | PCI_EXT_CAP_ID_PASID, |
183 | }; |
184 | int i, pos; |
185 | |
186 | for (i = 0; i < 3; ++i) { |
187 | pos = pci_find_ext_capability(pdev, caps[i]); |
188 | if (pos == 0) |
189 | return false; |
190 | } |
191 | |
192 | return true; |
193 | } |
194 | |
195 | static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) |
196 | { |
197 | struct iommu_dev_data *dev_data; |
198 | |
199 | dev_data = get_dev_data(&pdev->dev); |
200 | |
201 | return dev_data->errata & (1 << erratum) ? true : false; |
202 | } |
203 | |
204 | /* |
205 | * In this function the list of preallocated protection domains is traversed to |
206 | * find the domain for a specific device |
207 | */ |
208 | static struct dma_ops_domain *find_protection_domain(u16 devid) |
209 | { |
210 | struct dma_ops_domain *entry, *ret = NULL; |
211 | unsigned long flags; |
212 | u16 alias = amd_iommu_alias_table[devid]; |
213 | |
214 | if (list_empty(&iommu_pd_list)) |
215 | return NULL; |
216 | |
217 | spin_lock_irqsave(&iommu_pd_list_lock, flags); |
218 | |
219 | list_for_each_entry(entry, &iommu_pd_list, list) { |
220 | if (entry->target_dev == devid || |
221 | entry->target_dev == alias) { |
222 | ret = entry; |
223 | break; |
224 | } |
225 | } |
226 | |
227 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); |
228 | |
229 | return ret; |
230 | } |
231 | |
232 | /* |
233 | * This function checks if the driver got a valid device from the caller to |
234 | * avoid dereferencing invalid pointers. |
235 | */ |
236 | static bool check_device(struct device *dev) |
237 | { |
238 | u16 devid; |
239 | |
240 | if (!dev || !dev->dma_mask) |
241 | return false; |
242 | |
243 | /* No device or no PCI device */ |
244 | if (dev->bus != &pci_bus_type) |
245 | return false; |
246 | |
247 | devid = get_device_id(dev); |
248 | |
249 | /* Out of our scope? */ |
250 | if (devid > amd_iommu_last_bdf) |
251 | return false; |
252 | |
253 | if (amd_iommu_rlookup_table[devid] == NULL) |
254 | return false; |
255 | |
256 | return true; |
257 | } |
258 | |
259 | static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to) |
260 | { |
261 | pci_dev_put(*from); |
262 | *from = to; |
263 | } |
264 | |
265 | #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) |
266 | |
267 | static int iommu_init_device(struct device *dev) |
268 | { |
269 | struct pci_dev *dma_pdev = NULL, *pdev = to_pci_dev(dev); |
270 | struct iommu_dev_data *dev_data; |
271 | struct iommu_group *group; |
272 | u16 alias; |
273 | int ret; |
274 | |
275 | if (dev->archdata.iommu) |
276 | return 0; |
277 | |
278 | dev_data = find_dev_data(get_device_id(dev)); |
279 | if (!dev_data) |
280 | return -ENOMEM; |
281 | |
282 | alias = amd_iommu_alias_table[dev_data->devid]; |
283 | if (alias != dev_data->devid) { |
284 | struct iommu_dev_data *alias_data; |
285 | |
286 | alias_data = find_dev_data(alias); |
287 | if (alias_data == NULL) { |
288 | pr_err("AMD-Vi: Warning: Unhandled device %s\n", |
289 | dev_name(dev)); |
290 | free_dev_data(dev_data); |
291 | return -ENOTSUPP; |
292 | } |
293 | dev_data->alias_data = alias_data; |
294 | |
295 | dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff); |
296 | } |
297 | |
298 | if (dma_pdev == NULL) |
299 | dma_pdev = pci_dev_get(pdev); |
300 | |
301 | /* Account for quirked devices */ |
302 | swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev)); |
303 | |
304 | /* |
305 | * If it's a multifunction device that does not support our |
306 | * required ACS flags, add to the same group as function 0. |
307 | */ |
308 | if (dma_pdev->multifunction && |
309 | !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) |
310 | swap_pci_ref(&dma_pdev, |
311 | pci_get_slot(dma_pdev->bus, |
312 | PCI_DEVFN(PCI_SLOT(dma_pdev->devfn), |
313 | 0))); |
314 | |
315 | /* |
316 | * Devices on the root bus go through the iommu. If that's not us, |
317 | * find the next upstream device and test ACS up to the root bus. |
318 | * Finding the next device may require skipping virtual buses. |
319 | */ |
320 | while (!pci_is_root_bus(dma_pdev->bus)) { |
321 | struct pci_bus *bus = dma_pdev->bus; |
322 | |
323 | while (!bus->self) { |
324 | if (!pci_is_root_bus(bus)) |
325 | bus = bus->parent; |
326 | else |
327 | goto root_bus; |
328 | } |
329 | |
330 | if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) |
331 | break; |
332 | |
333 | swap_pci_ref(&dma_pdev, pci_dev_get(bus->self)); |
334 | } |
335 | |
336 | root_bus: |
337 | group = iommu_group_get(&dma_pdev->dev); |
338 | pci_dev_put(dma_pdev); |
339 | if (!group) { |
340 | group = iommu_group_alloc(); |
341 | if (IS_ERR(group)) |
342 | return PTR_ERR(group); |
343 | } |
344 | |
345 | ret = iommu_group_add_device(group, dev); |
346 | |
347 | iommu_group_put(group); |
348 | |
349 | if (ret) |
350 | return ret; |
351 | |
352 | if (pci_iommuv2_capable(pdev)) { |
353 | struct amd_iommu *iommu; |
354 | |
355 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
356 | dev_data->iommu_v2 = iommu->is_iommu_v2; |
357 | } |
358 | |
359 | dev->archdata.iommu = dev_data; |
360 | |
361 | return 0; |
362 | } |
363 | |
364 | static void iommu_ignore_device(struct device *dev) |
365 | { |
366 | u16 devid, alias; |
367 | |
368 | devid = get_device_id(dev); |
369 | alias = amd_iommu_alias_table[devid]; |
370 | |
371 | memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); |
372 | memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); |
373 | |
374 | amd_iommu_rlookup_table[devid] = NULL; |
375 | amd_iommu_rlookup_table[alias] = NULL; |
376 | } |
377 | |
378 | static void iommu_uninit_device(struct device *dev) |
379 | { |
380 | iommu_group_remove_device(dev); |
381 | |
382 | /* |
383 | * Nothing to do here - we keep dev_data around for unplugged devices |
384 | * and reuse it when the device is re-plugged - not doing so would |
385 | * introduce a ton of races. |
386 | */ |
387 | } |
388 | |
389 | void __init amd_iommu_uninit_devices(void) |
390 | { |
391 | struct iommu_dev_data *dev_data, *n; |
392 | struct pci_dev *pdev = NULL; |
393 | |
394 | for_each_pci_dev(pdev) { |
395 | |
396 | if (!check_device(&pdev->dev)) |
397 | continue; |
398 | |
399 | iommu_uninit_device(&pdev->dev); |
400 | } |
401 | |
402 | /* Free all of our dev_data structures */ |
403 | list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list) |
404 | free_dev_data(dev_data); |
405 | } |
406 | |
407 | int __init amd_iommu_init_devices(void) |
408 | { |
409 | struct pci_dev *pdev = NULL; |
410 | int ret = 0; |
411 | |
412 | for_each_pci_dev(pdev) { |
413 | |
414 | if (!check_device(&pdev->dev)) |
415 | continue; |
416 | |
417 | ret = iommu_init_device(&pdev->dev); |
418 | if (ret == -ENOTSUPP) |
419 | iommu_ignore_device(&pdev->dev); |
420 | else if (ret) |
421 | goto out_free; |
422 | } |
423 | |
424 | return 0; |
425 | |
426 | out_free: |
427 | |
428 | amd_iommu_uninit_devices(); |
429 | |
430 | return ret; |
431 | } |
432 | #ifdef CONFIG_AMD_IOMMU_STATS |
433 | |
434 | /* |
435 | * Initialization code for statistics collection |
436 | */ |
437 | |
438 | DECLARE_STATS_COUNTER(compl_wait); |
439 | DECLARE_STATS_COUNTER(cnt_map_single); |
440 | DECLARE_STATS_COUNTER(cnt_unmap_single); |
441 | DECLARE_STATS_COUNTER(cnt_map_sg); |
442 | DECLARE_STATS_COUNTER(cnt_unmap_sg); |
443 | DECLARE_STATS_COUNTER(cnt_alloc_coherent); |
444 | DECLARE_STATS_COUNTER(cnt_free_coherent); |
445 | DECLARE_STATS_COUNTER(cross_page); |
446 | DECLARE_STATS_COUNTER(domain_flush_single); |
447 | DECLARE_STATS_COUNTER(domain_flush_all); |
448 | DECLARE_STATS_COUNTER(alloced_io_mem); |
449 | DECLARE_STATS_COUNTER(total_map_requests); |
450 | DECLARE_STATS_COUNTER(complete_ppr); |
451 | DECLARE_STATS_COUNTER(invalidate_iotlb); |
452 | DECLARE_STATS_COUNTER(invalidate_iotlb_all); |
453 | DECLARE_STATS_COUNTER(pri_requests); |
454 | |
455 | static struct dentry *stats_dir; |
456 | static struct dentry *de_fflush; |
457 | |
458 | static void amd_iommu_stats_add(struct __iommu_counter *cnt) |
459 | { |
460 | if (stats_dir == NULL) |
461 | return; |
462 | |
463 | cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, |
464 | &cnt->value); |
465 | } |
466 | |
467 | static void amd_iommu_stats_init(void) |
468 | { |
469 | stats_dir = debugfs_create_dir("amd-iommu", NULL); |
470 | if (stats_dir == NULL) |
471 | return; |
472 | |
473 | de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, |
474 | &amd_iommu_unmap_flush); |
475 | |
476 | amd_iommu_stats_add(&compl_wait); |
477 | amd_iommu_stats_add(&cnt_map_single); |
478 | amd_iommu_stats_add(&cnt_unmap_single); |
479 | amd_iommu_stats_add(&cnt_map_sg); |
480 | amd_iommu_stats_add(&cnt_unmap_sg); |
481 | amd_iommu_stats_add(&cnt_alloc_coherent); |
482 | amd_iommu_stats_add(&cnt_free_coherent); |
483 | amd_iommu_stats_add(&cross_page); |
484 | amd_iommu_stats_add(&domain_flush_single); |
485 | amd_iommu_stats_add(&domain_flush_all); |
486 | amd_iommu_stats_add(&alloced_io_mem); |
487 | amd_iommu_stats_add(&total_map_requests); |
488 | amd_iommu_stats_add(&complete_ppr); |
489 | amd_iommu_stats_add(&invalidate_iotlb); |
490 | amd_iommu_stats_add(&invalidate_iotlb_all); |
491 | amd_iommu_stats_add(&pri_requests); |
492 | } |
493 | |
494 | #endif |
495 | |
496 | /**************************************************************************** |
497 | * |
498 | * Interrupt handling functions |
499 | * |
500 | ****************************************************************************/ |
501 | |
502 | static void dump_dte_entry(u16 devid) |
503 | { |
504 | int i; |
505 | |
506 | for (i = 0; i < 4; ++i) |
507 | pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, |
508 | amd_iommu_dev_table[devid].data[i]); |
509 | } |
510 | |
511 | static void dump_command(unsigned long phys_addr) |
512 | { |
513 | struct iommu_cmd *cmd = phys_to_virt(phys_addr); |
514 | int i; |
515 | |
516 | for (i = 0; i < 4; ++i) |
517 | pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); |
518 | } |
519 | |
520 | static void iommu_print_event(struct amd_iommu *iommu, void *__evt) |
521 | { |
522 | int type, devid, domid, flags; |
523 | volatile u32 *event = __evt; |
524 | int count = 0; |
525 | u64 address; |
526 | |
527 | retry: |
528 | type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
529 | devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
530 | domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; |
531 | flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
532 | address = (u64)(((u64)event[3]) << 32) | event[2]; |
533 | |
534 | if (type == 0) { |
535 | /* Did we hit the erratum? */ |
536 | if (++count == LOOP_TIMEOUT) { |
537 | pr_err("AMD-Vi: No event written to event log\n"); |
538 | return; |
539 | } |
540 | udelay(1); |
541 | goto retry; |
542 | } |
543 | |
544 | printk(KERN_ERR "AMD-Vi: Event logged ["); |
545 | |
546 | switch (type) { |
547 | case EVENT_TYPE_ILL_DEV: |
548 | printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " |
549 | "address=0x%016llx flags=0x%04x]\n", |
550 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
551 | address, flags); |
552 | dump_dte_entry(devid); |
553 | break; |
554 | case EVENT_TYPE_IO_FAULT: |
555 | printk("IO_PAGE_FAULT device=%02x:%02x.%x " |
556 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
557 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
558 | domid, address, flags); |
559 | break; |
560 | case EVENT_TYPE_DEV_TAB_ERR: |
561 | printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
562 | "address=0x%016llx flags=0x%04x]\n", |
563 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
564 | address, flags); |
565 | break; |
566 | case EVENT_TYPE_PAGE_TAB_ERR: |
567 | printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
568 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
569 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
570 | domid, address, flags); |
571 | break; |
572 | case EVENT_TYPE_ILL_CMD: |
573 | printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); |
574 | dump_command(address); |
575 | break; |
576 | case EVENT_TYPE_CMD_HARD_ERR: |
577 | printk("COMMAND_HARDWARE_ERROR address=0x%016llx " |
578 | "flags=0x%04x]\n", address, flags); |
579 | break; |
580 | case EVENT_TYPE_IOTLB_INV_TO: |
581 | printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " |
582 | "address=0x%016llx]\n", |
583 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
584 | address); |
585 | break; |
586 | case EVENT_TYPE_INV_DEV_REQ: |
587 | printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " |
588 | "address=0x%016llx flags=0x%04x]\n", |
589 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
590 | address, flags); |
591 | break; |
592 | default: |
593 | printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); |
594 | } |
595 | |
596 | memset(__evt, 0, 4 * sizeof(u32)); |
597 | } |
598 | |
599 | static void iommu_poll_events(struct amd_iommu *iommu) |
600 | { |
601 | u32 head, tail; |
602 | unsigned long flags; |
603 | |
604 | spin_lock_irqsave(&iommu->lock, flags); |
605 | |
606 | head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
607 | tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
608 | |
609 | while (head != tail) { |
610 | iommu_print_event(iommu, iommu->evt_buf + head); |
611 | head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; |
612 | } |
613 | |
614 | writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
615 | |
616 | spin_unlock_irqrestore(&iommu->lock, flags); |
617 | } |
618 | |
619 | static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) |
