Root/
1 | /* |
2 | * Copyright (c) 2006, Intel Corporation. |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify it |
5 | * under the terms and conditions of the GNU General Public License, |
6 | * version 2, as published by the Free Software Foundation. |
7 | * |
8 | * This program is distributed in the hope it will be useful, but WITHOUT |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
11 | * more details. |
12 | * |
13 | * You should have received a copy of the GNU General Public License along with |
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
16 | * |
17 | * Copyright (C) 2006-2008 Intel Corporation |
18 | * Author: Ashok Raj <ashok.raj@intel.com> |
19 | * Author: Shaohua Li <shaohua.li@intel.com> |
20 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
21 | * Author: Fenghua Yu <fenghua.yu@intel.com> |
22 | */ |
23 | |
24 | #include <linux/init.h> |
25 | #include <linux/bitmap.h> |
26 | #include <linux/debugfs.h> |
27 | #include <linux/export.h> |
28 | #include <linux/slab.h> |
29 | #include <linux/irq.h> |
30 | #include <linux/interrupt.h> |
31 | #include <linux/spinlock.h> |
32 | #include <linux/pci.h> |
33 | #include <linux/dmar.h> |
34 | #include <linux/dma-mapping.h> |
35 | #include <linux/mempool.h> |
36 | #include <linux/timer.h> |
37 | #include <linux/iova.h> |
38 | #include <linux/iommu.h> |
39 | #include <linux/intel-iommu.h> |
40 | #include <linux/syscore_ops.h> |
41 | #include <linux/tboot.h> |
42 | #include <linux/dmi.h> |
43 | #include <linux/pci-ats.h> |
44 | #include <linux/memblock.h> |
45 | #include <asm/irq_remapping.h> |
46 | #include <asm/cacheflush.h> |
47 | #include <asm/iommu.h> |
48 | |
49 | #define ROOT_SIZE VTD_PAGE_SIZE |
50 | #define CONTEXT_SIZE VTD_PAGE_SIZE |
51 | |
52 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
53 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
54 | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
55 | |
56 | #define IOAPIC_RANGE_START (0xfee00000) |
57 | #define IOAPIC_RANGE_END (0xfeefffff) |
58 | #define IOVA_START_ADDR (0x1000) |
59 | |
60 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 |
61 | |
62 | #define MAX_AGAW_WIDTH 64 |
63 | |
64 | #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) |
65 | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) |
66 | |
67 | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
68 | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
69 | #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
70 | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
71 | #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
72 | |
73 | #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
74 | #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) |
75 | #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64)) |
76 | |
77 | /* page table handling */ |
78 | #define LEVEL_STRIDE (9) |
79 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
80 | |
81 | /* |
82 | * This bitmap is used to advertise the page sizes our hardware support |
83 | * to the IOMMU core, which will then use this information to split |
84 | * physically contiguous memory regions it is mapping into page sizes |
85 | * that we support. |
86 | * |
87 | * Traditionally the IOMMU core just handed us the mappings directly, |
88 | * after making sure the size is an order of a 4KiB page and that the |
89 | * mapping has natural alignment. |
90 | * |
91 | * To retain this behavior, we currently advertise that we support |
92 | * all page sizes that are an order of 4KiB. |
93 | * |
94 | * If at some point we'd like to utilize the IOMMU core's new behavior, |
95 | * we could change this to advertise the real page sizes we support. |
96 | */ |
97 | #define INTEL_IOMMU_PGSIZES (~0xFFFUL) |
98 | |
99 | static inline int agaw_to_level(int agaw) |
100 | { |
101 | return agaw + 2; |
102 | } |
103 | |
104 | static inline int agaw_to_width(int agaw) |
105 | { |
106 | return 30 + agaw * LEVEL_STRIDE; |
107 | } |
108 | |
109 | static inline int width_to_agaw(int width) |
110 | { |
111 | return (width - 30) / LEVEL_STRIDE; |
112 | } |
113 | |
114 | static inline unsigned int level_to_offset_bits(int level) |
115 | { |
116 | return (level - 1) * LEVEL_STRIDE; |
117 | } |
118 | |
119 | static inline int pfn_level_offset(unsigned long pfn, int level) |
120 | { |
121 | return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; |
122 | } |
123 | |
124 | static inline unsigned long level_mask(int level) |
125 | { |
126 | return -1UL << level_to_offset_bits(level); |
127 | } |
128 | |
129 | static inline unsigned long level_size(int level) |
130 | { |
131 | return 1UL << level_to_offset_bits(level); |
132 | } |
133 | |
134 | static inline unsigned long align_to_level(unsigned long pfn, int level) |
135 | { |
136 | return (pfn + level_size(level) - 1) & level_mask(level); |
137 | } |
138 | |
139 | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) |
140 | { |
141 | return 1 << ((lvl - 1) * LEVEL_STRIDE); |
142 | } |
143 | |
144 | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things |
145 | are never going to work. */ |
146 | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) |
147 | { |
148 | return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); |
149 | } |
150 | |
151 | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) |
152 | { |
153 | return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); |
154 | } |
155 | static inline unsigned long page_to_dma_pfn(struct page *pg) |
156 | { |
157 | return mm_to_dma_pfn(page_to_pfn(pg)); |
158 | } |
159 | static inline unsigned long virt_to_dma_pfn(void *p) |
160 | { |
161 | return page_to_dma_pfn(virt_to_page(p)); |
162 | } |
163 | |
164 | /* global iommu list, set NULL for ignored DMAR units */ |
165 | static struct intel_iommu **g_iommus; |
166 | |
167 | static void __init check_tylersburg_isoch(void); |
168 | static int rwbf_quirk; |
169 | |
170 | /* |
171 | * set to 1 to panic kernel if can't successfully enable VT-d |
172 | * (used when kernel is launched w/ TXT) |
173 | */ |
174 | static int force_on = 0; |
175 | |
176 | /* |
177 | * 0: Present |
178 | * 1-11: Reserved |
179 | * 12-63: Context Ptr (12 - (haw-1)) |
180 | * 64-127: Reserved |
181 | */ |
182 | struct root_entry { |
183 | u64 val; |
184 | u64 rsvd1; |
185 | }; |
186 | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
187 | static inline bool root_present(struct root_entry *root) |
188 | { |
189 | return (root->val & 1); |
190 | } |
191 | static inline void set_root_present(struct root_entry *root) |
192 | { |
193 | root->val |= 1; |
194 | } |
195 | static inline void set_root_value(struct root_entry *root, unsigned long value) |
196 | { |
197 | root->val |= value & VTD_PAGE_MASK; |
198 | } |
199 | |
200 | static inline struct context_entry * |
201 | get_context_addr_from_root(struct root_entry *root) |
202 | { |
203 | return (struct context_entry *) |
204 | (root_present(root)?phys_to_virt( |
205 | root->val & VTD_PAGE_MASK) : |
206 | NULL); |
207 | } |
208 | |
209 | /* |
210 | * low 64 bits: |
211 | * 0: present |
212 | * 1: fault processing disable |
213 | * 2-3: translation type |
214 | * 12-63: address space root |
215 | * high 64 bits: |
216 | * 0-2: address width |
217 | * 3-6: aval |
218 | * 8-23: domain id |
219 | */ |
220 | struct context_entry { |
221 | u64 lo; |
222 | u64 hi; |
223 | }; |
224 | |
225 | static inline bool context_present(struct context_entry *context) |
226 | { |
227 | return (context->lo & 1); |
228 | } |
229 | static inline void context_set_present(struct context_entry *context) |
230 | { |
231 | context->lo |= 1; |
232 | } |
233 | |
234 | static inline void context_set_fault_enable(struct context_entry *context) |
235 | { |
236 | context->lo &= (((u64)-1) << 2) | 1; |
237 | } |
238 | |
239 | static inline void context_set_translation_type(struct context_entry *context, |
240 | unsigned long value) |
241 | { |
242 | context->lo &= (((u64)-1) << 4) | 3; |
243 | context->lo |= (value & 3) << 2; |
244 | } |
245 | |
246 | static inline void context_set_address_root(struct context_entry *context, |
247 | unsigned long value) |
248 | { |
249 | context->lo |= value & VTD_PAGE_MASK; |
250 | } |
251 | |
252 | static inline void context_set_address_width(struct context_entry *context, |
253 | unsigned long value) |
254 | { |
255 | context->hi |= value & 7; |
256 | } |
257 | |
258 | static inline void context_set_domain_id(struct context_entry *context, |
259 | unsigned long value) |
260 | { |
261 | context->hi |= (value & ((1 << 16) - 1)) << 8; |
262 | } |
263 | |
264 | static inline void context_clear_entry(struct context_entry *context) |
265 | { |
266 | context->lo = 0; |
267 | context->hi = 0; |
268 | } |
269 | |
270 | /* |
271 | * 0: readable |
272 | * 1: writable |
273 | * 2-6: reserved |
274 | * 7: super page |
275 | * 8-10: available |
276 | * 11: snoop behavior |
277 | * 12-63: Host physcial address |
278 | */ |
279 | struct dma_pte { |
280 | u64 val; |
281 | }; |
282 | |
283 | static inline void dma_clear_pte(struct dma_pte *pte) |
284 | { |
285 | pte->val = 0; |
286 | } |
287 | |
288 | static inline void dma_set_pte_readable(struct dma_pte *pte) |
289 | { |
290 | pte->val |= DMA_PTE_READ; |
291 | } |
292 | |
293 | static inline void dma_set_pte_writable(struct dma_pte *pte) |
294 | { |
295 | pte->val |= DMA_PTE_WRITE; |
296 | } |
297 | |
298 | static inline void dma_set_pte_snp(struct dma_pte *pte) |
299 | { |
300 | pte->val |= DMA_PTE_SNP; |
301 | } |
302 | |
303 | static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) |
304 | { |
305 | pte->val = (pte->val & ~3) | (prot & 3); |
306 | } |
307 | |
308 | static inline u64 dma_pte_addr(struct dma_pte *pte) |
309 | { |
310 | #ifdef CONFIG_64BIT |
311 | return pte->val & VTD_PAGE_MASK; |
312 | #else |
313 | /* Must have a full atomic 64-bit read */ |
314 | return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; |
315 | #endif |
316 | } |
317 | |
318 | static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) |
319 | { |
320 | pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; |
321 | } |
322 | |
323 | static inline bool dma_pte_present(struct dma_pte *pte) |
324 | { |
325 | return (pte->val & 3) != 0; |
326 | } |
327 | |
328 | static inline bool dma_pte_superpage(struct dma_pte *pte) |
329 | { |
330 | return (pte->val & (1 << 7)); |
331 | } |
332 | |
333 | static inline int first_pte_in_page(struct dma_pte *pte) |
334 | { |
335 | return !((unsigned long)pte & ~VTD_PAGE_MASK); |
336 | } |
337 | |
338 | /* |
339 | * This domain is a statically identity mapping domain. |
340 | * 1. This domain creats a static 1:1 mapping to all usable memory. |
341 | * 2. It maps to each iommu if successful. |
342 | * 3. Each iommu mapps to this domain if successful. |
343 | */ |
344 | static struct dmar_domain *si_domain; |
345 | static int hw_pass_through = 1; |
346 | |
347 | /* devices under the same p2p bridge are owned in one domain */ |
348 | #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) |
349 | |
350 | /* domain represents a virtual machine, more than one devices |
351 | * across iommus may be owned in one domain, e.g. kvm guest. |
352 | */ |
353 | #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) |
354 | |
355 | /* si_domain contains mulitple devices */ |
356 | #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2) |
357 | |
358 | /* define the limit of IOMMUs supported in each domain */ |
359 | #ifdef CONFIG_X86 |
360 | # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS |
361 | #else |
362 | # define IOMMU_UNITS_SUPPORTED 64 |
363 | #endif |
364 | |
365 | struct dmar_domain { |
366 | int id; /* domain id */ |
367 | int nid; /* node id */ |
368 | DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED); |
369 | /* bitmap of iommus this domain uses*/ |
370 | |
371 | struct list_head devices; /* all devices' list */ |
372 | struct iova_domain iovad; /* iova's that belong to this domain */ |
373 | |
374 | struct dma_pte *pgd; /* virtual address */ |
375 | int gaw; /* max guest address width */ |
376 | |
377 | /* adjusted guest address width, 0 is level 2 30-bit */ |
378 | int agaw; |
379 | |
380 | int flags; /* flags to find out type of domain */ |
381 | |
382 | int iommu_coherency;/* indicate coherency of iommu access */ |
383 | int iommu_snooping; /* indicate snooping control feature*/ |
384 | int iommu_count; /* reference count of iommu */ |
385 | int iommu_superpage;/* Level of superpages supported: |
386 | 0 == 4KiB (no superpages), 1 == 2MiB, |
387 | 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ |
388 | spinlock_t iommu_lock; /* protect iommu set in domain */ |
389 | u64 max_addr; /* maximum mapped address */ |
390 | }; |
391 | |
392 | /* PCI domain-device relationship */ |
393 | struct device_domain_info { |
394 | struct list_head link; /* link to domain siblings */ |
395 | struct list_head global; /* link to global list */ |
396 | int segment; /* PCI domain */ |
397 | u8 bus; /* PCI bus number */ |
398 | u8 devfn; /* PCI devfn number */ |
399 | struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */ |
400 | struct intel_iommu *iommu; /* IOMMU used by this device */ |
401 | struct dmar_domain *domain; /* pointer to domain */ |
402 | }; |
403 | |
404 | static void flush_unmaps_timeout(unsigned long data); |
405 | |
406 | DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); |
407 | |
408 | #define HIGH_WATER_MARK 250 |
409 | struct deferred_flush_tables { |
410 | int next; |
411 | struct iova *iova[HIGH_WATER_MARK]; |
412 | struct dmar_domain *domain[HIGH_WATER_MARK]; |
413 | }; |
414 | |
415 | static struct deferred_flush_tables *deferred_flush; |
416 | |
417 | /* bitmap for indexing intel_iommus */ |
418 | static int g_num_of_iommus; |
419 | |
420 | static DEFINE_SPINLOCK(async_umap_flush_lock); |
421 | static LIST_HEAD(unmaps_to_do); |
422 | |
423 | static int timer_on; |
424 | static long list_size; |
425 | |
426 | static void domain_remove_dev_info(struct dmar_domain *domain); |
427 | |
428 | #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON |
429 | int dmar_disabled = 0; |
430 | #else |
431 | int dmar_disabled = 1; |
432 | #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/ |
433 | |
434 | int intel_iommu_enabled = 0; |
435 | EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
436 | |
437 | static int dmar_map_gfx = 1; |
438 | static int dmar_forcedac; |
439 | static int intel_iommu_strict; |
440 | static int intel_iommu_superpage = 1; |
441 | |
442 | int intel_iommu_gfx_mapped; |
443 | EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); |
444 | |
445 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) |
446 | static DEFINE_SPINLOCK(device_domain_lock); |
447 | static LIST_HEAD(device_domain_list); |
448 | |
449 | static struct iommu_ops intel_iommu_ops; |
450 | |
451 | static int __init intel_iommu_setup(char *str) |
452 | { |
453 | if (!str) |
454 | return -EINVAL; |
455 | while (*str) { |
456 | if (!strncmp(str, "on", 2)) { |
457 | dmar_disabled = 0; |
458 | printk(KERN_INFO "Intel-IOMMU: enabled\n"); |
459 | } else if (!strncmp(str, "off", 3)) { |
460 | dmar_disabled = 1; |
461 | printk(KERN_INFO "Intel-IOMMU: disabled\n"); |
462 | } else if (!strncmp(str, "igfx_off", 8)) { |
463 | dmar_map_gfx = 0; |
464 | printk(KERN_INFO |
465 | "Intel-IOMMU: disable GFX device mapping\n"); |
466 | } else if (!strncmp(str, "forcedac", 8)) { |
467 | printk(KERN_INFO |
468 | "Intel-IOMMU: Forcing DAC for PCI devices\n"); |
469 | dmar_forcedac = 1; |
470 | } else if (!strncmp(str, "strict", 6)) { |
471 | printk(KERN_INFO |
472 | "Intel-IOMMU: disable batched IOTLB flush\n"); |
473 | intel_iommu_strict = 1; |
474 | } else if (!strncmp(str, "sp_off", 6)) { |
475 | printk(KERN_INFO |
476 | "Intel-IOMMU: disable supported super page\n"); |
477 | intel_iommu_superpage = 0; |
478 | } |
479 | |
480 | str += strcspn(str, ","); |
481 | while (*str == ',') |
482 | str++; |
483 | } |
484 | return 0; |
485 | } |
486 | __setup("intel_iommu=", intel_iommu_setup); |
487 | |
488 | static struct kmem_cache *iommu_domain_cache; |
489 | static struct kmem_cache *iommu_devinfo_cache; |
490 | static struct kmem_cache *iommu_iova_cache; |
491 | |
492 | static inline void *alloc_pgtable_page(int node) |
493 | { |
494 | struct page *page; |
495 | void *vaddr = NULL; |
496 | |
497 | page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); |
498 | if (page) |
499 | vaddr = page_address(page); |
500 | return vaddr; |
501 | } |
502 | |
503 | static inline void free_pgtable_page(void *vaddr) |
504 | { |
505 | free_page((unsigned long)vaddr); |
506 | } |
507 | |
508 | static inline void *alloc_domain_mem(void) |
509 | { |
510 | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
511 | } |
512 | |
513 | static void free_domain_mem(void *vaddr) |
514 | { |
515 | kmem_cache_free(iommu_domain_cache, vaddr); |
516 | } |
517 | |
518 | static inline void * alloc_devinfo_mem(void) |
519 | { |
520 | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
521 | } |
522 | |
523 | static inline void free_devinfo_mem(void *vaddr) |
524 | { |
525 | kmem_cache_free(iommu_devinfo_cache, vaddr); |
526 | } |
527 | |
528 | struct iova *alloc_iova_mem(void) |
529 | { |
