Root/drivers/iommu/amd_iommu.c

1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <asm/msidef.h>
35#include <asm/proto.h>
36#include <asm/iommu.h>
37#include <asm/gart.h>
38#include <asm/dma.h>
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
45#define LOOP_TIMEOUT 100000
46
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79static struct protection_domain *pt_domain;
80
81static struct iommu_ops amd_iommu_ops;
82
83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84int amd_iommu_max_glx_val = -1;
85
86static struct dma_map_ops amd_iommu_dma_ops;
87
88/*
89 * general struct to manage commands send to an IOMMU
90 */
91struct iommu_cmd {
92    u32 data[4];
93};
94
95static void update_domain(struct protection_domain *domain);
96static int __init alloc_passthrough_domain(void);
97
98/****************************************************************************
99 *
100 * Helper functions
101 *
102 ****************************************************************************/
103
104static struct iommu_dev_data *alloc_dev_data(u16 devid)
105{
106    struct iommu_dev_data *dev_data;
107    unsigned long flags;
108
109    dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
110    if (!dev_data)
111        return NULL;
112
113    dev_data->devid = devid;
114    atomic_set(&dev_data->bind, 0);
115
116    spin_lock_irqsave(&dev_data_list_lock, flags);
117    list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118    spin_unlock_irqrestore(&dev_data_list_lock, flags);
119
120    return dev_data;
121}
122
123static void free_dev_data(struct iommu_dev_data *dev_data)
124{
125    unsigned long flags;
126
127    spin_lock_irqsave(&dev_data_list_lock, flags);
128    list_del(&dev_data->dev_data_list);
129    spin_unlock_irqrestore(&dev_data_list_lock, flags);
130
131    kfree(dev_data);
132}
133
134static struct iommu_dev_data *search_dev_data(u16 devid)
135{
136    struct iommu_dev_data *dev_data;
137    unsigned long flags;
138
139    spin_lock_irqsave(&dev_data_list_lock, flags);
140    list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141        if (dev_data->devid == devid)
142            goto out_unlock;
143    }
144
145    dev_data = NULL;
146
147out_unlock:
148    spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150    return dev_data;
151}
152
153static struct iommu_dev_data *find_dev_data(u16 devid)
154{
155    struct iommu_dev_data *dev_data;
156
157    dev_data = search_dev_data(devid);
158
159    if (dev_data == NULL)
160        dev_data = alloc_dev_data(devid);
161
162    return dev_data;
163}
164
165static inline u16 get_device_id(struct device *dev)
166{
167    struct pci_dev *pdev = to_pci_dev(dev);
168
169    return calc_devid(pdev->bus->number, pdev->devfn);
170}
171
172static struct iommu_dev_data *get_dev_data(struct device *dev)
173{
174    return dev->archdata.iommu;
175}
176
177static bool pci_iommuv2_capable(struct pci_dev *pdev)
178{
179    static const int caps[] = {
180        PCI_EXT_CAP_ID_ATS,
181        PCI_EXT_CAP_ID_PRI,
182        PCI_EXT_CAP_ID_PASID,
183    };
184    int i, pos;
185
186    for (i = 0; i < 3; ++i) {
187        pos = pci_find_ext_capability(pdev, caps[i]);
188        if (pos == 0)
189            return false;
190    }
191
192    return true;
193}
194
195static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
196{
197    struct iommu_dev_data *dev_data;
198
199    dev_data = get_dev_data(&pdev->dev);
200
201    return dev_data->errata & (1 << erratum) ? true : false;
202}
203
204/*
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
207 */
208static struct dma_ops_domain *find_protection_domain(u16 devid)
209{
210    struct dma_ops_domain *entry, *ret = NULL;
211    unsigned long flags;
212    u16 alias = amd_iommu_alias_table[devid];
213
214    if (list_empty(&iommu_pd_list))
215        return NULL;
216
217    spin_lock_irqsave(&iommu_pd_list_lock, flags);
218
219    list_for_each_entry(entry, &iommu_pd_list, list) {
220        if (entry->target_dev == devid ||
221            entry->target_dev == alias) {
222            ret = entry;
223            break;
224        }
225    }
226
227    spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
228
229    return ret;
230}
231
232/*
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
235 */
236static bool check_device(struct device *dev)
237{
238    u16 devid;
239
240    if (!dev || !dev->dma_mask)
241        return false;
242
243    /* No device or no PCI device */
244    if (dev->bus != &pci_bus_type)
245        return false;
246
247    devid = get_device_id(dev);
248
249    /* Out of our scope? */
250    if (devid > amd_iommu_last_bdf)
251        return false;
252
253    if (amd_iommu_rlookup_table[devid] == NULL)
254        return false;
255
256    return true;
257}
258
259static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
260{
261    pci_dev_put(*from);
262    *from = to;
263}
264
265#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
266
267static int iommu_init_device(struct device *dev)
268{
269    struct pci_dev *dma_pdev = NULL, *pdev = to_pci_dev(dev);
270    struct iommu_dev_data *dev_data;
271    struct iommu_group *group;
272    u16 alias;
273    int ret;
274
275    if (dev->archdata.iommu)
276        return 0;
277
278    dev_data = find_dev_data(get_device_id(dev));
279    if (!dev_data)
280        return -ENOMEM;
281
282    alias = amd_iommu_alias_table[dev_data->devid];
283    if (alias != dev_data->devid) {
284        struct iommu_dev_data *alias_data;
285
286        alias_data = find_dev_data(alias);
287        if (alias_data == NULL) {
288            pr_err("AMD-Vi: Warning: Unhandled device %s\n",
289                    dev_name(dev));
290            free_dev_data(dev_data);
291            return -ENOTSUPP;
292        }
293        dev_data->alias_data = alias_data;
294
295        dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
296    }
297
298    if (dma_pdev == NULL)
299        dma_pdev = pci_dev_get(pdev);
300
301    /* Account for quirked devices */
302    swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
303
304    /*
305     * If it's a multifunction device that does not support our
306     * required ACS flags, add to the same group as function 0.
307     */
308    if (dma_pdev->multifunction &&
309        !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
310        swap_pci_ref(&dma_pdev,
311                 pci_get_slot(dma_pdev->bus,
312                      PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
313                      0)));
314
315    /*
316     * Devices on the root bus go through the iommu. If that's not us,
317     * find the next upstream device and test ACS up to the root bus.
318     * Finding the next device may require skipping virtual buses.
319     */
320    while (!pci_is_root_bus(dma_pdev->bus)) {
321        struct pci_bus *bus = dma_pdev->bus;
322
323        while (!bus->self) {
324            if (!pci_is_root_bus(bus))
325                bus = bus->parent;
326            else
327                goto root_bus;
328        }
329
330        if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
331            break;
332
333        swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
334    }
335
336root_bus:
337    group = iommu_group_get(&dma_pdev->dev);
338    pci_dev_put(dma_pdev);
339    if (!group) {
340        group = iommu_group_alloc();
341        if (IS_ERR(group))
342            return PTR_ERR(group);
343    }
344
345    ret = iommu_group_add_device(group, dev);
346
347    iommu_group_put(group);
348
349    if (ret)
350        return ret;
351
352    if (pci_iommuv2_capable(pdev)) {
353        struct amd_iommu *iommu;
354
355        iommu = amd_iommu_rlookup_table[dev_data->devid];
356        dev_data->iommu_v2 = iommu->is_iommu_v2;
357    }
358
359    dev->archdata.iommu = dev_data;
360
361    return 0;
362}
363
364static void iommu_ignore_device(struct device *dev)
365{
366    u16 devid, alias;
367
368    devid = get_device_id(dev);
369    alias = amd_iommu_alias_table[devid];
370
371    memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
372    memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
373
374    amd_iommu_rlookup_table[devid] = NULL;
375    amd_iommu_rlookup_table[alias] = NULL;
376}
377
378static void iommu_uninit_device(struct device *dev)
379{
380    iommu_group_remove_device(dev);
381
382    /*
383     * Nothing to do here - we keep dev_data around for unplugged devices
384     * and reuse it when the device is re-plugged - not doing so would
385     * introduce a ton of races.
386     */
387}
388
389void __init amd_iommu_uninit_devices(void)
390{
391    struct iommu_dev_data *dev_data, *n;
392    struct pci_dev *pdev = NULL;
393
394    for_each_pci_dev(pdev) {
395
396        if (!check_device(&pdev->dev))
397            continue;
398
399        iommu_uninit_device(&pdev->dev);
400    }
401
402    /* Free all of our dev_data structures */
403    list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
404        free_dev_data(dev_data);
405}
406
407int __init amd_iommu_init_devices(void)
408{
409    struct pci_dev *pdev = NULL;
410    int ret = 0;
411
412    for_each_pci_dev(pdev) {
413
414        if (!check_device(&pdev->dev))
415            continue;
416
417        ret = iommu_init_device(&pdev->dev);
418        if (ret == -ENOTSUPP)
419            iommu_ignore_device(&pdev->dev);
420        else if (ret)
421            goto out_free;
422    }
423
424    return 0;
425
426out_free:
427
428    amd_iommu_uninit_devices();
429
430    return ret;
431}
432#ifdef CONFIG_AMD_IOMMU_STATS
433
434/*
435 * Initialization code for statistics collection
436 */
437
438DECLARE_STATS_COUNTER(compl_wait);
439DECLARE_STATS_COUNTER(cnt_map_single);
440DECLARE_STATS_COUNTER(cnt_unmap_single);
441DECLARE_STATS_COUNTER(cnt_map_sg);
442DECLARE_STATS_COUNTER(cnt_unmap_sg);
443DECLARE_STATS_COUNTER(cnt_alloc_coherent);
444DECLARE_STATS_COUNTER(cnt_free_coherent);
445DECLARE_STATS_COUNTER(cross_page);
446DECLARE_STATS_COUNTER(domain_flush_single);
447DECLARE_STATS_COUNTER(domain_flush_all);
448DECLARE_STATS_COUNTER(alloced_io_mem);
449DECLARE_STATS_COUNTER(total_map_requests);
450DECLARE_STATS_COUNTER(complete_ppr);
451DECLARE_STATS_COUNTER(invalidate_iotlb);
452DECLARE_STATS_COUNTER(invalidate_iotlb_all);
453DECLARE_STATS_COUNTER(pri_requests);
454
455static struct dentry *stats_dir;
456static struct dentry *de_fflush;
457
458static void amd_iommu_stats_add(struct __iommu_counter *cnt)
459{
460    if (stats_dir == NULL)
461        return;
462
463    cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
464                       &cnt->value);
465}
466
467static void amd_iommu_stats_init(void)
468{
469    stats_dir = debugfs_create_dir("amd-iommu", NULL);
470    if (stats_dir == NULL)
471        return;
472
473    de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
474                     &amd_iommu_unmap_flush);
475
476    amd_iommu_stats_add(&compl_wait);
477    amd_iommu_stats_add(&cnt_map_single);
478    amd_iommu_stats_add(&cnt_unmap_single);
479    amd_iommu_stats_add(&cnt_map_sg);
480    amd_iommu_stats_add(&cnt_unmap_sg);
481    amd_iommu_stats_add(&cnt_alloc_coherent);
482    amd_iommu_stats_add(&cnt_free_coherent);
483    amd_iommu_stats_add(&cross_page);
484    amd_iommu_stats_add(&domain_flush_single);
485    amd_iommu_stats_add(&domain_flush_all);
486    amd_iommu_stats_add(&alloced_io_mem);
487    amd_iommu_stats_add(&total_map_requests);
488    amd_iommu_stats_add(&complete_ppr);
489    amd_iommu_stats_add(&invalidate_iotlb);
490    amd_iommu_stats_add(&invalidate_iotlb_all);
491    amd_iommu_stats_add(&pri_requests);
492}
493
494#endif
495
496/****************************************************************************
497 *
498 * Interrupt handling functions
499 *
500 ****************************************************************************/
501
502static void dump_dte_entry(u16 devid)
503{
504    int i;
505
506    for (i = 0; i < 4; ++i)
507        pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
508            amd_iommu_dev_table[devid].data[i]);
509}
510
511static void dump_command(unsigned long phys_addr)
512{
513    struct iommu_cmd *cmd = phys_to_virt(phys_addr);
514    int i;
515
516    for (i = 0; i < 4; ++i)
517        pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
518}
519
520static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
521{
522    int type, devid, domid, flags;
523    volatile u32 *event = __evt;
524    int count = 0;
525    u64 address;
526
527retry:
528    type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
529    devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
530    domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
531    flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
532    address = (u64)(((u64)event[3]) << 32) | event[2];
533
534    if (type == 0) {
535        /* Did we hit the erratum? */
536        if (++count == LOOP_TIMEOUT) {
537            pr_err("AMD-Vi: No event written to event log\n");
538            return;
539        }
540        udelay(1);
541        goto retry;
542    }
543
544    printk(KERN_ERR "AMD-Vi: Event logged [");
545
546    switch (type) {
547    case EVENT_TYPE_ILL_DEV:
548        printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
549               "address=0x%016llx flags=0x%04x]\n",
550               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
551               address, flags);
552        dump_dte_entry(devid);
553        break;
554    case EVENT_TYPE_IO_FAULT:
555        printk("IO_PAGE_FAULT device=%02x:%02x.%x "
556               "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
557               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
558               domid, address, flags);
559        break;
560    case EVENT_TYPE_DEV_TAB_ERR:
561        printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
562               "address=0x%016llx flags=0x%04x]\n",
563               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
564               address, flags);
565        break;
566    case EVENT_TYPE_PAGE_TAB_ERR:
567        printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
568               "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
569               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
570               domid, address, flags);
571        break;
572    case EVENT_TYPE_ILL_CMD:
573        printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
574        dump_command(address);
575        break;
576    case EVENT_TYPE_CMD_HARD_ERR:
577        printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
578               "flags=0x%04x]\n", address, flags);
579        break;
580    case EVENT_TYPE_IOTLB_INV_TO:
581        printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
582               "address=0x%016llx]\n",
583               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
584               address);
585        break;
586    case EVENT_TYPE_INV_DEV_REQ:
587        printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
588               "address=0x%016llx flags=0x%04x]\n",
589               PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
590               address, flags);
591        break;
592    default:
593        printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
594    }
595
596    memset(__evt, 0, 4 * sizeof(u32));
597}
598
599static void iommu_poll_events(struct amd_iommu *iommu)
600{
601    u32 head, tail;
602    unsigned long flags;
603
604    spin_lock_irqsave(&iommu->lock, flags);
605
606    head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
607    tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
608
609    while (head != tail) {
610        iommu_print_event(iommu, iommu->evt_buf + head);
611        head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
612    }
613
614    writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
615
616    spin_unlock_irqrestore(&iommu->lock, flags);
617}
618
619static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
620{
621    struct amd_iommu_fault fault;
622
623    INC_STATS_COUNTER(pri_requests);
624
625    if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
626        pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
627        return;
628    }
629
630    fault.address = raw[1];
631    fault.pasid = PPR_PASID(raw[0]);
632    fault.device_id = PPR_DEVID(raw[0]);
633    fault.tag = PPR_TAG(raw[0]);
634    fault.flags = PPR_FLAGS(raw[0]);
635
636    atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
637}
638
639static void iommu_poll_ppr_log(struct amd_iommu *iommu)
640{
641    unsigned long flags;
642    u32 head, tail;
643
644    if (iommu->ppr_log == NULL)
645        return;
646
647    /* enable ppr interrupts again */
648    writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
649
650    spin_lock_irqsave(&iommu->lock, flags);
651
652    head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
653    tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
654
655    while (head != tail) {
656        volatile u64 *raw;
657        u64 entry[2];
658        int i;
659
660        raw = (u64 *)(iommu->ppr_log + head);
661
662        /*
663         * Hardware bug: Interrupt may arrive before the entry is
664         * written to memory. If this happens we need to wait for the
665         * entry to arrive.