620 | { |
621 | struct amd_iommu_fault fault; |
622 | |
623 | INC_STATS_COUNTER(pri_requests); |
624 | |
625 | if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { |
626 | pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); |
627 | return; |
628 | } |
629 | |
630 | fault.address = raw[1]; |
631 | fault.pasid = PPR_PASID(raw[0]); |
632 | fault.device_id = PPR_DEVID(raw[0]); |
633 | fault.tag = PPR_TAG(raw[0]); |
634 | fault.flags = PPR_FLAGS(raw[0]); |
635 | |
636 | atomic_notifier_call_chain(&ppr_notifier, 0, &fault); |
637 | } |
638 | |
639 | static void iommu_poll_ppr_log(struct amd_iommu *iommu) |
640 | { |
641 | unsigned long flags; |
642 | u32 head, tail; |
643 | |
644 | if (iommu->ppr_log == NULL) |
645 | return; |
646 | |
647 | /* enable ppr interrupts again */ |
648 | writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET); |
649 | |
650 | spin_lock_irqsave(&iommu->lock, flags); |
651 | |
652 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
653 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
654 | |
655 | while (head != tail) { |
656 | volatile u64 *raw; |
657 | u64 entry[2]; |
658 | int i; |
659 | |
660 | raw = (u64 *)(iommu->ppr_log + head); |
661 | |
662 | /* |
663 | * Hardware bug: Interrupt may arrive before the entry is |
664 | * written to memory. If this happens we need to wait for the |
665 | * entry to arrive. |
666 | */ |
667 | for (i = 0; i < LOOP_TIMEOUT; ++i) { |
668 | if (PPR_REQ_TYPE(raw[0]) != 0) |
669 | break; |
670 | udelay(1); |
671 | } |
672 | |
673 | /* Avoid memcpy function-call overhead */ |
674 | entry[0] = raw[0]; |
675 | entry[1] = raw[1]; |
676 | |
677 | /* |
678 | * To detect the hardware bug we need to clear the entry |
679 | * back to zero. |
680 | */ |
681 | raw[0] = raw[1] = 0UL; |
682 | |
683 | /* Update head pointer of hardware ring-buffer */ |
684 | head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; |
685 | writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
686 | |
687 | /* |
688 | * Release iommu->lock because ppr-handling might need to |
689 | * re-aquire it |
690 | */ |
691 | spin_unlock_irqrestore(&iommu->lock, flags); |
692 | |
693 | /* Handle PPR entry */ |
694 | iommu_handle_ppr_entry(iommu, entry); |
695 | |
696 | spin_lock_irqsave(&iommu->lock, flags); |
697 | |
698 | /* Refresh ring-buffer information */ |
699 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
700 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
701 | } |
702 | |
703 | spin_unlock_irqrestore(&iommu->lock, flags); |
704 | } |
705 | |
706 | irqreturn_t amd_iommu_int_thread(int irq, void *data) |
707 | { |
708 | struct amd_iommu *iommu; |
709 | |
710 | for_each_iommu(iommu) { |
711 | iommu_poll_events(iommu); |
712 | iommu_poll_ppr_log(iommu); |
713 | } |
714 | |
715 | return IRQ_HANDLED; |
716 | } |
717 | |
718 | irqreturn_t amd_iommu_int_handler(int irq, void *data) |
719 | { |
720 | return IRQ_WAKE_THREAD; |
721 | } |
722 | |
723 | /**************************************************************************** |
724 | * |
725 | * IOMMU command queuing functions |
726 | * |
727 | ****************************************************************************/ |
728 | |
729 | static int wait_on_sem(volatile u64 *sem) |
730 | { |
731 | int i = 0; |
732 | |
733 | while (*sem == 0 && i < LOOP_TIMEOUT) { |
734 | udelay(1); |
735 | i += 1; |
736 | } |
737 | |
738 | if (i == LOOP_TIMEOUT) { |
739 | pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); |
740 | return -EIO; |
741 | } |
742 | |
743 | return 0; |
744 | } |
745 | |
746 | static void copy_cmd_to_buffer(struct amd_iommu *iommu, |
747 | struct iommu_cmd *cmd, |
748 | u32 tail) |
749 | { |
750 | u8 *target; |
751 | |
752 | target = iommu->cmd_buf + tail; |
753 | tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; |
754 | |
755 | /* Copy command to buffer */ |
756 | memcpy(target, cmd, sizeof(*cmd)); |
757 | |
758 | /* Tell the IOMMU about it */ |
759 | writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
760 | } |
761 | |
762 | static void build_completion_wait(struct iommu_cmd *cmd, u64 address) |
763 | { |
764 | WARN_ON(address & 0x7ULL); |
765 | |
766 | memset(cmd, 0, sizeof(*cmd)); |
767 | cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; |
768 | cmd->data[1] = upper_32_bits(__pa(address)); |
769 | cmd->data[2] = 1; |
770 | CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); |
771 | } |
772 | |
773 | static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) |
774 | { |
775 | memset(cmd, 0, sizeof(*cmd)); |
776 | cmd->data[0] = devid; |
777 | CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); |
778 | } |
779 | |
780 | static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, |
781 | size_t size, u16 domid, int pde) |
782 | { |
783 | u64 pages; |
784 | int s; |
785 | |
786 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
787 | s = 0; |
788 | |
789 | if (pages > 1) { |
790 | /* |
791 | * If we have to flush more than one page, flush all |
792 | * TLB entries for this domain |
793 | */ |
794 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
795 | s = 1; |
796 | } |
797 | |
798 | address &= PAGE_MASK; |
799 | |
800 | memset(cmd, 0, sizeof(*cmd)); |
801 | cmd->data[1] |= domid; |
802 | cmd->data[2] = lower_32_bits(address); |
803 | cmd->data[3] = upper_32_bits(address); |
804 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
805 | if (s) /* size bit - we flush more than one 4kb page */ |
806 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
807 | if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ |
808 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
809 | } |
810 | |
811 | static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, |
812 | u64 address, size_t size) |
813 | { |
814 | u64 pages; |
815 | int s; |
816 | |
817 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
818 | s = 0; |
819 | |
820 | if (pages > 1) { |
821 | /* |
822 | * If we have to flush more than one page, flush all |
823 | * TLB entries for this domain |
824 | */ |
825 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
826 | s = 1; |
827 | } |
828 | |
829 | address &= PAGE_MASK; |
830 | |
831 | memset(cmd, 0, sizeof(*cmd)); |
832 | cmd->data[0] = devid; |
833 | cmd->data[0] |= (qdep & 0xff) << 24; |
834 | cmd->data[1] = devid; |
835 | cmd->data[2] = lower_32_bits(address); |
836 | cmd->data[3] = upper_32_bits(address); |
837 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
838 | if (s) |
839 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
840 | } |
841 | |
842 | static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, |
843 | u64 address, bool size) |
844 | { |
845 | memset(cmd, 0, sizeof(*cmd)); |
846 | |
847 | address &= ~(0xfffULL); |
848 | |
849 | cmd->data[0] = pasid & PASID_MASK; |
850 | cmd->data[1] = domid; |
851 | cmd->data[2] = lower_32_bits(address); |
852 | cmd->data[3] = upper_32_bits(address); |
853 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
854 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
855 | if (size) |
856 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
857 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
858 | } |
859 | |
860 | static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, |
861 | int qdep, u64 address, bool size) |
862 | { |
863 | memset(cmd, 0, sizeof(*cmd)); |
864 | |
865 | address &= ~(0xfffULL); |
866 | |
867 | cmd->data[0] = devid; |
868 | cmd->data[0] |= (pasid & 0xff) << 16; |
869 | cmd->data[0] |= (qdep & 0xff) << 24; |
870 | cmd->data[1] = devid; |
871 | cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16; |
872 | cmd->data[2] = lower_32_bits(address); |
873 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
874 | cmd->data[3] = upper_32_bits(address); |
875 | if (size) |
876 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
877 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
878 | } |
879 | |
880 | static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, |
881 | int status, int tag, bool gn) |
882 | { |
883 | memset(cmd, 0, sizeof(*cmd)); |
884 | |
885 | cmd->data[0] = devid; |
886 | if (gn) { |
887 | cmd->data[1] = pasid & PASID_MASK; |
888 | cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; |
889 | } |
890 | cmd->data[3] = tag & 0x1ff; |
891 | cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; |
892 | |
893 | CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); |
894 | } |
895 | |
896 | static void build_inv_all(struct iommu_cmd *cmd) |
897 | { |
898 | memset(cmd, 0, sizeof(*cmd)); |
899 | CMD_SET_TYPE(cmd, CMD_INV_ALL); |
900 | } |
901 | |
902 | /* |
903 | * Writes the command to the IOMMUs command buffer and informs the |
904 | * hardware about the new command. |
905 | */ |
906 | static int iommu_queue_command_sync(struct amd_iommu *iommu, |
907 | struct iommu_cmd *cmd, |
908 | bool sync) |
909 | { |
910 | u32 left, tail, head, next_tail; |
911 | unsigned long flags; |
912 | |
913 | WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED); |
914 | |
915 | again: |
916 | spin_lock_irqsave(&iommu->lock, flags); |
917 | |
918 | head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
919 | tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
920 | next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; |
921 | left = (head - next_tail) % iommu->cmd_buf_size; |
922 | |
923 | if (left <= 2) { |
924 | struct iommu_cmd sync_cmd; |
925 | volatile u64 sem = 0; |
926 | int ret; |
927 | |
928 | build_completion_wait(&sync_cmd, (u64)&sem); |
929 | copy_cmd_to_buffer(iommu, &sync_cmd, tail); |
930 | |
931 | spin_unlock_irqrestore(&iommu->lock, flags); |
932 | |
933 | if ((ret = wait_on_sem(&sem)) != 0) |
934 | return ret; |
935 | |
936 | goto again; |
937 | } |
938 | |
939 | copy_cmd_to_buffer(iommu, cmd, tail); |
940 | |
941 | /* We need to sync now to make sure all commands are processed */ |
942 | iommu->need_sync = sync; |
943 | |
944 | spin_unlock_irqrestore(&iommu->lock, flags); |
945 | |
946 | return 0; |
947 | } |
948 | |
949 | static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
950 | { |
951 | return iommu_queue_command_sync(iommu, cmd, true); |
952 | } |
953 | |
954 | /* |
955 | * This function queues a completion wait command into the command |
956 | * buffer of an IOMMU |
957 | */ |
958 | static int iommu_completion_wait(struct amd_iommu *iommu) |
959 | { |
960 | struct iommu_cmd cmd; |
961 | volatile u64 sem = 0; |
962 | int ret; |
963 | |
964 | if (!iommu->need_sync) |
965 | return 0; |
966 | |
967 | build_completion_wait(&cmd, (u64)&sem); |
968 | |
969 | ret = iommu_queue_command_sync(iommu, &cmd, false); |
970 | if (ret) |
971 | return ret; |
972 | |
973 | return wait_on_sem(&sem); |
974 | } |
975 | |
976 | static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) |
977 | { |
978 | struct iommu_cmd cmd; |
979 | |
980 | build_inv_dte(&cmd, devid); |
981 | |
982 | return iommu_queue_command(iommu, &cmd); |
983 | } |
984 | |
985 | static void iommu_flush_dte_all(struct amd_iommu *iommu) |
986 | { |
987 | u32 devid; |
988 | |
989 | for (devid = 0; devid <= 0xffff; ++devid) |
990 | iommu_flush_dte(iommu, devid); |
991 | |
992 | iommu_completion_wait(iommu); |
993 | } |
994 | |
995 | /* |
996 | * This function uses heavy locking and may disable irqs for some time. But |
997 | * this is no issue because it is only called during resume. |
998 | */ |
999 | static void iommu_flush_tlb_all(struct amd_iommu *iommu) |
1000 | { |
1001 | u32 dom_id; |
1002 | |
1003 | for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { |
1004 | struct iommu_cmd cmd; |
1005 | build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
1006 | dom_id, 1); |
1007 | iommu_queue_command(iommu, &cmd); |
1008 | } |
1009 | |
1010 | iommu_completion_wait(iommu); |
1011 | } |
1012 | |
1013 | static void iommu_flush_all(struct amd_iommu *iommu) |
1014 | { |
1015 | struct iommu_cmd cmd; |
1016 | |
1017 | build_inv_all(&cmd); |
1018 | |
1019 | iommu_queue_command(iommu, &cmd); |
1020 | iommu_completion_wait(iommu); |
1021 | } |
1022 | |
1023 | void iommu_flush_all_caches(struct amd_iommu *iommu) |
1024 | { |
1025 | if (iommu_feature(iommu, FEATURE_IA)) { |
1026 | iommu_flush_all(iommu); |
1027 | } else { |
1028 | iommu_flush_dte_all(iommu); |
1029 | iommu_flush_tlb_all(iommu); |
1030 | } |
1031 | } |
1032 | |
1033 | /* |
1034 | * Command send function for flushing on-device TLB |
1035 | */ |
1036 | static int device_flush_iotlb(struct iommu_dev_data *dev_data, |
1037 | u64 address, size_t size) |
1038 | { |
1039 | struct amd_iommu *iommu; |
1040 | struct iommu_cmd cmd; |
1041 | int qdep; |
1042 | |
1043 | qdep = dev_data->ats.qdep; |
1044 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
1045 | |
1046 | build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); |
1047 | |
1048 | return iommu_queue_command(iommu, &cmd); |
1049 | } |
1050 | |
1051 | /* |
1052 | * Command send function for invalidating a device table entry |
1053 | */ |
1054 | static int device_flush_dte(struct iommu_dev_data *dev_data) |
1055 | { |
1056 | struct amd_iommu *iommu; |
1057 | int ret; |
1058 | |
1059 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
1060 | |
1061 | ret = iommu_flush_dte(iommu, dev_data->devid); |
1062 | if (ret) |
1063 | return ret; |
1064 | |
1065 | if (dev_data->ats.enabled) |
1066 | ret = device_flush_iotlb(dev_data, 0, ~0UL); |
1067 | |
1068 | return ret; |
1069 | } |
1070 | |
1071 | /* |
1072 | * TLB invalidation function which is called from the mapping functions. |