530 | return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); |
531 | } |
532 | |
533 | void free_iova_mem(struct iova *iova) |
534 | { |
535 | kmem_cache_free(iommu_iova_cache, iova); |
536 | } |
537 | |
538 | |
539 | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
540 | { |
541 | unsigned long sagaw; |
542 | int agaw = -1; |
543 | |
544 | sagaw = cap_sagaw(iommu->cap); |
545 | for (agaw = width_to_agaw(max_gaw); |
546 | agaw >= 0; agaw--) { |
547 | if (test_bit(agaw, &sagaw)) |
548 | break; |
549 | } |
550 | |
551 | return agaw; |
552 | } |
553 | |
554 | /* |
555 | * Calculate max SAGAW for each iommu. |
556 | */ |
557 | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
558 | { |
559 | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
560 | } |
561 | |
562 | /* |
563 | * calculate agaw for each iommu. |
564 | * "SAGAW" may be different across iommus, use a default agaw, and |
565 | * get a supported less agaw for iommus that don't support the default agaw. |
566 | */ |
567 | int iommu_calculate_agaw(struct intel_iommu *iommu) |
568 | { |
569 | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
570 | } |
571 | |
572 | /* This functionin only returns single iommu in a domain */ |
573 | static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) |
574 | { |
575 | int iommu_id; |
576 | |
577 | /* si_domain and vm domain should not get here. */ |
578 | BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); |
579 | BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); |
580 | |
581 | iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus); |
582 | if (iommu_id < 0 || iommu_id >= g_num_of_iommus) |
583 | return NULL; |
584 | |
585 | return g_iommus[iommu_id]; |
586 | } |
587 | |
588 | static void domain_update_iommu_coherency(struct dmar_domain *domain) |
589 | { |
590 | int i; |
591 | |
592 | domain->iommu_coherency = 1; |
593 | |
594 | for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) { |
595 | if (!ecap_coherent(g_iommus[i]->ecap)) { |
596 | domain->iommu_coherency = 0; |
597 | break; |
598 | } |
599 | } |
600 | } |
601 | |
602 | static void domain_update_iommu_snooping(struct dmar_domain *domain) |
603 | { |
604 | int i; |
605 | |
606 | domain->iommu_snooping = 1; |
607 | |
608 | for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) { |
609 | if (!ecap_sc_support(g_iommus[i]->ecap)) { |
610 | domain->iommu_snooping = 0; |
611 | break; |
612 | } |
613 | } |
614 | } |
615 | |
616 | static void domain_update_iommu_superpage(struct dmar_domain *domain) |
617 | { |
618 | struct dmar_drhd_unit *drhd; |
619 | struct intel_iommu *iommu = NULL; |
620 | int mask = 0xf; |
621 | |
622 | if (!intel_iommu_superpage) { |
623 | domain->iommu_superpage = 0; |
624 | return; |
625 | } |
626 | |
627 | /* set iommu_superpage to the smallest common denominator */ |
628 | for_each_active_iommu(iommu, drhd) { |
629 | mask &= cap_super_page_val(iommu->cap); |
630 | if (!mask) { |
631 | break; |
632 | } |
633 | } |
634 | domain->iommu_superpage = fls(mask); |
635 | } |
636 | |
637 | /* Some capabilities may be different across iommus */ |
638 | static void domain_update_iommu_cap(struct dmar_domain *domain) |
639 | { |
640 | domain_update_iommu_coherency(domain); |
641 | domain_update_iommu_snooping(domain); |
642 | domain_update_iommu_superpage(domain); |
643 | } |
644 | |
645 | static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) |
646 | { |
647 | struct dmar_drhd_unit *drhd = NULL; |
648 | int i; |
649 | |
650 | for_each_drhd_unit(drhd) { |
651 | if (drhd->ignored) |
652 | continue; |
653 | if (segment != drhd->segment) |
654 | continue; |
655 | |
656 | for (i = 0; i < drhd->devices_cnt; i++) { |
657 | if (drhd->devices[i] && |
658 | drhd->devices[i]->bus->number == bus && |
659 | drhd->devices[i]->devfn == devfn) |
660 | return drhd->iommu; |
661 | if (drhd->devices[i] && |
662 | drhd->devices[i]->subordinate && |
663 | drhd->devices[i]->subordinate->number <= bus && |
664 | drhd->devices[i]->subordinate->busn_res.end >= bus) |
665 | return drhd->iommu; |
666 | } |
667 | |
668 | if (drhd->include_all) |
669 | return drhd->iommu; |
670 | } |
671 | |
672 | return NULL; |
673 | } |
674 | |
675 | static void domain_flush_cache(struct dmar_domain *domain, |
676 | void *addr, int size) |
677 | { |
678 | if (!domain->iommu_coherency) |
679 | clflush_cache_range(addr, size); |
680 | } |
681 | |
682 | /* Gets context entry for a given bus and devfn */ |
683 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, |
684 | u8 bus, u8 devfn) |
685 | { |
686 | struct root_entry *root; |
687 | struct context_entry *context; |
688 | unsigned long phy_addr; |
689 | unsigned long flags; |
690 | |
691 | spin_lock_irqsave(&iommu->lock, flags); |
692 | root = &iommu->root_entry[bus]; |
693 | context = get_context_addr_from_root(root); |
694 | if (!context) { |
695 | context = (struct context_entry *) |
696 | alloc_pgtable_page(iommu->node); |
697 | if (!context) { |
698 | spin_unlock_irqrestore(&iommu->lock, flags); |
699 | return NULL; |
700 | } |
701 | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
702 | phy_addr = virt_to_phys((void *)context); |
703 | set_root_value(root, phy_addr); |
704 | set_root_present(root); |
705 | __iommu_flush_cache(iommu, root, sizeof(*root)); |
706 | } |
707 | spin_unlock_irqrestore(&iommu->lock, flags); |
708 | return &context[devfn]; |
709 | } |
710 | |
711 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
712 | { |
713 | struct root_entry *root; |
714 | struct context_entry *context; |
715 | int ret; |
716 | unsigned long flags; |
717 | |
718 | spin_lock_irqsave(&iommu->lock, flags); |
719 | root = &iommu->root_entry[bus]; |
720 | context = get_context_addr_from_root(root); |
721 | if (!context) { |
722 | ret = 0; |
723 | goto out; |
724 | } |
725 | ret = context_present(&context[devfn]); |
726 | out: |
727 | spin_unlock_irqrestore(&iommu->lock, flags); |
728 | return ret; |
729 | } |
730 | |
731 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) |
732 | { |
733 | struct root_entry *root; |
734 | struct context_entry *context; |
735 | unsigned long flags; |
736 | |
737 | spin_lock_irqsave(&iommu->lock, flags); |
738 | root = &iommu->root_entry[bus]; |
739 | context = get_context_addr_from_root(root); |
740 | if (context) { |
741 | context_clear_entry(&context[devfn]); |
742 | __iommu_flush_cache(iommu, &context[devfn], \ |
743 | sizeof(*context)); |
744 | } |
745 | spin_unlock_irqrestore(&iommu->lock, flags); |
746 | } |
747 | |
748 | static void free_context_table(struct intel_iommu *iommu) |
749 | { |
750 | struct root_entry *root; |
751 | int i; |
752 | unsigned long flags; |
753 | struct context_entry *context; |
754 | |
755 | spin_lock_irqsave(&iommu->lock, flags); |
756 | if (!iommu->root_entry) { |
757 | goto out; |
758 | } |
759 | for (i = 0; i < ROOT_ENTRY_NR; i++) { |
760 | root = &iommu->root_entry[i]; |
761 | context = get_context_addr_from_root(root); |
762 | if (context) |
763 | free_pgtable_page(context); |
764 | } |
765 | free_pgtable_page(iommu->root_entry); |
766 | iommu->root_entry = NULL; |
767 | out: |
768 | spin_unlock_irqrestore(&iommu->lock, flags); |
769 | } |
770 | |
771 | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
772 | unsigned long pfn, int target_level) |
773 | { |
774 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
775 | struct dma_pte *parent, *pte = NULL; |
776 | int level = agaw_to_level(domain->agaw); |
777 | int offset; |
778 | |
779 | BUG_ON(!domain->pgd); |
780 | BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); |
781 | parent = domain->pgd; |
782 | |
783 | while (level > 0) { |
784 | void *tmp_page; |
785 | |
786 | offset = pfn_level_offset(pfn, level); |
787 | pte = &parent[offset]; |
788 | if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
789 | break; |
790 | if (level == target_level) |
791 | break; |
792 | |
793 | if (!dma_pte_present(pte)) { |
794 | uint64_t pteval; |
795 | |
796 | tmp_page = alloc_pgtable_page(domain->nid); |
797 | |
798 | if (!tmp_page) |
799 | return NULL; |
800 | |
801 | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
802 | pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
803 | if (cmpxchg64(&pte->val, 0ULL, pteval)) { |
804 | /* Someone else set it while we were thinking; use theirs. */ |
805 | free_pgtable_page(tmp_page); |
806 | } else { |
807 | dma_pte_addr(pte); |
808 | domain_flush_cache(domain, pte, sizeof(*pte)); |
809 | } |
810 | } |
811 | parent = phys_to_virt(dma_pte_addr(pte)); |
812 | level--; |
813 | } |
814 | |
815 | return pte; |
816 | } |
817 | |
818 | |
819 | /* return address's pte at specific level */ |
820 | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
821 | unsigned long pfn, |
822 | int level, int *large_page) |
823 | { |
824 | struct dma_pte *parent, *pte = NULL; |
825 | int total = agaw_to_level(domain->agaw); |
826 | int offset; |
827 | |
828 | parent = domain->pgd; |
829 | while (level <= total) { |
830 | offset = pfn_level_offset(pfn, total); |
831 | pte = &parent[offset]; |
832 | if (level == total) |
833 | return pte; |
834 | |
835 | if (!dma_pte_present(pte)) { |
836 | *large_page = total; |
837 | break; |
838 | } |
839 | |
840 | if (pte->val & DMA_PTE_LARGE_PAGE) { |
841 | *large_page = total; |
842 | return pte; |
843 | } |
844 | |
845 | parent = phys_to_virt(dma_pte_addr(pte)); |
846 | total--; |
847 | } |
848 | return NULL; |
849 | } |
850 | |
851 | /* clear last level pte, a tlb flush should be followed */ |
852 | static int dma_pte_clear_range(struct dmar_domain *domain, |
853 | unsigned long start_pfn, |
854 | unsigned long last_pfn) |
855 | { |
856 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
857 | unsigned int large_page = 1; |
858 | struct dma_pte *first_pte, *pte; |
859 | int order; |
860 | |
861 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); |
862 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); |
863 | BUG_ON(start_pfn > last_pfn); |
864 | |
865 | /* we don't need lock here; nobody else touches the iova range */ |
866 | do { |
867 | large_page = 1; |
868 | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
869 | if (!pte) { |
870 | start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
871 | continue; |
872 | } |
873 | do { |
874 | dma_clear_pte(pte); |
875 | start_pfn += lvl_to_nr_pages(large_page); |
876 | pte++; |
877 | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
878 | |
879 | domain_flush_cache(domain, first_pte, |
880 | (void *)pte - (void *)first_pte); |
881 | |
882 | } while (start_pfn && start_pfn <= last_pfn); |
883 | |
884 | order = (large_page - 1) * 9; |
885 | return order; |
886 | } |
887 | |
888 | /* free page table pages. last level pte should already be cleared */ |
889 | static void dma_pte_free_pagetable(struct dmar_domain *domain, |
890 | unsigned long start_pfn, |
891 | unsigned long last_pfn) |
892 | { |
893 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
894 | struct dma_pte *first_pte, *pte; |
895 | int total = agaw_to_level(domain->agaw); |
896 | int level; |
897 | unsigned long tmp; |
898 | int large_page = 2; |
899 | |
900 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); |
901 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); |
902 | BUG_ON(start_pfn > last_pfn); |
903 | |
904 | /* We don't need lock here; nobody else touches the iova range */ |
905 | level = 2; |
906 | while (level <= total) { |
907 | tmp = align_to_level(start_pfn, level); |
908 | |
909 | /* If we can't even clear one PTE at this level, we're done */ |
910 | if (tmp + level_size(level) - 1 > last_pfn) |
911 | return; |
912 | |
913 | do { |
914 | large_page = level; |
915 | first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page); |
916 | if (large_page > level) |
917 | level = large_page + 1; |
918 | if (!pte) { |
919 | tmp = align_to_level(tmp + 1, level + 1); |
920 | continue; |
921 | } |
922 | do { |
923 | if (dma_pte_present(pte)) { |
924 | free_pgtable_page(phys_to_virt(dma_pte_addr(pte))); |
925 | dma_clear_pte(pte); |
926 | } |
927 | pte++; |
928 | tmp += level_size(level); |
929 | } while (!first_pte_in_page(pte) && |
930 | tmp + level_size(level) - 1 <= last_pfn); |
931 | |
932 | domain_flush_cache(domain, first_pte, |
933 | (void *)pte - (void *)first_pte); |
934 | |
935 | } while (tmp && tmp + level_size(level) - 1 <= last_pfn); |
936 | level++; |
937 | } |
938 | /* free pgd */ |
939 | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
940 | free_pgtable_page(domain->pgd); |
941 | domain->pgd = NULL; |
942 | } |
943 | } |
944 | |
945 | /* iommu handling */ |
946 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
947 | { |
948 | struct root_entry *root; |
949 | unsigned long flags; |
950 | |
951 | root = (struct root_entry *)alloc_pgtable_page(iommu->node); |
952 | if (!root) |
953 | return -ENOMEM; |
954 | |
955 | __iommu_flush_cache(iommu, root, ROOT_SIZE); |
956 | |
957 | spin_lock_irqsave(&iommu->lock, flags); |
958 | iommu->root_entry = root; |
959 | spin_unlock_irqrestore(&iommu->lock, flags); |
960 | |
961 | return 0; |
962 | } |
963 | |
964 | static void iommu_set_root_entry(struct intel_iommu *iommu) |
965 | { |
966 | void *addr; |
967 | u32 sts; |
968 | unsigned long flag; |
969 | |
970 | addr = iommu->root_entry; |
971 | |
972 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
973 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); |
974 | |
975 | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
976 | |
977 | /* Make sure hardware complete it */ |
978 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
979 | readl, (sts & DMA_GSTS_RTPS), sts); |
980 | |
981 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
982 | } |
983 | |
984 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) |
985 | { |
986 | u32 val; |
987 | unsigned long flag; |
988 | |
989 | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
990 | return; |
991 | |
992 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
993 | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
994 | |
995 | /* Make sure hardware complete it */ |
996 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
997 | readl, (!(val & DMA_GSTS_WBFS)), val); |
998 | |
999 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
1000 | } |
1001 | |
1002 | /* return value determine if we need a write buffer flush */ |
1003 | static void __iommu_flush_context(struct intel_iommu *iommu, |
1004 | u16 did, u16 source_id, u8 function_mask, |
1005 | u64 type) |
1006 | { |
1007 | u64 val = 0; |
1008 | unsigned long flag; |
1009 | |
1010 | switch (type) { |
1011 | case DMA_CCMD_GLOBAL_INVL: |
1012 | val = DMA_CCMD_GLOBAL_INVL; |
1013 | break; |
1014 | case DMA_CCMD_DOMAIN_INVL: |
1015 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
1016 | break; |
1017 | case DMA_CCMD_DEVICE_INVL: |
1018 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
1019 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
1020 | break; |
1021 | default: |
1022 | BUG(); |
1023 | } |
1024 | val |= DMA_CCMD_ICC; |
1025 | |
1026 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
1027 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
1028 | |
1029 | /* Make sure hardware complete it */ |
1030 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
1031 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
1032 | |
1033 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
1034 | } |
1035 | |
1036 | /* return value determine if we need a write buffer flush */ |
1037 | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
1038 | u64 addr, unsigned int size_order, u64 type) |
1039 | { |
1040 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
1041 | u64 val = 0, val_iva = 0; |
1042 | unsigned long flag; |
1043 | |
1044 | switch (type) { |
1045 | case DMA_TLB_GLOBAL_FLUSH: |
1046 | /* global flush doesn't need set IVA_REG */ |
1047 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
1048 | break; |
1049 | case DMA_TLB_DSI_FLUSH: |
1050 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
1051 | break; |
1052 | case DMA_TLB_PSI_FLUSH: |
1053 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
1054 | /* Note: always flush non-leaf currently */ |
1055 | val_iva = size_order | addr; |
1056 | break; |
1057 | default: |
1058 | BUG(); |
1059 | } |
1060 | /* Note: set drain read/write */ |
1061 | #if 0 |
1062 | /* |
1063 | * This is probably to be super secure.. Looks like we can |
1064 | * ignore it without any impact. |
1065 | */ |
1066 | if (cap_read_drain(iommu->cap)) |
1067 | val |= DMA_TLB_READ_DRAIN; |
1068 | #endif |
1069 | if (cap_write_drain(iommu->cap)) |
1070 | val |= DMA_TLB_WRITE_DRAIN; |
1071 | |
1072 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
1073 | /* Note: Only uses first TLB reg currently */ |
1074 | if (val_iva) |
1075 | dmar_writeq(iommu->reg + tlb_offset, val_iva); |
1076 | dmar_writeq(iommu->reg + tlb_offset + 8, val); |
1077 | |
1078 | /* Make sure hardware complete it */ |
1079 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
1080 | dmar_readq, (!(val & DMA_TLB_IVT)), val); |
1081 | |
1082 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
1083 | |
1084 | /* check IOTLB invalidation granularity */ |
1085 | if (DMA_TLB_IAIG(val) == 0) |
