Root/
1 | /*P:400 |
2 | * This contains run_guest() which actually calls into the Host<->Guest |
3 | * Switcher and analyzes the return, such as determining if the Guest wants the |
4 | * Host to do something. This file also contains useful helper routines. |
5 | :*/ |
6 | #include <linux/module.h> |
7 | #include <linux/stringify.h> |
8 | #include <linux/stddef.h> |
9 | #include <linux/io.h> |
10 | #include <linux/mm.h> |
11 | #include <linux/vmalloc.h> |
12 | #include <linux/cpu.h> |
13 | #include <linux/freezer.h> |
14 | #include <linux/highmem.h> |
15 | #include <linux/slab.h> |
16 | #include <asm/paravirt.h> |
17 | #include <asm/pgtable.h> |
18 | #include <asm/uaccess.h> |
19 | #include <asm/poll.h> |
20 | #include <asm/asm-offsets.h> |
21 | #include "lg.h" |
22 | |
23 | |
24 | static struct vm_struct *switcher_vma; |
25 | static struct page **switcher_page; |
26 | |
27 | /* This One Big lock protects all inter-guest data structures. */ |
28 | DEFINE_MUTEX(lguest_lock); |
29 | |
30 | /*H:010 |
31 | * We need to set up the Switcher at a high virtual address. Remember the |
32 | * Switcher is a few hundred bytes of assembler code which actually changes the |
33 | * CPU to run the Guest, and then changes back to the Host when a trap or |
34 | * interrupt happens. |
35 | * |
36 | * The Switcher code must be at the same virtual address in the Guest as the |
37 | * Host since it will be running as the switchover occurs. |
38 | * |
39 | * Trying to map memory at a particular address is an unusual thing to do, so |
40 | * it's not a simple one-liner. |
41 | */ |
42 | static __init int map_switcher(void) |
43 | { |
44 | int i, err; |
45 | struct page **pagep; |
46 | |
47 | /* |
48 | * Map the Switcher in to high memory. |
49 | * |
50 | * It turns out that if we choose the address 0xFFC00000 (4MB under the |
51 | * top virtual address), it makes setting up the page tables really |
52 | * easy. |
53 | */ |
54 | |
55 | /* |
56 | * We allocate an array of struct page pointers. map_vm_area() wants |
57 | * this, rather than just an array of pages. |
58 | */ |
59 | switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, |
60 | GFP_KERNEL); |
61 | if (!switcher_page) { |
62 | err = -ENOMEM; |
63 | goto out; |
64 | } |
65 | |
66 | /* |
67 | * Now we actually allocate the pages. The Guest will see these pages, |
68 | * so we make sure they're zeroed. |
69 | */ |
70 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { |
71 | switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); |
72 | if (!switcher_page[i]) { |
73 | err = -ENOMEM; |
74 | goto free_some_pages; |
75 | } |
76 | } |
77 | |
78 | /* |
79 | * First we check that the Switcher won't overlap the fixmap area at |
80 | * the top of memory. It's currently nowhere near, but it could have |
81 | * very strange effects if it ever happened. |
82 | */ |
83 | if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){ |
84 | err = -ENOMEM; |
85 | printk("lguest: mapping switcher would thwack fixmap\n"); |
86 | goto free_pages; |
87 | } |
88 | |
89 | /* |
90 | * Now we reserve the "virtual memory area" we want: 0xFFC00000 |
91 | * (SWITCHER_ADDR). We might not get it in theory, but in practice |
92 | * it's worked so far. The end address needs +1 because __get_vm_area |
93 | * allocates an extra guard page, so we need space for that. |
94 | */ |
95 | switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, |
96 | VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR |
97 | + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE); |
98 | if (!switcher_vma) { |
99 | err = -ENOMEM; |
100 | printk("lguest: could not map switcher pages high\n"); |
101 | goto free_pages; |
102 | } |
103 | |
104 | /* |
105 | * This code actually sets up the pages we've allocated to appear at |
106 | * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the |
107 | * kind of pages we're mapping (kernel pages), and a pointer to our |
108 | * array of struct pages. It increments that pointer, but we don't |
109 | * care. |
110 | */ |
111 | pagep = switcher_page; |
112 | err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep); |
113 | if (err) { |
114 | printk("lguest: map_vm_area failed: %i\n", err); |
115 | goto free_vma; |
116 | } |
117 | |
118 | /* |