1073 | * It invalidates a single PTE if the range to flush is within a single |
1074 | * page. Otherwise it flushes the whole TLB of the IOMMU. |
1075 | */ |
1076 | static void __domain_flush_pages(struct protection_domain *domain, |
1077 | u64 address, size_t size, int pde) |
1078 | { |
1079 | struct iommu_dev_data *dev_data; |
1080 | struct iommu_cmd cmd; |
1081 | int ret = 0, i; |
1082 | |
1083 | build_inv_iommu_pages(&cmd, address, size, domain->id, pde); |
1084 | |
1085 | for (i = 0; i < amd_iommus_present; ++i) { |
1086 | if (!domain->dev_iommu[i]) |
1087 | continue; |
1088 | |
1089 | /* |
1090 | * Devices of this domain are behind this IOMMU |
1091 | * We need a TLB flush |
1092 | */ |
1093 | ret |= iommu_queue_command(amd_iommus[i], &cmd); |
1094 | } |
1095 | |
1096 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
1097 | |
1098 | if (!dev_data->ats.enabled) |
1099 | continue; |
1100 | |
1101 | ret |= device_flush_iotlb(dev_data, address, size); |
1102 | } |
1103 | |
1104 | WARN_ON(ret); |
1105 | } |
1106 | |
1107 | static void domain_flush_pages(struct protection_domain *domain, |
1108 | u64 address, size_t size) |
1109 | { |
1110 | __domain_flush_pages(domain, address, size, 0); |
1111 | } |
1112 | |
1113 | /* Flush the whole IO/TLB for a given protection domain */ |
1114 | static void domain_flush_tlb(struct protection_domain *domain) |
1115 | { |
1116 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); |
1117 | } |
1118 | |
1119 | /* Flush the whole IO/TLB for a given protection domain - including PDE */ |
1120 | static void domain_flush_tlb_pde(struct protection_domain *domain) |
1121 | { |
1122 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); |
1123 | } |
1124 | |
1125 | static void domain_flush_complete(struct protection_domain *domain) |
1126 | { |
1127 | int i; |
1128 | |
1129 | for (i = 0; i < amd_iommus_present; ++i) { |
1130 | if (!domain->dev_iommu[i]) |
1131 | continue; |
1132 | |
1133 | /* |
1134 | * Devices of this domain are behind this IOMMU |
1135 | * We need to wait for completion of all commands. |
1136 | */ |
1137 | iommu_completion_wait(amd_iommus[i]); |
1138 | } |
1139 | } |
1140 | |
1141 | |
1142 | /* |
1143 | * This function flushes the DTEs for all devices in domain |
1144 | */ |
1145 | static void domain_flush_devices(struct protection_domain *domain) |
1146 | { |
1147 | struct iommu_dev_data *dev_data; |
1148 | |
1149 | list_for_each_entry(dev_data, &domain->dev_list, list) |
1150 | device_flush_dte(dev_data); |
1151 | } |
1152 | |
1153 | /**************************************************************************** |
1154 | * |
1155 | * The functions below are used the create the page table mappings for |
1156 | * unity mapped regions. |
1157 | * |
1158 | ****************************************************************************/ |
1159 | |
1160 | /* |
1161 | * This function is used to add another level to an IO page table. Adding |
1162 | * another level increases the size of the address space by 9 bits to a size up |
1163 | * to 64 bits. |
1164 | */ |
1165 | static bool increase_address_space(struct protection_domain *domain, |
1166 | gfp_t gfp) |
1167 | { |
1168 | u64 *pte; |
1169 | |
1170 | if (domain->mode == PAGE_MODE_6_LEVEL) |
1171 | /* address space already 64 bit large */ |
1172 | return false; |
1173 | |
1174 | pte = (void *)get_zeroed_page(gfp); |
1175 | if (!pte) |
1176 | return false; |
1177 | |
1178 | *pte = PM_LEVEL_PDE(domain->mode, |
1179 | virt_to_phys(domain->pt_root)); |
1180 | domain->pt_root = pte; |
1181 | domain->mode += 1; |
1182 | domain->updated = true; |
1183 | |
1184 | return true; |
1185 | } |
1186 | |
1187 | static u64 *alloc_pte(struct protection_domain *domain, |
1188 | unsigned long address, |
1189 | unsigned long page_size, |
1190 | u64 **pte_page, |
1191 | gfp_t gfp) |
1192 | { |
1193 | int level, end_lvl; |
1194 | u64 *pte, *page; |
1195 | |
1196 | BUG_ON(!is_power_of_2(page_size)); |
1197 | |
1198 | while (address > PM_LEVEL_SIZE(domain->mode)) |
1199 | increase_address_space(domain, gfp); |
1200 | |
1201 | level = domain->mode - 1; |
1202 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
1203 | address = PAGE_SIZE_ALIGN(address, page_size); |
1204 | end_lvl = PAGE_SIZE_LEVEL(page_size); |
1205 | |
1206 | while (level > end_lvl) { |
1207 | if (!IOMMU_PTE_PRESENT(*pte)) { |
1208 | page = (u64 *)get_zeroed_page(gfp); |
1209 | if (!page) |
1210 | return NULL; |
1211 | *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); |
1212 | } |
1213 | |
1214 | /* No level skipping support yet */ |
1215 | if (PM_PTE_LEVEL(*pte) != level) |
1216 | return NULL; |
1217 | |
1218 | level -= 1; |
1219 | |
1220 | pte = IOMMU_PTE_PAGE(*pte); |
1221 | |
1222 | if (pte_page && level == end_lvl) |
1223 | *pte_page = pte; |
1224 | |
1225 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
1226 | } |
1227 | |
1228 | return pte; |
1229 | } |
1230 | |
1231 | /* |
1232 | * This function checks if there is a PTE for a given dma address. If |
1233 | * there is one, it returns the pointer to it. |
1234 | */ |
1235 | static u64 *fetch_pte(struct protection_domain *domain, unsigned long address) |
1236 | { |
1237 | int level; |
1238 | u64 *pte; |
1239 | |
1240 | if (address > PM_LEVEL_SIZE(domain->mode)) |
1241 | return NULL; |
1242 | |
1243 | level = domain->mode - 1; |
1244 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
1245 | |
1246 | while (level > 0) { |
1247 | |
1248 | /* Not Present */ |
1249 | if (!IOMMU_PTE_PRESENT(*pte)) |
1250 | return NULL; |
1251 | |
1252 | /* Large PTE */ |
1253 | if (PM_PTE_LEVEL(*pte) == 0x07) { |
1254 | unsigned long pte_mask, __pte; |
1255 | |
1256 | /* |
1257 | * If we have a series of large PTEs, make |
1258 | * sure to return a pointer to the first one. |
1259 | */ |
1260 | pte_mask = PTE_PAGE_SIZE(*pte); |
1261 | pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); |
1262 | __pte = ((unsigned long)pte) & pte_mask; |
1263 | |
1264 | return (u64 *)__pte; |
1265 | } |
1266 | |
1267 | /* No level skipping support yet */ |
1268 | if (PM_PTE_LEVEL(*pte) != level) |
1269 | return NULL; |
1270 | |
1271 | level -= 1; |
1272 | |
1273 | /* Walk to the next level */ |
1274 | pte = IOMMU_PTE_PAGE(*pte); |
1275 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
1276 | } |
1277 | |
1278 | return pte; |
1279 | } |
1280 | |
1281 | /* |
1282 | * Generic mapping functions. It maps a physical address into a DMA |
1283 | * address space. It allocates the page table pages if necessary. |
1284 | * In the future it can be extended to a generic mapping function |
1285 | * supporting all features of AMD IOMMU page tables like level skipping |
1286 | * and full 64 bit address spaces. |
1287 | */ |
1288 | static int iommu_map_page(struct protection_domain *dom, |
1289 | unsigned long bus_addr, |
1290 | unsigned long phys_addr, |
1291 | int prot, |
1292 | unsigned long page_size) |
1293 | { |
1294 | u64 __pte, *pte; |
1295 | int i, count; |
1296 | |
1297 | if (!(prot & IOMMU_PROT_MASK)) |
1298 | return -EINVAL; |
1299 | |
1300 | bus_addr = PAGE_ALIGN(bus_addr); |
1301 | phys_addr = PAGE_ALIGN(phys_addr); |
1302 | count = PAGE_SIZE_PTE_COUNT(page_size); |
1303 | pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); |
1304 | |
1305 | for (i = 0; i < count; ++i) |
1306 | if (IOMMU_PTE_PRESENT(pte[i])) |
1307 | return -EBUSY; |
1308 | |
1309 | if (page_size > PAGE_SIZE) { |
1310 | __pte = PAGE_SIZE_PTE(phys_addr, page_size); |
1311 | __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; |
1312 | } else |
1313 | __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; |
1314 | |
1315 | if (prot & IOMMU_PROT_IR) |
1316 | __pte |= IOMMU_PTE_IR; |
1317 | if (prot & IOMMU_PROT_IW) |
1318 | __pte |= IOMMU_PTE_IW; |
1319 | |
1320 | for (i = 0; i < count; ++i) |
1321 | pte[i] = __pte; |
1322 | |
1323 | update_domain(dom); |
1324 | |
1325 | return 0; |
1326 | } |
1327 | |
1328 | static unsigned long iommu_unmap_page(struct protection_domain *dom, |
1329 | unsigned long bus_addr, |
1330 | unsigned long page_size) |
1331 | { |
1332 | unsigned long long unmap_size, unmapped; |
1333 | u64 *pte; |
1334 | |
1335 | BUG_ON(!is_power_of_2(page_size)); |
1336 | |
1337 | unmapped = 0; |
1338 | |
1339 | while (unmapped < page_size) { |
1340 | |
1341 | pte = fetch_pte(dom, bus_addr); |
1342 | |
1343 | if (!pte) { |
1344 | /* |
1345 | * No PTE for this address |
1346 | * move forward in 4kb steps |
1347 | */ |
1348 | unmap_size = PAGE_SIZE; |
1349 | } else if (PM_PTE_LEVEL(*pte) == 0) { |
1350 | /* 4kb PTE found for this address */ |
1351 | unmap_size = PAGE_SIZE; |
1352 | *pte = 0ULL; |
1353 | } else { |
1354 | int count, i; |
1355 | |
1356 | /* Large PTE found which maps this address */ |
1357 | unmap_size = PTE_PAGE_SIZE(*pte); |
1358 | count = PAGE_SIZE_PTE_COUNT(unmap_size); |
1359 | for (i = 0; i < count; i++) |
1360 | pte[i] = 0ULL; |
1361 | } |
1362 | |
1363 | bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; |
1364 | unmapped += unmap_size; |
1365 | } |
1366 | |
1367 | BUG_ON(!is_power_of_2(unmapped)); |
1368 | |
1369 | return unmapped; |
1370 | } |
1371 | |
1372 | /* |
1373 | * This function checks if a specific unity mapping entry is needed for |
1374 | * this specific IOMMU. |
1375 | */ |
1376 | static int iommu_for_unity_map(struct amd_iommu *iommu, |
1377 | struct unity_map_entry *entry) |
1378 | { |
1379 | u16 bdf, i; |
1380 | |
1381 | for (i = entry->devid_start; i <= entry->devid_end; ++i) { |
1382 | bdf = amd_iommu_alias_table[i]; |
1383 | if (amd_iommu_rlookup_table[bdf] == iommu) |
1384 | return 1; |
1385 | } |
1386 | |
1387 | return 0; |
1388 | } |
1389 | |
1390 | /* |
1391 | * This function actually applies the mapping to the page table of the |
1392 | * dma_ops domain. |
1393 | */ |
1394 | static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, |
1395 | struct unity_map_entry *e) |
1396 | { |
1397 | u64 addr; |
1398 | int ret; |
1399 | |
1400 | for (addr = e->address_start; addr < e->address_end; |
1401 | addr += PAGE_SIZE) { |
1402 | ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot, |
1403 | PAGE_SIZE); |
1404 | if (ret) |
1405 | return ret; |
1406 | /* |
1407 | * if unity mapping is in aperture range mark the page |
1408 | * as allocated in the aperture |
1409 | */ |
1410 | if (addr < dma_dom->aperture_size) |
1411 | __set_bit(addr >> PAGE_SHIFT, |
1412 | dma_dom->aperture[0]->bitmap); |
1413 | } |
1414 | |
1415 | return 0; |
1416 | } |
1417 | |
1418 | /* |
1419 | * Init the unity mappings for a specific IOMMU in the system |
1420 | * |
1421 | * Basically iterates over all unity mapping entries and applies them to |
1422 | * the default domain DMA of that IOMMU if necessary. |
1423 | */ |
1424 | static int iommu_init_unity_mappings(struct amd_iommu *iommu) |
1425 | { |
1426 | struct unity_map_entry *entry; |
1427 | int ret; |
1428 | |
1429 | list_for_each_entry(entry, &amd_iommu_unity_map, list) { |
1430 | if (!iommu_for_unity_map(iommu, entry)) |
1431 | continue; |
1432 | ret = dma_ops_unity_map(iommu->default_dom, entry); |
1433 | if (ret) |
1434 | return ret; |
1435 | } |
1436 | |
1437 | return 0; |
1438 | } |
1439 | |
1440 | /* |
1441 | * Inits the unity mappings required for a specific device |
1442 | */ |
1443 | static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, |
1444 | u16 devid) |
1445 | { |
1446 | struct unity_map_entry *e; |
1447 | int ret; |
1448 | |
1449 | list_for_each_entry(e, &amd_iommu_unity_map, list) { |
1450 | if (!(devid >= e->devid_start && devid <= e->devid_end)) |
1451 | continue; |
1452 | ret = dma_ops_unity_map(dma_dom, e); |
1453 | if (ret) |
1454 | return ret; |
1455 | } |
1456 | |
1457 | return 0; |
1458 | } |
1459 | |
1460 | /**************************************************************************** |
1461 | * |
1462 | * The next functions belong to the address allocator for the dma_ops |
1463 | * interface functions. They work like the allocators in the other IOMMU |
1464 | * drivers. Its basically a bitmap which marks the allocated pages in |
1465 | * the aperture. Maybe it could be enhanced in the future to a more |
1466 | * efficient allocator. |
1467 | * |
1468 | ****************************************************************************/ |
1469 | |
1470 | /* |
1471 | * The address allocator core functions. |
1472 | * |
1473 | * called with domain->lock held |
1474 | */ |
1475 | |
1476 | /* |
1477 | * Used to reserve address ranges in the aperture (e.g. for exclusion |
1478 | * ranges. |
1479 | */ |
1480 | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, |
1481 | unsigned long start_page, |
1482 | unsigned int pages) |
1483 | { |
1484 | unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; |
1485 | |
1486 | if (start_page + pages > last_page) |
1487 | pages = last_page - start_page; |
1488 | |
1489 | for (i = start_page; i < start_page + pages; ++i) { |
1490 | int index = i / APERTURE_RANGE_PAGES; |
1491 | int page = i % APERTURE_RANGE_PAGES; |
1492 | __set_bit(page, dom->aperture[index]->bitmap); |
1493 | } |
1494 | } |
1495 | |
1496 | /* |
1497 | * This function is used to add a new aperture range to an existing |
1498 | * aperture in case of dma_ops domain allocation or address allocation |
1499 | * failure. |
1500 | */ |
1501 | static int alloc_new_range(struct dma_ops_domain *dma_dom, |
1502 | bool populate, gfp_t gfp) |
1503 | { |
1504 | int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; |
1505 | struct amd_iommu *iommu; |