1086 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); |
1087 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
1088 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", |
1089 | (unsigned long long)DMA_TLB_IIRG(type), |
1090 | (unsigned long long)DMA_TLB_IAIG(val)); |
1091 | } |
1092 | |
1093 | static struct device_domain_info *iommu_support_dev_iotlb( |
1094 | struct dmar_domain *domain, int segment, u8 bus, u8 devfn) |
1095 | { |
1096 | int found = 0; |
1097 | unsigned long flags; |
1098 | struct device_domain_info *info; |
1099 | struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); |
1100 | |
1101 | if (!ecap_dev_iotlb_support(iommu->ecap)) |
1102 | return NULL; |
1103 | |
1104 | if (!iommu->qi) |
1105 | return NULL; |
1106 | |
1107 | spin_lock_irqsave(&device_domain_lock, flags); |
1108 | list_for_each_entry(info, &domain->devices, link) |
1109 | if (info->bus == bus && info->devfn == devfn) { |
1110 | found = 1; |
1111 | break; |
1112 | } |
1113 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1114 | |
1115 | if (!found || !info->dev) |
1116 | return NULL; |
1117 | |
1118 | if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) |
1119 | return NULL; |
1120 | |
1121 | if (!dmar_find_matched_atsr_unit(info->dev)) |
1122 | return NULL; |
1123 | |
1124 | info->iommu = iommu; |
1125 | |
1126 | return info; |
1127 | } |
1128 | |
1129 | static void iommu_enable_dev_iotlb(struct device_domain_info *info) |
1130 | { |
1131 | if (!info) |
1132 | return; |
1133 | |
1134 | pci_enable_ats(info->dev, VTD_PAGE_SHIFT); |
1135 | } |
1136 | |
1137 | static void iommu_disable_dev_iotlb(struct device_domain_info *info) |
1138 | { |
1139 | if (!info->dev || !pci_ats_enabled(info->dev)) |
1140 | return; |
1141 | |
1142 | pci_disable_ats(info->dev); |
1143 | } |
1144 | |
1145 | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, |
1146 | u64 addr, unsigned mask) |
1147 | { |
1148 | u16 sid, qdep; |
1149 | unsigned long flags; |
1150 | struct device_domain_info *info; |
1151 | |
1152 | spin_lock_irqsave(&device_domain_lock, flags); |
1153 | list_for_each_entry(info, &domain->devices, link) { |
1154 | if (!info->dev || !pci_ats_enabled(info->dev)) |
1155 | continue; |
1156 | |
1157 | sid = info->bus << 8 | info->devfn; |
1158 | qdep = pci_ats_queue_depth(info->dev); |
1159 | qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); |
1160 | } |
1161 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1162 | } |
1163 | |
1164 | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, |
1165 | unsigned long pfn, unsigned int pages, int map) |
1166 | { |
1167 | unsigned int mask = ilog2(__roundup_pow_of_two(pages)); |
1168 | uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; |
1169 | |
1170 | BUG_ON(pages == 0); |
1171 | |
1172 | /* |
1173 | * Fallback to domain selective flush if no PSI support or the size is |
1174 | * too big. |
1175 | * PSI requires page size to be 2 ^ x, and the base address is naturally |
1176 | * aligned to the size |
1177 | */ |
1178 | if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) |
1179 | iommu->flush.flush_iotlb(iommu, did, 0, 0, |
1180 | DMA_TLB_DSI_FLUSH); |
1181 | else |
1182 | iommu->flush.flush_iotlb(iommu, did, addr, mask, |
1183 | DMA_TLB_PSI_FLUSH); |
1184 | |
1185 | /* |
1186 | * In caching mode, changes of pages from non-present to present require |
1187 | * flush. However, device IOTLB doesn't need to be flushed in this case. |
1188 | */ |
1189 | if (!cap_caching_mode(iommu->cap) || !map) |
1190 | iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); |
1191 | } |
1192 | |
1193 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
1194 | { |
1195 | u32 pmen; |
1196 | unsigned long flags; |
1197 | |
1198 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
1199 | pmen = readl(iommu->reg + DMAR_PMEN_REG); |
1200 | pmen &= ~DMA_PMEN_EPM; |
1201 | writel(pmen, iommu->reg + DMAR_PMEN_REG); |
1202 | |
1203 | /* wait for the protected region status bit to clear */ |
1204 | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
1205 | readl, !(pmen & DMA_PMEN_PRS), pmen); |
1206 | |
1207 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
1208 | } |
1209 | |
1210 | static int iommu_enable_translation(struct intel_iommu *iommu) |
1211 | { |
1212 | u32 sts; |
1213 | unsigned long flags; |
1214 | |
1215 | raw_spin_lock_irqsave(&iommu->register_lock, flags); |
1216 | iommu->gcmd |= DMA_GCMD_TE; |
1217 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
1218 | |
1219 | /* Make sure hardware complete it */ |
1220 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
1221 | readl, (sts & DMA_GSTS_TES), sts); |
1222 | |
1223 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
1224 | return 0; |
1225 | } |
1226 | |
1227 | static int iommu_disable_translation(struct intel_iommu *iommu) |
1228 | { |
1229 | u32 sts; |
1230 | unsigned long flag; |
1231 | |
1232 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
1233 | iommu->gcmd &= ~DMA_GCMD_TE; |
1234 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
1235 | |
1236 | /* Make sure hardware complete it */ |
1237 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
1238 | readl, (!(sts & DMA_GSTS_TES)), sts); |
1239 | |
1240 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
1241 | return 0; |
1242 | } |
1243 | |
1244 | |
1245 | static int iommu_init_domains(struct intel_iommu *iommu) |
1246 | { |
1247 | unsigned long ndomains; |
1248 | unsigned long nlongs; |
1249 | |
1250 | ndomains = cap_ndoms(iommu->cap); |
1251 | pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id, |
1252 | ndomains); |
1253 | nlongs = BITS_TO_LONGS(ndomains); |
1254 | |
1255 | spin_lock_init(&iommu->lock); |
1256 | |
1257 | /* TBD: there might be 64K domains, |
1258 | * consider other allocation for future chip |
1259 | */ |
1260 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
1261 | if (!iommu->domain_ids) { |
1262 | printk(KERN_ERR "Allocating domain id array failed\n"); |
1263 | return -ENOMEM; |
1264 | } |
1265 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), |
1266 | GFP_KERNEL); |
1267 | if (!iommu->domains) { |
1268 | printk(KERN_ERR "Allocating domain array failed\n"); |
1269 | return -ENOMEM; |
1270 | } |
1271 | |
1272 | /* |
1273 | * if Caching mode is set, then invalid translations are tagged |
1274 | * with domainid 0. Hence we need to pre-allocate it. |
1275 | */ |
1276 | if (cap_caching_mode(iommu->cap)) |
1277 | set_bit(0, iommu->domain_ids); |
1278 | return 0; |
1279 | } |
1280 | |
1281 | |
1282 | static void domain_exit(struct dmar_domain *domain); |
1283 | static void vm_domain_exit(struct dmar_domain *domain); |
1284 | |
1285 | void free_dmar_iommu(struct intel_iommu *iommu) |
1286 | { |
1287 | struct dmar_domain *domain; |
1288 | int i; |
1289 | unsigned long flags; |
1290 | |
1291 | if ((iommu->domains) && (iommu->domain_ids)) { |
1292 | for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) { |
1293 | domain = iommu->domains[i]; |
1294 | clear_bit(i, iommu->domain_ids); |
1295 | |
1296 | spin_lock_irqsave(&domain->iommu_lock, flags); |
1297 | if (--domain->iommu_count == 0) { |
1298 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) |
1299 | vm_domain_exit(domain); |
1300 | else |
1301 | domain_exit(domain); |
1302 | } |
1303 | spin_unlock_irqrestore(&domain->iommu_lock, flags); |
1304 | } |
1305 | } |
1306 | |
1307 | if (iommu->gcmd & DMA_GCMD_TE) |
1308 | iommu_disable_translation(iommu); |
1309 | |
1310 | if (iommu->irq) { |
1311 | irq_set_handler_data(iommu->irq, NULL); |
1312 | /* This will mask the irq */ |
1313 | free_irq(iommu->irq, iommu); |
1314 | destroy_irq(iommu->irq); |
1315 | } |
1316 | |
1317 | kfree(iommu->domains); |
1318 | kfree(iommu->domain_ids); |
1319 | |
1320 | g_iommus[iommu->seq_id] = NULL; |
1321 | |
1322 | /* if all iommus are freed, free g_iommus */ |
1323 | for (i = 0; i < g_num_of_iommus; i++) { |
1324 | if (g_iommus[i]) |
1325 | break; |
1326 | } |
1327 | |
1328 | if (i == g_num_of_iommus) |
1329 | kfree(g_iommus); |
1330 | |
1331 | /* free context mapping */ |
1332 | free_context_table(iommu); |
1333 | } |
1334 | |
1335 | static struct dmar_domain *alloc_domain(void) |
1336 | { |
1337 | struct dmar_domain *domain; |
1338 | |
1339 | domain = alloc_domain_mem(); |
1340 | if (!domain) |
1341 | return NULL; |
1342 | |
1343 | domain->nid = -1; |
1344 | memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp)); |
1345 | domain->flags = 0; |
1346 | |
1347 | return domain; |
1348 | } |
1349 | |
1350 | static int iommu_attach_domain(struct dmar_domain *domain, |
1351 | struct intel_iommu *iommu) |
1352 | { |
1353 | int num; |
1354 | unsigned long ndomains; |
1355 | unsigned long flags; |
1356 | |
1357 | ndomains = cap_ndoms(iommu->cap); |
1358 | |
1359 | spin_lock_irqsave(&iommu->lock, flags); |
1360 | |
1361 | num = find_first_zero_bit(iommu->domain_ids, ndomains); |
1362 | if (num >= ndomains) { |
1363 | spin_unlock_irqrestore(&iommu->lock, flags); |
1364 | printk(KERN_ERR "IOMMU: no free domain ids\n"); |
1365 | return -ENOMEM; |
1366 | } |
1367 | |
1368 | domain->id = num; |
1369 | set_bit(num, iommu->domain_ids); |
1370 | set_bit(iommu->seq_id, domain->iommu_bmp); |
1371 | iommu->domains[num] = domain; |
1372 | spin_unlock_irqrestore(&iommu->lock, flags); |
1373 | |
1374 | return 0; |
1375 | } |
1376 | |
1377 | static void iommu_detach_domain(struct dmar_domain *domain, |
1378 | struct intel_iommu *iommu) |
1379 | { |
1380 | unsigned long flags; |
1381 | int num, ndomains; |
1382 | int found = 0; |
1383 | |
1384 | spin_lock_irqsave(&iommu->lock, flags); |
1385 | ndomains = cap_ndoms(iommu->cap); |
1386 | for_each_set_bit(num, iommu->domain_ids, ndomains) { |
1387 | if (iommu->domains[num] == domain) { |
1388 | found = 1; |
1389 | break; |
1390 | } |
1391 | } |
1392 | |
1393 | if (found) { |
1394 | clear_bit(num, iommu->domain_ids); |
1395 | clear_bit(iommu->seq_id, domain->iommu_bmp); |
1396 | iommu->domains[num] = NULL; |
1397 | } |
1398 | spin_unlock_irqrestore(&iommu->lock, flags); |
1399 | } |
1400 | |
1401 | static struct iova_domain reserved_iova_list; |
1402 | static struct lock_class_key reserved_rbtree_key; |
1403 | |
1404 | static int dmar_init_reserved_ranges(void) |
1405 | { |
1406 | struct pci_dev *pdev = NULL; |
1407 | struct iova *iova; |
1408 | int i; |
1409 | |
1410 | init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); |
1411 | |
1412 | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, |
1413 | &reserved_rbtree_key); |
1414 | |
1415 | /* IOAPIC ranges shouldn't be accessed by DMA */ |
1416 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
1417 | IOVA_PFN(IOAPIC_RANGE_END)); |
1418 | if (!iova) { |
1419 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); |
1420 | return -ENODEV; |
1421 | } |
1422 | |
1423 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
1424 | for_each_pci_dev(pdev) { |
1425 | struct resource *r; |
1426 | |
1427 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
1428 | r = &pdev->resource[i]; |
1429 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
1430 | continue; |
1431 | iova = reserve_iova(&reserved_iova_list, |
1432 | IOVA_PFN(r->start), |
1433 | IOVA_PFN(r->end)); |
1434 | if (!iova) { |
1435 | printk(KERN_ERR "Reserve iova failed\n"); |
1436 | return -ENODEV; |
1437 | } |
1438 | } |
1439 | } |
1440 | return 0; |
1441 | } |
1442 | |
1443 | static void domain_reserve_special_ranges(struct dmar_domain *domain) |
1444 | { |
1445 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); |
1446 | } |
1447 | |
1448 | static inline int guestwidth_to_adjustwidth(int gaw) |
1449 | { |
1450 | int agaw; |
1451 | int r = (gaw - 12) % 9; |
1452 | |
1453 | if (r == 0) |
1454 | agaw = gaw; |
1455 | else |
1456 | agaw = gaw + 9 - r; |
1457 | if (agaw > 64) |
1458 | agaw = 64; |
1459 | return agaw; |
1460 | } |
1461 | |
1462 | static int domain_init(struct dmar_domain *domain, int guest_width) |
1463 | { |
1464 | struct intel_iommu *iommu; |
1465 | int adjust_width, agaw; |
1466 | unsigned long sagaw; |
1467 | |
1468 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
1469 | spin_lock_init(&domain->iommu_lock); |
1470 | |
1471 | domain_reserve_special_ranges(domain); |
1472 | |
1473 | /* calculate AGAW */ |
1474 | iommu = domain_get_iommu(domain); |
1475 | if (guest_width > cap_mgaw(iommu->cap)) |
1476 | guest_width = cap_mgaw(iommu->cap); |
1477 | domain->gaw = guest_width; |
1478 | adjust_width = guestwidth_to_adjustwidth(guest_width); |
1479 | agaw = width_to_agaw(adjust_width); |
1480 | sagaw = cap_sagaw(iommu->cap); |
1481 | if (!test_bit(agaw, &sagaw)) { |
1482 | /* hardware doesn't support it, choose a bigger one */ |
1483 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); |
1484 | agaw = find_next_bit(&sagaw, 5, agaw); |
1485 | if (agaw >= 5) |
1486 | return -ENODEV; |
1487 | } |
1488 | domain->agaw = agaw; |
1489 | INIT_LIST_HEAD(&domain->devices); |
1490 | |
1491 | if (ecap_coherent(iommu->ecap)) |
1492 | domain->iommu_coherency = 1; |
1493 | else |
1494 | domain->iommu_coherency = 0; |
1495 | |
1496 | if (ecap_sc_support(iommu->ecap)) |
1497 | domain->iommu_snooping = 1; |
1498 | else |
1499 | domain->iommu_snooping = 0; |
1500 | |
1501 | domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); |
1502 | domain->iommu_count = 1; |
1503 | domain->nid = iommu->node; |
1504 | |
1505 | /* always allocate the top pgd */ |
1506 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
1507 | if (!domain->pgd) |
1508 | return -ENOMEM; |
1509 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); |
1510 | return 0; |
1511 | } |
1512 | |
1513 | static void domain_exit(struct dmar_domain *domain) |
1514 | { |
1515 | struct dmar_drhd_unit *drhd; |
1516 | struct intel_iommu *iommu; |
1517 | |
1518 | /* Domain 0 is reserved, so dont process it */ |
1519 | if (!domain) |
1520 | return; |
1521 | |
1522 | /* Flush any lazy unmaps that may reference this domain */ |
1523 | if (!intel_iommu_strict) |
1524 | flush_unmaps_timeout(0); |
1525 | |
1526 | domain_remove_dev_info(domain); |
1527 | /* destroy iovas */ |
1528 | put_iova_domain(&domain->iovad); |
1529 | |
1530 | /* clear ptes */ |
1531 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
1532 | |
1533 | /* free page tables */ |
1534 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
1535 | |
1536 | for_each_active_iommu(iommu, drhd) |
1537 | if (test_bit(iommu->seq_id, domain->iommu_bmp)) |
1538 | iommu_detach_domain(domain, iommu); |
1539 | |
1540 | free_domain_mem(domain); |
1541 | } |
1542 | |
1543 | static int domain_context_mapping_one(struct dmar_domain *domain, int segment, |
1544 | u8 bus, u8 devfn, int translation) |
1545 | { |
1546 | struct context_entry *context; |
1547 | unsigned long flags; |
1548 | struct intel_iommu *iommu; |
1549 | struct dma_pte *pgd; |
1550 | unsigned long num; |
1551 | unsigned long ndomains; |
1552 | int id; |
1553 | int agaw; |
1554 | struct device_domain_info *info = NULL; |
1555 | |
1556 | pr_debug("Set context mapping for %02x:%02x.%d\n", |
1557 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
1558 | |
1559 | BUG_ON(!domain->pgd); |
1560 | BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && |
1561 | translation != CONTEXT_TT_MULTI_LEVEL); |
1562 | |
1563 | iommu = device_to_iommu(segment, bus, devfn); |
1564 | if (!iommu) |
1565 | return -ENODEV; |
1566 | |
1567 | context = device_to_context_entry(iommu, bus, devfn); |
1568 | if (!context) |
1569 | return -ENOMEM; |
1570 | spin_lock_irqsave(&iommu->lock, flags); |
1571 | if (context_present(context)) { |
1572 | spin_unlock_irqrestore(&iommu->lock, flags); |
1573 | return 0; |
1574 | } |
1575 | |
1576 | id = domain->id; |
1577 | pgd = domain->pgd; |
1578 | |
1579 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || |
1580 | domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { |
1581 | int found = 0; |
1582 | |
1583 | /* find an available domain id for this device in iommu */ |
1584 | ndomains = cap_ndoms(iommu->cap); |
1585 | for_each_set_bit(num, iommu->domain_ids, ndomains) { |
1586 | if (iommu->domains[num] == domain) { |
1587 | id = num; |
1588 | found = 1; |
1589 | break; |
1590 | } |
1591 | } |
1592 | |
1593 | if (found == 0) { |
1594 | num = find_first_zero_bit(iommu->domain_ids, ndomains); |
1595 | if (num >= ndomains) { |
1596 | spin_unlock_irqrestore(&iommu->lock, flags); |
1597 | printk(KERN_ERR "IOMMU: no free domain ids\n"); |
1598 | return -EFAULT; |
1599 | } |
1600 | |
1601 | set_bit(num, iommu->domain_ids); |
1602 | iommu->domains[num] = domain; |
1603 | id = num; |
1604 | } |
1605 | |
1606 | /* Skip top levels of page tables for |
1607 | * iommu which has less agaw than default. |
1608 | * Unnecessary for PT mode. |
1609 | */ |
1610 | if (translation != CONTEXT_TT_PASS_THROUGH) { |
1611 | for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { |
1612 | pgd = phys_to_virt(dma_pte_addr(pgd)); |
1613 | if (!dma_pte_present(pgd)) { |
1614 | spin_unlock_irqrestore(&iommu->lock, flags); |
1615 | return -ENOMEM; |
1616 | } |
1617 | } |
1618 | } |
1619 | } |
1620 | |
1621 | context_set_domain_id(context, id); |
1622 | |
1623 | if (translation != CONTEXT_TT_PASS_THROUGH) { |
1624 | info = iommu_support_dev_iotlb(domain, segment, bus, devfn); |
