Root/drivers/macintosh/therm_pm72.c

1/*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
4 *
5 * (c) Copyright IBM Corp. 2003-2004
6 *
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
10 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
14 *
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23 *
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
28 *
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
33 *
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
43 *
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slowing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * better... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
55 *
56 * History:
57 *
58 * Nov. 13, 2003 : 0.5
59 * - First release
60 *
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
66 *
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
71 *
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
74 *
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
82 *
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
91 *
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retrieve pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
97 *
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
108 *
109 */
110
111#include <linux/types.h>
112#include <linux/module.h>
113#include <linux/errno.h>
114#include <linux/kernel.h>
115#include <linux/delay.h>
116#include <linux/sched.h>
117#include <linux/init.h>
118#include <linux/spinlock.h>
119#include <linux/wait.h>
120#include <linux/reboot.h>
121#include <linux/kmod.h>
122#include <linux/i2c.h>
123#include <linux/kthread.h>
124#include <linux/mutex.h>
125#include <linux/of_device.h>
126#include <linux/of_platform.h>
127#include <asm/prom.h>
128#include <asm/machdep.h>
129#include <asm/io.h>
130#include <asm/sections.h>
131#include <asm/macio.h>
132
133#include "therm_pm72.h"
134
135#define VERSION "1.3"
136
137#undef DEBUG
138
139#ifdef DEBUG
140#define DBG(args...) printk(args)
141#else
142#define DBG(args...) do { } while(0)
143#endif
144
145
146/*
147 * Driver statics
148 */
149
150static struct platform_device * of_dev;
151static struct i2c_adapter * u3_0;
152static struct i2c_adapter * u3_1;
153static struct i2c_adapter * k2;
154static struct i2c_client * fcu;
155static struct cpu_pid_state processor_state[2];
156static struct basckside_pid_params backside_params;
157static struct backside_pid_state backside_state;
158static struct drives_pid_state drives_state;
159static struct dimm_pid_state dimms_state;
160static struct slots_pid_state slots_state;
161static int state;
162static int cpu_count;
163static int cpu_pid_type;
164static struct task_struct *ctrl_task;
165static struct completion ctrl_complete;
166static int critical_state;
167static int rackmac;
168static s32 dimm_output_clamp;
169static int fcu_rpm_shift;
170static int fcu_tickle_ticks;
171static DEFINE_MUTEX(driver_lock);
172
173/*
174 * We have 3 types of CPU PID control. One is "split" old style control
175 * for intake & exhaust fans, the other is "combined" control for both
176 * CPUs that also deals with the pumps when present. To be "compatible"
177 * with OS X at this point, we only use "COMBINED" on the machines that
178 * are identified as having the pumps (though that identification is at
179 * least dodgy). Ultimately, we could probably switch completely to this
180 * algorithm provided we hack it to deal with the UP case
181 */
182#define CPU_PID_TYPE_SPLIT 0
183#define CPU_PID_TYPE_COMBINED 1
184#define CPU_PID_TYPE_RACKMAC 2
185
186/*
187 * This table describes all fans in the FCU. The "id" and "type" values
188 * are defaults valid for all earlier machines. Newer machines will
189 * eventually override the table content based on the device-tree
190 */
191struct fcu_fan_table
192{
193    char* loc; /* location code */
194    int type; /* 0 = rpm, 1 = pwm, 2 = pump */
195    int id; /* id or -1 */
196};
197
198#define FCU_FAN_RPM 0
199#define FCU_FAN_PWM 1
200
201#define FCU_FAN_ABSENT_ID -1
202
203#define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
204
205struct fcu_fan_table fcu_fans[] = {
206    [BACKSIDE_FAN_PWM_INDEX] = {
207        .loc = "BACKSIDE,SYS CTRLR FAN",
208        .type = FCU_FAN_PWM,
209        .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
210    },
211    [DRIVES_FAN_RPM_INDEX] = {
212        .loc = "DRIVE BAY",
213        .type = FCU_FAN_RPM,
214        .id = DRIVES_FAN_RPM_DEFAULT_ID,
215    },
216    [SLOTS_FAN_PWM_INDEX] = {
217        .loc = "SLOT,PCI FAN",
218        .type = FCU_FAN_PWM,
219        .id = SLOTS_FAN_PWM_DEFAULT_ID,
220    },
221    [CPUA_INTAKE_FAN_RPM_INDEX] = {
222        .loc = "CPU A INTAKE",
223        .type = FCU_FAN_RPM,
224        .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
225    },
226    [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227        .loc = "CPU A EXHAUST",
228        .type = FCU_FAN_RPM,
229        .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
230    },
231    [CPUB_INTAKE_FAN_RPM_INDEX] = {
232        .loc = "CPU B INTAKE",
233        .type = FCU_FAN_RPM,
234        .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
235    },
236    [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237        .loc = "CPU B EXHAUST",
238        .type = FCU_FAN_RPM,
239        .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
240    },
241    /* pumps aren't present by default, have to be looked up in the
242     * device-tree
243     */
244    [CPUA_PUMP_RPM_INDEX] = {
245        .loc = "CPU A PUMP",
246        .type = FCU_FAN_RPM,
247        .id = FCU_FAN_ABSENT_ID,
248    },
249    [CPUB_PUMP_RPM_INDEX] = {
250        .loc = "CPU B PUMP",
251        .type = FCU_FAN_RPM,
252        .id = FCU_FAN_ABSENT_ID,
253    },
254    /* Xserve fans */
255    [CPU_A1_FAN_RPM_INDEX] = {
256        .loc = "CPU A 1",
257        .type = FCU_FAN_RPM,
258        .id = FCU_FAN_ABSENT_ID,
259    },
260    [CPU_A2_FAN_RPM_INDEX] = {
261        .loc = "CPU A 2",
262        .type = FCU_FAN_RPM,
263        .id = FCU_FAN_ABSENT_ID,
264    },
265    [CPU_A3_FAN_RPM_INDEX] = {
266        .loc = "CPU A 3",
267        .type = FCU_FAN_RPM,
268        .id = FCU_FAN_ABSENT_ID,
269    },
270    [CPU_B1_FAN_RPM_INDEX] = {
271        .loc = "CPU B 1",
272        .type = FCU_FAN_RPM,
273        .id = FCU_FAN_ABSENT_ID,
274    },
275    [CPU_B2_FAN_RPM_INDEX] = {
276        .loc = "CPU B 2",
277        .type = FCU_FAN_RPM,
278        .id = FCU_FAN_ABSENT_ID,
279    },
280    [CPU_B3_FAN_RPM_INDEX] = {
281        .loc = "CPU B 3",
282        .type = FCU_FAN_RPM,
283        .id = FCU_FAN_ABSENT_ID,
284    },
285};
286
287static struct i2c_driver therm_pm72_driver;
288
289/*
290 * Utility function to create an i2c_client structure and
291 * attach it to one of u3 adapters
292 */
293static struct i2c_client *attach_i2c_chip(int id, const char *name)
294{
295    struct i2c_client *clt;
296    struct i2c_adapter *adap;
297    struct i2c_board_info info;
298
299    if (id & 0x200)
300        adap = k2;
301    else if (id & 0x100)
302        adap = u3_1;
303    else
304        adap = u3_0;
305    if (adap == NULL)
306        return NULL;
307
308    memset(&info, 0, sizeof(struct i2c_board_info));
309    info.addr = (id >> 1) & 0x7f;
310    strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
311    clt = i2c_new_device(adap, &info);
312    if (!clt) {
313        printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
314        return NULL;
315    }
316
317    /*
318     * Let i2c-core delete that device on driver removal.
319     * This is safe because i2c-core holds the core_lock mutex for us.