1506 | unsigned long i, old_size; |
1507 | |
1508 | #ifdef CONFIG_IOMMU_STRESS |
1509 | populate = false; |
1510 | #endif |
1511 | |
1512 | if (index >= APERTURE_MAX_RANGES) |
1513 | return -ENOMEM; |
1514 | |
1515 | dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); |
1516 | if (!dma_dom->aperture[index]) |
1517 | return -ENOMEM; |
1518 | |
1519 | dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); |
1520 | if (!dma_dom->aperture[index]->bitmap) |
1521 | goto out_free; |
1522 | |
1523 | dma_dom->aperture[index]->offset = dma_dom->aperture_size; |
1524 | |
1525 | if (populate) { |
1526 | unsigned long address = dma_dom->aperture_size; |
1527 | int i, num_ptes = APERTURE_RANGE_PAGES / 512; |
1528 | u64 *pte, *pte_page; |
1529 | |
1530 | for (i = 0; i < num_ptes; ++i) { |
1531 | pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, |
1532 | &pte_page, gfp); |
1533 | if (!pte) |
1534 | goto out_free; |
1535 | |
1536 | dma_dom->aperture[index]->pte_pages[i] = pte_page; |
1537 | |
1538 | address += APERTURE_RANGE_SIZE / 64; |
1539 | } |
1540 | } |
1541 | |
1542 | old_size = dma_dom->aperture_size; |
1543 | dma_dom->aperture_size += APERTURE_RANGE_SIZE; |
1544 | |
1545 | /* Reserve address range used for MSI messages */ |
1546 | if (old_size < MSI_ADDR_BASE_LO && |
1547 | dma_dom->aperture_size > MSI_ADDR_BASE_LO) { |
1548 | unsigned long spage; |
1549 | int pages; |
1550 | |
1551 | pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE); |
1552 | spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT; |
1553 | |
1554 | dma_ops_reserve_addresses(dma_dom, spage, pages); |
1555 | } |
1556 | |
1557 | /* Initialize the exclusion range if necessary */ |
1558 | for_each_iommu(iommu) { |
1559 | if (iommu->exclusion_start && |
1560 | iommu->exclusion_start >= dma_dom->aperture[index]->offset |
1561 | && iommu->exclusion_start < dma_dom->aperture_size) { |
1562 | unsigned long startpage; |
1563 | int pages = iommu_num_pages(iommu->exclusion_start, |
1564 | iommu->exclusion_length, |
1565 | PAGE_SIZE); |
1566 | startpage = iommu->exclusion_start >> PAGE_SHIFT; |
1567 | dma_ops_reserve_addresses(dma_dom, startpage, pages); |
1568 | } |
1569 | } |
1570 | |
1571 | /* |
1572 | * Check for areas already mapped as present in the new aperture |
1573 | * range and mark those pages as reserved in the allocator. Such |
1574 | * mappings may already exist as a result of requested unity |
1575 | * mappings for devices. |
1576 | */ |
1577 | for (i = dma_dom->aperture[index]->offset; |
1578 | i < dma_dom->aperture_size; |
1579 | i += PAGE_SIZE) { |
1580 | u64 *pte = fetch_pte(&dma_dom->domain, i); |
1581 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
1582 | continue; |
1583 | |
1584 | dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1); |
1585 | } |
1586 | |
1587 | update_domain(&dma_dom->domain); |
1588 | |
1589 | return 0; |
1590 | |
1591 | out_free: |
1592 | update_domain(&dma_dom->domain); |
1593 | |
1594 | free_page((unsigned long)dma_dom->aperture[index]->bitmap); |
1595 | |
1596 | kfree(dma_dom->aperture[index]); |
1597 | dma_dom->aperture[index] = NULL; |
1598 | |
1599 | return -ENOMEM; |
1600 | } |
1601 | |
1602 | static unsigned long dma_ops_area_alloc(struct device *dev, |
1603 | struct dma_ops_domain *dom, |
1604 | unsigned int pages, |
1605 | unsigned long align_mask, |
1606 | u64 dma_mask, |
1607 | unsigned long start) |
1608 | { |
1609 | unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; |
1610 | int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; |
1611 | int i = start >> APERTURE_RANGE_SHIFT; |
1612 | unsigned long boundary_size; |
1613 | unsigned long address = -1; |
1614 | unsigned long limit; |
1615 | |
1616 | next_bit >>= PAGE_SHIFT; |
1617 | |
1618 | boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
1619 | PAGE_SIZE) >> PAGE_SHIFT; |
1620 | |
1621 | for (;i < max_index; ++i) { |
1622 | unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; |
1623 | |
1624 | if (dom->aperture[i]->offset >= dma_mask) |
1625 | break; |
1626 | |
1627 | limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, |
1628 | dma_mask >> PAGE_SHIFT); |
1629 | |
1630 | address = iommu_area_alloc(dom->aperture[i]->bitmap, |
1631 | limit, next_bit, pages, 0, |
1632 | boundary_size, align_mask); |
1633 | if (address != -1) { |
1634 | address = dom->aperture[i]->offset + |
1635 | (address << PAGE_SHIFT); |
1636 | dom->next_address = address + (pages << PAGE_SHIFT); |
1637 | break; |
1638 | } |
1639 | |
1640 | next_bit = 0; |
1641 | } |
1642 | |
1643 | return address; |
1644 | } |
1645 | |
1646 | static unsigned long dma_ops_alloc_addresses(struct device *dev, |
1647 | struct dma_ops_domain *dom, |
1648 | unsigned int pages, |
1649 | unsigned long align_mask, |
1650 | u64 dma_mask) |
1651 | { |
1652 | unsigned long address; |
1653 | |
1654 | #ifdef CONFIG_IOMMU_STRESS |
1655 | dom->next_address = 0; |
1656 | dom->need_flush = true; |
1657 | #endif |
1658 | |
1659 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
1660 | dma_mask, dom->next_address); |
1661 | |
1662 | if (address == -1) { |
1663 | dom->next_address = 0; |
1664 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
1665 | dma_mask, 0); |
1666 | dom->need_flush = true; |
1667 | } |
1668 | |
1669 | if (unlikely(address == -1)) |
1670 | address = DMA_ERROR_CODE; |
1671 | |
1672 | WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); |
1673 | |
1674 | return address; |
1675 | } |
1676 | |
1677 | /* |
1678 | * The address free function. |
1679 | * |
1680 | * called with domain->lock held |
1681 | */ |
1682 | static void dma_ops_free_addresses(struct dma_ops_domain *dom, |
1683 | unsigned long address, |
1684 | unsigned int pages) |
1685 | { |
1686 | unsigned i = address >> APERTURE_RANGE_SHIFT; |
1687 | struct aperture_range *range = dom->aperture[i]; |
1688 | |
1689 | BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); |
1690 | |
1691 | #ifdef CONFIG_IOMMU_STRESS |
1692 | if (i < 4) |
1693 | return; |
1694 | #endif |
1695 | |
1696 | if (address >= dom->next_address) |
1697 | dom->need_flush = true; |
1698 | |
1699 | address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; |
1700 | |
1701 | bitmap_clear(range->bitmap, address, pages); |
1702 | |
1703 | } |
1704 | |
1705 | /**************************************************************************** |
1706 | * |
1707 | * The next functions belong to the domain allocation. A domain is |
1708 | * allocated for every IOMMU as the default domain. If device isolation |
1709 | * is enabled, every device get its own domain. The most important thing |
1710 | * about domains is the page table mapping the DMA address space they |
1711 | * contain. |
1712 | * |
1713 | ****************************************************************************/ |
1714 | |
1715 | /* |
1716 | * This function adds a protection domain to the global protection domain list |
1717 | */ |
1718 | static void add_domain_to_list(struct protection_domain *domain) |
1719 | { |
1720 | unsigned long flags; |
1721 | |
1722 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
1723 | list_add(&domain->list, &amd_iommu_pd_list); |
1724 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
1725 | } |
1726 | |
1727 | /* |
1728 | * This function removes a protection domain to the global |
1729 | * protection domain list |
1730 | */ |
1731 | static void del_domain_from_list(struct protection_domain *domain) |
1732 | { |
1733 | unsigned long flags; |
1734 | |
1735 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
1736 | list_del(&domain->list); |
1737 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
1738 | } |
1739 | |
1740 | static u16 domain_id_alloc(void) |
1741 | { |
1742 | unsigned long flags; |
1743 | int id; |
1744 | |
1745 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
1746 | id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
1747 | BUG_ON(id == 0); |
1748 | if (id > 0 && id < MAX_DOMAIN_ID) |
1749 | __set_bit(id, amd_iommu_pd_alloc_bitmap); |
1750 | else |
1751 | id = 0; |
1752 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
1753 | |
1754 | return id; |
1755 | } |
1756 | |
1757 | static void domain_id_free(int id) |
1758 | { |
1759 | unsigned long flags; |
1760 | |
1761 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
1762 | if (id > 0 && id < MAX_DOMAIN_ID) |
1763 | __clear_bit(id, amd_iommu_pd_alloc_bitmap); |
1764 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
1765 | } |
1766 | |
1767 | static void free_pagetable(struct protection_domain *domain) |
1768 | { |
1769 | int i, j; |
1770 | u64 *p1, *p2, *p3; |
1771 | |
1772 | p1 = domain->pt_root; |
1773 | |
1774 | if (!p1) |
1775 | return; |
1776 | |
1777 | for (i = 0; i < 512; ++i) { |
1778 | if (!IOMMU_PTE_PRESENT(p1[i])) |
1779 | continue; |
1780 | |
1781 | p2 = IOMMU_PTE_PAGE(p1[i]); |
1782 | for (j = 0; j < 512; ++j) { |
1783 | if (!IOMMU_PTE_PRESENT(p2[j])) |
1784 | continue; |
1785 | p3 = IOMMU_PTE_PAGE(p2[j]); |
1786 | free_page((unsigned long)p3); |
1787 | } |
1788 | |
1789 | free_page((unsigned long)p2); |
1790 | } |
1791 | |
1792 | free_page((unsigned long)p1); |
1793 | |
1794 | domain->pt_root = NULL; |
1795 | } |
1796 | |
1797 | static void free_gcr3_tbl_level1(u64 *tbl) |
1798 | { |
1799 | u64 *ptr; |
1800 | int i; |
1801 | |
1802 | for (i = 0; i < 512; ++i) { |
1803 | if (!(tbl[i] & GCR3_VALID)) |
1804 | continue; |
1805 | |
1806 | ptr = __va(tbl[i] & PAGE_MASK); |
1807 | |
1808 | free_page((unsigned long)ptr); |
1809 | } |
1810 | } |
1811 | |
1812 | static void free_gcr3_tbl_level2(u64 *tbl) |
1813 | { |
1814 | u64 *ptr; |
1815 | int i; |
1816 | |
1817 | for (i = 0; i < 512; ++i) { |
1818 | if (!(tbl[i] & GCR3_VALID)) |
1819 | continue; |
1820 | |
1821 | ptr = __va(tbl[i] & PAGE_MASK); |
1822 | |
1823 | free_gcr3_tbl_level1(ptr); |
1824 | } |
1825 | } |
1826 | |
1827 | static void free_gcr3_table(struct protection_domain *domain) |
1828 | { |
1829 | if (domain->glx == 2) |
1830 | free_gcr3_tbl_level2(domain->gcr3_tbl); |
1831 | else if (domain->glx == 1) |
1832 | free_gcr3_tbl_level1(domain->gcr3_tbl); |
1833 | else if (domain->glx != 0) |
1834 | BUG(); |
1835 | |
1836 | free_page((unsigned long)domain->gcr3_tbl); |
1837 | } |
1838 | |
1839 | /* |
1840 | * Free a domain, only used if something went wrong in the |
1841 | * allocation path and we need to free an already allocated page table |
1842 | */ |
1843 | static void dma_ops_domain_free(struct dma_ops_domain *dom) |
1844 | { |
1845 | int i; |
1846 | |
1847 | if (!dom) |
1848 | return; |
1849 | |
1850 | del_domain_from_list(&dom->domain); |
1851 | |
1852 | free_pagetable(&dom->domain); |
1853 | |
1854 | for (i = 0; i < APERTURE_MAX_RANGES; ++i) { |
1855 | if (!dom->aperture[i]) |
1856 | continue; |
1857 | free_page((unsigned long)dom->aperture[i]->bitmap); |
1858 | kfree(dom->aperture[i]); |
1859 | } |
1860 | |
1861 | kfree(dom); |
1862 | } |
1863 | |
1864 | /* |
1865 | * Allocates a new protection domain usable for the dma_ops functions. |
1866 | * It also initializes the page table and the address allocator data |
1867 | * structures required for the dma_ops interface |
1868 | */ |
1869 | static struct dma_ops_domain *dma_ops_domain_alloc(void) |
1870 | { |
1871 | struct dma_ops_domain *dma_dom; |
1872 | |
1873 | dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); |
1874 | if (!dma_dom) |
1875 | return NULL; |
1876 | |
1877 | spin_lock_init(&dma_dom->domain.lock); |
1878 | |
1879 | dma_dom->domain.id = domain_id_alloc(); |
1880 | if (dma_dom->domain.id == 0) |
1881 | goto free_dma_dom; |
1882 | INIT_LIST_HEAD(&dma_dom->domain.dev_list); |
1883 | dma_dom->domain.mode = PAGE_MODE_2_LEVEL; |
1884 | dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
1885 | dma_dom->domain.flags = PD_DMA_OPS_MASK; |
1886 | dma_dom->domain.priv = dma_dom; |
1887 | if (!dma_dom->domain.pt_root) |
1888 | goto free_dma_dom; |
1889 | |
1890 | dma_dom->need_flush = false; |
1891 | dma_dom->target_dev = 0xffff; |
1892 | |
1893 | add_domain_to_list(&dma_dom->domain); |
1894 | |
1895 | if (alloc_new_range(dma_dom, true, GFP_KERNEL)) |
1896 | goto free_dma_dom; |
1897 | |
1898 | /* |
1899 | * mark the first page as allocated so we never return 0 as |
1900 | * a valid dma-address. So we can use 0 as error value |
1901 | */ |
1902 | dma_dom->aperture[0]->bitmap[0] = 1; |
1903 | dma_dom->next_address = 0; |
1904 | |
1905 | |
1906 | return dma_dom; |
1907 | |
1908 | free_dma_dom: |
1909 | dma_ops_domain_free(dma_dom); |
1910 | |
1911 | return NULL; |
1912 | } |
1913 | |
1914 | /* |
1915 | * little helper function to check whether a given protection domain is a |
1916 | * dma_ops domain |
1917 | */ |
1918 | static bool dma_ops_domain(struct protection_domain *domain) |
1919 | { |
1920 | return domain->flags & PD_DMA_OPS_MASK; |
1921 | } |
1922 | |
1923 | static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) |
1924 | { |
1925 | u64 pte_root = 0; |
1926 | u64 flags = 0; |
1927 | |
1928 | if (domain->mode != PAGE_MODE_NONE) |
1929 | pte_root = virt_to_phys(domain->pt_root); |
1930 | |
1931 | pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) |
1932 | << DEV_ENTRY_MODE_SHIFT; |
1933 | pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; |
1934 | |
1935 | flags = amd_iommu_dev_table[devid].data[1]; |
1936 | |
1937 | if (ats) |
1938 | flags |= DTE_FLAG_IOTLB; |
1939 | |
1940 | if (domain->flags & PD_IOMMUV2_MASK) { |
1941 | u64 gcr3 = __pa(domain->gcr3_tbl); |
1942 | u64 glx = domain->glx; |