1625 | translation = info ? CONTEXT_TT_DEV_IOTLB : |
1626 | CONTEXT_TT_MULTI_LEVEL; |
1627 | } |
1628 | /* |
1629 | * In pass through mode, AW must be programmed to indicate the largest |
1630 | * AGAW value supported by hardware. And ASR is ignored by hardware. |
1631 | */ |
1632 | if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) |
1633 | context_set_address_width(context, iommu->msagaw); |
1634 | else { |
1635 | context_set_address_root(context, virt_to_phys(pgd)); |
1636 | context_set_address_width(context, iommu->agaw); |
1637 | } |
1638 | |
1639 | context_set_translation_type(context, translation); |
1640 | context_set_fault_enable(context); |
1641 | context_set_present(context); |
1642 | domain_flush_cache(domain, context, sizeof(*context)); |
1643 | |
1644 | /* |
1645 | * It's a non-present to present mapping. If hardware doesn't cache |
1646 | * non-present entry we only need to flush the write-buffer. If the |
1647 | * _does_ cache non-present entries, then it does so in the special |
1648 | * domain #0, which we have to flush: |
1649 | */ |
1650 | if (cap_caching_mode(iommu->cap)) { |
1651 | iommu->flush.flush_context(iommu, 0, |
1652 | (((u16)bus) << 8) | devfn, |
1653 | DMA_CCMD_MASK_NOBIT, |
1654 | DMA_CCMD_DEVICE_INVL); |
1655 | iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH); |
1656 | } else { |
1657 | iommu_flush_write_buffer(iommu); |
1658 | } |
1659 | iommu_enable_dev_iotlb(info); |
1660 | spin_unlock_irqrestore(&iommu->lock, flags); |
1661 | |
1662 | spin_lock_irqsave(&domain->iommu_lock, flags); |
1663 | if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) { |
1664 | domain->iommu_count++; |
1665 | if (domain->iommu_count == 1) |
1666 | domain->nid = iommu->node; |
1667 | domain_update_iommu_cap(domain); |
1668 | } |
1669 | spin_unlock_irqrestore(&domain->iommu_lock, flags); |
1670 | return 0; |
1671 | } |
1672 | |
1673 | static int |
1674 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, |
1675 | int translation) |
1676 | { |
1677 | int ret; |
1678 | struct pci_dev *tmp, *parent; |
1679 | |
1680 | ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), |
1681 | pdev->bus->number, pdev->devfn, |
1682 | translation); |
1683 | if (ret) |
1684 | return ret; |
1685 | |
1686 | /* dependent device mapping */ |
1687 | tmp = pci_find_upstream_pcie_bridge(pdev); |
1688 | if (!tmp) |
1689 | return 0; |
1690 | /* Secondary interface's bus number and devfn 0 */ |
1691 | parent = pdev->bus->self; |
1692 | while (parent != tmp) { |
1693 | ret = domain_context_mapping_one(domain, |
1694 | pci_domain_nr(parent->bus), |
1695 | parent->bus->number, |
1696 | parent->devfn, translation); |
1697 | if (ret) |
1698 | return ret; |
1699 | parent = parent->bus->self; |
1700 | } |
1701 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ |
1702 | return domain_context_mapping_one(domain, |
1703 | pci_domain_nr(tmp->subordinate), |
1704 | tmp->subordinate->number, 0, |
1705 | translation); |
1706 | else /* this is a legacy PCI bridge */ |
1707 | return domain_context_mapping_one(domain, |
1708 | pci_domain_nr(tmp->bus), |
1709 | tmp->bus->number, |
1710 | tmp->devfn, |
1711 | translation); |
1712 | } |
1713 | |
1714 | static int domain_context_mapped(struct pci_dev *pdev) |
1715 | { |
1716 | int ret; |
1717 | struct pci_dev *tmp, *parent; |
1718 | struct intel_iommu *iommu; |
1719 | |
1720 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
1721 | pdev->devfn); |
1722 | if (!iommu) |
1723 | return -ENODEV; |
1724 | |
1725 | ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); |
1726 | if (!ret) |
1727 | return ret; |
1728 | /* dependent device mapping */ |
1729 | tmp = pci_find_upstream_pcie_bridge(pdev); |
1730 | if (!tmp) |
1731 | return ret; |
1732 | /* Secondary interface's bus number and devfn 0 */ |
1733 | parent = pdev->bus->self; |
1734 | while (parent != tmp) { |
1735 | ret = device_context_mapped(iommu, parent->bus->number, |
1736 | parent->devfn); |
1737 | if (!ret) |
1738 | return ret; |
1739 | parent = parent->bus->self; |
1740 | } |
1741 | if (pci_is_pcie(tmp)) |
1742 | return device_context_mapped(iommu, tmp->subordinate->number, |
1743 | 0); |
1744 | else |
1745 | return device_context_mapped(iommu, tmp->bus->number, |
1746 | tmp->devfn); |
1747 | } |
1748 | |
1749 | /* Returns a number of VTD pages, but aligned to MM page size */ |
1750 | static inline unsigned long aligned_nrpages(unsigned long host_addr, |
1751 | size_t size) |
1752 | { |
1753 | host_addr &= ~PAGE_MASK; |
1754 | return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; |
1755 | } |
1756 | |
1757 | /* Return largest possible superpage level for a given mapping */ |
1758 | static inline int hardware_largepage_caps(struct dmar_domain *domain, |
1759 | unsigned long iov_pfn, |
1760 | unsigned long phy_pfn, |
1761 | unsigned long pages) |
1762 | { |
1763 | int support, level = 1; |
1764 | unsigned long pfnmerge; |
1765 | |
1766 | support = domain->iommu_superpage; |
1767 | |
1768 | /* To use a large page, the virtual *and* physical addresses |
1769 | must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
1770 | of them will mean we have to use smaller pages. So just |
1771 | merge them and check both at once. */ |
1772 | pfnmerge = iov_pfn | phy_pfn; |
1773 | |
1774 | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
1775 | pages >>= VTD_STRIDE_SHIFT; |
1776 | if (!pages) |
1777 | break; |
1778 | pfnmerge >>= VTD_STRIDE_SHIFT; |
1779 | level++; |
1780 | support--; |
1781 | } |
1782 | return level; |
1783 | } |
1784 | |
1785 | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
1786 | struct scatterlist *sg, unsigned long phys_pfn, |
1787 | unsigned long nr_pages, int prot) |
1788 | { |
1789 | struct dma_pte *first_pte = NULL, *pte = NULL; |
1790 | phys_addr_t uninitialized_var(pteval); |
1791 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
1792 | unsigned long sg_res; |
1793 | unsigned int largepage_lvl = 0; |
1794 | unsigned long lvl_pages = 0; |
1795 | |
1796 | BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); |
1797 | |
1798 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
1799 | return -EINVAL; |
1800 | |
1801 | prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; |
1802 | |
1803 | if (sg) |
1804 | sg_res = 0; |
1805 | else { |
1806 | sg_res = nr_pages + 1; |
1807 | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; |
1808 | } |
1809 | |
1810 | while (nr_pages > 0) { |
1811 | uint64_t tmp; |
1812 | |
1813 | if (!sg_res) { |
1814 | sg_res = aligned_nrpages(sg->offset, sg->length); |
1815 | sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; |
1816 | sg->dma_length = sg->length; |
1817 | pteval = page_to_phys(sg_page(sg)) | prot; |
1818 | phys_pfn = pteval >> VTD_PAGE_SHIFT; |
1819 | } |
1820 | |
1821 | if (!pte) { |
1822 | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); |
1823 | |
1824 | first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl); |
1825 | if (!pte) |
1826 | return -ENOMEM; |
1827 | /* It is large page*/ |
1828 | if (largepage_lvl > 1) |
1829 | pteval |= DMA_PTE_LARGE_PAGE; |
1830 | else |
1831 | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
1832 | |
1833 | } |
1834 | /* We don't need lock here, nobody else |
1835 | * touches the iova range |
1836 | */ |
1837 | tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); |
1838 | if (tmp) { |
1839 | static int dumps = 5; |
1840 | printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
1841 | iov_pfn, tmp, (unsigned long long)pteval); |
1842 | if (dumps) { |
1843 | dumps--; |
1844 | debug_dma_dump_mappings(NULL); |
1845 | } |
1846 | WARN_ON(1); |
1847 | } |
1848 | |
1849 | lvl_pages = lvl_to_nr_pages(largepage_lvl); |
1850 | |
1851 | BUG_ON(nr_pages < lvl_pages); |
1852 | BUG_ON(sg_res < lvl_pages); |
1853 | |
1854 | nr_pages -= lvl_pages; |
1855 | iov_pfn += lvl_pages; |
1856 | phys_pfn += lvl_pages; |
1857 | pteval += lvl_pages * VTD_PAGE_SIZE; |
1858 | sg_res -= lvl_pages; |
1859 | |
1860 | /* If the next PTE would be the first in a new page, then we |
1861 | need to flush the cache on the entries we've just written. |
1862 | And then we'll need to recalculate 'pte', so clear it and |
1863 | let it get set again in the if (!pte) block above. |
1864 | |
1865 | If we're done (!nr_pages) we need to flush the cache too. |
1866 | |
1867 | Also if we've been setting superpages, we may need to |
1868 | recalculate 'pte' and switch back to smaller pages for the |
1869 | end of the mapping, if the trailing size is not enough to |
1870 | use another superpage (i.e. sg_res < lvl_pages). */ |
1871 | pte++; |
1872 | if (!nr_pages || first_pte_in_page(pte) || |
1873 | (largepage_lvl > 1 && sg_res < lvl_pages)) { |
1874 | domain_flush_cache(domain, first_pte, |
1875 | (void *)pte - (void *)first_pte); |
1876 | pte = NULL; |
1877 | } |
1878 | |
1879 | if (!sg_res && nr_pages) |
1880 | sg = sg_next(sg); |
1881 | } |
1882 | return 0; |
1883 | } |
1884 | |
1885 | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
1886 | struct scatterlist *sg, unsigned long nr_pages, |
1887 | int prot) |
1888 | { |
1889 | return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); |
1890 | } |
1891 | |
1892 | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
1893 | unsigned long phys_pfn, unsigned long nr_pages, |
1894 | int prot) |
1895 | { |
1896 | return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); |
1897 | } |
1898 | |
1899 | static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) |
1900 | { |
1901 | if (!iommu) |
1902 | return; |
1903 | |
1904 | clear_context_table(iommu, bus, devfn); |
1905 | iommu->flush.flush_context(iommu, 0, 0, 0, |
1906 | DMA_CCMD_GLOBAL_INVL); |
1907 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
1908 | } |
1909 | |
1910 | static inline void unlink_domain_info(struct device_domain_info *info) |
1911 | { |
1912 | assert_spin_locked(&device_domain_lock); |
1913 | list_del(&info->link); |
1914 | list_del(&info->global); |
1915 | if (info->dev) |
1916 | info->dev->dev.archdata.iommu = NULL; |
1917 | } |
1918 | |
1919 | static void domain_remove_dev_info(struct dmar_domain *domain) |
1920 | { |
1921 | struct device_domain_info *info; |
1922 | unsigned long flags; |
1923 | struct intel_iommu *iommu; |
1924 | |
1925 | spin_lock_irqsave(&device_domain_lock, flags); |
1926 | while (!list_empty(&domain->devices)) { |
1927 | info = list_entry(domain->devices.next, |
1928 | struct device_domain_info, link); |
1929 | unlink_domain_info(info); |
1930 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1931 | |
1932 | iommu_disable_dev_iotlb(info); |
1933 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); |
1934 | iommu_detach_dev(iommu, info->bus, info->devfn); |
1935 | free_devinfo_mem(info); |
1936 | |
1937 | spin_lock_irqsave(&device_domain_lock, flags); |
1938 | } |
1939 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1940 | } |
1941 | |
1942 | /* |
1943 | * find_domain |
1944 | * Note: we use struct pci_dev->dev.archdata.iommu stores the info |
1945 | */ |
1946 | static struct dmar_domain * |
1947 | find_domain(struct pci_dev *pdev) |
1948 | { |
1949 | struct device_domain_info *info; |
1950 | |
1951 | /* No lock here, assumes no domain exit in normal case */ |
1952 | info = pdev->dev.archdata.iommu; |
1953 | if (info) |
1954 | return info->domain; |
1955 | return NULL; |
1956 | } |
1957 | |
1958 | /* domain is initialized */ |
1959 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) |
1960 | { |
1961 | struct dmar_domain *domain, *found = NULL; |
1962 | struct intel_iommu *iommu; |
1963 | struct dmar_drhd_unit *drhd; |
1964 | struct device_domain_info *info, *tmp; |
1965 | struct pci_dev *dev_tmp; |
1966 | unsigned long flags; |
1967 | int bus = 0, devfn = 0; |
1968 | int segment; |
1969 | int ret; |
1970 | |
1971 | domain = find_domain(pdev); |
1972 | if (domain) |
1973 | return domain; |
1974 | |
1975 | segment = pci_domain_nr(pdev->bus); |
1976 | |
1977 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); |
1978 | if (dev_tmp) { |
1979 | if (pci_is_pcie(dev_tmp)) { |
1980 | bus = dev_tmp->subordinate->number; |
1981 | devfn = 0; |
1982 | } else { |
1983 | bus = dev_tmp->bus->number; |
1984 | devfn = dev_tmp->devfn; |
1985 | } |
1986 | spin_lock_irqsave(&device_domain_lock, flags); |
1987 | list_for_each_entry(info, &device_domain_list, global) { |
1988 | if (info->segment == segment && |
1989 | info->bus == bus && info->devfn == devfn) { |
1990 | found = info->domain; |
1991 | break; |
1992 | } |
1993 | } |
1994 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1995 | /* pcie-pci bridge already has a domain, uses it */ |
1996 | if (found) { |
1997 | domain = found; |
1998 | goto found_domain; |
1999 | } |
2000 | } |
2001 | |
2002 | domain = alloc_domain(); |
2003 | if (!domain) |
2004 | goto error; |
2005 | |
2006 | /* Allocate new domain for the device */ |
2007 | drhd = dmar_find_matched_drhd_unit(pdev); |
2008 | if (!drhd) { |
2009 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", |
2010 | pci_name(pdev)); |
2011 | free_domain_mem(domain); |
2012 | return NULL; |
2013 | } |
2014 | iommu = drhd->iommu; |
2015 | |
2016 | ret = iommu_attach_domain(domain, iommu); |
2017 | if (ret) { |
2018 | free_domain_mem(domain); |
2019 | goto error; |
2020 | } |
2021 | |
2022 | if (domain_init(domain, gaw)) { |
2023 | domain_exit(domain); |
2024 | goto error; |
2025 | } |
2026 | |
2027 | /* register pcie-to-pci device */ |
2028 | if (dev_tmp) { |
2029 | info = alloc_devinfo_mem(); |
2030 | if (!info) { |
2031 | domain_exit(domain); |
2032 | goto error; |
2033 | } |
2034 | info->segment = segment; |
2035 | info->bus = bus; |
2036 | info->devfn = devfn; |
2037 | info->dev = NULL; |
2038 | info->domain = domain; |
2039 | /* This domain is shared by devices under p2p bridge */ |
2040 | domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; |
2041 | |
2042 | /* pcie-to-pci bridge already has a domain, uses it */ |
2043 | found = NULL; |
2044 | spin_lock_irqsave(&device_domain_lock, flags); |
2045 | list_for_each_entry(tmp, &device_domain_list, global) { |
2046 | if (tmp->segment == segment && |
2047 | tmp->bus == bus && tmp->devfn == devfn) { |
2048 | found = tmp->domain; |
2049 | break; |
2050 | } |
2051 | } |
2052 | if (found) { |
2053 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2054 | free_devinfo_mem(info); |
2055 | domain_exit(domain); |
2056 | domain = found; |
2057 | } else { |
2058 | list_add(&info->link, &domain->devices); |
2059 | list_add(&info->global, &device_domain_list); |
2060 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2061 | } |
2062 | } |
2063 | |
2064 | found_domain: |
2065 | info = alloc_devinfo_mem(); |
2066 | if (!info) |
2067 | goto error; |
2068 | info->segment = segment; |
2069 | info->bus = pdev->bus->number; |
2070 | info->devfn = pdev->devfn; |
2071 | info->dev = pdev; |
2072 | info->domain = domain; |
2073 | spin_lock_irqsave(&device_domain_lock, flags); |
2074 | /* somebody is fast */ |
2075 | found = find_domain(pdev); |
2076 | if (found != NULL) { |
2077 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2078 | if (found != domain) { |
2079 | domain_exit(domain); |
2080 | domain = found; |
2081 | } |
2082 | free_devinfo_mem(info); |
2083 | return domain; |
2084 | } |
2085 | list_add(&info->link, &domain->devices); |
2086 | list_add(&info->global, &device_domain_list); |
2087 | pdev->dev.archdata.iommu = info; |
2088 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2089 | return domain; |
2090 | error: |
2091 | /* recheck it here, maybe others set it */ |
2092 | return find_domain(pdev); |
2093 | } |
2094 | |
2095 | static int iommu_identity_mapping; |
2096 | #define IDENTMAP_ALL 1 |
2097 | #define IDENTMAP_GFX 2 |
2098 | #define IDENTMAP_AZALIA 4 |
2099 | |
2100 | static int iommu_domain_identity_map(struct dmar_domain *domain, |
2101 | unsigned long long start, |
2102 | unsigned long long end) |
2103 | { |
2104 | unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; |
2105 | unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; |
2106 | |
2107 | if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), |
2108 | dma_to_mm_pfn(last_vpfn))) { |
2109 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); |
2110 | return -ENOMEM; |
2111 | } |
2112 | |
2113 | pr_debug("Mapping reserved region %llx-%llx for domain %d\n", |
2114 | start, end, domain->id); |
2115 | /* |
2116 | * RMRR range might have overlap with physical memory range, |
2117 | * clear it first |
2118 | */ |
2119 | dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
2120 | |
2121 | return domain_pfn_mapping(domain, first_vpfn, first_vpfn, |
2122 | last_vpfn - first_vpfn + 1, |
2123 | DMA_PTE_READ|DMA_PTE_WRITE); |
2124 | } |
2125 | |
2126 | static int iommu_prepare_identity_map(struct pci_dev *pdev, |
2127 | unsigned long long start, |
2128 | unsigned long long end) |
2129 | { |
2130 | struct dmar_domain *domain; |
2131 | int ret; |
2132 | |
2133 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
2134 | if (!domain) |
2135 | return -ENOMEM; |
2136 | |
2137 | /* For _hardware_ passthrough, don't bother. But for software |
2138 | passthrough, we do it anyway -- it may indicate a memory |