666         */
667        for (i = 0; i < LOOP_TIMEOUT; ++i) {
668            if (PPR_REQ_TYPE(raw[0]) != 0)
669                break;
670            udelay(1);
671        }
672
673        /* Avoid memcpy function-call overhead */
674        entry[0] = raw[0];
675        entry[1] = raw[1];
676
677        /*
678         * To detect the hardware bug we need to clear the entry
679         * back to zero.
680         */
681        raw[0] = raw[1] = 0UL;
682
683        /* Update head pointer of hardware ring-buffer */
684        head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
685        writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
686
687        /*
688         * Release iommu->lock because ppr-handling might need to
689         * re-aquire it
690         */
691        spin_unlock_irqrestore(&iommu->lock, flags);
692
693        /* Handle PPR entry */
694        iommu_handle_ppr_entry(iommu, entry);
695
696        spin_lock_irqsave(&iommu->lock, flags);
697
698        /* Refresh ring-buffer information */
699        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
701    }
702
703    spin_unlock_irqrestore(&iommu->lock, flags);
704}
705
706irqreturn_t amd_iommu_int_thread(int irq, void *data)
707{
708    struct amd_iommu *iommu;
709
710    for_each_iommu(iommu) {
711        iommu_poll_events(iommu);
712        iommu_poll_ppr_log(iommu);
713    }
714
715    return IRQ_HANDLED;
716}
717
718irqreturn_t amd_iommu_int_handler(int irq, void *data)
719{
720    return IRQ_WAKE_THREAD;
721}
722
723/****************************************************************************
724 *
725 * IOMMU command queuing functions
726 *
727 ****************************************************************************/
728
729static int wait_on_sem(volatile u64 *sem)
730{
731    int i = 0;
732
733    while (*sem == 0 && i < LOOP_TIMEOUT) {
734        udelay(1);
735        i += 1;
736    }
737
738    if (i == LOOP_TIMEOUT) {
739        pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
740        return -EIO;
741    }
742
743    return 0;
744}
745
746static void copy_cmd_to_buffer(struct amd_iommu *iommu,
747                   struct iommu_cmd *cmd,
748                   u32 tail)
749{
750    u8 *target;
751
752    target = iommu->cmd_buf + tail;
753    tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
754
755    /* Copy command to buffer */
756    memcpy(target, cmd, sizeof(*cmd));
757
758    /* Tell the IOMMU about it */
759    writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
760}
761
762static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
763{
764    WARN_ON(address & 0x7ULL);
765
766    memset(cmd, 0, sizeof(*cmd));
767    cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
768    cmd->data[1] = upper_32_bits(__pa(address));
769    cmd->data[2] = 1;
770    CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
771}
772
773static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
774{
775    memset(cmd, 0, sizeof(*cmd));
776    cmd->data[0] = devid;
777    CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
778}
779
780static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
781                  size_t size, u16 domid, int pde)
782{
783    u64 pages;
784    int s;
785
786    pages = iommu_num_pages(address, size, PAGE_SIZE);
787    s = 0;
788
789    if (pages > 1) {
790        /*
791         * If we have to flush more than one page, flush all
792         * TLB entries for this domain
793         */
794        address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
795        s = 1;
796    }
797
798    address &= PAGE_MASK;
799
800    memset(cmd, 0, sizeof(*cmd));
801    cmd->data[1] |= domid;
802    cmd->data[2] = lower_32_bits(address);
803    cmd->data[3] = upper_32_bits(address);
804    CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
805    if (s) /* size bit - we flush more than one 4kb page */
806        cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
807    if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
808        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
809}
810
811static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
812                  u64 address, size_t size)
813{
814    u64 pages;
815    int s;
816
817    pages = iommu_num_pages(address, size, PAGE_SIZE);
818    s = 0;
819
820    if (pages > 1) {
821        /*
822         * If we have to flush more than one page, flush all
823         * TLB entries for this domain
824         */
825        address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
826        s = 1;
827    }
828
829    address &= PAGE_MASK;
830
831    memset(cmd, 0, sizeof(*cmd));
832    cmd->data[0] = devid;
833    cmd->data[0] |= (qdep & 0xff) << 24;
834    cmd->data[1] = devid;
835    cmd->data[2] = lower_32_bits(address);
836    cmd->data[3] = upper_32_bits(address);
837    CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
838    if (s)
839        cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
840}
841
842static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
843                  u64 address, bool size)
844{
845    memset(cmd, 0, sizeof(*cmd));
846
847    address &= ~(0xfffULL);
848
849    cmd->data[0] = pasid & PASID_MASK;
850    cmd->data[1] = domid;
851    cmd->data[2] = lower_32_bits(address);
852    cmd->data[3] = upper_32_bits(address);
853    cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
854    cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
855    if (size)
856        cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
857    CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
858}
859
860static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
861                  int qdep, u64 address, bool size)
862{
863    memset(cmd, 0, sizeof(*cmd));
864
865    address &= ~(0xfffULL);
866
867    cmd->data[0] = devid;
868    cmd->data[0] |= (pasid & 0xff) << 16;
869    cmd->data[0] |= (qdep & 0xff) << 24;
870    cmd->data[1] = devid;
871    cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
872    cmd->data[2] = lower_32_bits(address);
873    cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
874    cmd->data[3] = upper_32_bits(address);
875    if (size)
876        cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
877    CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
878}
879
880static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
881                   int status, int tag, bool gn)
882{
883    memset(cmd, 0, sizeof(*cmd));
884
885    cmd->data[0] = devid;
886    if (gn) {
887        cmd->data[1] = pasid & PASID_MASK;
888        cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
889    }
890    cmd->data[3] = tag & 0x1ff;
891    cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
892
893    CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
894}
895
896static void build_inv_all(struct iommu_cmd *cmd)
897{
898    memset(cmd, 0, sizeof(*cmd));
899    CMD_SET_TYPE(cmd, CMD_INV_ALL);
900}
901
902/*
903 * Writes the command to the IOMMUs command buffer and informs the
904 * hardware about the new command.
905 */
906static int iommu_queue_command_sync(struct amd_iommu *iommu,
907                    struct iommu_cmd *cmd,
908                    bool sync)
909{
910    u32 left, tail, head, next_tail;
911    unsigned long flags;
912
913    WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
914
915again:
916    spin_lock_irqsave(&iommu->lock, flags);
917
918    head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
919    tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
920    next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
921    left = (head - next_tail) % iommu->cmd_buf_size;
922
923    if (left <= 2) {
924        struct iommu_cmd sync_cmd;
925        volatile u64 sem = 0;
926        int ret;
927
928        build_completion_wait(&sync_cmd, (u64)&sem);
929        copy_cmd_to_buffer(iommu, &sync_cmd, tail);
930
931        spin_unlock_irqrestore(&iommu->lock, flags);
932
933        if ((ret = wait_on_sem(&sem)) != 0)
934            return ret;
935
936        goto again;
937    }
938
939    copy_cmd_to_buffer(iommu, cmd, tail);
940
941    /* We need to sync now to make sure all commands are processed */
942    iommu->need_sync = sync;
943
944    spin_unlock_irqrestore(&iommu->lock, flags);
945
946    return 0;
947}
948
949static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
950{
951    return iommu_queue_command_sync(iommu, cmd, true);
952}
953
954/*
955 * This function queues a completion wait command into the command
956 * buffer of an IOMMU
957 */
958static int iommu_completion_wait(struct amd_iommu *iommu)
959{
960    struct iommu_cmd cmd;
961    volatile u64 sem = 0;
962    int ret;
963
964    if (!iommu->need_sync)
965        return 0;
966
967    build_completion_wait(&cmd, (u64)&sem);
968
969    ret = iommu_queue_command_sync(iommu, &cmd, false);
970    if (ret)
971        return ret;
972
973    return wait_on_sem(&sem);
974}
975
976static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
977{
978    struct iommu_cmd cmd;
979
980    build_inv_dte(&cmd, devid);
981
982    return iommu_queue_command(iommu, &cmd);
983}
984
985static void iommu_flush_dte_all(struct amd_iommu *iommu)
986{
987    u32 devid;
988
989    for (devid = 0; devid <= 0xffff; ++devid)
990        iommu_flush_dte(iommu, devid);
991
992    iommu_completion_wait(iommu);
993}
994
995/*
996 * This function uses heavy locking and may disable irqs for some time. But
997 * this is no issue because it is only called during resume.
998 */
999static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1000{
1001    u32 dom_id;
1002
1003    for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1004        struct iommu_cmd cmd;
1005        build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1006                      dom_id, 1);
1007        iommu_queue_command(iommu, &cmd);
1008    }
1009
1010    iommu_completion_wait(iommu);
1011}
1012
1013static void iommu_flush_all(struct amd_iommu *iommu)
1014{
1015    struct iommu_cmd cmd;
1016
1017    build_inv_all(&cmd);
1018
1019    iommu_queue_command(iommu, &cmd);
1020    iommu_completion_wait(iommu);
1021}
1022
1023void iommu_flush_all_caches(struct amd_iommu *iommu)
1024{
1025    if (iommu_feature(iommu, FEATURE_IA)) {
1026        iommu_flush_all(iommu);
1027    } else {
1028        iommu_flush_dte_all(iommu);
1029        iommu_flush_tlb_all(iommu);
1030    }
1031}
1032
1033/*
1034 * Command send function for flushing on-device TLB
1035 */
1036static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1037                  u64 address, size_t size)
1038{
1039    struct amd_iommu *iommu;
1040    struct iommu_cmd cmd;
1041    int qdep;
1042
1043    qdep = dev_data->ats.qdep;
1044    iommu = amd_iommu_rlookup_table[dev_data->devid];
1045
1046    build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1047
1048    return iommu_queue_command(iommu, &cmd);
1049}
1050
1051/*
1052 * Command send function for invalidating a device table entry
1053 */
1054static int device_flush_dte(struct iommu_dev_data *dev_data)
1055{
1056    struct amd_iommu *iommu;
1057    int ret;
1058
1059    iommu = amd_iommu_rlookup_table[dev_data->devid];
1060
1061    ret = iommu_flush_dte(iommu, dev_data->devid);
1062    if (ret)
1063        return ret;
1064
1065    if (dev_data->ats.enabled)
1066        ret = device_flush_iotlb(dev_data, 0, ~0UL);
1067
1068    return ret;
1069}
1070
1071/*
1072 * TLB invalidation function which is called from the mapping functions.