1943 | u64 tmp; |
1944 | |
1945 | pte_root |= DTE_FLAG_GV; |
1946 | pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; |
1947 | |
1948 | /* First mask out possible old values for GCR3 table */ |
1949 | tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
1950 | flags &= ~tmp; |
1951 | |
1952 | tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
1953 | flags &= ~tmp; |
1954 | |
1955 | /* Encode GCR3 table into DTE */ |
1956 | tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; |
1957 | pte_root |= tmp; |
1958 | |
1959 | tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; |
1960 | flags |= tmp; |
1961 | |
1962 | tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; |
1963 | flags |= tmp; |
1964 | } |
1965 | |
1966 | flags &= ~(0xffffUL); |
1967 | flags |= domain->id; |
1968 | |
1969 | amd_iommu_dev_table[devid].data[1] = flags; |
1970 | amd_iommu_dev_table[devid].data[0] = pte_root; |
1971 | } |
1972 | |
1973 | static void clear_dte_entry(u16 devid) |
1974 | { |
1975 | /* remove entry from the device table seen by the hardware */ |
1976 | amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; |
1977 | amd_iommu_dev_table[devid].data[1] = 0; |
1978 | |
1979 | amd_iommu_apply_erratum_63(devid); |
1980 | } |
1981 | |
1982 | static void do_attach(struct iommu_dev_data *dev_data, |
1983 | struct protection_domain *domain) |
1984 | { |
1985 | struct amd_iommu *iommu; |
1986 | bool ats; |
1987 | |
1988 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
1989 | ats = dev_data->ats.enabled; |
1990 | |
1991 | /* Update data structures */ |
1992 | dev_data->domain = domain; |
1993 | list_add(&dev_data->list, &domain->dev_list); |
1994 | set_dte_entry(dev_data->devid, domain, ats); |
1995 | |
1996 | /* Do reference counting */ |
1997 | domain->dev_iommu[iommu->index] += 1; |
1998 | domain->dev_cnt += 1; |
1999 | |
2000 | /* Flush the DTE entry */ |
2001 | device_flush_dte(dev_data); |
2002 | } |
2003 | |
2004 | static void do_detach(struct iommu_dev_data *dev_data) |
2005 | { |
2006 | struct amd_iommu *iommu; |
2007 | |
2008 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
2009 | |
2010 | /* decrease reference counters */ |
2011 | dev_data->domain->dev_iommu[iommu->index] -= 1; |
2012 | dev_data->domain->dev_cnt -= 1; |
2013 | |
2014 | /* Update data structures */ |
2015 | dev_data->domain = NULL; |
2016 | list_del(&dev_data->list); |
2017 | clear_dte_entry(dev_data->devid); |
2018 | |
2019 | /* Flush the DTE entry */ |
2020 | device_flush_dte(dev_data); |
2021 | } |
2022 | |
2023 | /* |
2024 | * If a device is not yet associated with a domain, this function does |
2025 | * assigns it visible for the hardware |
2026 | */ |
2027 | static int __attach_device(struct iommu_dev_data *dev_data, |
2028 | struct protection_domain *domain) |
2029 | { |
2030 | int ret; |
2031 | |
2032 | /* lock domain */ |
2033 | spin_lock(&domain->lock); |
2034 | |
2035 | if (dev_data->alias_data != NULL) { |
2036 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
2037 | |
2038 | /* Some sanity checks */ |
2039 | ret = -EBUSY; |
2040 | if (alias_data->domain != NULL && |
2041 | alias_data->domain != domain) |
2042 | goto out_unlock; |
2043 | |
2044 | if (dev_data->domain != NULL && |
2045 | dev_data->domain != domain) |
2046 | goto out_unlock; |
2047 | |
2048 | /* Do real assignment */ |
2049 | if (alias_data->domain == NULL) |
2050 | do_attach(alias_data, domain); |
2051 | |
2052 | atomic_inc(&alias_data->bind); |
2053 | } |
2054 | |
2055 | if (dev_data->domain == NULL) |
2056 | do_attach(dev_data, domain); |
2057 | |
2058 | atomic_inc(&dev_data->bind); |
2059 | |
2060 | ret = 0; |
2061 | |
2062 | out_unlock: |
2063 | |
2064 | /* ready */ |
2065 | spin_unlock(&domain->lock); |
2066 | |
2067 | return ret; |
2068 | } |
2069 | |
2070 | |
2071 | static void pdev_iommuv2_disable(struct pci_dev *pdev) |
2072 | { |
2073 | pci_disable_ats(pdev); |
2074 | pci_disable_pri(pdev); |
2075 | pci_disable_pasid(pdev); |
2076 | } |
2077 | |
2078 | /* FIXME: Change generic reset-function to do the same */ |
2079 | static int pri_reset_while_enabled(struct pci_dev *pdev) |
2080 | { |
2081 | u16 control; |
2082 | int pos; |
2083 | |
2084 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
2085 | if (!pos) |
2086 | return -EINVAL; |
2087 | |
2088 | pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); |
2089 | control |= PCI_PRI_CTRL_RESET; |
2090 | pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); |
2091 | |
2092 | return 0; |
2093 | } |
2094 | |
2095 | static int pdev_iommuv2_enable(struct pci_dev *pdev) |
2096 | { |
2097 | bool reset_enable; |
2098 | int reqs, ret; |
2099 | |
2100 | /* FIXME: Hardcode number of outstanding requests for now */ |
2101 | reqs = 32; |
2102 | if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) |
2103 | reqs = 1; |
2104 | reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); |
2105 | |
2106 | /* Only allow access to user-accessible pages */ |
2107 | ret = pci_enable_pasid(pdev, 0); |
2108 | if (ret) |
2109 | goto out_err; |
2110 | |
2111 | /* First reset the PRI state of the device */ |
2112 | ret = pci_reset_pri(pdev); |
2113 | if (ret) |
2114 | goto out_err; |
2115 | |
2116 | /* Enable PRI */ |
2117 | ret = pci_enable_pri(pdev, reqs); |
2118 | if (ret) |
2119 | goto out_err; |
2120 | |
2121 | if (reset_enable) { |
2122 | ret = pri_reset_while_enabled(pdev); |
2123 | if (ret) |
2124 | goto out_err; |
2125 | } |
2126 | |
2127 | ret = pci_enable_ats(pdev, PAGE_SHIFT); |
2128 | if (ret) |
2129 | goto out_err; |
2130 | |
2131 | return 0; |
2132 | |
2133 | out_err: |
2134 | pci_disable_pri(pdev); |
2135 | pci_disable_pasid(pdev); |
2136 | |
2137 | return ret; |
2138 | } |
2139 | |
2140 | /* FIXME: Move this to PCI code */ |
2141 | #define PCI_PRI_TLP_OFF (1 << 15) |
2142 | |
2143 | static bool pci_pri_tlp_required(struct pci_dev *pdev) |
2144 | { |
2145 | u16 status; |
2146 | int pos; |
2147 | |
2148 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
2149 | if (!pos) |
2150 | return false; |
2151 | |
2152 | pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); |
2153 | |
2154 | return (status & PCI_PRI_TLP_OFF) ? true : false; |
2155 | } |
2156 | |
2157 | /* |
2158 | * If a device is not yet associated with a domain, this function does |
2159 | * assigns it visible for the hardware |
2160 | */ |
2161 | static int attach_device(struct device *dev, |
2162 | struct protection_domain *domain) |
2163 | { |
2164 | struct pci_dev *pdev = to_pci_dev(dev); |
2165 | struct iommu_dev_data *dev_data; |
2166 | unsigned long flags; |
2167 | int ret; |
2168 | |
2169 | dev_data = get_dev_data(dev); |
2170 | |
2171 | if (domain->flags & PD_IOMMUV2_MASK) { |
2172 | if (!dev_data->iommu_v2 || !dev_data->passthrough) |
2173 | return -EINVAL; |
2174 | |
2175 | if (pdev_iommuv2_enable(pdev) != 0) |
2176 | return -EINVAL; |
2177 | |
2178 | dev_data->ats.enabled = true; |
2179 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
2180 | dev_data->pri_tlp = pci_pri_tlp_required(pdev); |
2181 | } else if (amd_iommu_iotlb_sup && |
2182 | pci_enable_ats(pdev, PAGE_SHIFT) == 0) { |
2183 | dev_data->ats.enabled = true; |
2184 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
2185 | } |
2186 | |
2187 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
2188 | ret = __attach_device(dev_data, domain); |
2189 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
2190 | |
2191 | /* |
2192 | * We might boot into a crash-kernel here. The crashed kernel |
2193 | * left the caches in the IOMMU dirty. So we have to flush |
2194 | * here to evict all dirty stuff. |
2195 | */ |
2196 | domain_flush_tlb_pde(domain); |
2197 | |
2198 | return ret; |
2199 | } |
2200 | |
2201 | /* |
2202 | * Removes a device from a protection domain (unlocked) |
2203 | */ |
2204 | static void __detach_device(struct iommu_dev_data *dev_data) |
2205 | { |
2206 | struct protection_domain *domain; |
2207 | unsigned long flags; |
2208 | |
2209 | BUG_ON(!dev_data->domain); |
2210 | |
2211 | domain = dev_data->domain; |
2212 | |
2213 | spin_lock_irqsave(&domain->lock, flags); |
2214 | |
2215 | if (dev_data->alias_data != NULL) { |
2216 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
2217 | |
2218 | if (atomic_dec_and_test(&alias_data->bind)) |
2219 | do_detach(alias_data); |
2220 | } |
2221 | |
2222 | if (atomic_dec_and_test(&dev_data->bind)) |
2223 | do_detach(dev_data); |
2224 | |
2225 | spin_unlock_irqrestore(&domain->lock, flags); |
2226 | |
2227 | /* |
2228 | * If we run in passthrough mode the device must be assigned to the |
2229 | * passthrough domain if it is detached from any other domain. |
2230 | * Make sure we can deassign from the pt_domain itself. |
2231 | */ |
2232 | if (dev_data->passthrough && |
2233 | (dev_data->domain == NULL && domain != pt_domain)) |
2234 | __attach_device(dev_data, pt_domain); |
2235 | } |
2236 | |
2237 | /* |
2238 | * Removes a device from a protection domain (with devtable_lock held) |
2239 | */ |
2240 | static void detach_device(struct device *dev) |
2241 | { |
2242 | struct protection_domain *domain; |
2243 | struct iommu_dev_data *dev_data; |
2244 | unsigned long flags; |
2245 | |
2246 | dev_data = get_dev_data(dev); |
2247 | domain = dev_data->domain; |
2248 | |
2249 | /* lock device table */ |
2250 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
2251 | __detach_device(dev_data); |
2252 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
2253 | |
2254 | if (domain->flags & PD_IOMMUV2_MASK) |
2255 | pdev_iommuv2_disable(to_pci_dev(dev)); |
2256 | else if (dev_data->ats.enabled) |
2257 | pci_disable_ats(to_pci_dev(dev)); |
2258 | |
2259 | dev_data->ats.enabled = false; |
2260 | } |
2261 | |
2262 | /* |
2263 | * Find out the protection domain structure for a given PCI device. This |
2264 | * will give us the pointer to the page table root for example. |
2265 | */ |
2266 | static struct protection_domain *domain_for_device(struct device *dev) |
2267 | { |
2268 | struct iommu_dev_data *dev_data; |
2269 | struct protection_domain *dom = NULL; |
2270 | unsigned long flags; |
2271 | |
2272 | dev_data = get_dev_data(dev); |
2273 | |
2274 | if (dev_data->domain) |
2275 | return dev_data->domain; |
2276 | |
2277 | if (dev_data->alias_data != NULL) { |
2278 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
2279 | |
2280 | read_lock_irqsave(&amd_iommu_devtable_lock, flags); |
2281 | if (alias_data->domain != NULL) { |
2282 | __attach_device(dev_data, alias_data->domain); |
2283 | dom = alias_data->domain; |
2284 | } |
2285 | read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
2286 | } |
2287 | |
2288 | return dom; |
2289 | } |
2290 | |
2291 | static int device_change_notifier(struct notifier_block *nb, |
2292 | unsigned long action, void *data) |
2293 | { |
2294 | struct dma_ops_domain *dma_domain; |
2295 | struct protection_domain *domain; |
2296 | struct iommu_dev_data *dev_data; |
2297 | struct device *dev = data; |
2298 | struct amd_iommu *iommu; |
2299 | unsigned long flags; |
2300 | u16 devid; |
2301 | |
2302 | if (!check_device(dev)) |
2303 | return 0; |
2304 | |
2305 | devid = get_device_id(dev); |
2306 | iommu = amd_iommu_rlookup_table[devid]; |
2307 | dev_data = get_dev_data(dev); |
2308 | |
2309 | switch (action) { |
2310 | case BUS_NOTIFY_UNBOUND_DRIVER: |
2311 | |
2312 | domain = domain_for_device(dev); |
2313 | |
2314 | if (!domain) |
2315 | goto out; |
2316 | if (dev_data->passthrough) |
2317 | break; |
2318 | detach_device(dev); |
2319 | break; |
2320 | case BUS_NOTIFY_ADD_DEVICE: |
2321 | |
2322 | iommu_init_device(dev); |
2323 | |
2324 | /* |
2325 | * dev_data is still NULL and |
2326 | * got initialized in iommu_init_device |
2327 | */ |
2328 | dev_data = get_dev_data(dev); |
2329 | |
2330 | if (iommu_pass_through || dev_data->iommu_v2) { |
2331 | dev_data->passthrough = true; |
2332 | attach_device(dev, pt_domain); |
2333 | break; |
2334 | } |
2335 | |
2336 | domain = domain_for_device(dev); |
2337 | |
2338 | /* allocate a protection domain if a device is added */ |
2339 | dma_domain = find_protection_domain(devid); |
2340 | if (dma_domain) |
2341 | goto out; |
2342 | dma_domain = dma_ops_domain_alloc(); |
2343 | if (!dma_domain) |
2344 | goto out; |
2345 | dma_domain->target_dev = devid; |
2346 | |
2347 | spin_lock_irqsave(&iommu_pd_list_lock, flags); |
2348 | list_add_tail(&dma_domain->list, &iommu_pd_list); |
2349 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); |
2350 | |
2351 | dev_data = get_dev_data(dev); |
2352 | |
2353 | dev->archdata.dma_ops = &amd_iommu_dma_ops; |
2354 | |
2355 | break; |
2356 | case BUS_NOTIFY_DEL_DEVICE: |
2357 | |
2358 | iommu_uninit_device(dev); |
2359 | |
2360 | default: |
2361 | goto out; |
2362 | } |
2363 | |
2364 | iommu_completion_wait(iommu); |
2365 | |
2366 | out: |
2367 | return 0; |
2368 | } |
2369 | |
2370 | static struct notifier_block device_nb = { |
2371 | .notifier_call = device_change_notifier, |
2372 | }; |
2373 | |
2374 | void amd_iommu_init_notifier(void) |
2375 | { |
2376 | bus_register_notifier(&pci_bus_type, &device_nb); |
2377 | } |
2378 | |
2379 | /***************************************************************************** |
2380 | * |
2381 | * The next functions belong to the dma_ops mapping/unmapping code. |
2382 | * |
2383 | *****************************************************************************/ |
2384 | |
2385 | /* |
2386 | * In the dma_ops path we only have the struct device. This function |