320     */
321    list_add_tail(&clt->detected, &therm_pm72_driver.clients);
322    return clt;
323}
324
325/*
326 * Here are the i2c chip access wrappers
327 */
328
329static void initialize_adc(struct cpu_pid_state *state)
330{
331    int rc;
332    u8 buf[2];
333
334    /* Read ADC the configuration register and cache it. We
335     * also make sure Config2 contains proper values, I've seen
336     * cases where we got stale grabage in there, thus preventing
337     * proper reading of conv. values
338     */
339
340    /* Clear Config2 */
341    buf[0] = 5;
342    buf[1] = 0;
343    i2c_master_send(state->monitor, buf, 2);
344
345    /* Read & cache Config1 */
346    buf[0] = 1;
347    rc = i2c_master_send(state->monitor, buf, 1);
348    if (rc > 0) {
349        rc = i2c_master_recv(state->monitor, buf, 1);
350        if (rc > 0) {
351            state->adc_config = buf[0];
352            DBG("ADC config reg: %02x\n", state->adc_config);
353            /* Disable shutdown mode */
354                   state->adc_config &= 0xfe;
355            buf[0] = 1;
356            buf[1] = state->adc_config;
357            rc = i2c_master_send(state->monitor, buf, 2);
358        }
359    }
360    if (rc <= 0)
361        printk(KERN_ERR "therm_pm72: Error reading ADC config"
362               " register !\n");
363}
364
365static int read_smon_adc(struct cpu_pid_state *state, int chan)
366{
367    int rc, data, tries = 0;
368    u8 buf[2];
369
370    for (;;) {
371        /* Set channel */
372        buf[0] = 1;
373        buf[1] = (state->adc_config & 0x1f) | (chan << 5);
374        rc = i2c_master_send(state->monitor, buf, 2);
375        if (rc <= 0)
376            goto error;
377        /* Wait for conversion */
378        msleep(1);
379        /* Switch to data register */
380        buf[0] = 4;
381        rc = i2c_master_send(state->monitor, buf, 1);
382        if (rc <= 0)
383            goto error;
384        /* Read result */
385        rc = i2c_master_recv(state->monitor, buf, 2);
386        if (rc < 0)
387            goto error;
388        data = ((u16)buf[0]) << 8 | (u16)buf[1];
389        return data >> 6;
390    error:
391        DBG("Error reading ADC, retrying...\n");
392        if (++tries > 10) {
393            printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
394            return -1;
395        }
396        msleep(10);
397    }
398}
399
400static int read_lm87_reg(struct i2c_client * chip, int reg)
401{
402    int rc, tries = 0;
403    u8 buf;
404
405    for (;;) {
406        /* Set address */
407        buf = (u8)reg;
408        rc = i2c_master_send(chip, &buf, 1);
409        if (rc <= 0)
410            goto error;
411        rc = i2c_master_recv(chip, &buf, 1);
412        if (rc <= 0)
413            goto error;
414        return (int)buf;
415    error:
416        DBG("Error reading LM87, retrying...\n");
417        if (++tries > 10) {
418            printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
419            return -1;
420        }
421        msleep(10);
422    }
423}
424
425static int fan_read_reg(int reg, unsigned char *buf, int nb)
426{
427    int tries, nr, nw;
428
429    buf[0] = reg;
430    tries = 0;
431    for (;;) {
432        nw = i2c_master_send(fcu, buf, 1);
433        if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
434            break;
435        msleep(10);
436        ++tries;
437    }
438    if (nw <= 0) {
439        printk(KERN_ERR "Failure writing address to FCU: %d", nw);
440        return -EIO;
441    }
442    tries = 0;
443    for (;;) {
444        nr = i2c_master_recv(fcu, buf, nb);
445        if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
446            break;
447        msleep(10);
448        ++tries;
449    }
450    if (nr <= 0)
451        printk(KERN_ERR "Failure reading data from FCU: %d", nw);
452    return nr;
453}
454
455static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
456{
457    int tries, nw;
458    unsigned char buf[16];
459
460    buf[0] = reg;
461    memcpy(buf+1, ptr, nb);
462    ++nb;
463    tries = 0;
464    for (;;) {
465        nw = i2c_master_send(fcu, buf, nb);
466        if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
467            break;
468        msleep(10);
469        ++tries;
470    }
471    if (nw < 0)
472        printk(KERN_ERR "Failure writing to FCU: %d", nw);
473    return nw;
474}
475
476static int start_fcu(void)
477{
478    unsigned char buf = 0xff;
479    int rc;
480
481    rc = fan_write_reg(0xe, &buf, 1);
482    if (rc < 0)
483        return -EIO;
484    rc = fan_write_reg(0x2e, &buf, 1);
485    if (rc < 0)
486        return -EIO;
487    rc = fan_read_reg(0, &buf, 1);
488    if (rc < 0)
489        return -EIO;
490    fcu_rpm_shift = (buf == 1) ? 2 : 3;
491    printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
492           fcu_rpm_shift);
493
494    return 0;
495}
496
497static int set_rpm_fan(int fan_index, int rpm)
498{
499    unsigned char buf[2];
500    int rc, id, min, max;
501
502    if (fcu_fans[fan_index].type != FCU_FAN_RPM)
503        return -EINVAL;
504    id = fcu_fans[fan_index].id;
505    if (id == FCU_FAN_ABSENT_ID)
506        return -EINVAL;
507
508    min = 2400 >> fcu_rpm_shift;
509    max = 56000 >> fcu_rpm_shift;
510
511    if (rpm < min)
512        rpm = min;
513    else if (rpm > max)
514        rpm = max;
515    buf[0] = rpm >> (8 - fcu_rpm_shift);
516    buf[1] = rpm << fcu_rpm_shift;
517    rc = fan_write_reg(0x10 + (id * 2), buf, 2);
518    if (rc < 0)
519        return -EIO;
520    return 0;
521}
522
523static int get_rpm_fan(int fan_index, int programmed)
524{
525    unsigned char failure;
526    unsigned char active;
527    unsigned char buf[2];
528    int rc, id, reg_base;
529
530    if (fcu_fans[fan_index].type != FCU_FAN_RPM)
531        return -EINVAL;
532    id = fcu_fans[fan_index].id;
533    if (id == FCU_FAN_ABSENT_ID)
534        return -EINVAL;
535
536    rc = fan_read_reg(0xb, &failure, 1);
537    if (rc != 1)
538        return -EIO;
539    if ((failure & (1 << id)) != 0)
540        return -EFAULT;
541    rc = fan_read_reg(0xd, &active, 1);
542    if (rc != 1)
543        return -EIO;
544    if ((active & (1 << id)) == 0)
545        return -ENXIO;
546
547    /* Programmed value or real current speed */
548    reg_base = programmed ? 0x10 : 0x11;
549    rc = fan_read_reg(reg_base + (id * 2), buf, 2);
550    if (rc != 2)
551        return -EIO;
552
553    return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
554}
555
556static int set_pwm_fan(int fan_index, int pwm)
557{
558    unsigned char buf[2];
559    int rc, id;
560
561    if (fcu_fans[fan_index].type != FCU_FAN_PWM)
562        return -EINVAL;
563    id = fcu_fans[fan_index].id;
564    if (id == FCU_FAN_ABSENT_ID)
565        return -EINVAL;
566
567    if (pwm < 10)
568        pwm = 10;
569    else if (pwm > 100)
570        pwm = 100;
571    pwm = (pwm * 2559) / 1000;
572    buf[0] = pwm;
573    rc = fan_write_reg(0x30 + (id * 2), buf, 1);
574    if (rc < 0)
575        return rc;
576    return 0;
577}
578
579static int get_pwm_fan(int fan_index)
580{
581    unsigned char failure;
582    unsigned char active;
583    unsigned char buf[2];
584    int rc, id;
585
586    if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587        return -EINVAL;
588    id = fcu_fans[fan_index].id;
589    if (id == FCU_FAN_ABSENT_ID)
590        return -EINVAL;
591
592    rc = fan_read_reg(0x2b, &failure, 1);
593    if (rc != 1)
594        return -EIO;
595    if ((failure & (1 << id)) != 0)
596        return -EFAULT;
597    rc = fan_read_reg(0x2d, &active, 1);
598    if (rc != 1)
599        return -EIO;
600    if ((active & (1 << id)) == 0)
601        return -ENXIO;
602
603    /* Programmed value or real current speed */
604    rc = fan_read_reg(0x30 + (id * 2), buf, 1);
605    if (rc != 1)
606        return -EIO;
607
608    return (buf[0] * 1000) / 2559;
609}
610
611static void tickle_fcu(void)
612{
613    int pwm;
614
615    pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
616
617    DBG("FCU Tickle, slots fan is: %d\n", pwm);
618    if (pwm < 0)
619        pwm = 100;
620
621    if (!rackmac) {
622        pwm = SLOTS_FAN_DEFAULT_PWM;
623    } else if (pwm < SLOTS_PID_OUTPUT_MIN)
624        pwm = SLOTS_PID_OUTPUT_MIN;
625
626    /* That is hopefully enough to make the FCU happy */
627    set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
628}
629
630
631/*
632 * Utility routine to read the CPU calibration EEPROM data
633 * from the device-tree
634 */
635static int read_eeprom(int cpu, struct mpu_data *out)
636{
637    struct device_node *np;
638    char nodename[64];
639    const u8 *data;
640    int len;
641
642    /* prom.c routine for finding a node by path is a bit brain dead
643     * and requires exact @xxx unit numbers. This is a bit ugly but
644     * will work for these machines
645     */
646    sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