2139 | range which is reserved in E820, so which didn't get set |
2140 | up to start with in si_domain */ |
2141 | if (domain == si_domain && hw_pass_through) { |
2142 | printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", |
2143 | pci_name(pdev), start, end); |
2144 | return 0; |
2145 | } |
2146 | |
2147 | printk(KERN_INFO |
2148 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", |
2149 | pci_name(pdev), start, end); |
2150 | |
2151 | if (end < start) { |
2152 | WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" |
2153 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
2154 | dmi_get_system_info(DMI_BIOS_VENDOR), |
2155 | dmi_get_system_info(DMI_BIOS_VERSION), |
2156 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
2157 | ret = -EIO; |
2158 | goto error; |
2159 | } |
2160 | |
2161 | if (end >> agaw_to_width(domain->agaw)) { |
2162 | WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" |
2163 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
2164 | agaw_to_width(domain->agaw), |
2165 | dmi_get_system_info(DMI_BIOS_VENDOR), |
2166 | dmi_get_system_info(DMI_BIOS_VERSION), |
2167 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
2168 | ret = -EIO; |
2169 | goto error; |
2170 | } |
2171 | |
2172 | ret = iommu_domain_identity_map(domain, start, end); |
2173 | if (ret) |
2174 | goto error; |
2175 | |
2176 | /* context entry init */ |
2177 | ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); |
2178 | if (ret) |
2179 | goto error; |
2180 | |
2181 | return 0; |
2182 | |
2183 | error: |
2184 | domain_exit(domain); |
2185 | return ret; |
2186 | } |
2187 | |
2188 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, |
2189 | struct pci_dev *pdev) |
2190 | { |
2191 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
2192 | return 0; |
2193 | return iommu_prepare_identity_map(pdev, rmrr->base_address, |
2194 | rmrr->end_address); |
2195 | } |
2196 | |
2197 | #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA |
2198 | static inline void iommu_prepare_isa(void) |
2199 | { |
2200 | struct pci_dev *pdev; |
2201 | int ret; |
2202 | |
2203 | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); |
2204 | if (!pdev) |
2205 | return; |
2206 | |
2207 | printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); |
2208 | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1); |
2209 | |
2210 | if (ret) |
2211 | printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " |
2212 | "floppy might not work\n"); |
2213 | |
2214 | } |
2215 | #else |
2216 | static inline void iommu_prepare_isa(void) |
2217 | { |
2218 | return; |
2219 | } |
2220 | #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */ |
2221 | |
2222 | static int md_domain_init(struct dmar_domain *domain, int guest_width); |
2223 | |
2224 | static int __init si_domain_init(int hw) |
2225 | { |
2226 | struct dmar_drhd_unit *drhd; |
2227 | struct intel_iommu *iommu; |
2228 | int nid, ret = 0; |
2229 | |
2230 | si_domain = alloc_domain(); |
2231 | if (!si_domain) |
2232 | return -EFAULT; |
2233 | |
2234 | pr_debug("Identity mapping domain is domain %d\n", si_domain->id); |
2235 | |
2236 | for_each_active_iommu(iommu, drhd) { |
2237 | ret = iommu_attach_domain(si_domain, iommu); |
2238 | if (ret) { |
2239 | domain_exit(si_domain); |
2240 | return -EFAULT; |
2241 | } |
2242 | } |
2243 | |
2244 | if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
2245 | domain_exit(si_domain); |
2246 | return -EFAULT; |
2247 | } |
2248 | |
2249 | si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; |
2250 | |
2251 | if (hw) |
2252 | return 0; |
2253 | |
2254 | for_each_online_node(nid) { |
2255 | unsigned long start_pfn, end_pfn; |
2256 | int i; |
2257 | |
2258 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2259 | ret = iommu_domain_identity_map(si_domain, |
2260 | PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); |
2261 | if (ret) |
2262 | return ret; |
2263 | } |
2264 | } |
2265 | |
2266 | return 0; |
2267 | } |
2268 | |
2269 | static void domain_remove_one_dev_info(struct dmar_domain *domain, |
2270 | struct pci_dev *pdev); |
2271 | static int identity_mapping(struct pci_dev *pdev) |
2272 | { |
2273 | struct device_domain_info *info; |
2274 | |
2275 | if (likely(!iommu_identity_mapping)) |
2276 | return 0; |
2277 | |
2278 | info = pdev->dev.archdata.iommu; |
2279 | if (info && info != DUMMY_DEVICE_DOMAIN_INFO) |
2280 | return (info->domain == si_domain); |
2281 | |
2282 | return 0; |
2283 | } |
2284 | |
2285 | static int domain_add_dev_info(struct dmar_domain *domain, |
2286 | struct pci_dev *pdev, |
2287 | int translation) |
2288 | { |
2289 | struct device_domain_info *info; |
2290 | unsigned long flags; |
2291 | int ret; |
2292 | |
2293 | info = alloc_devinfo_mem(); |
2294 | if (!info) |
2295 | return -ENOMEM; |
2296 | |
2297 | info->segment = pci_domain_nr(pdev->bus); |
2298 | info->bus = pdev->bus->number; |
2299 | info->devfn = pdev->devfn; |
2300 | info->dev = pdev; |
2301 | info->domain = domain; |
2302 | |
2303 | spin_lock_irqsave(&device_domain_lock, flags); |
2304 | list_add(&info->link, &domain->devices); |
2305 | list_add(&info->global, &device_domain_list); |
2306 | pdev->dev.archdata.iommu = info; |
2307 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2308 | |
2309 | ret = domain_context_mapping(domain, pdev, translation); |
2310 | if (ret) { |
2311 | spin_lock_irqsave(&device_domain_lock, flags); |
2312 | unlink_domain_info(info); |
2313 | spin_unlock_irqrestore(&device_domain_lock, flags); |
2314 | free_devinfo_mem(info); |
2315 | return ret; |
2316 | } |
2317 | |
2318 | return 0; |
2319 | } |
2320 | |
2321 | static int iommu_should_identity_map(struct pci_dev *pdev, int startup) |
2322 | { |
2323 | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
2324 | return 1; |
2325 | |
2326 | if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) |
2327 | return 1; |
2328 | |
2329 | if (!(iommu_identity_mapping & IDENTMAP_ALL)) |
2330 | return 0; |
2331 | |
2332 | /* |
2333 | * We want to start off with all devices in the 1:1 domain, and |
2334 | * take them out later if we find they can't access all of memory. |
2335 | * |
2336 | * However, we can't do this for PCI devices behind bridges, |
2337 | * because all PCI devices behind the same bridge will end up |
2338 | * with the same source-id on their transactions. |
2339 | * |
2340 | * Practically speaking, we can't change things around for these |
2341 | * devices at run-time, because we can't be sure there'll be no |
2342 | * DMA transactions in flight for any of their siblings. |
2343 | * |
2344 | * So PCI devices (unless they're on the root bus) as well as |
2345 | * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of |
2346 | * the 1:1 domain, just in _case_ one of their siblings turns out |
2347 | * not to be able to map all of memory. |
2348 | */ |
2349 | if (!pci_is_pcie(pdev)) { |
2350 | if (!pci_is_root_bus(pdev->bus)) |
2351 | return 0; |
2352 | if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) |
2353 | return 0; |
2354 | } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) |
2355 | return 0; |
2356 | |
2357 | /* |
2358 | * At boot time, we don't yet know if devices will be 64-bit capable. |
2359 | * Assume that they will -- if they turn out not to be, then we can |
2360 | * take them out of the 1:1 domain later. |
2361 | */ |
2362 | if (!startup) { |
2363 | /* |
2364 | * If the device's dma_mask is less than the system's memory |
2365 | * size then this is not a candidate for identity mapping. |
2366 | */ |
2367 | u64 dma_mask = pdev->dma_mask; |
2368 | |
2369 | if (pdev->dev.coherent_dma_mask && |
2370 | pdev->dev.coherent_dma_mask < dma_mask) |
2371 | dma_mask = pdev->dev.coherent_dma_mask; |
2372 | |
2373 | return dma_mask >= dma_get_required_mask(&pdev->dev); |
2374 | } |
2375 | |
2376 | return 1; |
2377 | } |
2378 | |
2379 | static int __init iommu_prepare_static_identity_mapping(int hw) |
2380 | { |
2381 | struct pci_dev *pdev = NULL; |
2382 | int ret; |
2383 | |
2384 | ret = si_domain_init(hw); |
2385 | if (ret) |
2386 | return -EFAULT; |
2387 | |
2388 | for_each_pci_dev(pdev) { |
2389 | if (iommu_should_identity_map(pdev, 1)) { |
2390 | ret = domain_add_dev_info(si_domain, pdev, |
2391 | hw ? CONTEXT_TT_PASS_THROUGH : |
2392 | CONTEXT_TT_MULTI_LEVEL); |
2393 | if (ret) { |
2394 | /* device not associated with an iommu */ |
2395 | if (ret == -ENODEV) |
2396 | continue; |
2397 | return ret; |
2398 | } |
2399 | pr_info("IOMMU: %s identity mapping for device %s\n", |
2400 | hw ? "hardware" : "software", pci_name(pdev)); |
2401 | } |
2402 | } |
2403 | |
2404 | return 0; |
2405 | } |
2406 | |
2407 | static int __init init_dmars(void) |
2408 | { |
2409 | struct dmar_drhd_unit *drhd; |
2410 | struct dmar_rmrr_unit *rmrr; |
2411 | struct pci_dev *pdev; |
2412 | struct intel_iommu *iommu; |
2413 | int i, ret; |
2414 | |
2415 | /* |
2416 | * for each drhd |
2417 | * allocate root |
2418 | * initialize and program root entry to not present |
2419 | * endfor |
2420 | */ |
2421 | for_each_drhd_unit(drhd) { |
2422 | /* |
2423 | * lock not needed as this is only incremented in the single |
2424 | * threaded kernel __init code path all other access are read |
2425 | * only |
2426 | */ |
2427 | if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) { |
2428 | g_num_of_iommus++; |
2429 | continue; |
2430 | } |
2431 | printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n", |
2432 | IOMMU_UNITS_SUPPORTED); |
2433 | } |
2434 | |
2435 | g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), |
2436 | GFP_KERNEL); |
2437 | if (!g_iommus) { |
2438 | printk(KERN_ERR "Allocating global iommu array failed\n"); |
2439 | ret = -ENOMEM; |
2440 | goto error; |
2441 | } |
2442 | |
2443 | deferred_flush = kzalloc(g_num_of_iommus * |
2444 | sizeof(struct deferred_flush_tables), GFP_KERNEL); |
2445 | if (!deferred_flush) { |
2446 | ret = -ENOMEM; |
2447 | goto error; |
2448 | } |
2449 | |
2450 | for_each_drhd_unit(drhd) { |
2451 | if (drhd->ignored) |
2452 | continue; |
2453 | |
2454 | iommu = drhd->iommu; |
2455 | g_iommus[iommu->seq_id] = iommu; |
2456 | |
2457 | ret = iommu_init_domains(iommu); |
2458 | if (ret) |
2459 | goto error; |
2460 | |
2461 | /* |
2462 | * TBD: |
2463 | * we could share the same root & context tables |
2464 | * among all IOMMU's. Need to Split it later. |
2465 | */ |
2466 | ret = iommu_alloc_root_entry(iommu); |
2467 | if (ret) { |
2468 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); |
2469 | goto error; |
2470 | } |
2471 | if (!ecap_pass_through(iommu->ecap)) |
2472 | hw_pass_through = 0; |
2473 | } |
2474 | |
2475 | /* |
2476 | * Start from the sane iommu hardware state. |
2477 | */ |
2478 | for_each_drhd_unit(drhd) { |
2479 | if (drhd->ignored) |
2480 | continue; |
2481 | |
2482 | iommu = drhd->iommu; |
2483 | |
2484 | /* |
2485 | * If the queued invalidation is already initialized by us |
2486 | * (for example, while enabling interrupt-remapping) then |
2487 | * we got the things already rolling from a sane state. |
2488 | */ |
2489 | if (iommu->qi) |
2490 | continue; |
2491 | |
2492 | /* |
2493 | * Clear any previous faults. |
2494 | */ |
2495 | dmar_fault(-1, iommu); |
2496 | /* |
2497 | * Disable queued invalidation if supported and already enabled |
2498 | * before OS handover. |
2499 | */ |
2500 | dmar_disable_qi(iommu); |
2501 | } |
2502 | |
2503 | for_each_drhd_unit(drhd) { |
2504 | if (drhd->ignored) |
2505 | continue; |
2506 | |
2507 | iommu = drhd->iommu; |
2508 | |
2509 | if (dmar_enable_qi(iommu)) { |
2510 | /* |
2511 | * Queued Invalidate not enabled, use Register Based |
2512 | * Invalidate |
2513 | */ |
2514 | iommu->flush.flush_context = __iommu_flush_context; |
2515 | iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
2516 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based " |
2517 | "invalidation\n", |
2518 | iommu->seq_id, |
2519 | (unsigned long long)drhd->reg_base_addr); |
2520 | } else { |
2521 | iommu->flush.flush_context = qi_flush_context; |
2522 | iommu->flush.flush_iotlb = qi_flush_iotlb; |
2523 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued " |
2524 | "invalidation\n", |
2525 | iommu->seq_id, |
2526 | (unsigned long long)drhd->reg_base_addr); |
2527 | } |
2528 | } |
2529 | |
2530 | if (iommu_pass_through) |
2531 | iommu_identity_mapping |= IDENTMAP_ALL; |
2532 | |
2533 | #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA |
2534 | iommu_identity_mapping |= IDENTMAP_GFX; |
2535 | #endif |
2536 | |
2537 | check_tylersburg_isoch(); |
2538 | |
2539 | /* |
2540 | * If pass through is not set or not enabled, setup context entries for |
2541 | * identity mappings for rmrr, gfx, and isa and may fall back to static |
2542 | * identity mapping if iommu_identity_mapping is set. |
2543 | */ |
2544 | if (iommu_identity_mapping) { |
2545 | ret = iommu_prepare_static_identity_mapping(hw_pass_through); |
2546 | if (ret) { |
2547 | printk(KERN_CRIT "Failed to setup IOMMU pass-through\n"); |
2548 | goto error; |
2549 | } |
2550 | } |
2551 | /* |
2552 | * For each rmrr |
2553 | * for each dev attached to rmrr |
2554 | * do |
2555 | * locate drhd for dev, alloc domain for dev |
2556 | * allocate free domain |
2557 | * allocate page table entries for rmrr |
2558 | * if context not allocated for bus |
2559 | * allocate and init context |
2560 | * set present in root table for this bus |
2561 | * init context with domain, translation etc |
2562 | * endfor |
2563 | * endfor |
2564 | */ |
2565 | printk(KERN_INFO "IOMMU: Setting RMRR:\n"); |
2566 | for_each_rmrr_units(rmrr) { |
2567 | for (i = 0; i < rmrr->devices_cnt; i++) { |
2568 | pdev = rmrr->devices[i]; |
2569 | /* |
2570 | * some BIOS lists non-exist devices in DMAR |
2571 | * table. |
2572 | */ |
2573 | if (!pdev) |
2574 | continue; |
2575 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); |
2576 | if (ret) |
2577 | printk(KERN_ERR |
2578 | "IOMMU: mapping reserved region failed\n"); |
2579 | } |
2580 | } |
2581 | |
2582 | iommu_prepare_isa(); |
2583 | |
2584 | /* |
2585 | * for each drhd |
2586 | * enable fault log |
2587 | * global invalidate context cache |
2588 | * global invalidate iotlb |
2589 | * enable translation |
2590 | */ |
2591 | for_each_drhd_unit(drhd) { |
2592 | if (drhd->ignored) { |
2593 | /* |
2594 | * we always have to disable PMRs or DMA may fail on |
2595 | * this device |
2596 | */ |
2597 | if (force_on) |
2598 | iommu_disable_protect_mem_regions(drhd->iommu); |
2599 | continue; |
2600 | } |
2601 | iommu = drhd->iommu; |
2602 | |
2603 | iommu_flush_write_buffer(iommu); |
2604 | |
2605 | ret = dmar_set_interrupt(iommu); |
2606 | if (ret) |
2607 | goto error; |
2608 | |
2609 | iommu_set_root_entry(iommu); |
2610 | |
2611 | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
2612 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
2613 | |
2614 | ret = iommu_enable_translation(iommu); |
2615 | if (ret) |
2616 | goto error; |
2617 | |
2618 | iommu_disable_protect_mem_regions(iommu); |
2619 | } |
2620 | |
2621 | return 0; |
2622 | error: |
2623 | for_each_drhd_unit(drhd) { |
2624 | if (drhd->ignored) |
2625 | continue; |
2626 | iommu = drhd->iommu; |
2627 | free_iommu(iommu); |
2628 | } |
2629 | kfree(g_iommus); |
2630 | return ret; |
2631 | } |
2632 | |
2633 | /* This takes a number of _MM_ pages, not VTD pages */ |
2634 | static struct iova *intel_alloc_iova(struct device *dev, |
2635 | struct dmar_domain *domain, |
2636 | unsigned long nrpages, uint64_t dma_mask) |
2637 | { |
2638 | struct pci_dev *pdev = to_pci_dev(dev); |
2639 | struct iova *iova = NULL; |
2640 | |
2641 | /* Restrict dma_mask to the width that the iommu can handle */ |
2642 | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); |
2643 | |
2644 | if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { |
2645 | /* |
2646 | * First try to allocate an io virtual address in |
2647 | * DMA_BIT_MASK(32) and if that fails then try allocating |
2648 | * from higher range |
2649 | */ |
2650 | iova = alloc_iova(&domain->iovad, nrpages, |
2651 | IOVA_PFN(DMA_BIT_MASK(32)), 1); |
2652 | if (iova) |
2653 | return iova; |
2654 | } |
2655 | iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); |
2656 | if (unlikely(!iova)) { |
2657 | printk(KERN_ERR "Allocating %ld-page iova for %s failed", |
2658 | nrpages, pci_name(pdev)); |
2659 | return NULL; |
2660 | } |
2661 | |
2662 | return iova; |
2663 | } |
2664 | |
2665 | static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev) |
2666 | { |
2667 | struct dmar_domain *domain; |
2668 | int ret; |
2669 | |
2670 | domain = get_domain_for_dev(pdev, |
2671 | DEFAULT_DOMAIN_ADDRESS_WIDTH); |
2672 | if (!domain) { |
2673 | printk(KERN_ERR |
2674 | "Allocating domain for %s failed", pci_name(pdev)); |
2675 | return NULL; |
2676 | } |
2677 | |
2678 | /* make sure context mapping is ok */ |
2679 | if (unlikely(!domain_context_mapped(pdev))) { |
2680 | ret = domain_context_mapping(domain, pdev, |
2681 | CONTEXT_TT_MULTI_LEVEL); |
2682 | if (ret) { |
2683 | printk(KERN_ERR |
2684 | "Domain context map for %s failed", |
2685 | pci_name(pdev)); |
2686 | return NULL; |
2687 | } |
2688 | } |
2689 | |
2690 | return domain; |
2691 | } |
2692 | |