2387 | * finds the corresponding IOMMU, the protection domain and the |
2388 | * requestor id for a given device. |
2389 | * If the device is not yet associated with a domain this is also done |
2390 | * in this function. |
2391 | */ |
2392 | static struct protection_domain *get_domain(struct device *dev) |
2393 | { |
2394 | struct protection_domain *domain; |
2395 | struct dma_ops_domain *dma_dom; |
2396 | u16 devid = get_device_id(dev); |
2397 | |
2398 | if (!check_device(dev)) |
2399 | return ERR_PTR(-EINVAL); |
2400 | |
2401 | domain = domain_for_device(dev); |
2402 | if (domain != NULL && !dma_ops_domain(domain)) |
2403 | return ERR_PTR(-EBUSY); |
2404 | |
2405 | if (domain != NULL) |
2406 | return domain; |
2407 | |
2408 | /* Device not bount yet - bind it */ |
2409 | dma_dom = find_protection_domain(devid); |
2410 | if (!dma_dom) |
2411 | dma_dom = amd_iommu_rlookup_table[devid]->default_dom; |
2412 | attach_device(dev, &dma_dom->domain); |
2413 | DUMP_printk("Using protection domain %d for device %s\n", |
2414 | dma_dom->domain.id, dev_name(dev)); |
2415 | |
2416 | return &dma_dom->domain; |
2417 | } |
2418 | |
2419 | static void update_device_table(struct protection_domain *domain) |
2420 | { |
2421 | struct iommu_dev_data *dev_data; |
2422 | |
2423 | list_for_each_entry(dev_data, &domain->dev_list, list) |
2424 | set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); |
2425 | } |
2426 | |
2427 | static void update_domain(struct protection_domain *domain) |
2428 | { |
2429 | if (!domain->updated) |
2430 | return; |
2431 | |
2432 | update_device_table(domain); |
2433 | |
2434 | domain_flush_devices(domain); |
2435 | domain_flush_tlb_pde(domain); |
2436 | |
2437 | domain->updated = false; |
2438 | } |
2439 | |
2440 | /* |
2441 | * This function fetches the PTE for a given address in the aperture |
2442 | */ |
2443 | static u64* dma_ops_get_pte(struct dma_ops_domain *dom, |
2444 | unsigned long address) |
2445 | { |
2446 | struct aperture_range *aperture; |
2447 | u64 *pte, *pte_page; |
2448 | |
2449 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
2450 | if (!aperture) |
2451 | return NULL; |
2452 | |
2453 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
2454 | if (!pte) { |
2455 | pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, |
2456 | GFP_ATOMIC); |
2457 | aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; |
2458 | } else |
2459 | pte += PM_LEVEL_INDEX(0, address); |
2460 | |
2461 | update_domain(&dom->domain); |
2462 | |
2463 | return pte; |
2464 | } |
2465 | |
2466 | /* |
2467 | * This is the generic map function. It maps one 4kb page at paddr to |
2468 | * the given address in the DMA address space for the domain. |
2469 | */ |
2470 | static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, |
2471 | unsigned long address, |
2472 | phys_addr_t paddr, |
2473 | int direction) |
2474 | { |
2475 | u64 *pte, __pte; |
2476 | |
2477 | WARN_ON(address > dom->aperture_size); |
2478 | |
2479 | paddr &= PAGE_MASK; |
2480 | |
2481 | pte = dma_ops_get_pte(dom, address); |
2482 | if (!pte) |
2483 | return DMA_ERROR_CODE; |
2484 | |
2485 | __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; |
2486 | |
2487 | if (direction == DMA_TO_DEVICE) |
2488 | __pte |= IOMMU_PTE_IR; |
2489 | else if (direction == DMA_FROM_DEVICE) |
2490 | __pte |= IOMMU_PTE_IW; |
2491 | else if (direction == DMA_BIDIRECTIONAL) |
2492 | __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; |
2493 | |
2494 | WARN_ON(*pte); |
2495 | |
2496 | *pte = __pte; |
2497 | |
2498 | return (dma_addr_t)address; |
2499 | } |
2500 | |
2501 | /* |
2502 | * The generic unmapping function for on page in the DMA address space. |
2503 | */ |
2504 | static void dma_ops_domain_unmap(struct dma_ops_domain *dom, |
2505 | unsigned long address) |
2506 | { |
2507 | struct aperture_range *aperture; |
2508 | u64 *pte; |
2509 | |
2510 | if (address >= dom->aperture_size) |
2511 | return; |
2512 | |
2513 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
2514 | if (!aperture) |
2515 | return; |
2516 | |
2517 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
2518 | if (!pte) |
2519 | return; |
2520 | |
2521 | pte += PM_LEVEL_INDEX(0, address); |
2522 | |
2523 | WARN_ON(!*pte); |
2524 | |
2525 | *pte = 0ULL; |
2526 | } |
2527 | |
2528 | /* |
2529 | * This function contains common code for mapping of a physically |
2530 | * contiguous memory region into DMA address space. It is used by all |
2531 | * mapping functions provided with this IOMMU driver. |
2532 | * Must be called with the domain lock held. |
2533 | */ |
2534 | static dma_addr_t __map_single(struct device *dev, |
2535 | struct dma_ops_domain *dma_dom, |
2536 | phys_addr_t paddr, |
2537 | size_t size, |
2538 | int dir, |
2539 | bool align, |
2540 | u64 dma_mask) |
2541 | { |
2542 | dma_addr_t offset = paddr & ~PAGE_MASK; |
2543 | dma_addr_t address, start, ret; |
2544 | unsigned int pages; |
2545 | unsigned long align_mask = 0; |
2546 | int i; |
2547 | |
2548 | pages = iommu_num_pages(paddr, size, PAGE_SIZE); |
2549 | paddr &= PAGE_MASK; |
2550 | |
2551 | INC_STATS_COUNTER(total_map_requests); |
2552 | |
2553 | if (pages > 1) |
2554 | INC_STATS_COUNTER(cross_page); |
2555 | |
2556 | if (align) |
2557 | align_mask = (1UL << get_order(size)) - 1; |
2558 | |
2559 | retry: |
2560 | address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, |
2561 | dma_mask); |
2562 | if (unlikely(address == DMA_ERROR_CODE)) { |
2563 | /* |
2564 | * setting next_address here will let the address |
2565 | * allocator only scan the new allocated range in the |
2566 | * first run. This is a small optimization. |
2567 | */ |
2568 | dma_dom->next_address = dma_dom->aperture_size; |
2569 | |
2570 | if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) |
2571 | goto out; |
2572 | |
2573 | /* |
2574 | * aperture was successfully enlarged by 128 MB, try |
2575 | * allocation again |
2576 | */ |
2577 | goto retry; |
2578 | } |
2579 | |
2580 | start = address; |
2581 | for (i = 0; i < pages; ++i) { |
2582 | ret = dma_ops_domain_map(dma_dom, start, paddr, dir); |
2583 | if (ret == DMA_ERROR_CODE) |
2584 | goto out_unmap; |
2585 | |
2586 | paddr += PAGE_SIZE; |
2587 | start += PAGE_SIZE; |
2588 | } |
2589 | address += offset; |
2590 | |
2591 | ADD_STATS_COUNTER(alloced_io_mem, size); |
2592 | |
2593 | if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { |
2594 | domain_flush_tlb(&dma_dom->domain); |
2595 | dma_dom->need_flush = false; |
2596 | } else if (unlikely(amd_iommu_np_cache)) |
2597 | domain_flush_pages(&dma_dom->domain, address, size); |
2598 | |
2599 | out: |
2600 | return address; |
2601 | |
2602 | out_unmap: |
2603 | |
2604 | for (--i; i >= 0; --i) { |
2605 | start -= PAGE_SIZE; |
2606 | dma_ops_domain_unmap(dma_dom, start); |
2607 | } |
2608 | |
2609 | dma_ops_free_addresses(dma_dom, address, pages); |
2610 | |
2611 | return DMA_ERROR_CODE; |
2612 | } |
2613 | |
2614 | /* |
2615 | * Does the reverse of the __map_single function. Must be called with |
2616 | * the domain lock held too |
2617 | */ |
2618 | static void __unmap_single(struct dma_ops_domain *dma_dom, |
2619 | dma_addr_t dma_addr, |
2620 | size_t size, |
2621 | int dir) |
2622 | { |
2623 | dma_addr_t flush_addr; |
2624 | dma_addr_t i, start; |
2625 | unsigned int pages; |
2626 | |
2627 | if ((dma_addr == DMA_ERROR_CODE) || |
2628 | (dma_addr + size > dma_dom->aperture_size)) |
2629 | return; |
2630 | |
2631 | flush_addr = dma_addr; |
2632 | pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
2633 | dma_addr &= PAGE_MASK; |
2634 | start = dma_addr; |
2635 | |
2636 | for (i = 0; i < pages; ++i) { |
2637 | dma_ops_domain_unmap(dma_dom, start); |
2638 | start += PAGE_SIZE; |
2639 | } |
2640 | |
2641 | SUB_STATS_COUNTER(alloced_io_mem, size); |
2642 | |
2643 | dma_ops_free_addresses(dma_dom, dma_addr, pages); |
2644 | |
2645 | if (amd_iommu_unmap_flush || dma_dom->need_flush) { |
2646 | domain_flush_pages(&dma_dom->domain, flush_addr, size); |
2647 | dma_dom->need_flush = false; |
2648 | } |
2649 | } |
2650 | |
2651 | /* |
2652 | * The exported map_single function for dma_ops. |
2653 | */ |
2654 | static dma_addr_t map_page(struct device *dev, struct page *page, |
2655 | unsigned long offset, size_t size, |
2656 | enum dma_data_direction dir, |
2657 | struct dma_attrs *attrs) |
2658 | { |
2659 | unsigned long flags; |
2660 | struct protection_domain *domain; |
2661 | dma_addr_t addr; |
2662 | u64 dma_mask; |
2663 | phys_addr_t paddr = page_to_phys(page) + offset; |
2664 | |
2665 | INC_STATS_COUNTER(cnt_map_single); |
2666 | |
2667 | domain = get_domain(dev); |
2668 | if (PTR_ERR(domain) == -EINVAL) |
2669 | return (dma_addr_t)paddr; |
2670 | else if (IS_ERR(domain)) |
2671 | return DMA_ERROR_CODE; |
2672 | |
2673 | dma_mask = *dev->dma_mask; |
2674 | |
2675 | spin_lock_irqsave(&domain->lock, flags); |
2676 | |
2677 | addr = __map_single(dev, domain->priv, paddr, size, dir, false, |
2678 | dma_mask); |
2679 | if (addr == DMA_ERROR_CODE) |
2680 | goto out; |
2681 | |
2682 | domain_flush_complete(domain); |
2683 | |
2684 | out: |
2685 | spin_unlock_irqrestore(&domain->lock, flags); |
2686 | |
2687 | return addr; |
2688 | } |
2689 | |
2690 | /* |
2691 | * The exported unmap_single function for dma_ops. |
2692 | */ |
2693 | static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, |
2694 | enum dma_data_direction dir, struct dma_attrs *attrs) |
2695 | { |
2696 | unsigned long flags; |
2697 | struct protection_domain *domain; |
2698 | |
2699 | INC_STATS_COUNTER(cnt_unmap_single); |
2700 | |
2701 | domain = get_domain(dev); |
2702 | if (IS_ERR(domain)) |
2703 | return; |
2704 | |
2705 | spin_lock_irqsave(&domain->lock, flags); |
2706 | |
2707 | __unmap_single(domain->priv, dma_addr, size, dir); |
2708 | |
2709 | domain_flush_complete(domain); |
2710 | |
2711 | spin_unlock_irqrestore(&domain->lock, flags); |
2712 | } |
2713 | |
2714 | /* |
2715 | * This is a special map_sg function which is used if we should map a |
2716 | * device which is not handled by an AMD IOMMU in the system. |
2717 | */ |
2718 | static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, |
2719 | int nelems, int dir) |
2720 | { |
2721 | struct scatterlist *s; |
2722 | int i; |
2723 | |
2724 | for_each_sg(sglist, s, nelems, i) { |
2725 | s->dma_address = (dma_addr_t)sg_phys(s); |
2726 | s->dma_length = s->length; |
2727 | } |
2728 | |
2729 | return nelems; |
2730 | } |
2731 | |
2732 | /* |
2733 | * The exported map_sg function for dma_ops (handles scatter-gather |
2734 | * lists). |
2735 | */ |
2736 | static int map_sg(struct device *dev, struct scatterlist *sglist, |
2737 | int nelems, enum dma_data_direction dir, |
2738 | struct dma_attrs *attrs) |
2739 | { |
2740 | unsigned long flags; |
2741 | struct protection_domain *domain; |
2742 | int i; |
2743 | struct scatterlist *s; |
2744 | phys_addr_t paddr; |
2745 | int mapped_elems = 0; |
2746 | u64 dma_mask; |
2747 | |
2748 | INC_STATS_COUNTER(cnt_map_sg); |
2749 | |
2750 | domain = get_domain(dev); |
2751 | if (PTR_ERR(domain) == -EINVAL) |
2752 | return map_sg_no_iommu(dev, sglist, nelems, dir); |
2753 | else if (IS_ERR(domain)) |
2754 | return 0; |
2755 | |
2756 | dma_mask = *dev->dma_mask; |
2757 | |
2758 | spin_lock_irqsave(&domain->lock, flags); |
2759 | |
2760 | for_each_sg(sglist, s, nelems, i) { |
2761 | paddr = sg_phys(s); |
2762 | |
2763 | s->dma_address = __map_single(dev, domain->priv, |
2764 | paddr, s->length, dir, false, |
2765 | dma_mask); |
2766 | |
2767 | if (s->dma_address) { |
2768 | s->dma_length = s->length; |
2769 | mapped_elems++; |
2770 | } else |
2771 | goto unmap; |
2772 | } |
2773 | |
2774 | domain_flush_complete(domain); |
2775 | |
2776 | out: |
2777 | spin_unlock_irqrestore(&domain->lock, flags); |
2778 | |
2779 | return mapped_elems; |
2780 | unmap: |
2781 | for_each_sg(sglist, s, mapped_elems, i) { |
2782 | if (s->dma_address) |
2783 | __unmap_single(domain->priv, s->dma_address, |
2784 | s->dma_length, dir); |
2785 | s->dma_address = s->dma_length = 0; |
2786 | } |
2787 | |
2788 | mapped_elems = 0; |
2789 | |
2790 | goto out; |
2791 | } |
2792 | |
2793 | /* |
2794 | * The exported map_sg function for dma_ops (handles scatter-gather |
2795 | * lists). |
2796 | */ |
2797 | static void unmap_sg(struct device *dev, struct scatterlist *sglist, |
2798 | int nelems, enum dma_data_direction dir, |
2799 | struct dma_attrs *attrs) |
2800 | { |
2801 | unsigned long flags; |
2802 | struct protection_domain *domain; |
2803 | struct scatterlist *s; |
2804 | int i; |
2805 | |
2806 | INC_STATS_COUNTER(cnt_unmap_sg); |
2807 | |
2808 | domain = get_domain(dev); |
2809 | if (IS_ERR(domain)) |
2810 | return; |
2811 | |
2812 | spin_lock_irqsave(&domain->lock, flags); |
2813 | |
2814 | for_each_sg(sglist, s, nelems, i) { |
2815 | __unmap_single(domain->priv, s->dma_address, |
2816 | s->dma_length, dir); |
2817 | s->dma_address = s->dma_length = 0; |
2818 | } |
2819 | |
2820 | domain_flush_complete(domain); |
2821 | |
2822 | spin_unlock_irqrestore(&domain->lock, flags); |
2823 | } |
2824 | |
2825 | /* |
2826 | * The exported alloc_coherent function for dma_ops. |
2827 | */ |
2828 | static void *alloc_coherent(struct device *dev, size_t size, |
2829 | dma_addr_t *dma_addr, gfp_t flag, |
2830 | struct dma_attrs *attrs) |
2831 | { |
2832 | unsigned long flags; |
2833 | void *virt_addr; |
2834 | struct protection_domain *domain; |
2835 | phys_addr_t paddr; |
2836 | u64 dma_mask = dev->coherent_dma_mask; |
2837 | |