647    np = of_find_node_by_path(nodename);
648    if (np == NULL) {
649        printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
650        return -ENODEV;
651    }
652    data = of_get_property(np, "cpuid", &len);
653    if (data == NULL) {
654        printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
655        of_node_put(np);
656        return -ENODEV;
657    }
658    memcpy(out, data, sizeof(struct mpu_data));
659    of_node_put(np);
660    
661    return 0;
662}
663
664static void fetch_cpu_pumps_minmax(void)
665{
666    struct cpu_pid_state *state0 = &processor_state[0];
667    struct cpu_pid_state *state1 = &processor_state[1];
668    u16 pump_min = 0, pump_max = 0xffff;
669    u16 tmp[4];
670
671    /* Try to fetch pumps min/max infos from eeprom */
672
673    memcpy(&tmp, &state0->mpu.processor_part_num, 8);
674    if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
675        pump_min = max(pump_min, tmp[0]);
676        pump_max = min(pump_max, tmp[1]);
677    }
678    if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
679        pump_min = max(pump_min, tmp[2]);
680        pump_max = min(pump_max, tmp[3]);
681    }
682
683    /* Double check the values, this _IS_ needed as the EEPROM on
684     * some dual 2.5Ghz G5s seem, at least, to have both min & max
685     * same to the same value ... (grrrr)
686     */
687    if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
688        pump_min = CPU_PUMP_OUTPUT_MIN;
689        pump_max = CPU_PUMP_OUTPUT_MAX;
690    }
691
692    state0->pump_min = state1->pump_min = pump_min;
693    state0->pump_max = state1->pump_max = pump_max;
694}
695
696/*
697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
698 * pass around to the attribute functions, so we don't really have
699 * choice but implement a bunch of them...
700 *
701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702 * the input twice... I accept patches :)
703 */
704#define BUILD_SHOW_FUNC_FIX(name, data) \
705static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
706{ \
707    ssize_t r; \
708    mutex_lock(&driver_lock); \
709    r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
710    mutex_unlock(&driver_lock); \
711    return r; \
712}
713#define BUILD_SHOW_FUNC_INT(name, data) \
714static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
715{ \
716    return sprintf(buf, "%d", data); \
717}
718
719BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
720BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
721BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
722BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
723BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
724
725BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
726BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
727BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
728BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
729BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
730
731BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
732BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
733
734BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
735BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
736
737BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
738BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
739
740BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
741
742static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
743static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
744static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
745static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
746static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
747
748static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
749static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
750static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
751static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
752static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
753
754static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
755static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
756
757static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
758static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
759
760static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
761static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
762
763static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
764
765/*
766 * CPUs fans control loop
767 */
768
769static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
770{
771    s32 ltemp, volts, amps;
772    int index, rc = 0;
773
774    /* Default (in case of error) */
775    *temp = state->cur_temp;
776    *power = state->cur_power;
777
778    if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
779        index = (state->index == 0) ?
780            CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
781    else
782        index = (state->index == 0) ?
783            CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
784
785    /* Read current fan status */
786    rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
787    if (rc < 0) {
788        /* XXX What do we do now ? Nothing for now, keep old value, but
789         * return error upstream
790         */
791        DBG(" cpu %d, fan reading error !\n", state->index);
792    } else {
793        state->rpm = rc;
794        DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
795    }
796
797    /* Get some sensor readings and scale it */
798    ltemp = read_smon_adc(state, 1);
799    if (ltemp == -1) {
800        /* XXX What do we do now ? */
801        state->overtemp++;
802        if (rc == 0)
803            rc = -EIO;
804        DBG(" cpu %d, temp reading error !\n", state->index);
805    } else {
806        /* Fixup temperature according to diode calibration
807         */
808        DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
809            state->index,
810            ltemp, state->mpu.mdiode, state->mpu.bdiode);
811        *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
812        state->last_temp = *temp;
813        DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
814    }
815
816    /*
817     * Read voltage & current and calculate power
818     */
819    volts = read_smon_adc(state, 3);
820    amps = read_smon_adc(state, 4);
821
822    /* Scale voltage and current raw sensor values according to fixed scales
823     * obtained in Darwin and calculate power from I and V
824     */
825    volts *= ADC_CPU_VOLTAGE_SCALE;
826    amps *= ADC_CPU_CURRENT_SCALE;
827    *power = (((u64)volts) * ((u64)amps)) >> 16;
828    state->voltage = volts;
829    state->current_a = amps;
830    state->last_power = *power;
831
832    DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833        state->index, FIX32TOPRINT(state->current_a),
834        FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
835
836    return 0;
837}
838
839static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
840{
841    s32 power_target, integral, derivative, proportional, adj_in_target, sval;
842    s64 integ_p, deriv_p, prop_p, sum;
843    int i;
844
845    /* Calculate power target value (could be done once for all)
846     * and convert to a 16.16 fp number
847     */
848    power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
849    DBG(" power target: %d.%03d, error: %d.%03d\n",
850        FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
851
852    /* Store temperature and power in history array */
853    state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
854    state->temp_history[state->cur_temp] = temp;
855    state->cur_power = (state->cur_power + 1) % state->count_power;
856    state->power_history[state->cur_power] = power;
857    state->error_history[state->cur_power] = power_target - power;
858    
859    /* If first loop, fill the history table */
860    if (state->first) {
861        for (i = 0; i < (state->count_power - 1); i++) {
862            state->cur_power = (state->cur_power + 1) % state->count_power;
863            state->power_history[state->cur_power] = power;
864            state->error_history[state->cur_power] = power_target - power;
865        }
866        for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
867            state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
868            state->temp_history[state->cur_temp] = temp;
869        }
870        state->first = 0;
871    }
872
873    /* Calculate the integral term normally based on the "power" values */
874    sum = 0;
875    integral = 0;
876    for (i = 0; i < state->count_power; i++)
877        integral += state->error_history[i];
878    integral *= CPU_PID_INTERVAL;
879    DBG(" integral: %08x\n", integral);
880
881    /* Calculate the adjusted input (sense value).