2693 | static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev) |
2694 | { |
2695 | struct device_domain_info *info; |
2696 | |
2697 | /* No lock here, assumes no domain exit in normal case */ |
2698 | info = dev->dev.archdata.iommu; |
2699 | if (likely(info)) |
2700 | return info->domain; |
2701 | |
2702 | return __get_valid_domain_for_dev(dev); |
2703 | } |
2704 | |
2705 | static int iommu_dummy(struct pci_dev *pdev) |
2706 | { |
2707 | return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; |
2708 | } |
2709 | |
2710 | /* Check if the pdev needs to go through non-identity map and unmap process.*/ |
2711 | static int iommu_no_mapping(struct device *dev) |
2712 | { |
2713 | struct pci_dev *pdev; |
2714 | int found; |
2715 | |
2716 | if (unlikely(dev->bus != &pci_bus_type)) |
2717 | return 1; |
2718 | |
2719 | pdev = to_pci_dev(dev); |
2720 | if (iommu_dummy(pdev)) |
2721 | return 1; |
2722 | |
2723 | if (!iommu_identity_mapping) |
2724 | return 0; |
2725 | |
2726 | found = identity_mapping(pdev); |
2727 | if (found) { |
2728 | if (iommu_should_identity_map(pdev, 0)) |
2729 | return 1; |
2730 | else { |
2731 | /* |
2732 | * 32 bit DMA is removed from si_domain and fall back |
2733 | * to non-identity mapping. |
2734 | */ |
2735 | domain_remove_one_dev_info(si_domain, pdev); |
2736 | printk(KERN_INFO "32bit %s uses non-identity mapping\n", |
2737 | pci_name(pdev)); |
2738 | return 0; |
2739 | } |
2740 | } else { |
2741 | /* |
2742 | * In case of a detached 64 bit DMA device from vm, the device |
2743 | * is put into si_domain for identity mapping. |
2744 | */ |
2745 | if (iommu_should_identity_map(pdev, 0)) { |
2746 | int ret; |
2747 | ret = domain_add_dev_info(si_domain, pdev, |
2748 | hw_pass_through ? |
2749 | CONTEXT_TT_PASS_THROUGH : |
2750 | CONTEXT_TT_MULTI_LEVEL); |
2751 | if (!ret) { |
2752 | printk(KERN_INFO "64bit %s uses identity mapping\n", |
2753 | pci_name(pdev)); |
2754 | return 1; |
2755 | } |
2756 | } |
2757 | } |
2758 | |
2759 | return 0; |
2760 | } |
2761 | |
2762 | static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, |
2763 | size_t size, int dir, u64 dma_mask) |
2764 | { |
2765 | struct pci_dev *pdev = to_pci_dev(hwdev); |
2766 | struct dmar_domain *domain; |
2767 | phys_addr_t start_paddr; |
2768 | struct iova *iova; |
2769 | int prot = 0; |
2770 | int ret; |
2771 | struct intel_iommu *iommu; |
2772 | unsigned long paddr_pfn = paddr >> PAGE_SHIFT; |
2773 | |
2774 | BUG_ON(dir == DMA_NONE); |
2775 | |
2776 | if (iommu_no_mapping(hwdev)) |
2777 | return paddr; |
2778 | |
2779 | domain = get_valid_domain_for_dev(pdev); |
2780 | if (!domain) |
2781 | return 0; |
2782 | |
2783 | iommu = domain_get_iommu(domain); |
2784 | size = aligned_nrpages(paddr, size); |
2785 | |
2786 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask); |
2787 | if (!iova) |
2788 | goto error; |
2789 | |
2790 | /* |
2791 | * Check if DMAR supports zero-length reads on write only |
2792 | * mappings.. |
2793 | */ |
2794 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
2795 | !cap_zlr(iommu->cap)) |
2796 | prot |= DMA_PTE_READ; |
2797 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
2798 | prot |= DMA_PTE_WRITE; |
2799 | /* |
2800 | * paddr - (paddr + size) might be partial page, we should map the whole |
2801 | * page. Note: if two part of one page are separately mapped, we |
2802 | * might have two guest_addr mapping to the same host paddr, but this |
2803 | * is not a big problem |
2804 | */ |
2805 | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), |
2806 | mm_to_dma_pfn(paddr_pfn), size, prot); |
2807 | if (ret) |
2808 | goto error; |
2809 | |
2810 | /* it's a non-present to present mapping. Only flush if caching mode */ |
2811 | if (cap_caching_mode(iommu->cap)) |
2812 | iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1); |
2813 | else |
2814 | iommu_flush_write_buffer(iommu); |
2815 | |
2816 | start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; |
2817 | start_paddr += paddr & ~PAGE_MASK; |
2818 | return start_paddr; |
2819 | |
2820 | error: |
2821 | if (iova) |
2822 | __free_iova(&domain->iovad, iova); |
2823 | printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", |
2824 | pci_name(pdev), size, (unsigned long long)paddr, dir); |
2825 | return 0; |
2826 | } |
2827 | |
2828 | static dma_addr_t intel_map_page(struct device *dev, struct page *page, |
2829 | unsigned long offset, size_t size, |
2830 | enum dma_data_direction dir, |
2831 | struct dma_attrs *attrs) |
2832 | { |
2833 | return __intel_map_single(dev, page_to_phys(page) + offset, size, |
2834 | dir, to_pci_dev(dev)->dma_mask); |
2835 | } |
2836 | |
2837 | static void flush_unmaps(void) |
2838 | { |
2839 | int i, j; |
2840 | |
2841 | timer_on = 0; |
2842 | |
2843 | /* just flush them all */ |
2844 | for (i = 0; i < g_num_of_iommus; i++) { |
2845 | struct intel_iommu *iommu = g_iommus[i]; |
2846 | if (!iommu) |
2847 | continue; |
2848 | |
2849 | if (!deferred_flush[i].next) |
2850 | continue; |
2851 | |
2852 | /* In caching mode, global flushes turn emulation expensive */ |
2853 | if (!cap_caching_mode(iommu->cap)) |
2854 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
2855 | DMA_TLB_GLOBAL_FLUSH); |
2856 | for (j = 0; j < deferred_flush[i].next; j++) { |
2857 | unsigned long mask; |
2858 | struct iova *iova = deferred_flush[i].iova[j]; |
2859 | struct dmar_domain *domain = deferred_flush[i].domain[j]; |
2860 | |
2861 | /* On real hardware multiple invalidations are expensive */ |
2862 | if (cap_caching_mode(iommu->cap)) |
2863 | iommu_flush_iotlb_psi(iommu, domain->id, |
2864 | iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0); |
2865 | else { |
2866 | mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1)); |
2867 | iommu_flush_dev_iotlb(deferred_flush[i].domain[j], |
2868 | (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask); |
2869 | } |
2870 | __free_iova(&deferred_flush[i].domain[j]->iovad, iova); |
2871 | } |
2872 | deferred_flush[i].next = 0; |
2873 | } |
2874 | |
2875 | list_size = 0; |
2876 | } |
2877 | |
2878 | static void flush_unmaps_timeout(unsigned long data) |
2879 | { |
2880 | unsigned long flags; |
2881 | |
2882 | spin_lock_irqsave(&async_umap_flush_lock, flags); |
2883 | flush_unmaps(); |
2884 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
2885 | } |
2886 | |
2887 | static void add_unmap(struct dmar_domain *dom, struct iova *iova) |
2888 | { |
2889 | unsigned long flags; |
2890 | int next, iommu_id; |
2891 | struct intel_iommu *iommu; |
2892 | |
2893 | spin_lock_irqsave(&async_umap_flush_lock, flags); |
2894 | if (list_size == HIGH_WATER_MARK) |
2895 | flush_unmaps(); |
2896 | |
2897 | iommu = domain_get_iommu(dom); |
2898 | iommu_id = iommu->seq_id; |
2899 | |
2900 | next = deferred_flush[iommu_id].next; |
2901 | deferred_flush[iommu_id].domain[next] = dom; |
2902 | deferred_flush[iommu_id].iova[next] = iova; |
2903 | deferred_flush[iommu_id].next++; |
2904 | |
2905 | if (!timer_on) { |
2906 | mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); |
2907 | timer_on = 1; |
2908 | } |
2909 | list_size++; |
2910 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
2911 | } |
2912 | |
2913 | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, |
2914 | size_t size, enum dma_data_direction dir, |
2915 | struct dma_attrs *attrs) |
2916 | { |
2917 | struct pci_dev *pdev = to_pci_dev(dev); |
2918 | struct dmar_domain *domain; |
2919 | unsigned long start_pfn, last_pfn; |
2920 | struct iova *iova; |
2921 | struct intel_iommu *iommu; |
2922 | |
2923 | if (iommu_no_mapping(dev)) |
2924 | return; |
2925 | |
2926 | domain = find_domain(pdev); |
2927 | BUG_ON(!domain); |
2928 | |
2929 | iommu = domain_get_iommu(domain); |
2930 | |
2931 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); |
2932 | if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n", |
2933 | (unsigned long long)dev_addr)) |
2934 | return; |
2935 | |
2936 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); |
2937 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; |
2938 | |
2939 | pr_debug("Device %s unmapping: pfn %lx-%lx\n", |
2940 | pci_name(pdev), start_pfn, last_pfn); |
2941 | |
2942 | /* clear the whole page */ |
2943 | dma_pte_clear_range(domain, start_pfn, last_pfn); |
2944 | |
2945 | /* free page tables */ |
2946 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); |
2947 | |
2948 | if (intel_iommu_strict) { |
2949 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, |
2950 | last_pfn - start_pfn + 1, 0); |
2951 | /* free iova */ |
2952 | __free_iova(&domain->iovad, iova); |
2953 | } else { |
2954 | add_unmap(domain, iova); |
2955 | /* |
2956 | * queue up the release of the unmap to save the 1/6th of the |
2957 | * cpu used up by the iotlb flush operation... |
2958 | */ |
2959 | } |
2960 | } |
2961 | |
2962 | static void *intel_alloc_coherent(struct device *hwdev, size_t size, |
2963 | dma_addr_t *dma_handle, gfp_t flags, |
2964 | struct dma_attrs *attrs) |
2965 | { |
2966 | void *vaddr; |
2967 | int order; |
2968 | |
2969 | size = PAGE_ALIGN(size); |
2970 | order = get_order(size); |
2971 | |
2972 | if (!iommu_no_mapping(hwdev)) |
2973 | flags &= ~(GFP_DMA | GFP_DMA32); |
2974 | else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) { |
2975 | if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32)) |
2976 | flags |= GFP_DMA; |
2977 | else |
2978 | flags |= GFP_DMA32; |
2979 | } |
2980 | |
2981 | vaddr = (void *)__get_free_pages(flags, order); |
2982 | if (!vaddr) |
2983 | return NULL; |
2984 | memset(vaddr, 0, size); |
2985 | |
2986 | *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, |
2987 | DMA_BIDIRECTIONAL, |
2988 | hwdev->coherent_dma_mask); |
2989 | if (*dma_handle) |
2990 | return vaddr; |
2991 | free_pages((unsigned long)vaddr, order); |
2992 | return NULL; |
2993 | } |
2994 | |
2995 | static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, |
2996 | dma_addr_t dma_handle, struct dma_attrs *attrs) |
2997 | { |
2998 | int order; |
2999 | |
3000 | size = PAGE_ALIGN(size); |
3001 | order = get_order(size); |
3002 | |
3003 | intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); |
3004 | free_pages((unsigned long)vaddr, order); |
3005 | } |
3006 | |
3007 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, |
3008 | int nelems, enum dma_data_direction dir, |
3009 | struct dma_attrs *attrs) |
3010 | { |
3011 | struct pci_dev *pdev = to_pci_dev(hwdev); |
3012 | struct dmar_domain *domain; |
3013 | unsigned long start_pfn, last_pfn; |
3014 | struct iova *iova; |
3015 | struct intel_iommu *iommu; |
3016 | |
3017 | if (iommu_no_mapping(hwdev)) |
3018 | return; |
3019 | |
3020 | domain = find_domain(pdev); |
3021 | BUG_ON(!domain); |
3022 | |
3023 | iommu = domain_get_iommu(domain); |
3024 | |
3025 | iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); |
3026 | if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n", |
3027 | (unsigned long long)sglist[0].dma_address)) |
3028 | return; |
3029 | |
3030 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); |
3031 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; |
3032 | |
3033 | /* clear the whole page */ |
3034 | dma_pte_clear_range(domain, start_pfn, last_pfn); |
3035 | |
3036 | /* free page tables */ |
3037 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); |
3038 | |
3039 | if (intel_iommu_strict) { |
3040 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, |
3041 | last_pfn - start_pfn + 1, 0); |
3042 | /* free iova */ |
3043 | __free_iova(&domain->iovad, iova); |
3044 | } else { |
3045 | add_unmap(domain, iova); |
3046 | /* |
3047 | * queue up the release of the unmap to save the 1/6th of the |
3048 | * cpu used up by the iotlb flush operation... |
3049 | */ |
3050 | } |
3051 | } |
3052 | |
3053 | static int intel_nontranslate_map_sg(struct device *hddev, |
3054 | struct scatterlist *sglist, int nelems, int dir) |
3055 | { |
3056 | int i; |
3057 | struct scatterlist *sg; |
3058 | |
3059 | for_each_sg(sglist, sg, nelems, i) { |
3060 | BUG_ON(!sg_page(sg)); |
3061 | sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; |
3062 | sg->dma_length = sg->length; |
3063 | } |
3064 | return nelems; |
3065 | } |
3066 | |
3067 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, |
3068 | enum dma_data_direction dir, struct dma_attrs *attrs) |
3069 | { |
3070 | int i; |
3071 | struct pci_dev *pdev = to_pci_dev(hwdev); |
3072 | struct dmar_domain *domain; |
3073 | size_t size = 0; |
3074 | int prot = 0; |
3075 | struct iova *iova = NULL; |
3076 | int ret; |
3077 | struct scatterlist *sg; |
3078 | unsigned long start_vpfn; |
3079 | struct intel_iommu *iommu; |
3080 | |
3081 | BUG_ON(dir == DMA_NONE); |
3082 | if (iommu_no_mapping(hwdev)) |
3083 | return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); |
3084 | |
3085 | domain = get_valid_domain_for_dev(pdev); |
3086 | if (!domain) |
3087 | return 0; |
3088 | |
3089 | iommu = domain_get_iommu(domain); |
3090 | |
3091 | for_each_sg(sglist, sg, nelems, i) |
3092 | size += aligned_nrpages(sg->offset, sg->length); |
3093 | |
3094 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), |
3095 | pdev->dma_mask); |
3096 | if (!iova) { |
3097 | sglist->dma_length = 0; |
3098 | return 0; |
3099 | } |
3100 | |
3101 | /* |
3102 | * Check if DMAR supports zero-length reads on write only |
3103 | * mappings.. |
3104 | */ |
3105 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
3106 | !cap_zlr(iommu->cap)) |
3107 | prot |= DMA_PTE_READ; |
3108 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
3109 | prot |= DMA_PTE_WRITE; |
3110 | |
3111 | start_vpfn = mm_to_dma_pfn(iova->pfn_lo); |
3112 | |
3113 | ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); |
3114 | if (unlikely(ret)) { |
3115 | /* clear the page */ |
3116 | dma_pte_clear_range(domain, start_vpfn, |
3117 | start_vpfn + size - 1); |
3118 | /* free page tables */ |
3119 | dma_pte_free_pagetable(domain, start_vpfn, |
3120 | start_vpfn + size - 1); |
3121 | /* free iova */ |
3122 | __free_iova(&domain->iovad, iova); |
3123 | return 0; |
3124 | } |
3125 | |
3126 | /* it's a non-present to present mapping. Only flush if caching mode */ |
3127 | if (cap_caching_mode(iommu->cap)) |
3128 | iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1); |
3129 | else |
3130 | iommu_flush_write_buffer(iommu); |
3131 | |
3132 | return nelems; |
3133 | } |
3134 | |
3135 | static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) |
3136 | { |
3137 | return !dma_addr; |
3138 | } |
3139 | |
3140 | struct dma_map_ops intel_dma_ops = { |
3141 | .alloc = intel_alloc_coherent, |
3142 | .free = intel_free_coherent, |
3143 | .map_sg = intel_map_sg, |
3144 | .unmap_sg = intel_unmap_sg, |
3145 | .map_page = intel_map_page, |
3146 | .unmap_page = intel_unmap_page, |
3147 | .mapping_error = intel_mapping_error, |
3148 | }; |
3149 | |
3150 | static inline int iommu_domain_cache_init(void) |
3151 | { |
3152 | int ret = 0; |
3153 | |
3154 | iommu_domain_cache = kmem_cache_create("iommu_domain", |
3155 | sizeof(struct dmar_domain), |
3156 | 0, |
3157 | SLAB_HWCACHE_ALIGN, |
3158 | |
3159 | NULL); |
3160 | if (!iommu_domain_cache) { |
3161 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); |
3162 | ret = -ENOMEM; |
3163 | } |
3164 | |
3165 | return ret; |
3166 | } |
3167 | |
3168 | static inline int iommu_devinfo_cache_init(void) |
3169 | { |
3170 | int ret = 0; |
3171 | |
3172 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
3173 | sizeof(struct device_domain_info), |
3174 | 0, |
3175 | SLAB_HWCACHE_ALIGN, |
3176 | NULL); |
3177 | if (!iommu_devinfo_cache) { |
3178 | printk(KERN_ERR "Couldn't create devinfo cache\n"); |
3179 | ret = -ENOMEM; |
3180 | } |
3181 | |
3182 | return ret; |
3183 | } |
3184 | |
3185 | static inline int iommu_iova_cache_init(void) |
3186 | { |
3187 | int ret = 0; |
3188 | |
3189 | iommu_iova_cache = kmem_cache_create("iommu_iova", |
3190 | sizeof(struct iova), |
3191 | 0, |
3192 | SLAB_HWCACHE_ALIGN, |
3193 | NULL); |
3194 | if (!iommu_iova_cache) { |
3195 | printk(KERN_ERR "Couldn't create iova cache\n"); |
3196 | ret = -ENOMEM; |
3197 | } |
3198 | |
3199 | return ret; |
3200 | } |
3201 | |
3202 | static int __init iommu_init_mempool(void) |
3203 | { |
3204 | int ret; |
3205 | ret = iommu_iova_cache_init(); |
3206 | if (ret) |
3207 | return ret; |
3208 | |
3209 | ret = iommu_domain_cache_init(); |
3210 | if (ret) |
3211 | goto domain_error; |
3212 | |
3213 | ret = iommu_devinfo_cache_init(); |
3214 | if (!ret) |
3215 | return ret; |
3216 | |
3217 | kmem_cache_destroy(iommu_domain_cache); |
3218 | domain_error: |
3219 | kmem_cache_destroy(iommu_iova_cache); |
3220 | |
3221 | return -ENOMEM; |
3222 | } |
3223 | |
3224 | static void __init iommu_exit_mempool(void) |
3225 | { |
3226 | kmem_cache_destroy(iommu_devinfo_cache); |
3227 | kmem_cache_destroy(iommu_domain_cache); |
3228 | kmem_cache_destroy(iommu_iova_cache); |
3229 | |
3230 | } |
3231 | |
3232 | static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
3233 | { |
3234 | struct dmar_drhd_unit *drhd; |
3235 | u32 vtbar; |
3236 | int rc; |
3237 | |
3238 | /* We know that this device on this chipset has its own IOMMU. |
3239 | * If we find it under a different IOMMU, then the BIOS is lying |