1073 * It invalidates a single PTE if the range to flush is within a single
1074 * page. Otherwise it flushes the whole TLB of the IOMMU.
1075 */
1076static void __domain_flush_pages(struct protection_domain *domain,
1077                 u64 address, size_t size, int pde)
1078{
1079    struct iommu_dev_data *dev_data;
1080    struct iommu_cmd cmd;
1081    int ret = 0, i;
1082
1083    build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1084
1085    for (i = 0; i < amd_iommus_present; ++i) {
1086        if (!domain->dev_iommu[i])
1087            continue;
1088
1089        /*
1090         * Devices of this domain are behind this IOMMU
1091         * We need a TLB flush
1092         */
1093        ret |= iommu_queue_command(amd_iommus[i], &cmd);
1094    }
1095
1096    list_for_each_entry(dev_data, &domain->dev_list, list) {
1097
1098        if (!dev_data->ats.enabled)
1099            continue;
1100
1101        ret |= device_flush_iotlb(dev_data, address, size);
1102    }
1103
1104    WARN_ON(ret);
1105}
1106
1107static void domain_flush_pages(struct protection_domain *domain,
1108                   u64 address, size_t size)
1109{
1110    __domain_flush_pages(domain, address, size, 0);
1111}
1112
1113/* Flush the whole IO/TLB for a given protection domain */
1114static void domain_flush_tlb(struct protection_domain *domain)
1115{
1116    __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1117}
1118
1119/* Flush the whole IO/TLB for a given protection domain - including PDE */
1120static void domain_flush_tlb_pde(struct protection_domain *domain)
1121{
1122    __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1123}
1124
1125static void domain_flush_complete(struct protection_domain *domain)
1126{
1127    int i;
1128
1129    for (i = 0; i < amd_iommus_present; ++i) {
1130        if (!domain->dev_iommu[i])
1131            continue;
1132
1133        /*
1134         * Devices of this domain are behind this IOMMU
1135         * We need to wait for completion of all commands.
1136         */
1137        iommu_completion_wait(amd_iommus[i]);
1138    }
1139}
1140
1141
1142/*
1143 * This function flushes the DTEs for all devices in domain
1144 */
1145static void domain_flush_devices(struct protection_domain *domain)
1146{
1147    struct iommu_dev_data *dev_data;
1148
1149    list_for_each_entry(dev_data, &domain->dev_list, list)
1150        device_flush_dte(dev_data);
1151}
1152
1153/****************************************************************************
1154 *
1155 * The functions below are used the create the page table mappings for
1156 * unity mapped regions.
1157 *
1158 ****************************************************************************/
1159
1160/*
1161 * This function is used to add another level to an IO page table. Adding
1162 * another level increases the size of the address space by 9 bits to a size up
1163 * to 64 bits.
1164 */
1165static bool increase_address_space(struct protection_domain *domain,
1166                   gfp_t gfp)
1167{
1168    u64 *pte;
1169
1170    if (domain->mode == PAGE_MODE_6_LEVEL)
1171        /* address space already 64 bit large */
1172        return false;
1173
1174    pte = (void *)get_zeroed_page(gfp);
1175    if (!pte)
1176        return false;
1177
1178    *pte = PM_LEVEL_PDE(domain->mode,
1179                    virt_to_phys(domain->pt_root));
1180    domain->pt_root = pte;
1181    domain->mode += 1;
1182    domain->updated = true;
1183
1184    return true;
1185}
1186
1187static u64 *alloc_pte(struct protection_domain *domain,
1188              unsigned long address,
1189              unsigned long page_size,
1190              u64 **pte_page,
1191              gfp_t gfp)
1192{
1193    int level, end_lvl;
1194    u64 *pte, *page;
1195
1196    BUG_ON(!is_power_of_2(page_size));
1197
1198    while (address > PM_LEVEL_SIZE(domain->mode))
1199        increase_address_space(domain, gfp);
1200
1201    level = domain->mode - 1;
1202    pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1203    address = PAGE_SIZE_ALIGN(address, page_size);
1204    end_lvl = PAGE_SIZE_LEVEL(page_size);
1205
1206    while (level > end_lvl) {
1207        if (!IOMMU_PTE_PRESENT(*pte)) {
1208            page = (u64 *)get_zeroed_page(gfp);
1209            if (!page)
1210                return NULL;
1211            *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1212        }
1213
1214        /* No level skipping support yet */
1215        if (PM_PTE_LEVEL(*pte) != level)
1216            return NULL;
1217
1218        level -= 1;
1219
1220        pte = IOMMU_PTE_PAGE(*pte);
1221
1222        if (pte_page && level == end_lvl)
1223            *pte_page = pte;
1224
1225        pte = &pte[PM_LEVEL_INDEX(level, address)];
1226    }
1227
1228    return pte;
1229}
1230
1231/*
1232 * This function checks if there is a PTE for a given dma address. If
1233 * there is one, it returns the pointer to it.
1234 */
1235static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1236{
1237    int level;
1238    u64 *pte;
1239
1240    if (address > PM_LEVEL_SIZE(domain->mode))
1241        return NULL;
1242
1243    level = domain->mode - 1;
1244    pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1245
1246    while (level > 0) {
1247
1248        /* Not Present */
1249        if (!IOMMU_PTE_PRESENT(*pte))
1250            return NULL;
1251
1252        /* Large PTE */
1253        if (PM_PTE_LEVEL(*pte) == 0x07) {
1254            unsigned long pte_mask, __pte;
1255
1256            /*
1257             * If we have a series of large PTEs, make
1258             * sure to return a pointer to the first one.
1259             */
1260            pte_mask = PTE_PAGE_SIZE(*pte);
1261            pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1262            __pte = ((unsigned long)pte) & pte_mask;
1263
1264            return (u64 *)__pte;
1265        }
1266
1267        /* No level skipping support yet */
1268        if (PM_PTE_LEVEL(*pte) != level)
1269            return NULL;
1270
1271        level -= 1;
1272
1273        /* Walk to the next level */
1274        pte = IOMMU_PTE_PAGE(*pte);
1275        pte = &pte[PM_LEVEL_INDEX(level, address)];
1276    }
1277
1278    return pte;
1279}
1280
1281/*
1282 * Generic mapping functions. It maps a physical address into a DMA
1283 * address space. It allocates the page table pages if necessary.
1284 * In the future it can be extended to a generic mapping function
1285 * supporting all features of AMD IOMMU page tables like level skipping
1286 * and full 64 bit address spaces.
1287 */
1288static int iommu_map_page(struct protection_domain *dom,
1289              unsigned long bus_addr,
1290              unsigned long phys_addr,
1291              int prot,
1292              unsigned long page_size)
1293{
1294    u64 __pte, *pte;
1295    int i, count;
1296
1297    if (!(prot & IOMMU_PROT_MASK))
1298        return -EINVAL;
1299
1300    bus_addr = PAGE_ALIGN(bus_addr);
1301    phys_addr = PAGE_ALIGN(phys_addr);
1302    count = PAGE_SIZE_PTE_COUNT(page_size);
1303    pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1304
1305    for (i = 0; i < count; ++i)
1306        if (IOMMU_PTE_PRESENT(pte[i]))
1307            return -EBUSY;
1308
1309    if (page_size > PAGE_SIZE) {
1310        __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1311        __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1312    } else
1313        __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1314
1315    if (prot & IOMMU_PROT_IR)
1316        __pte |= IOMMU_PTE_IR;
1317    if (prot & IOMMU_PROT_IW)
1318        __pte |= IOMMU_PTE_IW;
1319
1320    for (i = 0; i < count; ++i)
1321        pte[i] = __pte;
1322
1323    update_domain(dom);
1324
1325    return 0;
1326}
1327
1328static unsigned long iommu_unmap_page(struct protection_domain *dom,
1329                      unsigned long bus_addr,
1330                      unsigned long page_size)
1331{
1332    unsigned long long unmap_size, unmapped;
1333    u64 *pte;
1334
1335    BUG_ON(!is_power_of_2(page_size));
1336
1337    unmapped = 0;
1338
1339    while (unmapped < page_size) {
1340
1341        pte = fetch_pte(dom, bus_addr);
1342
1343        if (!pte) {
1344            /*
1345             * No PTE for this address
1346             * move forward in 4kb steps
1347             */
1348            unmap_size = PAGE_SIZE;
1349        } else if (PM_PTE_LEVEL(*pte) == 0) {
1350            /* 4kb PTE found for this address */
1351            unmap_size = PAGE_SIZE;
1352            *pte = 0ULL;
1353        } else {
1354            int count, i;
1355
1356            /* Large PTE found which maps this address */
1357            unmap_size = PTE_PAGE_SIZE(*pte);
1358            count = PAGE_SIZE_PTE_COUNT(unmap_size);
1359            for (i = 0; i < count; i++)
1360                pte[i] = 0ULL;
1361        }
1362
1363        bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1364        unmapped += unmap_size;
1365    }
1366
1367    BUG_ON(!is_power_of_2(unmapped));
1368
1369    return unmapped;
1370}
1371
1372/*
1373 * This function checks if a specific unity mapping entry is needed for
1374 * this specific IOMMU.
1375 */
1376static int iommu_for_unity_map(struct amd_iommu *iommu,
1377                   struct unity_map_entry *entry)
1378{
1379    u16 bdf, i;
1380
1381    for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1382        bdf = amd_iommu_alias_table[i];
1383        if (amd_iommu_rlookup_table[bdf] == iommu)
1384            return 1;
1385    }
1386
1387    return 0;
1388}
1389
1390/*
1391 * This function actually applies the mapping to the page table of the
1392 * dma_ops domain.
1393 */
1394static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1395                 struct unity_map_entry *e)
1396{
1397    u64 addr;
1398    int ret;
1399
1400    for (addr = e->address_start; addr < e->address_end;
1401         addr += PAGE_SIZE) {
1402        ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1403                     PAGE_SIZE);
1404        if (ret)
1405            return ret;
1406        /*
1407         * if unity mapping is in aperture range mark the page
1408         * as allocated in the aperture
1409         */
1410        if (addr < dma_dom->aperture_size)
1411            __set_bit(addr >> PAGE_SHIFT,
1412                  dma_dom->aperture[0]->bitmap);
1413    }
1414
1415    return 0;
1416}
1417
1418/*
1419 * Init the unity mappings for a specific IOMMU in the system
1420 *
1421 * Basically iterates over all unity mapping entries and applies them to
1422 * the default domain DMA of that IOMMU if necessary.
1423 */
1424static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1425{
1426    struct unity_map_entry *entry;
1427    int ret;
1428
1429    list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1430        if (!iommu_for_unity_map(iommu, entry))
1431            continue;
1432        ret = dma_ops_unity_map(iommu->default_dom, entry);
1433        if (ret)
1434            return ret;
1435    }
1436
1437    return 0;
1438}
1439
1440/*
1441 * Inits the unity mappings required for a specific device
1442 */
1443static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1444                      u16 devid)
1445{
1446    struct unity_map_entry *e;
1447    int ret;
1448
1449    list_for_each_entry(e, &amd_iommu_unity_map, list) {
1450        if (!(devid >= e->devid_start && devid <= e->devid_end))
1451            continue;
1452        ret = dma_ops_unity_map(dma_dom, e);
1453        if (ret)
1454            return ret;
1455    }
1456
1457    return 0;
1458}
1459
1460/****************************************************************************
1461 *
1462 * The next functions belong to the address allocator for the dma_ops
1463 * interface functions. They work like the allocators in the other IOMMU
1464 * drivers. Its basically a bitmap which marks the allocated pages in
1465 * the aperture. Maybe it could be enhanced in the future to a more
1466 * efficient allocator.
1467 *
1468 ****************************************************************************/
1469
1470/*
1471 * The address allocator core functions.
1472 *
1473 * called with domain->lock held
1474 */
1475
1476/*
1477 * Used to reserve address ranges in the aperture (e.g. for exclusion
1478 * ranges.