882     * G_r is 12.20
883     * integ is 16.16
884     * so the result is 28.36
885     *
886     * input target is mpu.ttarget, input max is mpu.tmax
887     */
888    integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
889    DBG(" integ_p: %d\n", (int)(integ_p >> 36));
890    sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
891    adj_in_target = (state->mpu.ttarget << 16);
892    if (adj_in_target > sval)
893        adj_in_target = sval;
894    DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
895        state->mpu.ttarget);
896
897    /* Calculate the derivative term */
898    derivative = state->temp_history[state->cur_temp] -
899        state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
900                    % CPU_TEMP_HISTORY_SIZE];
901    derivative /= CPU_PID_INTERVAL;
902    deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
903    DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
904    sum += deriv_p;
905
906    /* Calculate the proportional term */
907    proportional = temp - adj_in_target;
908    prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
909    DBG(" prop_p: %d\n", (int)(prop_p >> 36));
910    sum += prop_p;
911
912    /* Scale sum */
913    sum >>= 36;
914
915    DBG(" sum: %d\n", (int)sum);
916    state->rpm += (s32)sum;
917}
918
919static void do_monitor_cpu_combined(void)
920{
921    struct cpu_pid_state *state0 = &processor_state[0];
922    struct cpu_pid_state *state1 = &processor_state[1];
923    s32 temp0, power0, temp1, power1;
924    s32 temp_combi, power_combi;
925    int rc, intake, pump;
926
927    rc = do_read_one_cpu_values(state0, &temp0, &power0);
928    if (rc < 0) {
929        /* XXX What do we do now ? */
930    }
931    state1->overtemp = 0;
932    rc = do_read_one_cpu_values(state1, &temp1, &power1);
933    if (rc < 0) {
934        /* XXX What do we do now ? */
935    }
936    if (state1->overtemp)
937        state0->overtemp++;
938
939    temp_combi = max(temp0, temp1);
940    power_combi = max(power0, power1);
941
942    /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943     * full blown immediately and try to trigger a shutdown
944     */
945    if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
946        printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
947               temp_combi >> 16);
948        state0->overtemp += CPU_MAX_OVERTEMP / 4;
949    } else if (temp_combi > (state0->mpu.tmax << 16)) {
950        state0->overtemp++;
951        printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
952               temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
953    } else {
954        if (state0->overtemp)
955            printk(KERN_WARNING "Temperature back down to %d\n",
956                   temp_combi >> 16);
957        state0->overtemp = 0;
958    }
959    if (state0->overtemp >= CPU_MAX_OVERTEMP)
960        critical_state = 1;
961    if (state0->overtemp > 0) {
962        state0->rpm = state0->mpu.rmaxn_exhaust_fan;
963        state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
964        pump = state0->pump_max;
965        goto do_set_fans;
966    }
967
968    /* Do the PID */
969    do_cpu_pid(state0, temp_combi, power_combi);
970
971    /* Range check */
972    state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
973    state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
974
975    /* Calculate intake fan speed */
976    intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
977    intake = max(intake, (int)state0->mpu.rminn_intake_fan);
978    intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
979    state0->intake_rpm = intake;
980
981    /* Calculate pump speed */
982    pump = (state0->rpm * state0->pump_max) /
983        state0->mpu.rmaxn_exhaust_fan;
984    pump = min(pump, state0->pump_max);
985    pump = max(pump, state0->pump_min);
986    
987 do_set_fans:
988    /* We copy values from state 0 to state 1 for /sysfs */
989    state1->rpm = state0->rpm;
990    state1->intake_rpm = state0->intake_rpm;
991
992    DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
993        state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
994
995    /* We should check for errors, shouldn't we ? But then, what
996     * do we do once the error occurs ? For FCU notified fan
997     * failures (-EFAULT) we probably want to notify userland
998     * some way...
999     */
1000    set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1001    set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1002    set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1003    set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1004
1005    if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1006        set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1007    if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008        set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1009}
1010
1011static void do_monitor_cpu_split(struct cpu_pid_state *state)
1012{
1013    s32 temp, power;
1014    int rc, intake;
1015
1016    /* Read current fan status */
1017    rc = do_read_one_cpu_values(state, &temp, &power);
1018    if (rc < 0) {
1019        /* XXX What do we do now ? */
1020    }
1021
1022    /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1023     * full blown immediately and try to trigger a shutdown
1024     */
1025    if (temp >= ((state->mpu.tmax + 8) << 16)) {
1026        printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1027               " (%d) !\n",
1028               state->index, temp >> 16);
1029        state->overtemp += CPU_MAX_OVERTEMP / 4;
1030    } else if (temp > (state->mpu.tmax << 16)) {
1031        state->overtemp++;
1032        printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1033               state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1034    } else {
1035        if (state->overtemp)
1036            printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1037                   state->index, temp >> 16);
1038        state->overtemp = 0;
1039    }
1040    if (state->overtemp >= CPU_MAX_OVERTEMP)
1041        critical_state = 1;
1042    if (state->overtemp > 0) {
1043        state->rpm = state->mpu.rmaxn_exhaust_fan;
1044        state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1045        goto do_set_fans;
1046    }
1047
1048    /* Do the PID */
1049    do_cpu_pid(state, temp, power);
1050
1051    /* Range check */
1052    state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1053    state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1054
1055    /* Calculate intake fan */
1056    intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1057    intake = max(intake, (int)state->mpu.rminn_intake_fan);
1058    intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1059    state->intake_rpm = intake;
1060
1061 do_set_fans:
1062    DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1063        state->index, (int)state->rpm, intake, state->overtemp);
1064
1065    /* We should check for errors, shouldn't we ? But then, what
1066     * do we do once the error occurs ? For FCU notified fan
1067     * failures (-EFAULT) we probably want to notify userland
1068     * some way...
1069     */
1070    if (state->index == 0) {
1071        set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1072        set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1073    } else {
1074        set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1075        set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1076    }
1077}
1078
1079static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1080{
1081    s32 temp, power, fan_min;
1082    int rc;
1083
1084    /* Read current fan status */
1085    rc = do_read_one_cpu_values(state, &temp, &power);
1086    if (rc < 0) {
1087        /* XXX What do we do now ? */
1088    }
1089
1090    /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1091     * full blown immediately and try to trigger a shutdown
1092     */
1093    if (temp >= ((state->mpu.tmax + 8) << 16)) {
1094        printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1095               " (%d) !\n",
1096               state->index, temp >> 16);
1097        state->overtemp = CPU_MAX_OVERTEMP / 4;
1098    } else if (temp > (state->mpu.tmax << 16)) {
1099        state->overtemp++;
1100        printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1101               state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1102    } else {
1103        if (state->overtemp)
1104            printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1105                   state->index, temp >> 16);
1106        state->overtemp = 0;
1107    }
1108    if (state->overtemp >= CPU_MAX_OVERTEMP)
1109        critical_state = 1;
1110    if (state->overtemp > 0) {
1111        state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1112        goto do_set_fans;
1113    }
1114
1115    /* Do the PID */
1116    do_cpu_pid(state, temp, power);
1117
1118    /* Check clamp from dimms */
1119    fan_min = dimm_output_clamp;
1120    fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1121
1122    DBG(" CPU min mpu = %d, min dimm = %d\n",
1123        state->mpu.rminn_intake_fan, dimm_output_clamp);
1124
1125    state->rpm = max(state->rpm, (int)fan_min);
1126    state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1127    state->intake_rpm = state->rpm;
1128
1129 do_set_fans:
1130    DBG("** CPU %d RPM: %d overtemp: %d\n",
1131        state->index, (int)state->rpm, state->overtemp);
1132
1133    /* We should check for errors, shouldn't we ? But then, what
1134     * do we do once the error occurs ? For FCU notified fan
1135     * failures (-EFAULT) we probably want to notify userland
1136     * some way...