3240 | * to us. Hope that the IOMMU for this device is actually |
3241 | * disabled, and it needs no translation... |
3242 | */ |
3243 | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
3244 | if (rc) { |
3245 | /* "can't" happen */ |
3246 | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
3247 | return; |
3248 | } |
3249 | vtbar &= 0xffff0000; |
3250 | |
3251 | /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
3252 | drhd = dmar_find_matched_drhd_unit(pdev); |
3253 | if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, |
3254 | TAINT_FIRMWARE_WORKAROUND, |
3255 | "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) |
3256 | pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
3257 | } |
3258 | DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); |
3259 | |
3260 | static void __init init_no_remapping_devices(void) |
3261 | { |
3262 | struct dmar_drhd_unit *drhd; |
3263 | |
3264 | for_each_drhd_unit(drhd) { |
3265 | if (!drhd->include_all) { |
3266 | int i; |
3267 | for (i = 0; i < drhd->devices_cnt; i++) |
3268 | if (drhd->devices[i] != NULL) |
3269 | break; |
3270 | /* ignore DMAR unit if no pci devices exist */ |
3271 | if (i == drhd->devices_cnt) |
3272 | drhd->ignored = 1; |
3273 | } |
3274 | } |
3275 | |
3276 | for_each_drhd_unit(drhd) { |
3277 | int i; |
3278 | if (drhd->ignored || drhd->include_all) |
3279 | continue; |
3280 | |
3281 | for (i = 0; i < drhd->devices_cnt; i++) |
3282 | if (drhd->devices[i] && |
3283 | !IS_GFX_DEVICE(drhd->devices[i])) |
3284 | break; |
3285 | |
3286 | if (i < drhd->devices_cnt) |
3287 | continue; |
3288 | |
3289 | /* This IOMMU has *only* gfx devices. Either bypass it or |
3290 | set the gfx_mapped flag, as appropriate */ |
3291 | if (dmar_map_gfx) { |
3292 | intel_iommu_gfx_mapped = 1; |
3293 | } else { |
3294 | drhd->ignored = 1; |
3295 | for (i = 0; i < drhd->devices_cnt; i++) { |
3296 | if (!drhd->devices[i]) |
3297 | continue; |
3298 | drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
3299 | } |
3300 | } |
3301 | } |
3302 | } |
3303 | |
3304 | #ifdef CONFIG_SUSPEND |
3305 | static int init_iommu_hw(void) |
3306 | { |
3307 | struct dmar_drhd_unit *drhd; |
3308 | struct intel_iommu *iommu = NULL; |
3309 | |
3310 | for_each_active_iommu(iommu, drhd) |
3311 | if (iommu->qi) |
3312 | dmar_reenable_qi(iommu); |
3313 | |
3314 | for_each_iommu(iommu, drhd) { |
3315 | if (drhd->ignored) { |
3316 | /* |
3317 | * we always have to disable PMRs or DMA may fail on |
3318 | * this device |
3319 | */ |
3320 | if (force_on) |
3321 | iommu_disable_protect_mem_regions(iommu); |
3322 | continue; |
3323 | } |
3324 | |
3325 | iommu_flush_write_buffer(iommu); |
3326 | |
3327 | iommu_set_root_entry(iommu); |
3328 | |
3329 | iommu->flush.flush_context(iommu, 0, 0, 0, |
3330 | DMA_CCMD_GLOBAL_INVL); |
3331 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
3332 | DMA_TLB_GLOBAL_FLUSH); |
3333 | if (iommu_enable_translation(iommu)) |
3334 | return 1; |
3335 | iommu_disable_protect_mem_regions(iommu); |
3336 | } |
3337 | |
3338 | return 0; |
3339 | } |
3340 | |
3341 | static void iommu_flush_all(void) |
3342 | { |
3343 | struct dmar_drhd_unit *drhd; |
3344 | struct intel_iommu *iommu; |
3345 | |
3346 | for_each_active_iommu(iommu, drhd) { |
3347 | iommu->flush.flush_context(iommu, 0, 0, 0, |
3348 | DMA_CCMD_GLOBAL_INVL); |
3349 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
3350 | DMA_TLB_GLOBAL_FLUSH); |
3351 | } |
3352 | } |
3353 | |
3354 | static int iommu_suspend(void) |
3355 | { |
3356 | struct dmar_drhd_unit *drhd; |
3357 | struct intel_iommu *iommu = NULL; |
3358 | unsigned long flag; |
3359 | |
3360 | for_each_active_iommu(iommu, drhd) { |
3361 | iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, |
3362 | GFP_ATOMIC); |
3363 | if (!iommu->iommu_state) |
3364 | goto nomem; |
3365 | } |
3366 | |
3367 | iommu_flush_all(); |
3368 | |
3369 | for_each_active_iommu(iommu, drhd) { |
3370 | iommu_disable_translation(iommu); |
3371 | |
3372 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
3373 | |
3374 | iommu->iommu_state[SR_DMAR_FECTL_REG] = |
3375 | readl(iommu->reg + DMAR_FECTL_REG); |
3376 | iommu->iommu_state[SR_DMAR_FEDATA_REG] = |
3377 | readl(iommu->reg + DMAR_FEDATA_REG); |
3378 | iommu->iommu_state[SR_DMAR_FEADDR_REG] = |
3379 | readl(iommu->reg + DMAR_FEADDR_REG); |
3380 | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = |
3381 | readl(iommu->reg + DMAR_FEUADDR_REG); |
3382 | |
3383 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
3384 | } |
3385 | return 0; |
3386 | |
3387 | nomem: |
3388 | for_each_active_iommu(iommu, drhd) |
3389 | kfree(iommu->iommu_state); |
3390 | |
3391 | return -ENOMEM; |
3392 | } |
3393 | |
3394 | static void iommu_resume(void) |
3395 | { |
3396 | struct dmar_drhd_unit *drhd; |
3397 | struct intel_iommu *iommu = NULL; |
3398 | unsigned long flag; |
3399 | |
3400 | if (init_iommu_hw()) { |
3401 | if (force_on) |
3402 | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); |
3403 | else |
3404 | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); |
3405 | return; |
3406 | } |
3407 | |
3408 | for_each_active_iommu(iommu, drhd) { |
3409 | |
3410 | raw_spin_lock_irqsave(&iommu->register_lock, flag); |
3411 | |
3412 | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], |
3413 | iommu->reg + DMAR_FECTL_REG); |
3414 | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], |
3415 | iommu->reg + DMAR_FEDATA_REG); |
3416 | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], |
3417 | iommu->reg + DMAR_FEADDR_REG); |
3418 | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], |
3419 | iommu->reg + DMAR_FEUADDR_REG); |
3420 | |
3421 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
3422 | } |
3423 | |
3424 | for_each_active_iommu(iommu, drhd) |
3425 | kfree(iommu->iommu_state); |
3426 | } |
3427 | |
3428 | static struct syscore_ops iommu_syscore_ops = { |
3429 | .resume = iommu_resume, |
3430 | .suspend = iommu_suspend, |
3431 | }; |
3432 | |
3433 | static void __init init_iommu_pm_ops(void) |
3434 | { |
3435 | register_syscore_ops(&iommu_syscore_ops); |
3436 | } |
3437 | |
3438 | #else |
3439 | static inline void init_iommu_pm_ops(void) {} |
3440 | #endif /* CONFIG_PM */ |
3441 | |
3442 | LIST_HEAD(dmar_rmrr_units); |
3443 | |
3444 | static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) |
3445 | { |
3446 | list_add(&rmrr->list, &dmar_rmrr_units); |
3447 | } |
3448 | |
3449 | |
3450 | int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header) |
3451 | { |
3452 | struct acpi_dmar_reserved_memory *rmrr; |
3453 | struct dmar_rmrr_unit *rmrru; |
3454 | |
3455 | rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
3456 | if (!rmrru) |
3457 | return -ENOMEM; |
3458 | |
3459 | rmrru->hdr = header; |
3460 | rmrr = (struct acpi_dmar_reserved_memory *)header; |
3461 | rmrru->base_address = rmrr->base_address; |
3462 | rmrru->end_address = rmrr->end_address; |
3463 | |
3464 | dmar_register_rmrr_unit(rmrru); |
3465 | return 0; |
3466 | } |
3467 | |
3468 | static int __init |
3469 | rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) |
3470 | { |
3471 | struct acpi_dmar_reserved_memory *rmrr; |
3472 | int ret; |
3473 | |
3474 | rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; |
3475 | ret = dmar_parse_dev_scope((void *)(rmrr + 1), |
3476 | ((void *)rmrr) + rmrr->header.length, |
3477 | &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); |
3478 | |
3479 | if (ret || (rmrru->devices_cnt == 0)) { |
3480 | list_del(&rmrru->list); |
3481 | kfree(rmrru); |
3482 | } |
3483 | return ret; |
3484 | } |
3485 | |
3486 | static LIST_HEAD(dmar_atsr_units); |
3487 | |
3488 | int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr) |
3489 | { |
3490 | struct acpi_dmar_atsr *atsr; |
3491 | struct dmar_atsr_unit *atsru; |
3492 | |
3493 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
3494 | atsru = kzalloc(sizeof(*atsru), GFP_KERNEL); |
3495 | if (!atsru) |
3496 | return -ENOMEM; |
3497 | |
3498 | atsru->hdr = hdr; |
3499 | atsru->include_all = atsr->flags & 0x1; |
3500 | |
3501 | list_add(&atsru->list, &dmar_atsr_units); |
3502 | |
3503 | return 0; |
3504 | } |
3505 | |
3506 | static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru) |
3507 | { |
3508 | int rc; |
3509 | struct acpi_dmar_atsr *atsr; |
3510 | |
3511 | if (atsru->include_all) |
3512 | return 0; |
3513 | |
3514 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
3515 | rc = dmar_parse_dev_scope((void *)(atsr + 1), |
3516 | (void *)atsr + atsr->header.length, |
3517 | &atsru->devices_cnt, &atsru->devices, |
3518 | atsr->segment); |
3519 | if (rc || !atsru->devices_cnt) { |
3520 | list_del(&atsru->list); |
3521 | kfree(atsru); |
3522 | } |
3523 | |
3524 | return rc; |
3525 | } |
3526 | |
3527 | int dmar_find_matched_atsr_unit(struct pci_dev *dev) |
3528 | { |
3529 | int i; |
3530 | struct pci_bus *bus; |
3531 | struct acpi_dmar_atsr *atsr; |
3532 | struct dmar_atsr_unit *atsru; |
3533 | |
3534 | dev = pci_physfn(dev); |
3535 | |
3536 | list_for_each_entry(atsru, &dmar_atsr_units, list) { |
3537 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
3538 | if (atsr->segment == pci_domain_nr(dev->bus)) |
3539 | goto found; |
3540 | } |
3541 | |
3542 | return 0; |
3543 | |
3544 | found: |
3545 | for (bus = dev->bus; bus; bus = bus->parent) { |
3546 | struct pci_dev *bridge = bus->self; |
3547 | |
3548 | if (!bridge || !pci_is_pcie(bridge) || |
3549 | bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) |
3550 | return 0; |
3551 | |
3552 | if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) { |
3553 | for (i = 0; i < atsru->devices_cnt; i++) |
3554 | if (atsru->devices[i] == bridge) |
3555 | return 1; |
3556 | break; |
3557 | } |
3558 | } |
3559 | |
3560 | if (atsru->include_all) |
3561 | return 1; |
3562 | |
3563 | return 0; |
3564 | } |
3565 | |
3566 | int __init dmar_parse_rmrr_atsr_dev(void) |
3567 | { |
3568 | struct dmar_rmrr_unit *rmrr, *rmrr_n; |
3569 | struct dmar_atsr_unit *atsr, *atsr_n; |
3570 | int ret = 0; |
3571 | |
3572 | list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { |
3573 | ret = rmrr_parse_dev(rmrr); |
3574 | if (ret) |
3575 | return ret; |
3576 | } |
3577 | |
3578 | list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) { |
3579 | ret = atsr_parse_dev(atsr); |
3580 | if (ret) |
3581 | return ret; |
3582 | } |
3583 | |
3584 | return ret; |
3585 | } |
3586 | |
3587 | /* |
3588 | * Here we only respond to action of unbound device from driver. |
3589 | * |
3590 | * Added device is not attached to its DMAR domain here yet. That will happen |
3591 | * when mapping the device to iova. |
3592 | */ |
3593 | static int device_notifier(struct notifier_block *nb, |
3594 | unsigned long action, void *data) |
3595 | { |
3596 | struct device *dev = data; |
3597 | struct pci_dev *pdev = to_pci_dev(dev); |
3598 | struct dmar_domain *domain; |
3599 | |
3600 | if (iommu_no_mapping(dev)) |
3601 | return 0; |
3602 | |
3603 | domain = find_domain(pdev); |
3604 | if (!domain) |
3605 | return 0; |
3606 | |
3607 | if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) { |
3608 | domain_remove_one_dev_info(domain, pdev); |
3609 | |
3610 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && |
3611 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) && |
3612 | list_empty(&domain->devices)) |
3613 | domain_exit(domain); |
3614 | } |
3615 | |
3616 | return 0; |
3617 | } |
3618 | |
3619 | static struct notifier_block device_nb = { |
3620 | .notifier_call = device_notifier, |
3621 | }; |
3622 | |
3623 | int __init intel_iommu_init(void) |
3624 | { |
3625 | int ret = 0; |
3626 | |
3627 | /* VT-d is required for a TXT/tboot launch, so enforce that */ |
3628 | force_on = tboot_force_iommu(); |
3629 | |
3630 | if (dmar_table_init()) { |
3631 | if (force_on) |
3632 | panic("tboot: Failed to initialize DMAR table\n"); |
3633 | return -ENODEV; |
3634 | } |
3635 | |
3636 | if (dmar_dev_scope_init() < 0) { |
3637 | if (force_on) |
3638 | panic("tboot: Failed to initialize DMAR device scope\n"); |
3639 | return -ENODEV; |
3640 | } |
3641 | |
3642 | if (no_iommu || dmar_disabled) |
3643 | return -ENODEV; |
3644 | |
3645 | if (iommu_init_mempool()) { |
3646 | if (force_on) |
3647 | panic("tboot: Failed to initialize iommu memory\n"); |
3648 | return -ENODEV; |
3649 | } |
3650 | |
3651 | if (list_empty(&dmar_rmrr_units)) |
3652 | printk(KERN_INFO "DMAR: No RMRR found\n"); |
3653 | |
3654 | if (list_empty(&dmar_atsr_units)) |
3655 | printk(KERN_INFO "DMAR: No ATSR found\n"); |
3656 | |
3657 | if (dmar_init_reserved_ranges()) { |
3658 | if (force_on) |
3659 | panic("tboot: Failed to reserve iommu ranges\n"); |
3660 | return -ENODEV; |
3661 | } |
3662 | |
3663 | init_no_remapping_devices(); |
3664 | |
3665 | ret = init_dmars(); |
3666 | if (ret) { |
3667 | if (force_on) |
3668 | panic("tboot: Failed to initialize DMARs\n"); |
3669 | printk(KERN_ERR "IOMMU: dmar init failed\n"); |
3670 | put_iova_domain(&reserved_iova_list); |
3671 | iommu_exit_mempool(); |
3672 | return ret; |
3673 | } |
3674 | printk(KERN_INFO |
3675 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); |
3676 | |
3677 | init_timer(&unmap_timer); |
3678 | #ifdef CONFIG_SWIOTLB |
3679 | swiotlb = 0; |
3680 | #endif |
3681 | dma_ops = &intel_dma_ops; |
3682 | |
3683 | init_iommu_pm_ops(); |
3684 | |
3685 | bus_set_iommu(&pci_bus_type, &intel_iommu_ops); |
3686 | |
3687 | bus_register_notifier(&pci_bus_type, &device_nb); |
3688 | |
3689 | intel_iommu_enabled = 1; |
3690 | |
3691 | return 0; |
3692 | } |
3693 | |
3694 | static void iommu_detach_dependent_devices(struct intel_iommu *iommu, |
3695 | struct pci_dev *pdev) |
3696 | { |
3697 | struct pci_dev *tmp, *parent; |
3698 | |
3699 | if (!iommu || !pdev) |
3700 | return; |
3701 | |
3702 | /* dependent device detach */ |
3703 | tmp = pci_find_upstream_pcie_bridge(pdev); |
3704 | /* Secondary interface's bus number and devfn 0 */ |
3705 | if (tmp) { |
3706 | parent = pdev->bus->self; |
3707 | while (parent != tmp) { |
3708 | iommu_detach_dev(iommu, parent->bus->number, |
3709 | parent->devfn); |
3710 | parent = parent->bus->self; |
3711 | } |
3712 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ |
3713 | iommu_detach_dev(iommu, |
3714 | tmp->subordinate->number, 0); |
3715 | else /* this is a legacy PCI bridge */ |
3716 | iommu_detach_dev(iommu, tmp->bus->number, |
3717 | tmp->devfn); |
3718 | } |
3719 | } |
3720 | |
3721 | static void domain_remove_one_dev_info(struct dmar_domain *domain, |
3722 | struct pci_dev *pdev) |
3723 | { |
3724 | struct device_domain_info *info; |
3725 | struct intel_iommu *iommu; |
3726 | unsigned long flags; |
3727 | int found = 0; |
3728 | struct list_head *entry, *tmp; |
3729 | |
3730 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
3731 | pdev->devfn); |
3732 | if (!iommu) |
3733 | return; |
3734 | |
3735 | spin_lock_irqsave(&device_domain_lock, flags); |
3736 | list_for_each_safe(entry, tmp, &domain->devices) { |
3737 | info = list_entry(entry, struct device_domain_info, link); |
3738 | if (info->segment == pci_domain_nr(pdev->bus) && |
3739 | info->bus == pdev->bus->number && |
3740 | info->devfn == pdev->devfn) { |
3741 | unlink_domain_info(info); |
3742 | spin_unlock_irqrestore(&device_domain_lock, flags); |
3743 | |
3744 | iommu_disable_dev_iotlb(info); |
3745 | iommu_detach_dev(iommu, info->bus, info->devfn); |
3746 | iommu_detach_dependent_devices(iommu, pdev); |
3747 | free_devinfo_mem(info); |
3748 | |
3749 | spin_lock_irqsave(&device_domain_lock, flags); |
3750 | |
3751 | if (found) |
3752 | break; |
3753 | else |
3754 | continue; |
3755 | } |
3756 | |
3757 | /* if there is no other devices under the same iommu |
3758 | * owned by this domain, clear this iommu in iommu_bmp |
3759 | * update iommu count and coherency |
3760 | */ |
3761 | if (iommu == device_to_iommu(info->segment, info->bus, |
3762 | info->devfn)) |
3763 | found = 1; |
3764 | } |
3765 | |
3766 | spin_unlock_irqrestore(&device_domain_lock, flags); |
3767 | |
3768 | if (found == 0) { |
3769 | unsigned long tmp_flags; |
3770 | spin_lock_irqsave(&domain->iommu_lock, tmp_flags); |
3771 | clear_bit(iommu->seq_id, domain->iommu_bmp); |
3772 | domain->iommu_count--; |
3773 | domain_update_iommu_cap(domain); |
3774 | spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); |
3775 | |
3776 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && |
3777 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) { |
3778 | spin_lock_irqsave(&iommu->lock, tmp_flags); |
3779 | clear_bit(domain->id, iommu->domain_ids); |
3780 | iommu->domains[domain->id] = NULL; |
3781 | spin_unlock_irqrestore(&iommu->lock, tmp_flags); |
3782 | } |
3783 | } |
3784 | } |
3785 | |
3786 | static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) |
3787 | { |
3788 | struct device_domain_info *info; |
3789 | struct intel_iommu *iommu; |
3790 | unsigned long flags1, flags2; |
3791 | |
3792 | spin_lock_irqsave(&device_domain_lock, flags1); |
3793 | while (!list_empty(&domain->devices)) { |
3794 | info = list_entry(domain->devices.next, |
3795 | struct device_domain_info, link); |
3796 | unlink_domain_info(info); |
3797 | spin_unlock_irqrestore(&device_domain_lock, flags1); |
3798 | |
3799 | iommu_disable_dev_iotlb(info); |