1479 */
1480static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1481                      unsigned long start_page,
1482                      unsigned int pages)
1483{
1484    unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1485
1486    if (start_page + pages > last_page)
1487        pages = last_page - start_page;
1488
1489    for (i = start_page; i < start_page + pages; ++i) {
1490        int index = i / APERTURE_RANGE_PAGES;
1491        int page = i % APERTURE_RANGE_PAGES;
1492        __set_bit(page, dom->aperture[index]->bitmap);
1493    }
1494}
1495
1496/*
1497 * This function is used to add a new aperture range to an existing
1498 * aperture in case of dma_ops domain allocation or address allocation
1499 * failure.
1500 */
1501static int alloc_new_range(struct dma_ops_domain *dma_dom,
1502               bool populate, gfp_t gfp)
1503{
1504    int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1505    struct amd_iommu *iommu;
1506    unsigned long i, old_size;
1507
1508#ifdef CONFIG_IOMMU_STRESS
1509    populate = false;
1510#endif
1511
1512    if (index >= APERTURE_MAX_RANGES)
1513        return -ENOMEM;
1514
1515    dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1516    if (!dma_dom->aperture[index])
1517        return -ENOMEM;
1518
1519    dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1520    if (!dma_dom->aperture[index]->bitmap)
1521        goto out_free;
1522
1523    dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1524
1525    if (populate) {
1526        unsigned long address = dma_dom->aperture_size;
1527        int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1528        u64 *pte, *pte_page;
1529
1530        for (i = 0; i < num_ptes; ++i) {
1531            pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1532                    &pte_page, gfp);
1533            if (!pte)
1534                goto out_free;
1535
1536            dma_dom->aperture[index]->pte_pages[i] = pte_page;
1537
1538            address += APERTURE_RANGE_SIZE / 64;
1539        }
1540    }
1541
1542    old_size = dma_dom->aperture_size;
1543    dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1544
1545    /* Reserve address range used for MSI messages */
1546    if (old_size < MSI_ADDR_BASE_LO &&
1547        dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1548        unsigned long spage;
1549        int pages;
1550
1551        pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1552        spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1553
1554        dma_ops_reserve_addresses(dma_dom, spage, pages);
1555    }
1556
1557    /* Initialize the exclusion range if necessary */
1558    for_each_iommu(iommu) {
1559        if (iommu->exclusion_start &&
1560            iommu->exclusion_start >= dma_dom->aperture[index]->offset
1561            && iommu->exclusion_start < dma_dom->aperture_size) {
1562            unsigned long startpage;
1563            int pages = iommu_num_pages(iommu->exclusion_start,
1564                            iommu->exclusion_length,
1565                            PAGE_SIZE);
1566            startpage = iommu->exclusion_start >> PAGE_SHIFT;
1567            dma_ops_reserve_addresses(dma_dom, startpage, pages);
1568        }
1569    }
1570
1571    /*
1572     * Check for areas already mapped as present in the new aperture
1573     * range and mark those pages as reserved in the allocator. Such
1574     * mappings may already exist as a result of requested unity
1575     * mappings for devices.
1576     */
1577    for (i = dma_dom->aperture[index]->offset;
1578         i < dma_dom->aperture_size;
1579         i += PAGE_SIZE) {
1580        u64 *pte = fetch_pte(&dma_dom->domain, i);
1581        if (!pte || !IOMMU_PTE_PRESENT(*pte))
1582            continue;
1583
1584        dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1585    }
1586
1587    update_domain(&dma_dom->domain);
1588
1589    return 0;
1590
1591out_free:
1592    update_domain(&dma_dom->domain);
1593
1594    free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1595
1596    kfree(dma_dom->aperture[index]);
1597    dma_dom->aperture[index] = NULL;
1598
1599    return -ENOMEM;
1600}
1601
1602static unsigned long dma_ops_area_alloc(struct device *dev,
1603                    struct dma_ops_domain *dom,
1604                    unsigned int pages,
1605                    unsigned long align_mask,
1606                    u64 dma_mask,
1607                    unsigned long start)
1608{
1609    unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1610    int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1611    int i = start >> APERTURE_RANGE_SHIFT;
1612    unsigned long boundary_size;
1613    unsigned long address = -1;
1614    unsigned long limit;
1615
1616    next_bit >>= PAGE_SHIFT;
1617
1618    boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1619            PAGE_SIZE) >> PAGE_SHIFT;
1620
1621    for (;i < max_index; ++i) {
1622        unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1623
1624        if (dom->aperture[i]->offset >= dma_mask)
1625            break;
1626
1627        limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1628                           dma_mask >> PAGE_SHIFT);
1629
1630        address = iommu_area_alloc(dom->aperture[i]->bitmap,
1631                       limit, next_bit, pages, 0,
1632                        boundary_size, align_mask);
1633        if (address != -1) {
1634            address = dom->aperture[i]->offset +
1635                  (address << PAGE_SHIFT);
1636            dom->next_address = address + (pages << PAGE_SHIFT);
1637            break;
1638        }
1639
1640        next_bit = 0;
1641    }
1642
1643    return address;
1644}
1645
1646static unsigned long dma_ops_alloc_addresses(struct device *dev,
1647                         struct dma_ops_domain *dom,
1648                         unsigned int pages,
1649                         unsigned long align_mask,
1650                         u64 dma_mask)
1651{
1652    unsigned long address;
1653
1654#ifdef CONFIG_IOMMU_STRESS
1655    dom->next_address = 0;
1656    dom->need_flush = true;
1657#endif
1658
1659    address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1660                     dma_mask, dom->next_address);
1661
1662    if (address == -1) {
1663        dom->next_address = 0;
1664        address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1665                         dma_mask, 0);
1666        dom->need_flush = true;
1667    }
1668
1669    if (unlikely(address == -1))
1670        address = DMA_ERROR_CODE;
1671
1672    WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1673
1674    return address;
1675}
1676
1677/*
1678 * The address free function.
1679 *
1680 * called with domain->lock held
1681 */
1682static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1683                   unsigned long address,
1684                   unsigned int pages)
1685{
1686    unsigned i = address >> APERTURE_RANGE_SHIFT;
1687    struct aperture_range *range = dom->aperture[i];
1688
1689    BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1690
1691#ifdef CONFIG_IOMMU_STRESS
1692    if (i < 4)
1693        return;
1694#endif
1695
1696    if (address >= dom->next_address)
1697        dom->need_flush = true;
1698
1699    address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1700
1701    bitmap_clear(range->bitmap, address, pages);
1702
1703}
1704
1705/****************************************************************************
1706 *
1707 * The next functions belong to the domain allocation. A domain is
1708 * allocated for every IOMMU as the default domain. If device isolation
1709 * is enabled, every device get its own domain. The most important thing
1710 * about domains is the page table mapping the DMA address space they
1711 * contain.
1712 *
1713 ****************************************************************************/
1714
1715/*
1716 * This function adds a protection domain to the global protection domain list
1717 */
1718static void add_domain_to_list(struct protection_domain *domain)
1719{
1720    unsigned long flags;
1721
1722    spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1723    list_add(&domain->list, &amd_iommu_pd_list);
1724    spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1725}
1726
1727/*
1728 * This function removes a protection domain to the global
1729 * protection domain list
1730 */
1731static void del_domain_from_list(struct protection_domain *domain)
1732{
1733    unsigned long flags;
1734
1735    spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1736    list_del(&domain->list);
1737    spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1738}
1739
1740static u16 domain_id_alloc(void)
1741{
1742    unsigned long flags;
1743    int id;
1744
1745    write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1746    id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1747    BUG_ON(id == 0);
1748    if (id > 0 && id < MAX_DOMAIN_ID)
1749        __set_bit(id, amd_iommu_pd_alloc_bitmap);
1750    else
1751        id = 0;
1752    write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1753
1754    return id;
1755}
1756
1757static void domain_id_free(int id)
1758{
1759    unsigned long flags;
1760
1761    write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1762    if (id > 0 && id < MAX_DOMAIN_ID)
1763        __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1764    write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1765}
1766
1767static void free_pagetable(struct protection_domain *domain)
1768{
1769    int i, j;
1770    u64 *p1, *p2, *p3;
1771
1772    p1 = domain->pt_root;
1773
1774    if (!p1)
1775        return;
1776
1777    for (i = 0; i < 512; ++i) {
1778        if (!IOMMU_PTE_PRESENT(p1[i]))
1779            continue;
1780
1781        p2 = IOMMU_PTE_PAGE(p1[i]);
1782        for (j = 0; j < 512; ++j) {
1783            if (!IOMMU_PTE_PRESENT(p2[j]))
1784                continue;
1785            p3 = IOMMU_PTE_PAGE(p2[j]);
1786            free_page((unsigned long)p3);
1787        }
1788
1789        free_page((unsigned long)p2);
1790    }
1791
1792    free_page((unsigned long)p1);
1793
1794    domain->pt_root = NULL;
1795}
1796
1797static void free_gcr3_tbl_level1(u64 *tbl)
1798{
1799    u64 *ptr;
1800    int i;
1801
1802    for (i = 0; i < 512; ++i) {
1803        if (!(tbl[i] & GCR3_VALID))
1804            continue;
1805
1806        ptr = __va(tbl[i] & PAGE_MASK);
1807
1808        free_page((unsigned long)ptr);
1809    }
1810}
1811
1812static void free_gcr3_tbl_level2(u64 *tbl)
1813{
1814    u64 *ptr;
1815    int i;
1816
1817    for (i = 0; i < 512; ++i) {
1818        if (!(tbl[i] & GCR3_VALID))
1819            continue;
1820
1821        ptr = __va(tbl[i] & PAGE_MASK);
1822
1823        free_gcr3_tbl_level1(ptr);
1824    }
1825}
1826
1827static void free_gcr3_table(struct protection_domain *domain)
1828{
1829    if (domain->glx == 2)
1830        free_gcr3_tbl_level2(domain->gcr3_tbl);
1831    else if (domain->glx == 1)
1832        free_gcr3_tbl_level1(domain->gcr3_tbl);
1833    else if (domain->glx != 0)
1834        BUG();
1835
1836    free_page((unsigned long)domain->gcr3_tbl);
1837}
1838
1839/*
1840 * Free a domain, only used if something went wrong in the
1841 * allocation path and we need to free an already allocated page table
1842 */
1843static void dma_ops_domain_free(struct dma_ops_domain *dom)
1844{
1845    int i;
1846
1847    if (!dom)
1848        return;
1849
1850    del_domain_from_list(&dom->domain);
1851
1852    free_pagetable(&dom->domain);
1853
1854    for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1855        if (!dom->aperture[i])
1856            continue;
1857        free_page((unsigned long)dom->aperture[i]->bitmap);
1858        kfree(dom->aperture[i]);
1859    }
1860
1861    kfree(dom);
1862}
1863
1864/*
1865 * Allocates a new protection domain usable for the dma_ops functions.