1137     */
1138    if (state->index == 0) {
1139        set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1140        set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1141        set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1142    } else {
1143        set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1144        set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1145        set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1146    }
1147}
1148
1149/*
1150 * Initialize the state structure for one CPU control loop
1151 */
1152static int init_processor_state(struct cpu_pid_state *state, int index)
1153{
1154    int err;
1155
1156    state->index = index;
1157    state->first = 1;
1158    state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1159    state->overtemp = 0;
1160    state->adc_config = 0x00;
1161
1162
1163    if (index == 0)
1164        state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1165    else if (index == 1)
1166        state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1167    if (state->monitor == NULL)
1168        goto fail;
1169
1170    if (read_eeprom(index, &state->mpu))
1171        goto fail;
1172
1173    state->count_power = state->mpu.tguardband;
1174    if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1175        printk(KERN_WARNING "Warning ! too many power history slots\n");
1176        state->count_power = CPU_POWER_HISTORY_SIZE;
1177    }
1178    DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1179
1180    if (index == 0) {
1181        err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1182        err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1183        err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1184        err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1185        err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1186    } else {
1187        err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1188        err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1189        err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1190        err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1191        err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1192    }
1193    if (err)
1194        printk(KERN_WARNING "Failed to create some of the attribute"
1195            "files for CPU %d\n", index);
1196
1197    return 0;
1198 fail:
1199    state->monitor = NULL;
1200    
1201    return -ENODEV;
1202}
1203
1204/*
1205 * Dispose of the state data for one CPU control loop
1206 */
1207static void dispose_processor_state(struct cpu_pid_state *state)
1208{
1209    if (state->monitor == NULL)
1210        return;
1211
1212    if (state->index == 0) {
1213        device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1214        device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1215        device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1216        device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1217        device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1218    } else {
1219        device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1220        device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1221        device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1222        device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1223        device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1224    }
1225
1226    state->monitor = NULL;
1227}
1228
1229/*
1230 * Motherboard backside & U3 heatsink fan control loop
1231 */
1232static void do_monitor_backside(struct backside_pid_state *state)
1233{
1234    s32 temp, integral, derivative, fan_min;
1235    s64 integ_p, deriv_p, prop_p, sum;
1236    int i, rc;
1237
1238    if (--state->ticks != 0)
1239        return;
1240    state->ticks = backside_params.interval;
1241
1242    DBG("backside:\n");
1243
1244    /* Check fan status */
1245    rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1246    if (rc < 0) {
1247        printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1248        /* XXX What do we do now ? */
1249    } else
1250        state->pwm = rc;
1251    DBG(" current pwm: %d\n", state->pwm);
1252
1253    /* Get some sensor readings */
1254    temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1255    state->last_temp = temp;
1256    DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1257        FIX32TOPRINT(backside_params.input_target));
1258
1259    /* Store temperature and error in history array */
1260    state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1261    state->sample_history[state->cur_sample] = temp;
1262    state->error_history[state->cur_sample] = temp - backside_params.input_target;
1263    
1264    /* If first loop, fill the history table */
1265    if (state->first) {
1266        for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1267            state->cur_sample = (state->cur_sample + 1) %
1268                BACKSIDE_PID_HISTORY_SIZE;
1269            state->sample_history[state->cur_sample] = temp;
1270            state->error_history[state->cur_sample] =
1271                temp - backside_params.input_target;
1272        }
1273        state->first = 0;
1274    }
1275
1276    /* Calculate the integral term */
1277    sum = 0;
1278    integral = 0;
1279    for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1280        integral += state->error_history[i];
1281    integral *= backside_params.interval;
1282    DBG(" integral: %08x\n", integral);
1283    integ_p = ((s64)backside_params.G_r) * (s64)integral;
1284    DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1285    sum += integ_p;
1286
1287    /* Calculate the derivative term */
1288    derivative = state->error_history[state->cur_sample] -
1289        state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1290                    % BACKSIDE_PID_HISTORY_SIZE];
1291    derivative /= backside_params.interval;
1292    deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1293    DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1294    sum += deriv_p;
1295
1296    /* Calculate the proportional term */
1297    prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1298    DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1299    sum += prop_p;
1300
1301    /* Scale sum */
1302    sum >>= 36;
1303
1304    DBG(" sum: %d\n", (int)sum);
1305    if (backside_params.additive)
1306        state->pwm += (s32)sum;
1307    else
1308        state->pwm = sum;
1309
1310    /* Check for clamp */
1311    fan_min = (dimm_output_clamp * 100) / 14000;
1312    fan_min = max(fan_min, backside_params.output_min);
1313
1314    state->pwm = max(state->pwm, fan_min);
1315    state->pwm = min(state->pwm, backside_params.output_max);
1316
1317    DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1318    set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1319}
1320
1321/*
1322 * Initialize the state structure for the backside fan control loop
1323 */
1324static int init_backside_state(struct backside_pid_state *state)
1325{
1326    struct device_node *u3;
1327    int u3h = 1; /* conservative by default */
1328    int err;
1329
1330    /*
1331     * There are different PID params for machines with U3 and machines
1332     * with U3H, pick the right ones now
1333     */
1334    u3 = of_find_node_by_path("/u3@0,f8000000");
1335    if (u3 != NULL) {
1336        const u32 *vers = of_get_property(u3, "device-rev", NULL);
1337        if (vers)
1338            if (((*vers) & 0x3f) < 0x34)
1339                u3h = 0;
1340        of_node_put(u3);
1341    }
1342
1343    if (rackmac) {
1344        backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1345        backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1346        backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1347        backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1348        backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1349        backside_params.G_r = BACKSIDE_PID_G_r;
1350        backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351        backside_params.additive = 0;
1352    } else if (u3h) {
1353        backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1354        backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1355        backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1356        backside_params.interval = BACKSIDE_PID_INTERVAL;
1357        backside_params.G_p = BACKSIDE_PID_G_p;
1358        backside_params.G_r = BACKSIDE_PID_G_r;
1359        backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1360        backside_params.additive = 1;
1361    } else {
1362        backside_params.G_d = BACKSIDE_PID_U3_G_d;
1363        backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1364        backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1365        backside_params.interval = BACKSIDE_PID_INTERVAL;
1366        backside_params.G_p = BACKSIDE_PID_G_p;
1367        backside_params.G_r = BACKSIDE_PID_G_r;
1368        backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1369        backside_params.additive = 1;
1370    }
1371
1372    state->ticks = 1;
1373    state->first = 1;
1374    state->pwm = 50;
1375
1376    state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1377    if (state->monitor == NULL)
1378        return -ENODEV;
1379
1380    err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1381    err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1382    if (err)
1383        printk(KERN_WARNING "Failed to create attribute file(s)"
1384            " for backside fan\n");
1385
1386    return 0;
1387}
1388
1389/*
1390 * Dispose of the state data for the backside control loop
1391 */
1392static void dispose_backside_state(struct backside_pid_state *state)
1393{
1394    if (state->monitor == NULL)
1395        return;
1396
1397    device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398    device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1399
1400    state->monitor = NULL;
1401}
1402 
1403/*
1404 * Drives bay fan control loop
1405 */
1406static void do_monitor_drives(struct drives_pid_state *state)
1407{
1408    s32 temp, integral, derivative;
1409    s64 integ_p, deriv_p, prop_p, sum;
1410    int i, rc;
1411
1412    if (--state->ticks != 0)
1413        return;
1414    state->ticks = DRIVES_PID_INTERVAL;
1415
1416    DBG("drives:\n");
1417
1418    /* Check fan status */
1419    rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420    if (rc < 0) {