3800 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); |
3801 | iommu_detach_dev(iommu, info->bus, info->devfn); |
3802 | iommu_detach_dependent_devices(iommu, info->dev); |
3803 | |
3804 | /* clear this iommu in iommu_bmp, update iommu count |
3805 | * and capabilities |
3806 | */ |
3807 | spin_lock_irqsave(&domain->iommu_lock, flags2); |
3808 | if (test_and_clear_bit(iommu->seq_id, |
3809 | domain->iommu_bmp)) { |
3810 | domain->iommu_count--; |
3811 | domain_update_iommu_cap(domain); |
3812 | } |
3813 | spin_unlock_irqrestore(&domain->iommu_lock, flags2); |
3814 | |
3815 | free_devinfo_mem(info); |
3816 | spin_lock_irqsave(&device_domain_lock, flags1); |
3817 | } |
3818 | spin_unlock_irqrestore(&device_domain_lock, flags1); |
3819 | } |
3820 | |
3821 | /* domain id for virtual machine, it won't be set in context */ |
3822 | static unsigned long vm_domid; |
3823 | |
3824 | static struct dmar_domain *iommu_alloc_vm_domain(void) |
3825 | { |
3826 | struct dmar_domain *domain; |
3827 | |
3828 | domain = alloc_domain_mem(); |
3829 | if (!domain) |
3830 | return NULL; |
3831 | |
3832 | domain->id = vm_domid++; |
3833 | domain->nid = -1; |
3834 | memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp)); |
3835 | domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; |
3836 | |
3837 | return domain; |
3838 | } |
3839 | |
3840 | static int md_domain_init(struct dmar_domain *domain, int guest_width) |
3841 | { |
3842 | int adjust_width; |
3843 | |
3844 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
3845 | spin_lock_init(&domain->iommu_lock); |
3846 | |
3847 | domain_reserve_special_ranges(domain); |
3848 | |
3849 | /* calculate AGAW */ |
3850 | domain->gaw = guest_width; |
3851 | adjust_width = guestwidth_to_adjustwidth(guest_width); |
3852 | domain->agaw = width_to_agaw(adjust_width); |
3853 | |
3854 | INIT_LIST_HEAD(&domain->devices); |
3855 | |
3856 | domain->iommu_count = 0; |
3857 | domain->iommu_coherency = 0; |
3858 | domain->iommu_snooping = 0; |
3859 | domain->iommu_superpage = 0; |
3860 | domain->max_addr = 0; |
3861 | domain->nid = -1; |
3862 | |
3863 | /* always allocate the top pgd */ |
3864 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
3865 | if (!domain->pgd) |
3866 | return -ENOMEM; |
3867 | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
3868 | return 0; |
3869 | } |
3870 | |
3871 | static void iommu_free_vm_domain(struct dmar_domain *domain) |
3872 | { |
3873 | unsigned long flags; |
3874 | struct dmar_drhd_unit *drhd; |
3875 | struct intel_iommu *iommu; |
3876 | unsigned long i; |
3877 | unsigned long ndomains; |
3878 | |
3879 | for_each_drhd_unit(drhd) { |
3880 | if (drhd->ignored) |
3881 | continue; |
3882 | iommu = drhd->iommu; |
3883 | |
3884 | ndomains = cap_ndoms(iommu->cap); |
3885 | for_each_set_bit(i, iommu->domain_ids, ndomains) { |
3886 | if (iommu->domains[i] == domain) { |
3887 | spin_lock_irqsave(&iommu->lock, flags); |
3888 | clear_bit(i, iommu->domain_ids); |
3889 | iommu->domains[i] = NULL; |
3890 | spin_unlock_irqrestore(&iommu->lock, flags); |
3891 | break; |
3892 | } |
3893 | } |
3894 | } |
3895 | } |
3896 | |
3897 | static void vm_domain_exit(struct dmar_domain *domain) |
3898 | { |
3899 | /* Domain 0 is reserved, so dont process it */ |
3900 | if (!domain) |
3901 | return; |
3902 | |
3903 | vm_domain_remove_all_dev_info(domain); |
3904 | /* destroy iovas */ |
3905 | put_iova_domain(&domain->iovad); |
3906 | |
3907 | /* clear ptes */ |
3908 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
3909 | |
3910 | /* free page tables */ |
3911 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
3912 | |
3913 | iommu_free_vm_domain(domain); |
3914 | free_domain_mem(domain); |
3915 | } |
3916 | |
3917 | static int intel_iommu_domain_init(struct iommu_domain *domain) |
3918 | { |
3919 | struct dmar_domain *dmar_domain; |
3920 | |
3921 | dmar_domain = iommu_alloc_vm_domain(); |
3922 | if (!dmar_domain) { |
3923 | printk(KERN_ERR |
3924 | "intel_iommu_domain_init: dmar_domain == NULL\n"); |
3925 | return -ENOMEM; |
3926 | } |
3927 | if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
3928 | printk(KERN_ERR |
3929 | "intel_iommu_domain_init() failed\n"); |
3930 | vm_domain_exit(dmar_domain); |
3931 | return -ENOMEM; |
3932 | } |
3933 | domain_update_iommu_cap(dmar_domain); |
3934 | domain->priv = dmar_domain; |
3935 | |
3936 | domain->geometry.aperture_start = 0; |
3937 | domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw); |
3938 | domain->geometry.force_aperture = true; |
3939 | |
3940 | return 0; |
3941 | } |
3942 | |
3943 | static void intel_iommu_domain_destroy(struct iommu_domain *domain) |
3944 | { |
3945 | struct dmar_domain *dmar_domain = domain->priv; |
3946 | |
3947 | domain->priv = NULL; |
3948 | vm_domain_exit(dmar_domain); |
3949 | } |
3950 | |
3951 | static int intel_iommu_attach_device(struct iommu_domain *domain, |
3952 | struct device *dev) |
3953 | { |
3954 | struct dmar_domain *dmar_domain = domain->priv; |
3955 | struct pci_dev *pdev = to_pci_dev(dev); |
3956 | struct intel_iommu *iommu; |
3957 | int addr_width; |
3958 | |
3959 | /* normally pdev is not mapped */ |
3960 | if (unlikely(domain_context_mapped(pdev))) { |
3961 | struct dmar_domain *old_domain; |
3962 | |
3963 | old_domain = find_domain(pdev); |
3964 | if (old_domain) { |
3965 | if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || |
3966 | dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) |
3967 | domain_remove_one_dev_info(old_domain, pdev); |
3968 | else |
3969 | domain_remove_dev_info(old_domain); |
3970 | } |
3971 | } |
3972 | |
3973 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, |
3974 | pdev->devfn); |
3975 | if (!iommu) |
3976 | return -ENODEV; |
3977 | |
3978 | /* check if this iommu agaw is sufficient for max mapped address */ |
3979 | addr_width = agaw_to_width(iommu->agaw); |
3980 | if (addr_width > cap_mgaw(iommu->cap)) |
3981 | addr_width = cap_mgaw(iommu->cap); |
3982 | |
3983 | if (dmar_domain->max_addr > (1LL << addr_width)) { |
3984 | printk(KERN_ERR "%s: iommu width (%d) is not " |
3985 | "sufficient for the mapped address (%llx)\n", |
3986 | __func__, addr_width, dmar_domain->max_addr); |
3987 | return -EFAULT; |
3988 | } |
3989 | dmar_domain->gaw = addr_width; |
3990 | |
3991 | /* |
3992 | * Knock out extra levels of page tables if necessary |
3993 | */ |
3994 | while (iommu->agaw < dmar_domain->agaw) { |
3995 | struct dma_pte *pte; |
3996 | |
3997 | pte = dmar_domain->pgd; |
3998 | if (dma_pte_present(pte)) { |
3999 | dmar_domain->pgd = (struct dma_pte *) |
4000 | phys_to_virt(dma_pte_addr(pte)); |
4001 | free_pgtable_page(pte); |
4002 | } |
4003 | dmar_domain->agaw--; |
4004 | } |
4005 | |
4006 | return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); |
4007 | } |
4008 | |
4009 | static void intel_iommu_detach_device(struct iommu_domain *domain, |
4010 | struct device *dev) |
4011 | { |
4012 | struct dmar_domain *dmar_domain = domain->priv; |
4013 | struct pci_dev *pdev = to_pci_dev(dev); |
4014 | |
4015 | domain_remove_one_dev_info(dmar_domain, pdev); |
4016 | } |
4017 | |
4018 | static int intel_iommu_map(struct iommu_domain *domain, |
4019 | unsigned long iova, phys_addr_t hpa, |
4020 | size_t size, int iommu_prot) |
4021 | { |
4022 | struct dmar_domain *dmar_domain = domain->priv; |
4023 | u64 max_addr; |
4024 | int prot = 0; |
4025 | int ret; |
4026 | |
4027 | if (iommu_prot & IOMMU_READ) |
4028 | prot |= DMA_PTE_READ; |
4029 | if (iommu_prot & IOMMU_WRITE) |
4030 | prot |= DMA_PTE_WRITE; |
4031 | if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) |
4032 | prot |= DMA_PTE_SNP; |
4033 | |
4034 | max_addr = iova + size; |
4035 | if (dmar_domain->max_addr < max_addr) { |
4036 | u64 end; |
4037 | |
4038 | /* check if minimum agaw is sufficient for mapped address */ |
4039 | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; |
4040 | if (end < max_addr) { |
4041 | printk(KERN_ERR "%s: iommu width (%d) is not " |
4042 | "sufficient for the mapped address (%llx)\n", |
4043 | __func__, dmar_domain->gaw, max_addr); |
4044 | return -EFAULT; |
4045 | } |
4046 | dmar_domain->max_addr = max_addr; |
4047 | } |
4048 | /* Round up size to next multiple of PAGE_SIZE, if it and |
4049 | the low bits of hpa would take us onto the next page */ |
4050 | size = aligned_nrpages(hpa, size); |
4051 | ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, |
4052 | hpa >> VTD_PAGE_SHIFT, size, prot); |
4053 | return ret; |
4054 | } |
4055 | |
4056 | static size_t intel_iommu_unmap(struct iommu_domain *domain, |
4057 | unsigned long iova, size_t size) |
4058 | { |
4059 | struct dmar_domain *dmar_domain = domain->priv; |
4060 | int order; |
4061 | |
4062 | order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, |
4063 | (iova + size - 1) >> VTD_PAGE_SHIFT); |
4064 | |
4065 | if (dmar_domain->max_addr == iova + size) |
4066 | dmar_domain->max_addr = iova; |
4067 | |
4068 | return PAGE_SIZE << order; |
4069 | } |
4070 | |
4071 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
4072 | unsigned long iova) |
4073 | { |
4074 | struct dmar_domain *dmar_domain = domain->priv; |
4075 | struct dma_pte *pte; |
4076 | u64 phys = 0; |
4077 | |
4078 | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0); |
4079 | if (pte) |
4080 | phys = dma_pte_addr(pte); |
4081 | |
4082 | return phys; |
4083 | } |
4084 | |
4085 | static int intel_iommu_domain_has_cap(struct iommu_domain *domain, |
4086 | unsigned long cap) |
4087 | { |
4088 | struct dmar_domain *dmar_domain = domain->priv; |
4089 | |
4090 | if (cap == IOMMU_CAP_CACHE_COHERENCY) |
4091 | return dmar_domain->iommu_snooping; |
4092 | if (cap == IOMMU_CAP_INTR_REMAP) |
4093 | return irq_remapping_enabled; |
4094 | |
4095 | return 0; |
4096 | } |
4097 | |
4098 | static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to) |
4099 | { |
4100 | pci_dev_put(*from); |
4101 | *from = to; |
4102 | } |
4103 | |
4104 | #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) |
4105 | |
4106 | static int intel_iommu_add_device(struct device *dev) |
4107 | { |
4108 | struct pci_dev *pdev = to_pci_dev(dev); |
4109 | struct pci_dev *bridge, *dma_pdev; |
4110 | struct iommu_group *group; |
4111 | int ret; |
4112 | |
4113 | if (!device_to_iommu(pci_domain_nr(pdev->bus), |
4114 | pdev->bus->number, pdev->devfn)) |
4115 | return -ENODEV; |
4116 | |
4117 | bridge = pci_find_upstream_pcie_bridge(pdev); |
4118 | if (bridge) { |
4119 | if (pci_is_pcie(bridge)) |
4120 | dma_pdev = pci_get_domain_bus_and_slot( |
4121 | pci_domain_nr(pdev->bus), |
4122 | bridge->subordinate->number, 0); |
4123 | else |
4124 | dma_pdev = pci_dev_get(bridge); |
4125 | } else |
4126 | dma_pdev = pci_dev_get(pdev); |
4127 | |
4128 | /* Account for quirked devices */ |
4129 | swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev)); |
4130 | |
4131 | /* |
4132 | * If it's a multifunction device that does not support our |
4133 | * required ACS flags, add to the same group as function 0. |
4134 | */ |
4135 | if (dma_pdev->multifunction && |
4136 | !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) |
4137 | swap_pci_ref(&dma_pdev, |
4138 | pci_get_slot(dma_pdev->bus, |
4139 | PCI_DEVFN(PCI_SLOT(dma_pdev->devfn), |
4140 | 0))); |
4141 | |
4142 | /* |
4143 | * Devices on the root bus go through the iommu. If that's not us, |
4144 | * find the next upstream device and test ACS up to the root bus. |
4145 | * Finding the next device may require skipping virtual buses. |
4146 | */ |
4147 | while (!pci_is_root_bus(dma_pdev->bus)) { |
4148 | struct pci_bus *bus = dma_pdev->bus; |
4149 | |
4150 | while (!bus->self) { |
4151 | if (!pci_is_root_bus(bus)) |
4152 | bus = bus->parent; |
4153 | else |
4154 | goto root_bus; |
4155 | } |
4156 | |
4157 | if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) |
4158 | break; |
4159 | |
4160 | swap_pci_ref(&dma_pdev, pci_dev_get(bus->self)); |
4161 | } |
4162 | |
4163 | root_bus: |
4164 | group = iommu_group_get(&dma_pdev->dev); |
4165 | pci_dev_put(dma_pdev); |
4166 | if (!group) { |
4167 | group = iommu_group_alloc(); |
4168 | if (IS_ERR(group)) |
4169 | return PTR_ERR(group); |
4170 | } |
4171 | |
4172 | ret = iommu_group_add_device(group, dev); |
4173 | |
4174 | iommu_group_put(group); |
4175 | return ret; |
4176 | } |
4177 | |
4178 | static void intel_iommu_remove_device(struct device *dev) |
4179 | { |
4180 | iommu_group_remove_device(dev); |
4181 | } |
4182 | |
4183 | static struct iommu_ops intel_iommu_ops = { |
4184 | .domain_init = intel_iommu_domain_init, |
4185 | .domain_destroy = intel_iommu_domain_destroy, |
4186 | .attach_dev = intel_iommu_attach_device, |
4187 | .detach_dev = intel_iommu_detach_device, |
4188 | .map = intel_iommu_map, |
4189 | .unmap = intel_iommu_unmap, |
4190 | .iova_to_phys = intel_iommu_iova_to_phys, |
4191 | .domain_has_cap = intel_iommu_domain_has_cap, |
4192 | .add_device = intel_iommu_add_device, |
4193 | .remove_device = intel_iommu_remove_device, |
4194 | .pgsize_bitmap = INTEL_IOMMU_PGSIZES, |
4195 | }; |
4196 | |
4197 | static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) |
4198 | { |
4199 | /* |
4200 | * Mobile 4 Series Chipset neglects to set RWBF capability, |
4201 | * but needs it: |
4202 | */ |
4203 | printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); |
4204 | rwbf_quirk = 1; |
4205 | |
4206 | /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */ |
4207 | if (dev->revision == 0x07) { |
4208 | printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n"); |
4209 | dmar_map_gfx = 0; |
4210 | } |
4211 | } |
4212 | |
4213 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); |
4214 | |
4215 | #define GGC 0x52 |
4216 | #define GGC_MEMORY_SIZE_MASK (0xf << 8) |
4217 | #define GGC_MEMORY_SIZE_NONE (0x0 << 8) |
4218 | #define GGC_MEMORY_SIZE_1M (0x1 << 8) |
4219 | #define GGC_MEMORY_SIZE_2M (0x3 << 8) |
4220 | #define GGC_MEMORY_VT_ENABLED (0x8 << 8) |
4221 | #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) |
4222 | #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) |
4223 | #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) |
4224 | |
4225 | static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev) |
4226 | { |
4227 | unsigned short ggc; |
4228 | |
4229 | if (pci_read_config_word(dev, GGC, &ggc)) |
4230 | return; |
4231 | |
4232 | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { |
4233 | printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); |
4234 | dmar_map_gfx = 0; |
4235 | } else if (dmar_map_gfx) { |
4236 | /* we have to ensure the gfx device is idle before we flush */ |
4237 | printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n"); |
4238 | intel_iommu_strict = 1; |
4239 | } |
4240 | } |
4241 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); |
4242 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); |
4243 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); |
4244 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); |
4245 | |
4246 | /* On Tylersburg chipsets, some BIOSes have been known to enable the |
4247 | ISOCH DMAR unit for the Azalia sound device, but not give it any |
4248 | TLB entries, which causes it to deadlock. Check for that. We do |
4249 | this in a function called from init_dmars(), instead of in a PCI |
4250 | quirk, because we don't want to print the obnoxious "BIOS broken" |
4251 | message if VT-d is actually disabled. |
4252 | */ |
4253 | static void __init check_tylersburg_isoch(void) |
4254 | { |
4255 | struct pci_dev *pdev; |
4256 | uint32_t vtisochctrl; |
4257 | |
4258 | /* If there's no Azalia in the system anyway, forget it. */ |
4259 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); |
4260 | if (!pdev) |
4261 | return; |
4262 | pci_dev_put(pdev); |
4263 | |
4264 | /* System Management Registers. Might be hidden, in which case |
4265 | we can't do the sanity check. But that's OK, because the |
4266 | known-broken BIOSes _don't_ actually hide it, so far. */ |
4267 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); |
4268 | if (!pdev) |
4269 | return; |
4270 | |
4271 | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { |
4272 | pci_dev_put(pdev); |
4273 | return; |
4274 | } |
4275 | |
4276 | pci_dev_put(pdev); |
4277 | |
4278 | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ |
4279 | if (vtisochctrl & 1) |
4280 | return; |
4281 | |
4282 | /* Drop all bits other than the number of TLB entries */ |
4283 | vtisochctrl &= 0x1c; |
4284 | |
4285 | /* If we have the recommended number of TLB entries (16), fine. */ |
4286 | if (vtisochctrl == 0x10) |
4287 | return; |
4288 | |
4289 | /* Zero TLB entries? You get to ride the short bus to school. */ |
4290 | if (!vtisochctrl) { |
4291 | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" |
4292 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
4293 | dmi_get_system_info(DMI_BIOS_VENDOR), |
4294 | dmi_get_system_info(DMI_BIOS_VERSION), |
4295 | dmi_get_system_info(DMI_PRODUCT_VERSION)); |
4296 | iommu_identity_mapping |= IDENTMAP_AZALIA; |
4297 | return; |
4298 | } |
4299 | |
4300 | printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", |
4301 | vtisochctrl); |
4302 | } |
4303 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9