1866 * It also initializes the page table and the address allocator data
1867 * structures required for the dma_ops interface
1868 */
1869static struct dma_ops_domain *dma_ops_domain_alloc(void)
1870{
1871    struct dma_ops_domain *dma_dom;
1872
1873    dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1874    if (!dma_dom)
1875        return NULL;
1876
1877    spin_lock_init(&dma_dom->domain.lock);
1878
1879    dma_dom->domain.id = domain_id_alloc();
1880    if (dma_dom->domain.id == 0)
1881        goto free_dma_dom;
1882    INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1883    dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1884    dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1885    dma_dom->domain.flags = PD_DMA_OPS_MASK;
1886    dma_dom->domain.priv = dma_dom;
1887    if (!dma_dom->domain.pt_root)
1888        goto free_dma_dom;
1889
1890    dma_dom->need_flush = false;
1891    dma_dom->target_dev = 0xffff;
1892
1893    add_domain_to_list(&dma_dom->domain);
1894
1895    if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1896        goto free_dma_dom;
1897
1898    /*
1899     * mark the first page as allocated so we never return 0 as
1900     * a valid dma-address. So we can use 0 as error value
1901     */
1902    dma_dom->aperture[0]->bitmap[0] = 1;
1903    dma_dom->next_address = 0;
1904
1905
1906    return dma_dom;
1907
1908free_dma_dom:
1909    dma_ops_domain_free(dma_dom);
1910
1911    return NULL;
1912}
1913
1914/*
1915 * little helper function to check whether a given protection domain is a
1916 * dma_ops domain
1917 */
1918static bool dma_ops_domain(struct protection_domain *domain)
1919{
1920    return domain->flags & PD_DMA_OPS_MASK;
1921}
1922
1923static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1924{
1925    u64 pte_root = 0;
1926    u64 flags = 0;
1927
1928    if (domain->mode != PAGE_MODE_NONE)
1929        pte_root = virt_to_phys(domain->pt_root);
1930
1931    pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1932            << DEV_ENTRY_MODE_SHIFT;
1933    pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1934
1935    flags = amd_iommu_dev_table[devid].data[1];
1936
1937    if (ats)
1938        flags |= DTE_FLAG_IOTLB;
1939
1940    if (domain->flags & PD_IOMMUV2_MASK) {
1941        u64 gcr3 = __pa(domain->gcr3_tbl);
1942        u64 glx = domain->glx;
1943        u64 tmp;
1944
1945        pte_root |= DTE_FLAG_GV;
1946        pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1947
1948        /* First mask out possible old values for GCR3 table */
1949        tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1950        flags &= ~tmp;
1951
1952        tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1953        flags &= ~tmp;
1954
1955        /* Encode GCR3 table into DTE */
1956        tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1957        pte_root |= tmp;
1958
1959        tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1960        flags |= tmp;
1961
1962        tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1963        flags |= tmp;
1964    }
1965
1966    flags &= ~(0xffffUL);
1967    flags |= domain->id;
1968
1969    amd_iommu_dev_table[devid].data[1] = flags;
1970    amd_iommu_dev_table[devid].data[0] = pte_root;
1971}
1972
1973static void clear_dte_entry(u16 devid)
1974{
1975    /* remove entry from the device table seen by the hardware */
1976    amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1977    amd_iommu_dev_table[devid].data[1] = 0;
1978
1979    amd_iommu_apply_erratum_63(devid);
1980}
1981
1982static void do_attach(struct iommu_dev_data *dev_data,
1983              struct protection_domain *domain)
1984{
1985    struct amd_iommu *iommu;
1986    bool ats;
1987
1988    iommu = amd_iommu_rlookup_table[dev_data->devid];
1989    ats = dev_data->ats.enabled;
1990
1991    /* Update data structures */
1992    dev_data->domain = domain;
1993    list_add(&dev_data->list, &domain->dev_list);
1994    set_dte_entry(dev_data->devid, domain, ats);
1995
1996    /* Do reference counting */
1997    domain->dev_iommu[iommu->index] += 1;
1998    domain->dev_cnt += 1;
1999
2000    /* Flush the DTE entry */
2001    device_flush_dte(dev_data);
2002}
2003
2004static void do_detach(struct iommu_dev_data *dev_data)
2005{
2006    struct amd_iommu *iommu;
2007
2008    iommu = amd_iommu_rlookup_table[dev_data->devid];
2009
2010    /* decrease reference counters */
2011    dev_data->domain->dev_iommu[iommu->index] -= 1;
2012    dev_data->domain->dev_cnt -= 1;
2013
2014    /* Update data structures */
2015    dev_data->domain = NULL;
2016    list_del(&dev_data->list);
2017    clear_dte_entry(dev_data->devid);
2018
2019    /* Flush the DTE entry */
2020    device_flush_dte(dev_data);
2021}
2022
2023/*
2024 * If a device is not yet associated with a domain, this function does
2025 * assigns it visible for the hardware
2026 */
2027static int __attach_device(struct iommu_dev_data *dev_data,
2028               struct protection_domain *domain)
2029{
2030    int ret;
2031
2032    /* lock domain */
2033    spin_lock(&domain->lock);
2034
2035    if (dev_data->alias_data != NULL) {
2036        struct iommu_dev_data *alias_data = dev_data->alias_data;
2037
2038        /* Some sanity checks */
2039        ret = -EBUSY;
2040        if (alias_data->domain != NULL &&
2041                alias_data->domain != domain)
2042            goto out_unlock;
2043
2044        if (dev_data->domain != NULL &&
2045                dev_data->domain != domain)
2046            goto out_unlock;
2047
2048        /* Do real assignment */
2049        if (alias_data->domain == NULL)
2050            do_attach(alias_data, domain);
2051
2052        atomic_inc(&alias_data->bind);
2053    }
2054
2055    if (dev_data->domain == NULL)
2056        do_attach(dev_data, domain);
2057
2058    atomic_inc(&dev_data->bind);
2059
2060    ret = 0;
2061
2062out_unlock:
2063
2064    /* ready */
2065    spin_unlock(&domain->lock);
2066
2067    return ret;
2068}
2069
2070
2071static void pdev_iommuv2_disable(struct pci_dev *pdev)
2072{
2073    pci_disable_ats(pdev);
2074    pci_disable_pri(pdev);
2075    pci_disable_pasid(pdev);
2076}
2077
2078/* FIXME: Change generic reset-function to do the same */
2079static int pri_reset_while_enabled(struct pci_dev *pdev)
2080{
2081    u16 control;
2082    int pos;
2083
2084    pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2085    if (!pos)
2086        return -EINVAL;
2087
2088    pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2089    control |= PCI_PRI_CTRL_RESET;
2090    pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2091
2092    return 0;
2093}
2094
2095static int pdev_iommuv2_enable(struct pci_dev *pdev)
2096{
2097    bool reset_enable;
2098    int reqs, ret;
2099
2100    /* FIXME: Hardcode number of outstanding requests for now */
2101    reqs = 32;
2102    if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2103        reqs = 1;
2104    reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2105
2106    /* Only allow access to user-accessible pages */
2107    ret = pci_enable_pasid(pdev, 0);
2108    if (ret)
2109        goto out_err;
2110
2111    /* First reset the PRI state of the device */
2112    ret = pci_reset_pri(pdev);
2113    if (ret)
2114        goto out_err;
2115
2116    /* Enable PRI */
2117    ret = pci_enable_pri(pdev, reqs);
2118    if (ret)
2119        goto out_err;
2120
2121    if (reset_enable) {
2122        ret = pri_reset_while_enabled(pdev);
2123        if (ret)
2124            goto out_err;
2125    }
2126
2127    ret = pci_enable_ats(pdev, PAGE_SHIFT);
2128    if (ret)
2129        goto out_err;
2130
2131    return 0;
2132
2133out_err:
2134    pci_disable_pri(pdev);
2135    pci_disable_pasid(pdev);
2136
2137    return ret;
2138}
2139
2140/* FIXME: Move this to PCI code */
2141#define PCI_PRI_TLP_OFF (1 << 15)
2142
2143static bool pci_pri_tlp_required(struct pci_dev *pdev)
2144{
2145    u16 status;
2146    int pos;
2147
2148    pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2149    if (!pos)
2150        return false;
2151
2152    pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2153
2154    return (status & PCI_PRI_TLP_OFF) ? true : false;
2155}
2156
2157/*
2158 * If a device is not yet associated with a domain, this function does
2159 * assigns it visible for the hardware
2160 */
2161static int attach_device(struct device *dev,
2162             struct protection_domain *domain)
2163{
2164    struct pci_dev *pdev = to_pci_dev(dev);
2165    struct iommu_dev_data *dev_data;
2166    unsigned long flags;
2167    int ret;
2168
2169    dev_data = get_dev_data(dev);
2170
2171    if (domain->flags & PD_IOMMUV2_MASK) {
2172        if (!dev_data->iommu_v2 || !dev_data->passthrough)
2173            return -EINVAL;
2174
2175        if (pdev_iommuv2_enable(pdev) != 0)
2176            return -EINVAL;
2177
2178        dev_data->ats.enabled = true;
2179        dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2180        dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2181    } else if (amd_iommu_iotlb_sup &&
2182           pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2183        dev_data->ats.enabled = true;
2184        dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2185    }
2186
2187    write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2188    ret = __attach_device(dev_data, domain);
2189    write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2190
2191    /*
2192     * We might boot into a crash-kernel here. The crashed kernel
2193     * left the caches in the IOMMU dirty. So we have to flush
2194     * here to evict all dirty stuff.
2195     */
2196    domain_flush_tlb_pde(domain);
2197
2198    return ret;
2199}
2200
2201/*
2202 * Removes a device from a protection domain (unlocked)
2203 */
2204static void __detach_device(struct iommu_dev_data *dev_data)
2205{
2206    struct protection_domain *domain;
2207    unsigned long flags;
2208
2209    BUG_ON(!dev_data->domain);
2210
2211    domain = dev_data->domain;
2212
2213    spin_lock_irqsave(&domain->lock, flags);
2214
2215    if (dev_data->alias_data != NULL) {
2216        struct iommu_dev_data *alias_data = dev_data->alias_data;
2217
2218        if (atomic_dec_and_test(&alias_data->bind))
2219            do_detach(alias_data);
2220    }
2221
2222    if (atomic_dec_and_test(&dev_data->bind))
2223        do_detach(dev_data);
2224
2225    spin_unlock_irqrestore(&domain->lock, flags);
2226
2227    /*
2228     * If we run in passthrough mode the device must be assigned to the
2229     * passthrough domain if it is detached from any other domain.
2230     * Make sure we can deassign from the pt_domain itself.
2231     */
2232    if (dev_data->passthrough &&
2233        (dev_data->domain == NULL && domain != pt_domain))
2234        __attach_device(dev_data, pt_domain);
2235}
2236
2237/*
2238 * Removes a device from a protection domain (with devtable_lock held)
2239 */
2240static void detach_device(struct device *dev)
2241{
2242    struct protection_domain *domain;
2243    struct iommu_dev_data *dev_data;
2244    unsigned long flags;
2245
2246    dev_data = get_dev_data(dev);
2247    domain = dev_data->domain;
2248
2249    /* lock device table */
2250    write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2251    __detach_device(dev_data);
2252    write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2253
2254    if (domain->flags & PD_IOMMUV2_MASK)
2255        pdev_iommuv2_disable(to_pci_dev(dev));
2256    else if (dev_data->ats.enabled)
2257        pci_disable_ats(to_pci_dev(dev));
2258
2259    dev_data->ats.enabled = false;
2260}
2261
2262/*
2263 * Find out the protection domain structure for a given PCI device. This
2264 * will give us the pointer to the page table root for example.
2265 */
2266static struct protection_domain *domain_for_device(struct device *dev)
2267{
2268    struct iommu_dev_data *dev_data;
2269    struct protection_domain *dom = NULL;
2270    unsigned long flags;
2271
2272    dev_data = get_dev_data(dev);
2273
2274    if (dev_data->domain)
2275        return dev_data->domain;
2276
2277    if (dev_data->alias_data != NULL) {
2278        struct iommu_dev_data *alias_data = dev_data->alias_data;
2279
2280        read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2281        if (alias_data->domain != NULL) {
2282            __attach_device(dev_data, alias_data->domain);
2283            dom = alias_data->domain;
2284        }
2285        read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2286    }
2287
2288    return dom;
2289}
2290
2291static int device_change_notifier(struct notifier_block *nb,
2292                  unsigned long action, void *data)
2293{
2294    struct dma_ops_domain *dma_domain;
2295    struct protection_domain *domain;
2296    struct iommu_dev_data *dev_data;
2297    struct device *dev = data;
2298    struct amd_iommu *iommu;
2299    unsigned long flags;
2300    u16 devid;
2301
2302    if (!check_device(dev))
2303        return 0;
2304
2305    devid = get_device_id(dev);
2306    iommu = amd_iommu_rlookup_table[devid];
2307    dev_data = get_dev_data(dev);
2308
2309    switch (action) {
2310    case BUS_NOTIFY_UNBOUND_DRIVER:
2311
2312        domain = domain_for_device(dev);
2313
2314        if (!domain)
2315            goto out;
2316        if (dev_data->passthrough)
2317            break;
2318        detach_device(dev);
2319        break;
2320    case BUS_NOTIFY_ADD_DEVICE:
2321
2322        iommu_init_device(dev);
2323
2324        /*
2325         * dev_data is still NULL and
2326         * got initialized in iommu_init_device
2327         */
2328        dev_data = get_dev_data(dev);
2329
2330        if (iommu_pass_through || dev_data->iommu_v2) {
2331            dev_data->passthrough = true;
2332            attach_device(dev, pt_domain);
2333            break;
2334        }
2335
2336        domain = domain_for_device(dev);
2337
2338        /* allocate a protection domain if a device is added */
2339        dma_domain = find_protection_domain(devid);
2340        if (dma_domain)
2341            goto out;
2342        dma_domain = dma_ops_domain_alloc();
2343        if (!dma_domain)
2344            goto out;
2345        dma_domain->target_dev = devid;
2346
2347        spin_lock_irqsave(&iommu_pd_list_lock, flags);
2348        list_add_tail(&dma_domain->list, &iommu_pd_list);
2349        spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2350
2351        dev_data = get_dev_data(dev);
2352
2353        dev->archdata.dma_ops = &amd_iommu_dma_ops;
2354
2355        break;
2356    case BUS_NOTIFY_DEL_DEVICE:
2357
2358        iommu_uninit_device(dev);
2359
2360    default:
2361        goto out;
2362    }
2363
2364    iommu_completion_wait(iommu);
2365
2366out:
2367    return 0;
2368}
2369
2370static struct notifier_block device_nb = {
2371    .notifier_call = device_change_notifier,
2372};
2373
2374void amd_iommu_init_notifier(void)
2375{
2376    bus_register_notifier(&pci_bus_type, &device_nb);
2377}
2378
2379/*****************************************************************************
2380 *
2381 * The next functions belong to the dma_ops mapping/unmapping code.