1421        printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422        /* XXX What do we do now ? */
1423    } else
1424        state->rpm = rc;
1425    DBG(" current rpm: %d\n", state->rpm);
1426
1427    /* Get some sensor readings */
1428    temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429                            DS1775_TEMP)) << 8;
1430    state->last_temp = temp;
1431    DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432        FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433
1434    /* Store temperature and error in history array */
1435    state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436    state->sample_history[state->cur_sample] = temp;
1437    state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438    
1439    /* If first loop, fill the history table */
1440    if (state->first) {
1441        for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442            state->cur_sample = (state->cur_sample + 1) %
1443                DRIVES_PID_HISTORY_SIZE;
1444            state->sample_history[state->cur_sample] = temp;
1445            state->error_history[state->cur_sample] =
1446                temp - DRIVES_PID_INPUT_TARGET;
1447        }
1448        state->first = 0;
1449    }
1450
1451    /* Calculate the integral term */
1452    sum = 0;
1453    integral = 0;
1454    for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455        integral += state->error_history[i];
1456    integral *= DRIVES_PID_INTERVAL;
1457    DBG(" integral: %08x\n", integral);
1458    integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459    DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1460    sum += integ_p;
1461
1462    /* Calculate the derivative term */
1463    derivative = state->error_history[state->cur_sample] -
1464        state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465                    % DRIVES_PID_HISTORY_SIZE];
1466    derivative /= DRIVES_PID_INTERVAL;
1467    deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468    DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1469    sum += deriv_p;
1470
1471    /* Calculate the proportional term */
1472    prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473    DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1474    sum += prop_p;
1475
1476    /* Scale sum */
1477    sum >>= 36;
1478
1479    DBG(" sum: %d\n", (int)sum);
1480    state->rpm += (s32)sum;
1481
1482    state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483    state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484
1485    DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486    set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487}
1488
1489/*
1490 * Initialize the state structure for the drives bay fan control loop
1491 */
1492static int init_drives_state(struct drives_pid_state *state)
1493{
1494    int err;
1495
1496    state->ticks = 1;
1497    state->first = 1;
1498    state->rpm = 1000;
1499
1500    state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501    if (state->monitor == NULL)
1502        return -ENODEV;
1503
1504    err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505    err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506    if (err)
1507        printk(KERN_WARNING "Failed to create attribute file(s)"
1508            " for drives bay fan\n");
1509
1510    return 0;
1511}
1512
1513/*
1514 * Dispose of the state data for the drives control loop
1515 */
1516static void dispose_drives_state(struct drives_pid_state *state)
1517{
1518    if (state->monitor == NULL)
1519        return;
1520
1521    device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1522    device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1523
1524    state->monitor = NULL;
1525}
1526
1527/*
1528 * DIMMs temp control loop
1529 */
1530static void do_monitor_dimms(struct dimm_pid_state *state)
1531{
1532    s32 temp, integral, derivative, fan_min;
1533    s64 integ_p, deriv_p, prop_p, sum;
1534    int i;
1535
1536    if (--state->ticks != 0)
1537        return;
1538    state->ticks = DIMM_PID_INTERVAL;
1539
1540    DBG("DIMM:\n");
1541
1542    DBG(" current value: %d\n", state->output);
1543
1544    temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1545    if (temp < 0)
1546        return;
1547    temp <<= 16;
1548    state->last_temp = temp;
1549    DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1550        FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1551
1552    /* Store temperature and error in history array */
1553    state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1554    state->sample_history[state->cur_sample] = temp;
1555    state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1556
1557    /* If first loop, fill the history table */
1558    if (state->first) {
1559        for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1560            state->cur_sample = (state->cur_sample + 1) %
1561                DIMM_PID_HISTORY_SIZE;
1562            state->sample_history[state->cur_sample] = temp;
1563            state->error_history[state->cur_sample] =
1564                temp - DIMM_PID_INPUT_TARGET;
1565        }
1566        state->first = 0;
1567    }
1568
1569    /* Calculate the integral term */
1570    sum = 0;
1571    integral = 0;
1572    for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1573        integral += state->error_history[i];
1574    integral *= DIMM_PID_INTERVAL;
1575    DBG(" integral: %08x\n", integral);
1576    integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1577    DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1578    sum += integ_p;
1579
1580    /* Calculate the derivative term */
1581    derivative = state->error_history[state->cur_sample] -
1582        state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1583                    % DIMM_PID_HISTORY_SIZE];
1584    derivative /= DIMM_PID_INTERVAL;
1585    deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1586    DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1587    sum += deriv_p;
1588
1589    /* Calculate the proportional term */
1590    prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1591    DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1592    sum += prop_p;
1593
1594    /* Scale sum */
1595    sum >>= 36;
1596
1597    DBG(" sum: %d\n", (int)sum);
1598    state->output = (s32)sum;
1599    state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1600    state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1601    dimm_output_clamp = state->output;
1602
1603    DBG("** DIMM clamp value: %d\n", (int)state->output);
1604
1605    /* Backside PID is only every 5 seconds, force backside fan clamping now */
1606    fan_min = (dimm_output_clamp * 100) / 14000;
1607    fan_min = max(fan_min, backside_params.output_min);
1608    if (backside_state.pwm < fan_min) {
1609        backside_state.pwm = fan_min;
1610        DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1611        set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1612    }
1613}
1614
1615/*
1616 * Initialize the state structure for the DIMM temp control loop
1617 */
1618static int init_dimms_state(struct dimm_pid_state *state)
1619{
1620    state->ticks = 1;
1621    state->first = 1;
1622    state->output = 4000;
1623
1624    state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1625    if (state->monitor == NULL)
1626        return -ENODEV;
1627
1628    if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1629        printk(KERN_WARNING "Failed to create attribute file"
1630            " for DIMM temperature\n");
1631
1632    return 0;
1633}
1634
1635/*
1636 * Dispose of the state data for the DIMM control loop
1637 */
1638static void dispose_dimms_state(struct dimm_pid_state *state)
1639{
1640    if (state->monitor == NULL)
1641        return;
1642
1643    device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1644
1645    state->monitor = NULL;
1646}
1647
1648/*
1649 * Slots fan control loop
1650 */
1651static void do_monitor_slots(struct slots_pid_state *state)
1652{
1653    s32 temp, integral, derivative;
1654    s64 integ_p, deriv_p, prop_p, sum;
1655    int i, rc;
1656
1657    if (--state->ticks != 0)
1658        return;
1659    state->ticks = SLOTS_PID_INTERVAL;
1660
1661    DBG("slots:\n");
1662
1663    /* Check fan status */
1664    rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1665    if (rc < 0) {
1666        printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1667        /* XXX What do we do now ? */
1668    } else
1669        state->pwm = rc;
1670    DBG(" current pwm: %d\n", state->pwm);
1671
1672    /* Get some sensor readings */
1673    temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1674                            DS1775_TEMP)) << 8;
1675    state->last_temp = temp;
1676    DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1677        FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1678
1679    /* Store temperature and error in history array */
1680    state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1681    state->sample_history[state->cur_sample] = temp;
1682    state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1683
1684    /* If first loop, fill the history table */
1685    if (state->first) {
1686        for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1687            state->cur_sample = (state->cur_sample + 1) %
1688                SLOTS_PID_HISTORY_SIZE;
1689            state->sample_history[state->cur_sample] = temp;
1690            state->error_history[state->cur_sample] =
1691                temp - SLOTS_PID_INPUT_TARGET;
1692        }
1693        state->first = 0;
1694    }
1695
1696    /* Calculate the integral term */
1697    sum = 0;
1698    integral = 0;
1699    for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1700        integral += state->error_history[i];
1701    integral *= SLOTS_PID_INTERVAL;
1702    DBG(" integral: %08x\n", integral);
1703    integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1704    DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1705    sum += integ_p;
1706
1707    /* Calculate the derivative term */
1708    derivative = state->error_history[state->cur_sample] -
1709        state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1710                    % SLOTS_PID_HISTORY_SIZE];
1711    derivative /= SLOTS_PID_INTERVAL;
1712    deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1713    DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1714    sum += deriv_p;
1715
1716    /* Calculate the proportional term */