119 | * Now the Switcher is mapped at the right address, we can't fail! |
120 | * Copy in the compiled-in Switcher code (from x86/switcher_32.S). |
121 | */ |
122 | memcpy(switcher_vma->addr, start_switcher_text, |
123 | end_switcher_text - start_switcher_text); |
124 | |
125 | printk(KERN_INFO "lguest: mapped switcher at %p\n", |
126 | switcher_vma->addr); |
127 | /* And we succeeded... */ |
128 | return 0; |
129 | |
130 | free_vma: |
131 | vunmap(switcher_vma->addr); |
132 | free_pages: |
133 | i = TOTAL_SWITCHER_PAGES; |
134 | free_some_pages: |
135 | for (--i; i >= 0; i--) |
136 | __free_pages(switcher_page[i], 0); |
137 | kfree(switcher_page); |
138 | out: |
139 | return err; |
140 | } |
141 | /*:*/ |
142 | |
143 | /* Cleaning up the mapping when the module is unloaded is almost... too easy. */ |
144 | static void unmap_switcher(void) |
145 | { |
146 | unsigned int i; |
147 | |
148 | /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */ |
149 | vunmap(switcher_vma->addr); |
150 | /* Now we just need to free the pages we copied the switcher into */ |
151 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) |
152 | __free_pages(switcher_page[i], 0); |
153 | kfree(switcher_page); |
154 | } |
155 | |
156 | /*H:032 |
157 | * Dealing With Guest Memory. |
158 | * |
159 | * Before we go too much further into the Host, we need to grok the routines |
160 | * we use to deal with Guest memory. |
161 | * |
162 | * When the Guest gives us (what it thinks is) a physical address, we can use |
163 | * the normal copy_from_user() & copy_to_user() on the corresponding place in |
164 | * the memory region allocated by the Launcher. |
165 | * |
166 | * But we can't trust the Guest: it might be trying to access the Launcher |
167 | * code. We have to check that the range is below the pfn_limit the Launcher |
168 | * gave us. We have to make sure that addr + len doesn't give us a false |
169 | * positive by overflowing, too. |
170 | */ |
171 | bool lguest_address_ok(const struct lguest *lg, |
172 | unsigned long addr, unsigned long len) |
173 | { |
174 | return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr); |
175 | } |
176 | |
177 | /* |
178 | * This routine copies memory from the Guest. Here we can see how useful the |
179 | * kill_lguest() routine we met in the Launcher can be: we return a random |
180 | * value (all zeroes) instead of needing to return an error. |
181 | */ |
182 | void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes) |
183 | { |
184 | if (!lguest_address_ok(cpu->lg, addr, bytes) |
185 | || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) { |
186 | /* copy_from_user should do this, but as we rely on it... */ |
187 | memset(b, 0, bytes); |
188 | kill_guest(cpu, "bad read address %#lx len %u", addr, bytes); |
189 | } |
190 | } |
191 | |
192 | /* This is the write (copy into Guest) version. */ |
193 | void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b, |
194 | unsigned bytes) |
195 | { |
196 | if (!lguest_address_ok(cpu->lg, addr, bytes) |
197 | || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0) |
198 | kill_guest(cpu, "bad write address %#lx len %u", addr, bytes); |
199 | } |
200 | /*:*/ |
201 | |
202 | /*H:030 |
203 | * Let's jump straight to the the main loop which runs the Guest. |
204 | * Remember, this is called by the Launcher reading /dev/lguest, and we keep |
205 | * going around and around until something interesting happens. |
206 | */ |
207 | int run_guest(struct lg_cpu *cpu, unsigned long __user *user) |
208 | { |
209 | /* We stop running once the Guest is dead. */ |
210 | while (!cpu->lg->dead) { |
211 | unsigned int irq; |
212 | bool more; |
213 | |
214 | /* First we run any hypercalls the Guest wants done. */ |
215 | if (cpu->hcall) |
216 | do_hypercalls(cpu); |
217 | |
218 | /* |
219 | * It's possible the Guest did a NOTIFY hypercall to the |
220 | * Launcher. |
221 | */ |
222 | if (cpu->pending_notify) { |
223 | /* |
224 | * Does it just needs to write to a registered |
225 | * eventfd (ie. the appropriate virtqueue thread)? |
226 | */ |
227 | if (!send_notify_to_eventfd(cpu)) { |
228 | /* OK, we tell the main Laucher. */ |
229 | if (put_user(cpu->pending_notify, user)) |
230 | return -EFAULT; |
231 | return sizeof(cpu->pending_notify); |
232 | } |
233 | } |
234 | |
235 | /* |