2382 *
2383 *****************************************************************************/
2384
2385/*
2386 * In the dma_ops path we only have the struct device. This function
2387 * finds the corresponding IOMMU, the protection domain and the
2388 * requestor id for a given device.
2389 * If the device is not yet associated with a domain this is also done
2390 * in this function.
2391 */
2392static struct protection_domain *get_domain(struct device *dev)
2393{
2394    struct protection_domain *domain;
2395    struct dma_ops_domain *dma_dom;
2396    u16 devid = get_device_id(dev);
2397
2398    if (!check_device(dev))
2399        return ERR_PTR(-EINVAL);
2400
2401    domain = domain_for_device(dev);
2402    if (domain != NULL && !dma_ops_domain(domain))
2403        return ERR_PTR(-EBUSY);
2404
2405    if (domain != NULL)
2406        return domain;
2407
2408    /* Device not bount yet - bind it */
2409    dma_dom = find_protection_domain(devid);
2410    if (!dma_dom)
2411        dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2412    attach_device(dev, &dma_dom->domain);
2413    DUMP_printk("Using protection domain %d for device %s\n",
2414            dma_dom->domain.id, dev_name(dev));
2415
2416    return &dma_dom->domain;
2417}
2418
2419static void update_device_table(struct protection_domain *domain)
2420{
2421    struct iommu_dev_data *dev_data;
2422
2423    list_for_each_entry(dev_data, &domain->dev_list, list)
2424        set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2425}
2426
2427static void update_domain(struct protection_domain *domain)
2428{
2429    if (!domain->updated)
2430        return;
2431
2432    update_device_table(domain);
2433
2434    domain_flush_devices(domain);
2435    domain_flush_tlb_pde(domain);
2436
2437    domain->updated = false;
2438}
2439
2440/*
2441 * This function fetches the PTE for a given address in the aperture
2442 */
2443static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2444                unsigned long address)
2445{
2446    struct aperture_range *aperture;
2447    u64 *pte, *pte_page;
2448
2449    aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2450    if (!aperture)
2451        return NULL;
2452
2453    pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2454    if (!pte) {
2455        pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2456                GFP_ATOMIC);
2457        aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2458    } else
2459        pte += PM_LEVEL_INDEX(0, address);
2460
2461    update_domain(&dom->domain);
2462
2463    return pte;
2464}
2465
2466/*
2467 * This is the generic map function. It maps one 4kb page at paddr to
2468 * the given address in the DMA address space for the domain.
2469 */
2470static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2471                     unsigned long address,
2472                     phys_addr_t paddr,
2473                     int direction)
2474{
2475    u64 *pte, __pte;
2476
2477    WARN_ON(address > dom->aperture_size);
2478
2479    paddr &= PAGE_MASK;
2480
2481    pte = dma_ops_get_pte(dom, address);
2482    if (!pte)
2483        return DMA_ERROR_CODE;
2484
2485    __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2486
2487    if (direction == DMA_TO_DEVICE)
2488        __pte |= IOMMU_PTE_IR;
2489    else if (direction == DMA_FROM_DEVICE)
2490        __pte |= IOMMU_PTE_IW;
2491    else if (direction == DMA_BIDIRECTIONAL)
2492        __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2493
2494    WARN_ON(*pte);
2495
2496    *pte = __pte;
2497
2498    return (dma_addr_t)address;
2499}
2500
2501/*
2502 * The generic unmapping function for on page in the DMA address space.
2503 */
2504static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2505                 unsigned long address)
2506{
2507    struct aperture_range *aperture;
2508    u64 *pte;
2509
2510    if (address >= dom->aperture_size)
2511        return;
2512
2513    aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2514    if (!aperture)
2515        return;
2516
2517    pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2518    if (!pte)
2519        return;
2520
2521    pte += PM_LEVEL_INDEX(0, address);
2522
2523    WARN_ON(!*pte);
2524
2525    *pte = 0ULL;
2526}
2527
2528/*
2529 * This function contains common code for mapping of a physically
2530 * contiguous memory region into DMA address space. It is used by all
2531 * mapping functions provided with this IOMMU driver.
2532 * Must be called with the domain lock held.
2533 */
2534static dma_addr_t __map_single(struct device *dev,
2535                   struct dma_ops_domain *dma_dom,
2536                   phys_addr_t paddr,
2537                   size_t size,
2538                   int dir,
2539                   bool align,
2540                   u64 dma_mask)
2541{
2542    dma_addr_t offset = paddr & ~PAGE_MASK;
2543    dma_addr_t address, start, ret;
2544    unsigned int pages;
2545    unsigned long align_mask = 0;
2546    int i;
2547
2548    pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2549    paddr &= PAGE_MASK;
2550
2551    INC_STATS_COUNTER(total_map_requests);
2552
2553    if (pages > 1)
2554        INC_STATS_COUNTER(cross_page);
2555
2556    if (align)
2557        align_mask = (1UL << get_order(size)) - 1;
2558
2559retry:
2560    address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2561                      dma_mask);
2562    if (unlikely(address == DMA_ERROR_CODE)) {
2563        /*
2564         * setting next_address here will let the address
2565         * allocator only scan the new allocated range in the
2566         * first run. This is a small optimization.
2567         */
2568        dma_dom->next_address = dma_dom->aperture_size;
2569
2570        if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2571            goto out;
2572
2573        /*
2574         * aperture was successfully enlarged by 128 MB, try
2575         * allocation again
2576         */
2577        goto retry;
2578    }
2579
2580    start = address;
2581    for (i = 0; i < pages; ++i) {
2582        ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2583        if (ret == DMA_ERROR_CODE)
2584            goto out_unmap;
2585
2586        paddr += PAGE_SIZE;
2587        start += PAGE_SIZE;
2588    }
2589    address += offset;
2590
2591    ADD_STATS_COUNTER(alloced_io_mem, size);
2592
2593    if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2594        domain_flush_tlb(&dma_dom->domain);
2595        dma_dom->need_flush = false;
2596    } else if (unlikely(amd_iommu_np_cache))
2597        domain_flush_pages(&dma_dom->domain, address, size);
2598
2599out:
2600    return address;
2601
2602out_unmap:
2603
2604    for (--i; i >= 0; --i) {
2605        start -= PAGE_SIZE;
2606        dma_ops_domain_unmap(dma_dom, start);
2607    }
2608
2609    dma_ops_free_addresses(dma_dom, address, pages);
2610
2611    return DMA_ERROR_CODE;
2612}
2613
2614/*
2615 * Does the reverse of the __map_single function. Must be called with
2616 * the domain lock held too
2617 */
2618static void __unmap_single(struct dma_ops_domain *dma_dom,
2619               dma_addr_t dma_addr,
2620               size_t size,
2621               int dir)
2622{
2623    dma_addr_t flush_addr;
2624    dma_addr_t i, start;
2625    unsigned int pages;
2626
2627    if ((dma_addr == DMA_ERROR_CODE) ||
2628        (dma_addr + size > dma_dom->aperture_size))
2629        return;
2630
2631    flush_addr = dma_addr;
2632    pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2633    dma_addr &= PAGE_MASK;
2634    start = dma_addr;
2635
2636    for (i = 0; i < pages; ++i) {
2637        dma_ops_domain_unmap(dma_dom, start);
2638        start += PAGE_SIZE;
2639    }
2640
2641    SUB_STATS_COUNTER(alloced_io_mem, size);
2642
2643    dma_ops_free_addresses(dma_dom, dma_addr, pages);
2644
2645    if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2646        domain_flush_pages(&dma_dom->domain, flush_addr, size);
2647        dma_dom->need_flush = false;
2648    }
2649}
2650
2651/*
2652 * The exported map_single function for dma_ops.
2653 */
2654static dma_addr_t map_page(struct device *dev, struct page *page,
2655               unsigned long offset, size_t size,
2656               enum dma_data_direction dir,
2657               struct dma_attrs *attrs)
2658{
2659    unsigned long flags;
2660    struct protection_domain *domain;
2661    dma_addr_t addr;
2662    u64 dma_mask;
2663    phys_addr_t paddr = page_to_phys(page) + offset;
2664
2665    INC_STATS_COUNTER(cnt_map_single);
2666
2667    domain = get_domain(dev);
2668    if (PTR_ERR(domain) == -EINVAL)
2669        return (dma_addr_t)paddr;
2670    else if (IS_ERR(domain))
2671        return DMA_ERROR_CODE;
2672
2673    dma_mask = *dev->dma_mask;
2674
2675    spin_lock_irqsave(&domain->lock, flags);
2676
2677    addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2678                dma_mask);
2679    if (addr == DMA_ERROR_CODE)
2680        goto out;
2681
2682    domain_flush_complete(domain);
2683
2684out:
2685    spin_unlock_irqrestore(&domain->lock, flags);
2686
2687    return addr;
2688}
2689
2690/*
2691 * The exported unmap_single function for dma_ops.
2692 */
2693static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2694               enum dma_data_direction dir, struct dma_attrs *attrs)
2695{
2696    unsigned long flags;
2697    struct protection_domain *domain;
2698
2699    INC_STATS_COUNTER(cnt_unmap_single);
2700
2701    domain = get_domain(dev);
2702    if (IS_ERR(domain))
2703        return;
2704
2705    spin_lock_irqsave(&domain->lock, flags);
2706
2707    __unmap_single(domain->priv, dma_addr, size, dir);
2708
2709    domain_flush_complete(domain);
2710
2711    spin_unlock_irqrestore(&domain->lock, flags);
2712}
2713
2714/*
2715 * This is a special map_sg function which is used if we should map a
2716 * device which is not handled by an AMD IOMMU in the system.
2717 */
2718static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2719               int nelems, int dir)
2720{
2721    struct scatterlist *s;
2722    int i;
2723
2724    for_each_sg(sglist, s, nelems, i) {
2725        s->dma_address = (dma_addr_t)sg_phys(s);
2726        s->dma_length = s->length;
2727    }
2728
2729    return nelems;
2730}
2731
2732/*
2733 * The exported map_sg function for dma_ops (handles scatter-gather
2734 * lists).
2735 */
2736static int map_sg(struct device *dev, struct scatterlist *sglist,
2737          int nelems, enum dma_data_direction dir,
2738          struct dma_attrs *attrs)
2739{
2740    unsigned long flags;
2741    struct protection_domain *domain;
2742    int i;
2743    struct scatterlist *s;
2744    phys_addr_t paddr;
2745    int mapped_elems = 0;
2746    u64 dma_mask;
2747
2748    INC_STATS_COUNTER(cnt_map_sg);
2749
2750    domain = get_domain(dev);
2751    if (PTR_ERR(domain) == -EINVAL)
2752        return map_sg_no_iommu(dev, sglist, nelems, dir);
2753    else if (IS_ERR(domain))
2754        return 0;
2755
2756    dma_mask = *dev->dma_mask;
2757
2758    spin_lock_irqsave(&domain->lock, flags);
2759
2760    for_each_sg(sglist, s, nelems, i) {
2761        paddr = sg_phys(s);
2762
2763        s->dma_address = __map_single(dev, domain->priv,
2764                          paddr, s->length, dir, false,
2765                          dma_mask);
2766
2767        if (s->dma_address) {
2768            s->dma_length = s->length;
2769            mapped_elems++;
2770        } else
2771            goto unmap;
2772    }
2773
2774    domain_flush_complete(domain);
2775
2776out:
2777    spin_unlock_irqrestore(&domain->lock, flags);
2778
2779    return mapped_elems;
2780unmap:
2781    for_each_sg(sglist, s, mapped_elems, i) {
2782        if (s->dma_address)
2783            __unmap_single(domain->priv, s->dma_address,
2784                       s->dma_length, dir);
2785        s->dma_address = s->dma_length = 0;
2786    }
2787
2788    mapped_elems = 0;
2789
2790    goto out;
2791}
2792
2793/*
2794 * The exported map_sg function for dma_ops (handles scatter-gather
2795 * lists).
2796 */
2797static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2798             int nelems, enum dma_data_direction dir,
2799             struct dma_attrs *attrs)
2800{
2801    unsigned long flags;
2802    struct protection_domain *domain;
2803    struct scatterlist *s;
2804    int i;
2805
2806    INC_STATS_COUNTER(cnt_unmap_sg);
2807
2808    domain = get_domain(dev);
2809    if (IS_ERR(domain))
2810        return;
2811
2812    spin_lock_irqsave(&domain->lock, flags);
2813
2814    for_each_sg(sglist, s, nelems, i) {
2815        __unmap_single(domain->priv, s->dma_address,
2816                   s->dma_length, dir);
2817        s->dma_address = s->dma_length = 0;
2818    }
2819
2820    domain_flush_complete(domain);
2821
2822    spin_unlock_irqrestore(&domain->lock, flags);
2823}
2824
2825/*
2826 * The exported alloc_coherent function for dma_ops.