1717    prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1718    DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1719    sum += prop_p;
1720
1721    /* Scale sum */
1722    sum >>= 36;
1723
1724    DBG(" sum: %d\n", (int)sum);
1725    state->pwm = (s32)sum;
1726
1727    state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1728    state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1729
1730    DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1731    set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1732}
1733
1734/*
1735 * Initialize the state structure for the slots bay fan control loop
1736 */
1737static int init_slots_state(struct slots_pid_state *state)
1738{
1739    int err;
1740
1741    state->ticks = 1;
1742    state->first = 1;
1743    state->pwm = 50;
1744
1745    state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1746    if (state->monitor == NULL)
1747        return -ENODEV;
1748
1749    err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1750    err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1751    if (err)
1752        printk(KERN_WARNING "Failed to create attribute file(s)"
1753            " for slots bay fan\n");
1754
1755    return 0;
1756}
1757
1758/*
1759 * Dispose of the state data for the slots control loop
1760 */
1761static void dispose_slots_state(struct slots_pid_state *state)
1762{
1763    if (state->monitor == NULL)
1764        return;
1765
1766    device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1767    device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1768
1769    state->monitor = NULL;
1770}
1771
1772
1773static int call_critical_overtemp(void)
1774{
1775    char *argv[] = { critical_overtemp_path, NULL };
1776    static char *envp[] = { "HOME=/",
1777                "TERM=linux",
1778                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1779                NULL };
1780
1781    return call_usermodehelper(critical_overtemp_path,
1782                   argv, envp, UMH_WAIT_EXEC);
1783}
1784
1785
1786/*
1787 * Here's the kernel thread that calls the various control loops
1788 */
1789static int main_control_loop(void *x)
1790{
1791    DBG("main_control_loop started\n");
1792
1793    mutex_lock(&driver_lock);
1794
1795    if (start_fcu() < 0) {
1796        printk(KERN_ERR "kfand: failed to start FCU\n");
1797        mutex_unlock(&driver_lock);
1798        goto out;
1799    }
1800
1801    /* Set the PCI fan once for now on non-RackMac */
1802    if (!rackmac)
1803        set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1804
1805    /* Initialize ADCs */
1806    initialize_adc(&processor_state[0]);
1807    if (processor_state[1].monitor != NULL)
1808        initialize_adc(&processor_state[1]);
1809
1810    fcu_tickle_ticks = FCU_TICKLE_TICKS;
1811
1812    mutex_unlock(&driver_lock);
1813
1814    while (state == state_attached) {
1815        unsigned long elapsed, start;
1816
1817        start = jiffies;
1818
1819        mutex_lock(&driver_lock);
1820
1821        /* Tickle the FCU just in case */
1822        if (--fcu_tickle_ticks < 0) {
1823            fcu_tickle_ticks = FCU_TICKLE_TICKS;
1824            tickle_fcu();
1825        }
1826
1827        /* First, we always calculate the new DIMMs state on an Xserve */
1828        if (rackmac)
1829            do_monitor_dimms(&dimms_state);
1830
1831        /* Then, the CPUs */
1832        if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1833            do_monitor_cpu_combined();
1834        else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1835            do_monitor_cpu_rack(&processor_state[0]);
1836            if (processor_state[1].monitor != NULL)
1837                do_monitor_cpu_rack(&processor_state[1]);
1838            // better deal with UP
1839        } else {
1840            do_monitor_cpu_split(&processor_state[0]);
1841            if (processor_state[1].monitor != NULL)
1842                do_monitor_cpu_split(&processor_state[1]);
1843            // better deal with UP
1844        }
1845        /* Then, the rest */
1846        do_monitor_backside(&backside_state);
1847        if (rackmac)
1848            do_monitor_slots(&slots_state);
1849        else
1850            do_monitor_drives(&drives_state);
1851        mutex_unlock(&driver_lock);
1852
1853        if (critical_state == 1) {
1854            printk(KERN_WARNING "Temperature control detected a critical condition\n");
1855            printk(KERN_WARNING "Attempting to shut down...\n");
1856            if (call_critical_overtemp()) {
1857                printk(KERN_WARNING "Can't call %s, power off now!\n",
1858                       critical_overtemp_path);
1859                machine_power_off();
1860            }
1861        }
1862        if (critical_state > 0)
1863            critical_state++;
1864        if (critical_state > MAX_CRITICAL_STATE) {
1865            printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1866            machine_power_off();
1867        }
1868
1869        // FIXME: Deal with signals
1870        elapsed = jiffies - start;
1871        if (elapsed < HZ)
1872            schedule_timeout_interruptible(HZ - elapsed);
1873    }
1874
1875 out:
1876    DBG("main_control_loop ended\n");
1877
1878    ctrl_task = 0;
1879    complete_and_exit(&ctrl_complete, 0);
1880}
1881
1882/*
1883 * Dispose the control loops when tearing down
1884 */
1885static void dispose_control_loops(void)
1886{
1887    dispose_processor_state(&processor_state[0]);
1888    dispose_processor_state(&processor_state[1]);
1889    dispose_backside_state(&backside_state);
1890    dispose_drives_state(&drives_state);
1891    dispose_slots_state(&slots_state);
1892    dispose_dimms_state(&dimms_state);
1893}
1894
1895/*
1896 * Create the control loops. U3-0 i2c bus is up, so we can now
1897 * get to the various sensors
1898 */
1899static int create_control_loops(void)
1900{
1901    struct device_node *np;
1902
1903    /* Count CPUs from the device-tree, we don't care how many are
1904     * actually used by Linux
1905     */
1906    cpu_count = 0;
1907    for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1908        cpu_count++;
1909
1910    DBG("counted %d CPUs in the device-tree\n", cpu_count);
1911
1912    /* Decide the type of PID algorithm to use based on the presence of
1913     * the pumps, though that may not be the best way, that is good enough
1914     * for now
1915     */
1916    if (rackmac)
1917        cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1918    else if (of_machine_is_compatible("PowerMac7,3")
1919        && (cpu_count > 1)
1920        && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1921        && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1922        printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1923        cpu_pid_type = CPU_PID_TYPE_COMBINED;
1924    } else
1925        cpu_pid_type = CPU_PID_TYPE_SPLIT;
1926
1927    /* Create control loops for everything. If any fail, everything
1928     * fails
1929     */
1930    if (init_processor_state(&processor_state[0], 0))
1931        goto fail;
1932    if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1933        fetch_cpu_pumps_minmax();
1934
1935    if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1936        goto fail;
1937    if (init_backside_state(&backside_state))
1938        goto fail;
1939    if (rackmac && init_dimms_state(&dimms_state))
1940        goto fail;
1941    if (rackmac && init_slots_state(&slots_state))
1942        goto fail;
1943    if (!rackmac && init_drives_state(&drives_state))
1944        goto fail;
1945
1946    DBG("all control loops up !\n");
1947
1948    return 0;
1949    
1950 fail:
1951    DBG("failure creating control loops, disposing\n");
1952
1953    dispose_control_loops();
1954
1955    return -ENODEV;
1956}
1957
1958/*
1959 * Start the control loops after everything is up, that is create
1960 * the thread that will make them run
1961 */
1962static void start_control_loops(void)
1963{
1964    init_completion(&ctrl_complete);
1965
1966    ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1967}
1968
1969/*
1970 * Stop the control loops when tearing down
1971 */
1972static void stop_control_loops(void)
1973{
1974    if (ctrl_task)
1975        wait_for_completion(&ctrl_complete);
1976}
1977
1978/*
1979 * Attach to the i2c FCU after detecting U3-1 bus
1980 */
1981static int attach_fcu(void)
1982{
1983    fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1984    if (fcu == NULL)
1985        return -ENODEV;
1986
1987    DBG("FCU attached\n");
1988
1989    return 0;
1990}
1991
1992/*
1993 * Detach from the i2c FCU when tearing down
1994 */
1995static void detach_fcu(void)
1996{
1997    fcu = NULL;
1998}
1999
2000/*
2001 * Attach to the i2c controller. We probe the various chips based
2002 * on the device-tree nodes and build everything for the driver to
2003 * run, we then kick the driver monitoring thread
2004 */
2005static int therm_pm72_attach(struct i2c_adapter *adapter)
2006{
2007    mutex_lock(&driver_lock);
2008
2009    /* Check state */
2010    if (state == state_detached)
2011        state = state_attaching;
2012    if (state != state_attaching) {
2013        mutex_unlock(&driver_lock);
2014        return 0;
2015    }
2016
2017    /* Check if we are looking for one of these */
2018    if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2019        u3_0 = adapter;
2020        DBG("found U3-0\n");
2021        if (k2 || !rackmac)
2022            if (create_control_loops())
2023                u3_0 = NULL;
2024    } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2025        u3_1 = adapter;
2026        DBG("found U3-1, attaching FCU\n");
2027        if (attach_fcu())
2028            u3_1 = NULL;
2029    } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2030        k2 = adapter;
2031        DBG("Found K2\n");
2032        if (u3_0 && rackmac)
2033            if (create_control_loops())
2034                k2 = NULL;
2035    }
2036    /* We got all we need, start control loops */
2037    if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2038        DBG("everything up, starting control loops\n");
2039        state = state_attached;
2040        start_control_loops();
2041    }
2042    mutex_unlock(&driver_lock);
2043
2044    return 0;
2045}
2046
2047static int therm_pm72_probe(struct i2c_client *client,
2048                const struct i2c_device_id *id)
2049{
2050    /* Always succeed, the real work was done in therm_pm72_attach() */
2051    return 0;
2052}
2053
2054/*
2055 * Called when any of the devices which participates into thermal management
2056 * is going away.