236 | * All long-lived kernel loops need to check with this horrible |
237 | * thing called the freezer. If the Host is trying to suspend, |
238 | * it stops us. |
239 | */ |
240 | try_to_freeze(); |
241 | |
242 | /* Check for signals */ |
243 | if (signal_pending(current)) |
244 | return -ERESTARTSYS; |
245 | |
246 | /* |
247 | * Check if there are any interrupts which can be delivered now: |
248 | * if so, this sets up the hander to be executed when we next |
249 | * run the Guest. |
250 | */ |
251 | irq = interrupt_pending(cpu, &more); |
252 | if (irq < LGUEST_IRQS) |
253 | try_deliver_interrupt(cpu, irq, more); |
254 | |
255 | /* |
256 | * Just make absolutely sure the Guest is still alive. One of |
257 | * those hypercalls could have been fatal, for example. |
258 | */ |
259 | if (cpu->lg->dead) |
260 | break; |
261 | |
262 | /* |
263 | * If the Guest asked to be stopped, we sleep. The Guest's |
264 | * clock timer will wake us. |
265 | */ |
266 | if (cpu->halted) { |
267 | set_current_state(TASK_INTERRUPTIBLE); |
268 | /* |
269 | * Just before we sleep, make sure no interrupt snuck in |
270 | * which we should be doing. |
271 | */ |
272 | if (interrupt_pending(cpu, &more) < LGUEST_IRQS) |
273 | set_current_state(TASK_RUNNING); |
274 | else |
275 | schedule(); |
276 | continue; |
277 | } |
278 | |
279 | /* |
280 | * OK, now we're ready to jump into the Guest. First we put up |
281 | * the "Do Not Disturb" sign: |
282 | */ |
283 | local_irq_disable(); |
284 | |
285 | /* Actually run the Guest until something happens. */ |
286 | lguest_arch_run_guest(cpu); |
287 | |
288 | /* Now we're ready to be interrupted or moved to other CPUs */ |
289 | local_irq_enable(); |
290 | |
291 | /* Now we deal with whatever happened to the Guest. */ |
292 | lguest_arch_handle_trap(cpu); |
293 | } |
294 | |
295 | /* Special case: Guest is 'dead' but wants a reboot. */ |
296 | if (cpu->lg->dead == ERR_PTR(-ERESTART)) |
297 | return -ERESTART; |
298 | |
299 | /* The Guest is dead => "No such file or directory" */ |
300 | return -ENOENT; |
301 | } |
302 | |
303 | /*H:000 |
304 | * Welcome to the Host! |
305 | * |
306 | * By this point your brain has been tickled by the Guest code and numbed by |
307 | * the Launcher code; prepare for it to be stretched by the Host code. This is |
308 | * the heart. Let's begin at the initialization routine for the Host's lg |
309 | * module. |
310 | */ |
311 | static int __init init(void) |
312 | { |
313 | int err; |
314 | |
315 | /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */ |
316 | if (get_kernel_rpl() != 0) { |
317 | printk("lguest is afraid of being a guest\n"); |
318 | return -EPERM; |
319 | } |
320 | |
321 | /* First we put the Switcher up in very high virtual memory. */ |
322 | err = map_switcher(); |
323 | if (err) |
324 | goto out; |
325 | |
326 | /* Now we set up the pagetable implementation for the Guests. */ |
327 | err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES); |
328 | if (err) |
329 | goto unmap; |
330 | |
331 | /* We might need to reserve an interrupt vector. */ |
332 | err = init_interrupts(); |
333 | if (err) |
334 | goto free_pgtables; |
335 | |
336 | /* /dev/lguest needs to be registered. */ |
337 | err = lguest_device_init(); |
338 | if (err) |
339 | goto free_interrupts; |
340 | |
341 | /* Finally we do some architecture-specific setup. */ |
342 | lguest_arch_host_init(); |
343 | |
344 | /* All good! */ |
345 | return 0; |
346 | |
347 | free_interrupts: |
348 | free_interrupts(); |
349 | free_pgtables: |
350 | free_pagetables(); |
351 | unmap: |
352 | unmap_switcher(); |
353 | out: |
354 | return err; |
355 | } |
356 | |
357 | /* Cleaning up is just the same code, backwards. With a little French. */ |
358 | static void __exit fini(void) |
359 | { |
360 | lguest_device_remove(); |
361 | free_interrupts(); |
362 | free_pagetables(); |
363 | unmap_switcher(); |
364 | |
365 | lguest_arch_host_fini(); |
366 | } |
367 | /*:*/ |
368 | |
369 | /* |
370 | * The Host side of lguest can be a module. This is a nice way for people to |
371 | * play with it. |
372 | */ |
373 | module_init(init); |
374 | module_exit(fini); |
375 | MODULE_LICENSE("GPL"); |
376 | MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>"); |
377 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9