2838 | INC_STATS_COUNTER(cnt_alloc_coherent); |
2839 | |
2840 | domain = get_domain(dev); |
2841 | if (PTR_ERR(domain) == -EINVAL) { |
2842 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); |
2843 | *dma_addr = __pa(virt_addr); |
2844 | return virt_addr; |
2845 | } else if (IS_ERR(domain)) |
2846 | return NULL; |
2847 | |
2848 | dma_mask = dev->coherent_dma_mask; |
2849 | flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
2850 | flag |= __GFP_ZERO; |
2851 | |
2852 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); |
2853 | if (!virt_addr) |
2854 | return NULL; |
2855 | |
2856 | paddr = virt_to_phys(virt_addr); |
2857 | |
2858 | if (!dma_mask) |
2859 | dma_mask = *dev->dma_mask; |
2860 | |
2861 | spin_lock_irqsave(&domain->lock, flags); |
2862 | |
2863 | *dma_addr = __map_single(dev, domain->priv, paddr, |
2864 | size, DMA_BIDIRECTIONAL, true, dma_mask); |
2865 | |
2866 | if (*dma_addr == DMA_ERROR_CODE) { |
2867 | spin_unlock_irqrestore(&domain->lock, flags); |
2868 | goto out_free; |
2869 | } |
2870 | |
2871 | domain_flush_complete(domain); |
2872 | |
2873 | spin_unlock_irqrestore(&domain->lock, flags); |
2874 | |
2875 | return virt_addr; |
2876 | |
2877 | out_free: |
2878 | |
2879 | free_pages((unsigned long)virt_addr, get_order(size)); |
2880 | |
2881 | return NULL; |
2882 | } |
2883 | |
2884 | /* |
2885 | * The exported free_coherent function for dma_ops. |
2886 | */ |
2887 | static void free_coherent(struct device *dev, size_t size, |
2888 | void *virt_addr, dma_addr_t dma_addr, |
2889 | struct dma_attrs *attrs) |
2890 | { |
2891 | unsigned long flags; |
2892 | struct protection_domain *domain; |
2893 | |
2894 | INC_STATS_COUNTER(cnt_free_coherent); |
2895 | |
2896 | domain = get_domain(dev); |
2897 | if (IS_ERR(domain)) |
2898 | goto free_mem; |
2899 | |
2900 | spin_lock_irqsave(&domain->lock, flags); |
2901 | |
2902 | __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); |
2903 | |
2904 | domain_flush_complete(domain); |
2905 | |
2906 | spin_unlock_irqrestore(&domain->lock, flags); |
2907 | |
2908 | free_mem: |
2909 | free_pages((unsigned long)virt_addr, get_order(size)); |
2910 | } |
2911 | |
2912 | /* |
2913 | * This function is called by the DMA layer to find out if we can handle a |
2914 | * particular device. It is part of the dma_ops. |
2915 | */ |
2916 | static int amd_iommu_dma_supported(struct device *dev, u64 mask) |
2917 | { |
2918 | return check_device(dev); |
2919 | } |
2920 | |
2921 | /* |
2922 | * The function for pre-allocating protection domains. |
2923 | * |
2924 | * If the driver core informs the DMA layer if a driver grabs a device |
2925 | * we don't need to preallocate the protection domains anymore. |
2926 | * For now we have to. |
2927 | */ |
2928 | static void __init prealloc_protection_domains(void) |
2929 | { |
2930 | struct iommu_dev_data *dev_data; |
2931 | struct dma_ops_domain *dma_dom; |
2932 | struct pci_dev *dev = NULL; |
2933 | u16 devid; |
2934 | |
2935 | for_each_pci_dev(dev) { |
2936 | |
2937 | /* Do we handle this device? */ |
2938 | if (!check_device(&dev->dev)) |
2939 | continue; |
2940 | |
2941 | dev_data = get_dev_data(&dev->dev); |
2942 | if (!amd_iommu_force_isolation && dev_data->iommu_v2) { |
2943 | /* Make sure passthrough domain is allocated */ |
2944 | alloc_passthrough_domain(); |
2945 | dev_data->passthrough = true; |
2946 | attach_device(&dev->dev, pt_domain); |
2947 | pr_info("AMD-Vi: Using passthough domain for device %s\n", |
2948 | dev_name(&dev->dev)); |
2949 | } |
2950 | |
2951 | /* Is there already any domain for it? */ |
2952 | if (domain_for_device(&dev->dev)) |
2953 | continue; |
2954 | |
2955 | devid = get_device_id(&dev->dev); |
2956 | |
2957 | dma_dom = dma_ops_domain_alloc(); |
2958 | if (!dma_dom) |
2959 | continue; |
2960 | init_unity_mappings_for_device(dma_dom, devid); |
2961 | dma_dom->target_dev = devid; |
2962 | |
2963 | attach_device(&dev->dev, &dma_dom->domain); |
2964 | |
2965 | list_add_tail(&dma_dom->list, &iommu_pd_list); |
2966 | } |
2967 | } |
2968 | |
2969 | static struct dma_map_ops amd_iommu_dma_ops = { |
2970 | .alloc = alloc_coherent, |
2971 | .free = free_coherent, |
2972 | .map_page = map_page, |
2973 | .unmap_page = unmap_page, |
2974 | .map_sg = map_sg, |
2975 | .unmap_sg = unmap_sg, |
2976 | .dma_supported = amd_iommu_dma_supported, |
2977 | }; |
2978 | |
2979 | static unsigned device_dma_ops_init(void) |
2980 | { |
2981 | struct iommu_dev_data *dev_data; |
2982 | struct pci_dev *pdev = NULL; |
2983 | unsigned unhandled = 0; |
2984 | |
2985 | for_each_pci_dev(pdev) { |
2986 | if (!check_device(&pdev->dev)) { |
2987 | |
2988 | iommu_ignore_device(&pdev->dev); |
2989 | |
2990 | unhandled += 1; |
2991 | continue; |
2992 | } |
2993 | |
2994 | dev_data = get_dev_data(&pdev->dev); |
2995 | |
2996 | if (!dev_data->passthrough) |
2997 | pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops; |
2998 | else |
2999 | pdev->dev.archdata.dma_ops = &nommu_dma_ops; |
3000 | } |
3001 | |
3002 | return unhandled; |
3003 | } |
3004 | |
3005 | /* |
3006 | * The function which clues the AMD IOMMU driver into dma_ops. |
3007 | */ |
3008 | |
3009 | void __init amd_iommu_init_api(void) |
3010 | { |
3011 | bus_set_iommu(&pci_bus_type, &amd_iommu_ops); |
3012 | } |
3013 | |
3014 | int __init amd_iommu_init_dma_ops(void) |
3015 | { |
3016 | struct amd_iommu *iommu; |
3017 | int ret, unhandled; |
3018 | |
3019 | /* |
3020 | * first allocate a default protection domain for every IOMMU we |
3021 | * found in the system. Devices not assigned to any other |
3022 | * protection domain will be assigned to the default one. |
3023 | */ |
3024 | for_each_iommu(iommu) { |
3025 | iommu->default_dom = dma_ops_domain_alloc(); |
3026 | if (iommu->default_dom == NULL) |
3027 | return -ENOMEM; |
3028 | iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; |
3029 | ret = iommu_init_unity_mappings(iommu); |
3030 | if (ret) |
3031 | goto free_domains; |
3032 | } |
3033 | |
3034 | /* |
3035 | * Pre-allocate the protection domains for each device. |
3036 | */ |
3037 | prealloc_protection_domains(); |
3038 | |
3039 | iommu_detected = 1; |
3040 | swiotlb = 0; |
3041 | |
3042 | /* Make the driver finally visible to the drivers */ |
3043 | unhandled = device_dma_ops_init(); |
3044 | if (unhandled && max_pfn > MAX_DMA32_PFN) { |
3045 | /* There are unhandled devices - initialize swiotlb for them */ |
3046 | swiotlb = 1; |
3047 | } |
3048 | |
3049 | amd_iommu_stats_init(); |
3050 | |
3051 | if (amd_iommu_unmap_flush) |
3052 | pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n"); |
3053 | else |
3054 | pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n"); |
3055 | |
3056 | return 0; |
3057 | |
3058 | free_domains: |
3059 | |
3060 | for_each_iommu(iommu) { |
3061 | if (iommu->default_dom) |
3062 | dma_ops_domain_free(iommu->default_dom); |
3063 | } |
3064 | |
3065 | return ret; |
3066 | } |
3067 | |
3068 | /***************************************************************************** |
3069 | * |
3070 | * The following functions belong to the exported interface of AMD IOMMU |
3071 | * |
3072 | * This interface allows access to lower level functions of the IOMMU |
3073 | * like protection domain handling and assignement of devices to domains |
3074 | * which is not possible with the dma_ops interface. |
3075 | * |
3076 | *****************************************************************************/ |
3077 | |
3078 | static void cleanup_domain(struct protection_domain *domain) |
3079 | { |
3080 | struct iommu_dev_data *dev_data, *next; |
3081 | unsigned long flags; |
3082 | |
3083 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
3084 | |
3085 | list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) { |
3086 | __detach_device(dev_data); |
3087 | atomic_set(&dev_data->bind, 0); |
3088 | } |
3089 | |
3090 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
3091 | } |
3092 | |
3093 | static void protection_domain_free(struct protection_domain *domain) |
3094 | { |
3095 | if (!domain) |
3096 | return; |
3097 | |
3098 | del_domain_from_list(domain); |
3099 | |
3100 | if (domain->id) |
3101 | domain_id_free(domain->id); |
3102 | |
3103 | kfree(domain); |
3104 | } |
3105 | |
3106 | static struct protection_domain *protection_domain_alloc(void) |
3107 | { |
3108 | struct protection_domain *domain; |
3109 | |
3110 | domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
3111 | if (!domain) |
3112 | return NULL; |
3113 | |
3114 | spin_lock_init(&domain->lock); |
3115 | mutex_init(&domain->api_lock); |
3116 | domain->id = domain_id_alloc(); |
3117 | if (!domain->id) |
3118 | goto out_err; |
3119 | INIT_LIST_HEAD(&domain->dev_list); |
3120 | |
3121 | add_domain_to_list(domain); |
3122 | |
3123 | return domain; |
3124 | |
3125 | out_err: |
3126 | kfree(domain); |
3127 | |
3128 | return NULL; |
3129 | } |
3130 | |
3131 | static int __init alloc_passthrough_domain(void) |
3132 | { |
3133 | if (pt_domain != NULL) |
3134 | return 0; |
3135 | |
3136 | /* allocate passthrough domain */ |
3137 | pt_domain = protection_domain_alloc(); |
3138 | if (!pt_domain) |
3139 | return -ENOMEM; |
3140 | |
3141 | pt_domain->mode = PAGE_MODE_NONE; |
3142 | |
3143 | return 0; |
3144 | } |
3145 | static int amd_iommu_domain_init(struct iommu_domain *dom) |
3146 | { |
3147 | struct protection_domain *domain; |
3148 | |
3149 | domain = protection_domain_alloc(); |
3150 | if (!domain) |
3151 | goto out_free; |
3152 | |
3153 | domain->mode = PAGE_MODE_3_LEVEL; |
3154 | domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
3155 | if (!domain->pt_root) |
3156 | goto out_free; |
3157 | |
3158 | domain->iommu_domain = dom; |
3159 | |
3160 | dom->priv = domain; |
3161 | |
3162 | dom->geometry.aperture_start = 0; |
3163 | dom->geometry.aperture_end = ~0ULL; |
3164 | dom->geometry.force_aperture = true; |
3165 | |
3166 | return 0; |
3167 | |
3168 | out_free: |
3169 | protection_domain_free(domain); |
3170 | |
3171 | return -ENOMEM; |
3172 | } |
3173 | |
3174 | static void amd_iommu_domain_destroy(struct iommu_domain *dom) |
3175 | { |
3176 | struct protection_domain *domain = dom->priv; |
3177 | |
3178 | if (!domain) |
3179 | return; |
3180 | |
3181 | if (domain->dev_cnt > 0) |
3182 | cleanup_domain(domain); |
3183 | |
3184 | BUG_ON(domain->dev_cnt != 0); |
3185 | |
3186 | if (domain->mode != PAGE_MODE_NONE) |
3187 | free_pagetable(domain); |
3188 | |
3189 | if (domain->flags & PD_IOMMUV2_MASK) |
3190 | free_gcr3_table(domain); |
3191 | |
3192 | protection_domain_free(domain); |
3193 | |
3194 | dom->priv = NULL; |
3195 | } |
3196 | |
3197 | static void amd_iommu_detach_device(struct iommu_domain *dom, |
3198 | struct device *dev) |
3199 | { |
3200 | struct iommu_dev_data *dev_data = dev->archdata.iommu; |
3201 | struct amd_iommu *iommu; |
3202 | u16 devid; |
3203 | |
3204 | if (!check_device(dev)) |
3205 | return; |
3206 | |
3207 | devid = get_device_id(dev); |
3208 | |
3209 | if (dev_data->domain != NULL) |
3210 | detach_device(dev); |
3211 | |
3212 | iommu = amd_iommu_rlookup_table[devid]; |
3213 | if (!iommu) |
3214 | return; |
3215 | |
3216 | iommu_completion_wait(iommu); |
3217 | } |
3218 | |
3219 | static int amd_iommu_attach_device(struct iommu_domain *dom, |
3220 | struct device *dev) |
3221 | { |
3222 | struct protection_domain *domain = dom->priv; |
3223 | struct iommu_dev_data *dev_data; |
3224 | struct amd_iommu *iommu; |
3225 | int ret; |
3226 | |
3227 | if (!check_device(dev)) |
3228 | return -EINVAL; |
3229 | |
3230 | dev_data = dev->archdata.iommu; |
3231 | |
3232 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
3233 | if (!iommu) |
3234 | return -EINVAL; |
3235 | |
3236 | if (dev_data->domain) |
3237 | detach_device(dev); |
3238 | |
3239 | ret = attach_device(dev, domain); |
3240 | |
3241 | iommu_completion_wait(iommu); |
3242 | |
3243 | return ret; |
3244 | } |
3245 | |
3246 | static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, |
3247 | phys_addr_t paddr, size_t page_size, int iommu_prot) |
3248 | { |
3249 | struct protection_domain *domain = dom->priv; |
3250 | int prot = 0; |
3251 | int ret; |
3252 | |
3253 | if (domain->mode == PAGE_MODE_NONE) |
3254 | return -EINVAL; |
3255 | |
3256 | if (iommu_prot & IOMMU_READ) |
3257 | prot |= IOMMU_PROT_IR; |
3258 | if (iommu_prot & IOMMU_WRITE) |
3259 | prot |= IOMMU_PROT_IW; |
3260 | |
3261 | mutex_lock(&domain->api_lock); |
3262 | ret = iommu_map_page(domain, iova, paddr, prot, page_size); |
3263 | mutex_unlock(&domain->api_lock); |
3264 | |
3265 | return ret; |
3266 | } |
3267 | |
3268 | static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, |
3269 | size_t page_size) |
3270 | { |
3271 | struct protection_domain *domain = dom->priv; |
3272 | size_t unmap_size; |
3273 | |
3274 | if (domain->mode == PAGE_MODE_NONE) |
3275 | return -EINVAL; |
3276 | |
3277 | mutex_lock(&domain->api_lock); |
3278 | unmap_size = iommu_unmap_page(domain, iova, page_size); |
3279 | mutex_unlock(&domain->api_lock); |
3280 | |
3281 | domain_flush_tlb_pde(domain); |
3282 | |
3283 | return unmap_size; |
3284 | } |
3285 | |
3286 | static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, |
3287 | unsigned long iova) |
3288 | { |
3289 | struct protection_domain *domain = dom->priv; |
3290 | unsigned long offset_mask; |
3291 | phys_addr_t paddr; |
3292 | u64 *pte, __pte; |
3293 | |
3294 | if (domain->mode == PAGE_MODE_NONE) |
3295 | return iova; |
3296 | |
3297 | pte = fetch_pte(domain, iova); |
3298 | |