2057 */
2058static int therm_pm72_remove(struct i2c_client *client)
2059{
2060    struct i2c_adapter *adapter = client->adapter;
2061
2062    mutex_lock(&driver_lock);
2063
2064    if (state != state_detached)
2065        state = state_detaching;
2066
2067    /* Stop control loops if any */
2068    DBG("stopping control loops\n");
2069    mutex_unlock(&driver_lock);
2070    stop_control_loops();
2071    mutex_lock(&driver_lock);
2072
2073    if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2074        DBG("lost U3-0, disposing control loops\n");
2075        dispose_control_loops();
2076        u3_0 = NULL;
2077    }
2078    
2079    if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2080        DBG("lost U3-1, detaching FCU\n");
2081        detach_fcu();
2082        u3_1 = NULL;
2083    }
2084    if (u3_0 == NULL && u3_1 == NULL)
2085        state = state_detached;
2086
2087    mutex_unlock(&driver_lock);
2088
2089    return 0;
2090}
2091
2092/*
2093 * i2c_driver structure to attach to the host i2c controller
2094 */
2095
2096static const struct i2c_device_id therm_pm72_id[] = {
2097    /*
2098     * Fake device name, thermal management is done by several
2099     * chips but we don't need to differentiate between them at
2100     * this point.
2101     */
2102    { "therm_pm72", 0 },
2103    { }
2104};
2105
2106static struct i2c_driver therm_pm72_driver = {
2107    .driver = {
2108        .name = "therm_pm72",
2109    },
2110    .attach_adapter = therm_pm72_attach,
2111    .probe = therm_pm72_probe,
2112    .remove = therm_pm72_remove,
2113    .id_table = therm_pm72_id,
2114};
2115
2116static int fan_check_loc_match(const char *loc, int fan)
2117{
2118    char tmp[64];
2119    char *c, *e;
2120
2121    strlcpy(tmp, fcu_fans[fan].loc, 64);
2122
2123    c = tmp;
2124    for (;;) {
2125        e = strchr(c, ',');
2126        if (e)
2127            *e = 0;
2128        if (strcmp(loc, c) == 0)
2129            return 1;
2130        if (e == NULL)
2131            break;
2132        c = e + 1;
2133    }
2134    return 0;
2135}
2136
2137static void fcu_lookup_fans(struct device_node *fcu_node)
2138{
2139    struct device_node *np = NULL;
2140    int i;
2141
2142    /* The table is filled by default with values that are suitable
2143     * for the old machines without device-tree informations. We scan
2144     * the device-tree and override those values with whatever is
2145     * there
2146     */
2147
2148    DBG("Looking up FCU controls in device-tree...\n");
2149
2150    while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2151        int type = -1;
2152        const char *loc;
2153        const u32 *reg;
2154
2155        DBG(" control: %s, type: %s\n", np->name, np->type);
2156
2157        /* Detect control type */
2158        if (!strcmp(np->type, "fan-rpm-control") ||
2159            !strcmp(np->type, "fan-rpm"))
2160            type = FCU_FAN_RPM;
2161        if (!strcmp(np->type, "fan-pwm-control") ||
2162            !strcmp(np->type, "fan-pwm"))
2163            type = FCU_FAN_PWM;
2164        /* Only care about fans for now */
2165        if (type == -1)
2166            continue;
2167
2168        /* Lookup for a matching location */
2169        loc = of_get_property(np, "location", NULL);
2170        reg = of_get_property(np, "reg", NULL);
2171        if (loc == NULL || reg == NULL)
2172            continue;
2173        DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2174
2175        for (i = 0; i < FCU_FAN_COUNT; i++) {
2176            int fan_id;
2177
2178            if (!fan_check_loc_match(loc, i))
2179                continue;
2180            DBG(" location match, index: %d\n", i);
2181            fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2182            if (type != fcu_fans[i].type) {
2183                printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2184                       "in device-tree for %s\n", np->full_name);
2185                break;
2186            }
2187            if (type == FCU_FAN_RPM)
2188                fan_id = ((*reg) - 0x10) / 2;
2189            else
2190                fan_id = ((*reg) - 0x30) / 2;
2191            if (fan_id > 7) {
2192                printk(KERN_WARNING "therm_pm72: Can't parse "
2193                       "fan ID in device-tree for %s\n", np->full_name);
2194                break;
2195            }
2196            DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2197            fcu_fans[i].id = fan_id;
2198        }
2199    }
2200
2201    /* Now dump the array */
2202    printk(KERN_INFO "Detected fan controls:\n");
2203    for (i = 0; i < FCU_FAN_COUNT; i++) {
2204        if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2205            continue;
2206        printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
2207               fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2208               fcu_fans[i].id, fcu_fans[i].loc);
2209    }
2210}
2211
2212static int fcu_of_probe(struct platform_device* dev)
2213{
2214    state = state_detached;
2215    of_dev = dev;
2216
2217    dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2218
2219    /* Lookup the fans in the device tree */
2220    fcu_lookup_fans(dev->dev.of_node);
2221
2222    /* Add the driver */
2223    return i2c_add_driver(&therm_pm72_driver);
2224}
2225
2226static int fcu_of_remove(struct platform_device* dev)
2227{
2228    i2c_del_driver(&therm_pm72_driver);
2229
2230    return 0;
2231}
2232
2233static const struct of_device_id fcu_match[] =
2234{
2235    {
2236    .type = "fcu",
2237    },
2238    {},
2239};
2240MODULE_DEVICE_TABLE(of, fcu_match);
2241
2242static struct platform_driver fcu_of_platform_driver =
2243{
2244    .driver = {
2245        .name = "temperature",
2246        .owner = THIS_MODULE,
2247        .of_match_table = fcu_match,
2248    },
2249    .probe = fcu_of_probe,
2250    .remove = fcu_of_remove
2251};
2252
2253/*
2254 * Check machine type, attach to i2c controller
2255 */
2256static int __init therm_pm72_init(void)
2257{
2258    rackmac = of_machine_is_compatible("RackMac3,1");
2259
2260    if (!of_machine_is_compatible("PowerMac7,2") &&
2261        !of_machine_is_compatible("PowerMac7,3") &&
2262        !rackmac)
2263            return -ENODEV;
2264
2265    return platform_driver_register(&fcu_of_platform_driver);
2266}
2267
2268static void __exit therm_pm72_exit(void)
2269{
2270    platform_driver_unregister(&fcu_of_platform_driver);
2271}
2272
2273module_init(therm_pm72_init);
2274module_exit(therm_pm72_exit);
2275
2276MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278MODULE_LICENSE("GPL");
2279
2280

Archive Download this file



interactive