2827 */
2828static void *alloc_coherent(struct device *dev, size_t size,
2829                dma_addr_t *dma_addr, gfp_t flag,
2830                struct dma_attrs *attrs)
2831{
2832    unsigned long flags;
2833    void *virt_addr;
2834    struct protection_domain *domain;
2835    phys_addr_t paddr;
2836    u64 dma_mask = dev->coherent_dma_mask;
2837
2838    INC_STATS_COUNTER(cnt_alloc_coherent);
2839
2840    domain = get_domain(dev);
2841    if (PTR_ERR(domain) == -EINVAL) {
2842        virt_addr = (void *)__get_free_pages(flag, get_order(size));
2843        *dma_addr = __pa(virt_addr);
2844        return virt_addr;
2845    } else if (IS_ERR(domain))
2846        return NULL;
2847
2848    dma_mask = dev->coherent_dma_mask;
2849    flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2850    flag |= __GFP_ZERO;
2851
2852    virt_addr = (void *)__get_free_pages(flag, get_order(size));
2853    if (!virt_addr)
2854        return NULL;
2855
2856    paddr = virt_to_phys(virt_addr);
2857
2858    if (!dma_mask)
2859        dma_mask = *dev->dma_mask;
2860
2861    spin_lock_irqsave(&domain->lock, flags);
2862
2863    *dma_addr = __map_single(dev, domain->priv, paddr,
2864                 size, DMA_BIDIRECTIONAL, true, dma_mask);
2865
2866    if (*dma_addr == DMA_ERROR_CODE) {
2867        spin_unlock_irqrestore(&domain->lock, flags);
2868        goto out_free;
2869    }
2870
2871    domain_flush_complete(domain);
2872
2873    spin_unlock_irqrestore(&domain->lock, flags);
2874
2875    return virt_addr;
2876
2877out_free:
2878
2879    free_pages((unsigned long)virt_addr, get_order(size));
2880
2881    return NULL;
2882}
2883
2884/*
2885 * The exported free_coherent function for dma_ops.
2886 */
2887static void free_coherent(struct device *dev, size_t size,
2888              void *virt_addr, dma_addr_t dma_addr,
2889              struct dma_attrs *attrs)
2890{
2891    unsigned long flags;
2892    struct protection_domain *domain;
2893
2894    INC_STATS_COUNTER(cnt_free_coherent);
2895
2896    domain = get_domain(dev);
2897    if (IS_ERR(domain))
2898        goto free_mem;
2899
2900    spin_lock_irqsave(&domain->lock, flags);
2901
2902    __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2903
2904    domain_flush_complete(domain);
2905
2906    spin_unlock_irqrestore(&domain->lock, flags);
2907
2908free_mem:
2909    free_pages((unsigned long)virt_addr, get_order(size));
2910}
2911
2912/*
2913 * This function is called by the DMA layer to find out if we can handle a
2914 * particular device. It is part of the dma_ops.
2915 */
2916static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2917{
2918    return check_device(dev);
2919}
2920
2921/*
2922 * The function for pre-allocating protection domains.
2923 *
2924 * If the driver core informs the DMA layer if a driver grabs a device
2925 * we don't need to preallocate the protection domains anymore.
2926 * For now we have to.
2927 */
2928static void __init prealloc_protection_domains(void)
2929{
2930    struct iommu_dev_data *dev_data;
2931    struct dma_ops_domain *dma_dom;
2932    struct pci_dev *dev = NULL;
2933    u16 devid;
2934
2935    for_each_pci_dev(dev) {
2936
2937        /* Do we handle this device? */
2938        if (!check_device(&dev->dev))
2939            continue;
2940
2941        dev_data = get_dev_data(&dev->dev);
2942        if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2943            /* Make sure passthrough domain is allocated */
2944            alloc_passthrough_domain();
2945            dev_data->passthrough = true;
2946            attach_device(&dev->dev, pt_domain);
2947            pr_info("AMD-Vi: Using passthough domain for device %s\n",
2948                dev_name(&dev->dev));
2949        }
2950
2951        /* Is there already any domain for it? */
2952        if (domain_for_device(&dev->dev))
2953            continue;
2954
2955        devid = get_device_id(&dev->dev);
2956
2957        dma_dom = dma_ops_domain_alloc();
2958        if (!dma_dom)
2959            continue;
2960        init_unity_mappings_for_device(dma_dom, devid);
2961        dma_dom->target_dev = devid;
2962
2963        attach_device(&dev->dev, &dma_dom->domain);
2964
2965        list_add_tail(&dma_dom->list, &iommu_pd_list);
2966    }
2967}
2968
2969static struct dma_map_ops amd_iommu_dma_ops = {
2970    .alloc = alloc_coherent,
2971    .free = free_coherent,
2972    .map_page = map_page,
2973    .unmap_page = unmap_page,
2974    .map_sg = map_sg,
2975    .unmap_sg = unmap_sg,
2976    .dma_supported = amd_iommu_dma_supported,
2977};
2978
2979static unsigned device_dma_ops_init(void)
2980{
2981    struct iommu_dev_data *dev_data;
2982    struct pci_dev *pdev = NULL;
2983    unsigned unhandled = 0;
2984
2985    for_each_pci_dev(pdev) {
2986        if (!check_device(&pdev->dev)) {
2987
2988            iommu_ignore_device(&pdev->dev);
2989
2990            unhandled += 1;
2991            continue;
2992        }
2993
2994        dev_data = get_dev_data(&pdev->dev);
2995
2996        if (!dev_data->passthrough)
2997            pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2998        else
2999            pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3000    }
3001
3002    return unhandled;
3003}
3004
3005/*
3006 * The function which clues the AMD IOMMU driver into dma_ops.
3007 */
3008
3009void __init amd_iommu_init_api(void)
3010{
3011    bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3012}
3013
3014int __init amd_iommu_init_dma_ops(void)
3015{
3016    struct amd_iommu *iommu;
3017    int ret, unhandled;
3018
3019    /*
3020     * first allocate a default protection domain for every IOMMU we
3021     * found in the system. Devices not assigned to any other
3022     * protection domain will be assigned to the default one.
3023     */
3024    for_each_iommu(iommu) {
3025        iommu->default_dom = dma_ops_domain_alloc();
3026        if (iommu->default_dom == NULL)
3027            return -ENOMEM;
3028        iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3029        ret = iommu_init_unity_mappings(iommu);
3030        if (ret)
3031            goto free_domains;
3032    }
3033
3034    /*
3035     * Pre-allocate the protection domains for each device.
3036     */
3037    prealloc_protection_domains();
3038
3039    iommu_detected = 1;
3040    swiotlb = 0;
3041
3042    /* Make the driver finally visible to the drivers */
3043    unhandled = device_dma_ops_init();
3044    if (unhandled && max_pfn > MAX_DMA32_PFN) {
3045        /* There are unhandled devices - initialize swiotlb for them */
3046        swiotlb = 1;
3047    }
3048
3049    amd_iommu_stats_init();
3050
3051    if (amd_iommu_unmap_flush)
3052        pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3053    else
3054        pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3055
3056    return 0;
3057
3058free_domains:
3059
3060    for_each_iommu(iommu) {
3061        if (iommu->default_dom)
3062            dma_ops_domain_free(iommu->default_dom);
3063    }
3064
3065    return ret;
3066}
3067
3068/*****************************************************************************
3069 *
3070 * The following functions belong to the exported interface of AMD IOMMU
3071 *
3072 * This interface allows access to lower level functions of the IOMMU
3073 * like protection domain handling and assignement of devices to domains
3074 * which is not possible with the dma_ops interface.
3075 *
3076 *****************************************************************************/
3077
3078static void cleanup_domain(struct protection_domain *domain)
3079{
3080    struct iommu_dev_data *dev_data, *next;
3081    unsigned long flags;
3082
3083    write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3084
3085    list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3086        __detach_device(dev_data);
3087        atomic_set(&dev_data->bind, 0);
3088    }
3089
3090    write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3091}
3092
3093static void protection_domain_free(struct protection_domain *domain)
3094{
3095    if (!domain)
3096        return;
3097
3098    del_domain_from_list(domain);
3099
3100    if (domain->id)
3101        domain_id_free(domain->id);
3102
3103    kfree(domain);
3104}
3105
3106static struct protection_domain *protection_domain_alloc(void)
3107{
3108    struct protection_domain *domain;
3109
3110    domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3111    if (!domain)
3112        return NULL;
3113
3114    spin_lock_init(&domain->lock);
3115    mutex_init(&domain->api_lock);
3116    domain->id = domain_id_alloc();
3117    if (!domain->id)
3118        goto out_err;
3119    INIT_LIST_HEAD(&domain->dev_list);
3120
3121    add_domain_to_list(domain);
3122
3123    return domain;
3124
3125out_err:
3126    kfree(domain);
3127
3128    return NULL;
3129}
3130
3131static int __init alloc_passthrough_domain(void)
3132{
3133    if (pt_domain != NULL)
3134        return 0;
3135
3136    /* allocate passthrough domain */
3137    pt_domain = protection_domain_alloc();
3138    if (!pt_domain)
3139        return -ENOMEM;
3140
3141    pt_domain->mode = PAGE_MODE_NONE;
3142
3143    return 0;
3144}
3145static int amd_iommu_domain_init(struct iommu_domain *dom)
3146{
3147    struct protection_domain *domain;
3148
3149    domain = protection_domain_alloc();
3150    if (!domain)
3151        goto out_free;
3152
3153    domain->mode = PAGE_MODE_3_LEVEL;
3154    domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3155    if (!domain->pt_root)
3156        goto out_free;
3157
3158    domain->iommu_domain = dom;
3159
3160    dom->priv = domain;
3161
3162    dom->geometry.aperture_start = 0;
3163    dom->geometry.aperture_end = ~0ULL;
3164    dom->geometry.force_aperture = true;
3165
3166    return 0;
3167
3168out_free:
3169    protection_domain_free(domain);
3170
3171    return -ENOMEM;
3172}
3173
3174static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3175{
3176    struct protection_domain *domain = dom->priv;
3177
3178    if (!domain)
3179        return;
3180
3181    if (domain->dev_cnt > 0)
3182        cleanup_domain(domain);
3183
3184    BUG_ON(domain->dev_cnt != 0);
3185
3186    if (domain->mode != PAGE_MODE_NONE)
3187        free_pagetable(domain);
3188
3189    if (domain->flags & PD_IOMMUV2_MASK)
3190        free_gcr3_table(domain);
3191
3192    protection_domain_free(domain);
3193
3194    dom->priv = NULL;
3195}
3196
3197static void amd_iommu_detach_device(struct iommu_domain *dom,
3198                    struct device *dev)
3199{
3200    struct iommu_dev_data *dev_data = dev->archdata.iommu;
3201    struct amd_iommu *iommu;
3202    u16 devid;
3203
3204    if (!check_device(dev))
3205        return;
3206
3207    devid = get_device_id(dev);
3208
3209    if (dev_data->domain != NULL)
3210        detach_device(dev);
3211
3212    iommu = amd_iommu_rlookup_table[devid];
3213    if (!iommu)
3214        return;
3215
3216    iommu_completion_wait(iommu);
3217}
3218
3219static int amd_iommu_attach_device(struct iommu_domain *dom,
3220                   struct device *dev)
3221{
3222    struct protection_domain *domain = dom->priv;
3223    struct iommu_dev_data *dev_data;
3224    struct amd_iommu *iommu;
3225    int ret;
3226
3227    if (!check_device(dev))
3228        return -EINVAL;
3229
3230    dev_data = dev->archdata.iommu;
3231
3232    iommu = amd_iommu_rlookup_table[dev_data->devid];
3233    if (!iommu)
3234        return -EINVAL;
3235
3236    if (dev_data->domain)
3237        detach_device(dev);
3238
3239    ret = attach_device(dev, domain);
3240
3241    iommu_completion_wait(iommu);
3242
3243    return ret;
3244}
3245
3246static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3247             phys_addr_t paddr, size_t page_size, int iommu_prot)
3248{
3249    struct protection_domain *domain = dom->priv;
3250    int prot = 0;
3251    int ret;
3252
3253    if (domain->mode == PAGE_MODE_NONE)
3254        return -EINVAL;
3255
3256    if (iommu_prot & IOMMU_READ)
3257        prot |= IOMMU_PROT_IR;
3258    if (iommu_prot & IOMMU_WRITE)
3259        prot |= IOMMU_PROT_IW;
3260
3261    mutex_lock(&domain->api_lock);
3262    ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3263    mutex_unlock(&domain->api_lock);
3264
3265    return ret;
3266}
3267
3268static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3269               size_t page_size)
3270{
3271    struct protection_domain *domain = dom->priv;
3272    size_t unmap_size;
3273
3274    if (domain->mode == PAGE_MODE_NONE)
3275        return -EINVAL;
3276
3277    mutex_lock(&domain->api_lock);
3278    unmap_size = iommu_unmap_page(domain, iova, page_size);
3279    mutex_unlock(&domain->api_lock);
3280
3281    domain_flush_tlb_pde(domain);
3282
3283    return unmap_size;
3284}
3285
3286static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3287                      unsigned long iova)
3288{
3289    struct protection_domain *domain = dom->priv;
3290    unsigned long offset_mask;
3291    phys_addr_t paddr;
3292    u64 *pte, __pte;
3293
3294    if (domain->mode == PAGE_MODE_NONE)
3295        return iova;
3296
3297    pte = fetch_pte(domain, iova);
3298
3299    if (!pte || !IOMMU_PTE_PRESENT(*pte))
3300        return 0;
3301
3302    if (PM_PTE_LEVEL(*pte) == 0)
3303        offset_mask = PAGE_SIZE - 1;
3304    else
3305        offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3306
3307    __pte = *pte & PM_ADDR_MASK;
3308    paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3309
3310    return paddr;
3311}
3312
3313static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3314                    unsigned long cap)
3315{
3316    switch (cap) {
3317    case IOMMU_CAP_CACHE_COHERENCY:
3318        return 1;
3319    }
3320
3321    return 0;
3322}
3323
3324static struct iommu_ops amd_iommu_ops = {
3325    .domain_init = amd_iommu_domain_init,
3326    .domain_destroy = amd_iommu_domain_destroy,
3327    .attach_dev = amd_iommu_attach_device,
3328    .detach_dev = amd_iommu_detach_device,
3329    .map = amd_iommu_map,
3330    .unmap = amd_iommu_unmap,
3331    .iova_to_phys = amd_iommu_iova_to_phys,
3332    .domain_has_cap = amd_iommu_domain_has_cap,
3333    .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3334};
3335
3336/*****************************************************************************
3337 *
3338 * The next functions do a basic initialization of IOMMU for pass through
3339 * mode
3340 *
3341 * In passthrough mode the IOMMU is initialized and enabled but not used for
3342 * DMA-API translation.