3299 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
3300 | return 0; |
3301 | |
3302 | if (PM_PTE_LEVEL(*pte) == 0) |
3303 | offset_mask = PAGE_SIZE - 1; |
3304 | else |
3305 | offset_mask = PTE_PAGE_SIZE(*pte) - 1; |
3306 | |
3307 | __pte = *pte & PM_ADDR_MASK; |
3308 | paddr = (__pte & ~offset_mask) | (iova & offset_mask); |
3309 | |
3310 | return paddr; |
3311 | } |
3312 | |
3313 | static int amd_iommu_domain_has_cap(struct iommu_domain *domain, |
3314 | unsigned long cap) |
3315 | { |
3316 | switch (cap) { |
3317 | case IOMMU_CAP_CACHE_COHERENCY: |
3318 | return 1; |
3319 | } |
3320 | |
3321 | return 0; |
3322 | } |
3323 | |
3324 | static struct iommu_ops amd_iommu_ops = { |
3325 | .domain_init = amd_iommu_domain_init, |
3326 | .domain_destroy = amd_iommu_domain_destroy, |
3327 | .attach_dev = amd_iommu_attach_device, |
3328 | .detach_dev = amd_iommu_detach_device, |
3329 | .map = amd_iommu_map, |
3330 | .unmap = amd_iommu_unmap, |
3331 | .iova_to_phys = amd_iommu_iova_to_phys, |
3332 | .domain_has_cap = amd_iommu_domain_has_cap, |
3333 | .pgsize_bitmap = AMD_IOMMU_PGSIZES, |
3334 | }; |
3335 | |
3336 | /***************************************************************************** |
3337 | * |
3338 | * The next functions do a basic initialization of IOMMU for pass through |
3339 | * mode |
3340 | * |
3341 | * In passthrough mode the IOMMU is initialized and enabled but not used for |
3342 | * DMA-API translation. |
3343 | * |
3344 | *****************************************************************************/ |
3345 | |
3346 | int __init amd_iommu_init_passthrough(void) |
3347 | { |
3348 | struct iommu_dev_data *dev_data; |
3349 | struct pci_dev *dev = NULL; |
3350 | struct amd_iommu *iommu; |
3351 | u16 devid; |
3352 | int ret; |
3353 | |
3354 | ret = alloc_passthrough_domain(); |
3355 | if (ret) |
3356 | return ret; |
3357 | |
3358 | for_each_pci_dev(dev) { |
3359 | if (!check_device(&dev->dev)) |
3360 | continue; |
3361 | |
3362 | dev_data = get_dev_data(&dev->dev); |
3363 | dev_data->passthrough = true; |
3364 | |
3365 | devid = get_device_id(&dev->dev); |
3366 | |
3367 | iommu = amd_iommu_rlookup_table[devid]; |
3368 | if (!iommu) |
3369 | continue; |
3370 | |
3371 | attach_device(&dev->dev, pt_domain); |
3372 | } |
3373 | |
3374 | amd_iommu_stats_init(); |
3375 | |
3376 | pr_info("AMD-Vi: Initialized for Passthrough Mode\n"); |
3377 | |
3378 | return 0; |
3379 | } |
3380 | |
3381 | /* IOMMUv2 specific functions */ |
3382 | int amd_iommu_register_ppr_notifier(struct notifier_block *nb) |
3383 | { |
3384 | return atomic_notifier_chain_register(&ppr_notifier, nb); |
3385 | } |
3386 | EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); |
3387 | |
3388 | int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) |
3389 | { |
3390 | return atomic_notifier_chain_unregister(&ppr_notifier, nb); |
3391 | } |
3392 | EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); |
3393 | |
3394 | void amd_iommu_domain_direct_map(struct iommu_domain *dom) |
3395 | { |
3396 | struct protection_domain *domain = dom->priv; |
3397 | unsigned long flags; |
3398 | |
3399 | spin_lock_irqsave(&domain->lock, flags); |
3400 | |
3401 | /* Update data structure */ |
3402 | domain->mode = PAGE_MODE_NONE; |
3403 | domain->updated = true; |
3404 | |
3405 | /* Make changes visible to IOMMUs */ |
3406 | update_domain(domain); |
3407 | |
3408 | /* Page-table is not visible to IOMMU anymore, so free it */ |
3409 | free_pagetable(domain); |
3410 | |
3411 | spin_unlock_irqrestore(&domain->lock, flags); |
3412 | } |
3413 | EXPORT_SYMBOL(amd_iommu_domain_direct_map); |
3414 | |
3415 | int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) |
3416 | { |
3417 | struct protection_domain *domain = dom->priv; |
3418 | unsigned long flags; |
3419 | int levels, ret; |
3420 | |
3421 | if (pasids <= 0 || pasids > (PASID_MASK + 1)) |
3422 | return -EINVAL; |
3423 | |
3424 | /* Number of GCR3 table levels required */ |
3425 | for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) |
3426 | levels += 1; |
3427 | |
3428 | if (levels > amd_iommu_max_glx_val) |
3429 | return -EINVAL; |
3430 | |
3431 | spin_lock_irqsave(&domain->lock, flags); |
3432 | |
3433 | /* |
3434 | * Save us all sanity checks whether devices already in the |
3435 | * domain support IOMMUv2. Just force that the domain has no |
3436 | * devices attached when it is switched into IOMMUv2 mode. |
3437 | */ |
3438 | ret = -EBUSY; |
3439 | if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) |
3440 | goto out; |
3441 | |
3442 | ret = -ENOMEM; |
3443 | domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); |
3444 | if (domain->gcr3_tbl == NULL) |
3445 | goto out; |
3446 | |
3447 | domain->glx = levels; |
3448 | domain->flags |= PD_IOMMUV2_MASK; |
3449 | domain->updated = true; |
3450 | |
3451 | update_domain(domain); |
3452 | |
3453 | ret = 0; |
3454 | |
3455 | out: |
3456 | spin_unlock_irqrestore(&domain->lock, flags); |
3457 | |
3458 | return ret; |
3459 | } |
3460 | EXPORT_SYMBOL(amd_iommu_domain_enable_v2); |
3461 | |
3462 | static int __flush_pasid(struct protection_domain *domain, int pasid, |
3463 | u64 address, bool size) |
3464 | { |
3465 | struct iommu_dev_data *dev_data; |
3466 | struct iommu_cmd cmd; |
3467 | int i, ret; |
3468 | |
3469 | if (!(domain->flags & PD_IOMMUV2_MASK)) |
3470 | return -EINVAL; |
3471 | |
3472 | build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); |
3473 | |
3474 | /* |
3475 | * IOMMU TLB needs to be flushed before Device TLB to |
3476 | * prevent device TLB refill from IOMMU TLB |
3477 | */ |
3478 | for (i = 0; i < amd_iommus_present; ++i) { |
3479 | if (domain->dev_iommu[i] == 0) |
3480 | continue; |
3481 | |
3482 | ret = iommu_queue_command(amd_iommus[i], &cmd); |
3483 | if (ret != 0) |
3484 | goto out; |
3485 | } |
3486 | |
3487 | /* Wait until IOMMU TLB flushes are complete */ |
3488 | domain_flush_complete(domain); |
3489 | |
3490 | /* Now flush device TLBs */ |
3491 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
3492 | struct amd_iommu *iommu; |
3493 | int qdep; |
3494 | |
3495 | BUG_ON(!dev_data->ats.enabled); |
3496 | |
3497 | qdep = dev_data->ats.qdep; |
3498 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
3499 | |
3500 | build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, |
3501 | qdep, address, size); |
3502 | |
3503 | ret = iommu_queue_command(iommu, &cmd); |
3504 | if (ret != 0) |
3505 | goto out; |
3506 | } |
3507 | |
3508 | /* Wait until all device TLBs are flushed */ |
3509 | domain_flush_complete(domain); |
3510 | |
3511 | ret = 0; |
3512 | |
3513 | out: |
3514 | |
3515 | return ret; |
3516 | } |
3517 | |
3518 | static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, |
3519 | u64 address) |
3520 | { |
3521 | INC_STATS_COUNTER(invalidate_iotlb); |
3522 | |
3523 | return __flush_pasid(domain, pasid, address, false); |
3524 | } |
3525 | |
3526 | int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, |
3527 | u64 address) |
3528 | { |
3529 | struct protection_domain *domain = dom->priv; |
3530 | unsigned long flags; |
3531 | int ret; |
3532 | |
3533 | spin_lock_irqsave(&domain->lock, flags); |
3534 | ret = __amd_iommu_flush_page(domain, pasid, address); |
3535 | spin_unlock_irqrestore(&domain->lock, flags); |
3536 | |
3537 | return ret; |
3538 | } |
3539 | EXPORT_SYMBOL(amd_iommu_flush_page); |
3540 | |
3541 | static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) |
3542 | { |
3543 | INC_STATS_COUNTER(invalidate_iotlb_all); |
3544 | |
3545 | return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
3546 | true); |
3547 | } |
3548 | |
3549 | int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) |
3550 | { |
3551 | struct protection_domain *domain = dom->priv; |
3552 | unsigned long flags; |
3553 | int ret; |
3554 | |
3555 | spin_lock_irqsave(&domain->lock, flags); |
3556 | ret = __amd_iommu_flush_tlb(domain, pasid); |
3557 | spin_unlock_irqrestore(&domain->lock, flags); |
3558 | |
3559 | return ret; |
3560 | } |
3561 | EXPORT_SYMBOL(amd_iommu_flush_tlb); |
3562 | |
3563 | static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) |
3564 | { |
3565 | int index; |
3566 | u64 *pte; |
3567 | |
3568 | while (true) { |
3569 | |
3570 | index = (pasid >> (9 * level)) & 0x1ff; |
3571 | pte = &root[index]; |
3572 | |
3573 | if (level == 0) |
3574 | break; |
3575 | |
3576 | if (!(*pte & GCR3_VALID)) { |
3577 | if (!alloc) |
3578 | return NULL; |
3579 | |
3580 | root = (void *)get_zeroed_page(GFP_ATOMIC); |
3581 | if (root == NULL) |
3582 | return NULL; |
3583 | |
3584 | *pte = __pa(root) | GCR3_VALID; |
3585 | } |
3586 | |
3587 | root = __va(*pte & PAGE_MASK); |
3588 | |
3589 | level -= 1; |
3590 | } |
3591 | |
3592 | return pte; |
3593 | } |
3594 | |
3595 | static int __set_gcr3(struct protection_domain *domain, int pasid, |
3596 | unsigned long cr3) |
3597 | { |
3598 | u64 *pte; |
3599 | |
3600 | if (domain->mode != PAGE_MODE_NONE) |
3601 | return -EINVAL; |
3602 | |
3603 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); |
3604 | if (pte == NULL) |
3605 | return -ENOMEM; |
3606 | |
3607 | *pte = (cr3 & PAGE_MASK) | GCR3_VALID; |
3608 | |
3609 | return __amd_iommu_flush_tlb(domain, pasid); |
3610 | } |
3611 | |
3612 | static int __clear_gcr3(struct protection_domain *domain, int pasid) |
3613 | { |
3614 | u64 *pte; |
3615 | |
3616 | if (domain->mode != PAGE_MODE_NONE) |
3617 | return -EINVAL; |
3618 | |
3619 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); |
3620 | if (pte == NULL) |
3621 | return 0; |
3622 | |
3623 | *pte = 0; |
3624 | |
3625 | return __amd_iommu_flush_tlb(domain, pasid); |
3626 | } |
3627 | |
3628 | int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, |
3629 | unsigned long cr3) |
3630 | { |
3631 | struct protection_domain *domain = dom->priv; |
3632 | unsigned long flags; |
3633 | int ret; |
3634 | |
3635 | spin_lock_irqsave(&domain->lock, flags); |
3636 | ret = __set_gcr3(domain, pasid, cr3); |
3637 | spin_unlock_irqrestore(&domain->lock, flags); |
3638 | |
3639 | return ret; |
3640 | } |
3641 | EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); |
3642 | |
3643 | int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) |
3644 | { |
3645 | struct protection_domain *domain = dom->priv; |
3646 | unsigned long flags; |
3647 | int ret; |
3648 | |
3649 | spin_lock_irqsave(&domain->lock, flags); |
3650 | ret = __clear_gcr3(domain, pasid); |
3651 | spin_unlock_irqrestore(&domain->lock, flags); |
3652 | |
3653 | return ret; |
3654 | } |
3655 | EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); |
3656 | |
3657 | int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, |
3658 | int status, int tag) |
3659 | { |
3660 | struct iommu_dev_data *dev_data; |
3661 | struct amd_iommu *iommu; |
3662 | struct iommu_cmd cmd; |
3663 | |
3664 | INC_STATS_COUNTER(complete_ppr); |
3665 | |
3666 | dev_data = get_dev_data(&pdev->dev); |
3667 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
3668 | |
3669 | build_complete_ppr(&cmd, dev_data->devid, pasid, status, |
3670 | tag, dev_data->pri_tlp); |
3671 | |
3672 | return iommu_queue_command(iommu, &cmd); |
3673 | } |
3674 | EXPORT_SYMBOL(amd_iommu_complete_ppr); |
3675 | |
3676 | struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) |
3677 | { |
3678 | struct protection_domain *domain; |
3679 | |
3680 | domain = get_domain(&pdev->dev); |
3681 | if (IS_ERR(domain)) |
3682 | return NULL; |
3683 | |
3684 | /* Only return IOMMUv2 domains */ |
3685 | if (!(domain->flags & PD_IOMMUV2_MASK)) |
3686 | return NULL; |
3687 | |
3688 | return domain->iommu_domain; |
3689 | } |
3690 | EXPORT_SYMBOL(amd_iommu_get_v2_domain); |
3691 | |
3692 | void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) |
3693 | { |
3694 | struct iommu_dev_data *dev_data; |
3695 | |
3696 | if (!amd_iommu_v2_supported()) |
3697 | return; |
3698 | |
3699 | dev_data = get_dev_data(&pdev->dev); |
3700 | dev_data->errata |= (1 << erratum); |
3701 | } |
3702 | EXPORT_SYMBOL(amd_iommu_enable_device_erratum); |
3703 | |
3704 | int amd_iommu_device_info(struct pci_dev *pdev, |
3705 | struct amd_iommu_device_info *info) |
3706 | { |
3707 | int max_pasids; |
3708 | int pos; |
3709 | |
3710 | if (pdev == NULL || info == NULL) |
3711 | return -EINVAL; |
3712 | |
3713 | if (!amd_iommu_v2_supported()) |
3714 | return -EINVAL; |
3715 | |
3716 | memset(info, 0, sizeof(*info)); |
3717 | |
3718 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); |
3719 | if (pos) |
3720 | info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; |
3721 | |
3722 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
3723 | if (pos) |
3724 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; |
3725 | |
3726 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); |
3727 | if (pos) { |
3728 | int features; |
3729 | |
3730 | max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); |
3731 | max_pasids = min(max_pasids, (1 << 20)); |
3732 | |
3733 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; |
3734 | info->max_pasids = min(pci_max_pasids(pdev), max_pasids); |
3735 | |
3736 | features = pci_pasid_features(pdev); |
3737 | if (features & PCI_PASID_CAP_EXEC) |
3738 | info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; |
3739 | if (features & PCI_PASID_CAP_PRIV) |
3740 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; |
3741 | } |
3742 | |
3743 | return 0; |
3744 | } |
3745 | EXPORT_SYMBOL(amd_iommu_device_info); |
3746 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9