3343 *
3344 *****************************************************************************/
3345
3346int __init amd_iommu_init_passthrough(void)
3347{
3348    struct iommu_dev_data *dev_data;
3349    struct pci_dev *dev = NULL;
3350    struct amd_iommu *iommu;
3351    u16 devid;
3352    int ret;
3353
3354    ret = alloc_passthrough_domain();
3355    if (ret)
3356        return ret;
3357
3358    for_each_pci_dev(dev) {
3359        if (!check_device(&dev->dev))
3360            continue;
3361
3362        dev_data = get_dev_data(&dev->dev);
3363        dev_data->passthrough = true;
3364
3365        devid = get_device_id(&dev->dev);
3366
3367        iommu = amd_iommu_rlookup_table[devid];
3368        if (!iommu)
3369            continue;
3370
3371        attach_device(&dev->dev, pt_domain);
3372    }
3373
3374    amd_iommu_stats_init();
3375
3376    pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3377
3378    return 0;
3379}
3380
3381/* IOMMUv2 specific functions */
3382int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3383{
3384    return atomic_notifier_chain_register(&ppr_notifier, nb);
3385}
3386EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3387
3388int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3389{
3390    return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3391}
3392EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3393
3394void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3395{
3396    struct protection_domain *domain = dom->priv;
3397    unsigned long flags;
3398
3399    spin_lock_irqsave(&domain->lock, flags);
3400
3401    /* Update data structure */
3402    domain->mode = PAGE_MODE_NONE;
3403    domain->updated = true;
3404
3405    /* Make changes visible to IOMMUs */
3406    update_domain(domain);
3407
3408    /* Page-table is not visible to IOMMU anymore, so free it */
3409    free_pagetable(domain);
3410
3411    spin_unlock_irqrestore(&domain->lock, flags);
3412}
3413EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3414
3415int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3416{
3417    struct protection_domain *domain = dom->priv;
3418    unsigned long flags;
3419    int levels, ret;
3420
3421    if (pasids <= 0 || pasids > (PASID_MASK + 1))
3422        return -EINVAL;
3423
3424    /* Number of GCR3 table levels required */
3425    for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3426        levels += 1;
3427
3428    if (levels > amd_iommu_max_glx_val)
3429        return -EINVAL;
3430
3431    spin_lock_irqsave(&domain->lock, flags);
3432
3433    /*
3434     * Save us all sanity checks whether devices already in the
3435     * domain support IOMMUv2. Just force that the domain has no
3436     * devices attached when it is switched into IOMMUv2 mode.
3437     */
3438    ret = -EBUSY;
3439    if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3440        goto out;
3441
3442    ret = -ENOMEM;
3443    domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3444    if (domain->gcr3_tbl == NULL)
3445        goto out;
3446
3447    domain->glx = levels;
3448    domain->flags |= PD_IOMMUV2_MASK;
3449    domain->updated = true;
3450
3451    update_domain(domain);
3452
3453    ret = 0;
3454
3455out:
3456    spin_unlock_irqrestore(&domain->lock, flags);
3457
3458    return ret;
3459}
3460EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3461
3462static int __flush_pasid(struct protection_domain *domain, int pasid,
3463             u64 address, bool size)
3464{
3465    struct iommu_dev_data *dev_data;
3466    struct iommu_cmd cmd;
3467    int i, ret;
3468
3469    if (!(domain->flags & PD_IOMMUV2_MASK))
3470        return -EINVAL;
3471
3472    build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3473
3474    /*
3475     * IOMMU TLB needs to be flushed before Device TLB to
3476     * prevent device TLB refill from IOMMU TLB
3477     */
3478    for (i = 0; i < amd_iommus_present; ++i) {
3479        if (domain->dev_iommu[i] == 0)
3480            continue;
3481
3482        ret = iommu_queue_command(amd_iommus[i], &cmd);
3483        if (ret != 0)
3484            goto out;
3485    }
3486
3487    /* Wait until IOMMU TLB flushes are complete */
3488    domain_flush_complete(domain);
3489
3490    /* Now flush device TLBs */
3491    list_for_each_entry(dev_data, &domain->dev_list, list) {
3492        struct amd_iommu *iommu;
3493        int qdep;
3494
3495        BUG_ON(!dev_data->ats.enabled);
3496
3497        qdep = dev_data->ats.qdep;
3498        iommu = amd_iommu_rlookup_table[dev_data->devid];
3499
3500        build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3501                      qdep, address, size);
3502
3503        ret = iommu_queue_command(iommu, &cmd);
3504        if (ret != 0)
3505            goto out;
3506    }
3507
3508    /* Wait until all device TLBs are flushed */
3509    domain_flush_complete(domain);
3510
3511    ret = 0;
3512
3513out:
3514
3515    return ret;
3516}
3517
3518static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3519                  u64 address)
3520{
3521    INC_STATS_COUNTER(invalidate_iotlb);
3522
3523    return __flush_pasid(domain, pasid, address, false);
3524}
3525
3526int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3527             u64 address)
3528{
3529    struct protection_domain *domain = dom->priv;
3530    unsigned long flags;
3531    int ret;
3532
3533    spin_lock_irqsave(&domain->lock, flags);
3534    ret = __amd_iommu_flush_page(domain, pasid, address);
3535    spin_unlock_irqrestore(&domain->lock, flags);
3536
3537    return ret;
3538}
3539EXPORT_SYMBOL(amd_iommu_flush_page);
3540
3541static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3542{
3543    INC_STATS_COUNTER(invalidate_iotlb_all);
3544
3545    return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3546                 true);
3547}
3548
3549int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3550{
3551    struct protection_domain *domain = dom->priv;
3552    unsigned long flags;
3553    int ret;
3554
3555    spin_lock_irqsave(&domain->lock, flags);
3556    ret = __amd_iommu_flush_tlb(domain, pasid);
3557    spin_unlock_irqrestore(&domain->lock, flags);
3558
3559    return ret;
3560}
3561EXPORT_SYMBOL(amd_iommu_flush_tlb);
3562
3563static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3564{
3565    int index;
3566    u64 *pte;
3567
3568    while (true) {
3569
3570        index = (pasid >> (9 * level)) & 0x1ff;
3571        pte = &root[index];
3572
3573        if (level == 0)
3574            break;
3575
3576        if (!(*pte & GCR3_VALID)) {
3577            if (!alloc)
3578                return NULL;
3579
3580            root = (void *)get_zeroed_page(GFP_ATOMIC);
3581            if (root == NULL)
3582                return NULL;
3583
3584            *pte = __pa(root) | GCR3_VALID;
3585        }
3586
3587        root = __va(*pte & PAGE_MASK);
3588
3589        level -= 1;
3590    }
3591
3592    return pte;
3593}
3594
3595static int __set_gcr3(struct protection_domain *domain, int pasid,
3596              unsigned long cr3)
3597{
3598    u64 *pte;
3599
3600    if (domain->mode != PAGE_MODE_NONE)
3601        return -EINVAL;
3602
3603    pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3604    if (pte == NULL)
3605        return -ENOMEM;
3606
3607    *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3608
3609    return __amd_iommu_flush_tlb(domain, pasid);
3610}
3611
3612static int __clear_gcr3(struct protection_domain *domain, int pasid)
3613{
3614    u64 *pte;
3615
3616    if (domain->mode != PAGE_MODE_NONE)
3617        return -EINVAL;
3618
3619    pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3620    if (pte == NULL)
3621        return 0;
3622
3623    *pte = 0;
3624
3625    return __amd_iommu_flush_tlb(domain, pasid);
3626}
3627
3628int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3629                  unsigned long cr3)
3630{
3631    struct protection_domain *domain = dom->priv;
3632    unsigned long flags;
3633    int ret;
3634
3635    spin_lock_irqsave(&domain->lock, flags);
3636    ret = __set_gcr3(domain, pasid, cr3);
3637    spin_unlock_irqrestore(&domain->lock, flags);
3638
3639    return ret;
3640}
3641EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3642
3643int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3644{
3645    struct protection_domain *domain = dom->priv;
3646    unsigned long flags;
3647    int ret;
3648
3649    spin_lock_irqsave(&domain->lock, flags);
3650    ret = __clear_gcr3(domain, pasid);
3651    spin_unlock_irqrestore(&domain->lock, flags);
3652
3653    return ret;
3654}
3655EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3656
3657int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3658               int status, int tag)
3659{
3660    struct iommu_dev_data *dev_data;
3661    struct amd_iommu *iommu;
3662    struct iommu_cmd cmd;
3663
3664    INC_STATS_COUNTER(complete_ppr);
3665
3666    dev_data = get_dev_data(&pdev->dev);
3667    iommu = amd_iommu_rlookup_table[dev_data->devid];
3668
3669    build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3670               tag, dev_data->pri_tlp);
3671
3672    return iommu_queue_command(iommu, &cmd);
3673}
3674EXPORT_SYMBOL(amd_iommu_complete_ppr);
3675
3676struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3677{
3678    struct protection_domain *domain;
3679
3680    domain = get_domain(&pdev->dev);
3681    if (IS_ERR(domain))
3682        return NULL;
3683
3684    /* Only return IOMMUv2 domains */
3685    if (!(domain->flags & PD_IOMMUV2_MASK))
3686        return NULL;
3687
3688    return domain->iommu_domain;
3689}
3690EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3691
3692void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3693{
3694    struct iommu_dev_data *dev_data;
3695
3696    if (!amd_iommu_v2_supported())
3697        return;
3698
3699    dev_data = get_dev_data(&pdev->dev);
3700    dev_data->errata |= (1 << erratum);
3701}
3702EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3703
3704int amd_iommu_device_info(struct pci_dev *pdev,
3705                          struct amd_iommu_device_info *info)
3706{
3707    int max_pasids;
3708    int pos;
3709
3710    if (pdev == NULL || info == NULL)
3711        return -EINVAL;
3712
3713    if (!amd_iommu_v2_supported())
3714        return -EINVAL;
3715
3716    memset(info, 0, sizeof(*info));
3717
3718    pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3719    if (pos)
3720        info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3721
3722    pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3723    if (pos)
3724        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3725
3726    pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3727    if (pos) {
3728        int features;
3729
3730        max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3731        max_pasids = min(max_pasids, (1 << 20));
3732
3733        info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3734        info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3735
3736        features = pci_pasid_features(pdev);
3737        if (features & PCI_PASID_CAP_EXEC)
3738            info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3739        if (features & PCI_PASID_CAP_PRIV)
3740            info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3741    }
3742
3743    return 0;
3744}
3745EXPORT_SYMBOL(amd_iommu_device_info);
3746

Archive Download this file



interactive