Root/
1 | /* |
2 | * Windfarm PowerMac thermal control. |
3 | * Control loops for machines with SMU and PPC970MP processors. |
4 | * |
5 | * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org> |
6 | * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp. |
7 | * |
8 | * Use and redistribute under the terms of the GNU GPL v2. |
9 | */ |
10 | #include <linux/types.h> |
11 | #include <linux/errno.h> |
12 | #include <linux/kernel.h> |
13 | #include <linux/device.h> |
14 | #include <linux/platform_device.h> |
15 | #include <linux/reboot.h> |
16 | #include <asm/prom.h> |
17 | #include <asm/smu.h> |
18 | |
19 | #include "windfarm.h" |
20 | #include "windfarm_pid.h" |
21 | |
22 | #define VERSION "0.2" |
23 | |
24 | #define DEBUG |
25 | #undef LOTSA_DEBUG |
26 | |
27 | #ifdef DEBUG |
28 | #define DBG(args...) printk(args) |
29 | #else |
30 | #define DBG(args...) do { } while(0) |
31 | #endif |
32 | |
33 | #ifdef LOTSA_DEBUG |
34 | #define DBG_LOTS(args...) printk(args) |
35 | #else |
36 | #define DBG_LOTS(args...) do { } while(0) |
37 | #endif |
38 | |
39 | /* define this to force CPU overtemp to 60 degree, useful for testing |
40 | * the overtemp code |
41 | */ |
42 | #undef HACKED_OVERTEMP |
43 | |
44 | /* We currently only handle 2 chips, 4 cores... */ |
45 | #define NR_CHIPS 2 |
46 | #define NR_CORES 4 |
47 | #define NR_CPU_FANS 3 * NR_CHIPS |
48 | |
49 | /* Controls and sensors */ |
50 | static struct wf_sensor *sens_cpu_temp[NR_CORES]; |
51 | static struct wf_sensor *sens_cpu_power[NR_CORES]; |
52 | static struct wf_sensor *hd_temp; |
53 | static struct wf_sensor *slots_power; |
54 | static struct wf_sensor *u4_temp; |
55 | |
56 | static struct wf_control *cpu_fans[NR_CPU_FANS]; |
57 | static char *cpu_fan_names[NR_CPU_FANS] = { |
58 | "cpu-rear-fan-0", |
59 | "cpu-rear-fan-1", |
60 | "cpu-front-fan-0", |
61 | "cpu-front-fan-1", |
62 | "cpu-pump-0", |
63 | "cpu-pump-1", |
64 | }; |
65 | static struct wf_control *cpufreq_clamp; |
66 | |
67 | /* Second pump isn't required (and isn't actually present) */ |
68 | #define CPU_FANS_REQD (NR_CPU_FANS - 2) |
69 | #define FIRST_PUMP 4 |
70 | #define LAST_PUMP 5 |
71 | |
72 | /* We keep a temperature history for average calculation of 180s */ |
73 | #define CPU_TEMP_HIST_SIZE 180 |
74 | |
75 | /* Scale factor for fan speed, *100 */ |
76 | static int cpu_fan_scale[NR_CPU_FANS] = { |
77 | 100, |
78 | 100, |
79 | 97, /* inlet fans run at 97% of exhaust fan */ |
80 | 97, |
81 | 100, /* updated later */ |
82 | 100, /* updated later */ |
83 | }; |
84 | |
85 | static struct wf_control *backside_fan; |
86 | static struct wf_control *slots_fan; |
87 | static struct wf_control *drive_bay_fan; |
88 | |
89 | /* PID loop state */ |
90 | static struct wf_cpu_pid_state cpu_pid[NR_CORES]; |
91 | static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; |
92 | static int cpu_thist_pt; |
93 | static s64 cpu_thist_total; |
94 | static s32 cpu_all_tmax = 100 << 16; |
95 | static int cpu_last_target; |
96 | static struct wf_pid_state backside_pid; |
97 | static int backside_tick; |
98 | static struct wf_pid_state slots_pid; |
99 | static int slots_started; |
100 | static struct wf_pid_state drive_bay_pid; |
101 | static int drive_bay_tick; |
102 | |
103 | static int nr_cores; |
104 | static int have_all_controls; |
105 | static int have_all_sensors; |
106 | static int started; |
107 | |
108 | static int failure_state; |
109 | #define FAILURE_SENSOR 1 |
110 | #define FAILURE_FAN 2 |
111 | #define FAILURE_PERM 4 |
112 | #define FAILURE_LOW_OVERTEMP 8 |
113 | #define FAILURE_HIGH_OVERTEMP 16 |
114 | |
115 | /* Overtemp values */ |
116 | #define LOW_OVER_AVERAGE 0 |
117 | #define LOW_OVER_IMMEDIATE (10 << 16) |
118 | #define LOW_OVER_CLEAR ((-10) << 16) |
119 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
120 | #define HIGH_OVER_AVERAGE (10 << 16) |
121 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
122 | |
123 | |
124 | /* Implementation... */ |
125 | static int create_cpu_loop(int cpu) |
126 | { |
127 | int chip = cpu / 2; |
128 | int core = cpu & 1; |
129 | struct smu_sdbp_header *hdr; |
130 | struct smu_sdbp_cpupiddata *piddata; |
131 | struct wf_cpu_pid_param pid; |
132 | struct wf_control *main_fan = cpu_fans[0]; |
133 | s32 tmax; |
134 | int fmin; |
135 | |
136 | /* Get PID params from the appropriate SAT */ |
137 | hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL); |
138 | if (hdr == NULL) { |
139 | printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n"); |
140 | return -EINVAL; |
141 | } |
142 | piddata = (struct smu_sdbp_cpupiddata *)&hdr[1]; |
143 | |
144 | /* Get FVT params to get Tmax; if not found, assume default */ |
145 | hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL); |
146 | if (hdr) { |
147 | struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1]; |
148 | tmax = fvt->maxtemp << 16; |
149 | } else |
150 | tmax = 95 << 16; /* default to 95 degrees C */ |
151 | |
152 | /* We keep a global tmax for overtemp calculations */ |
153 | if (tmax < cpu_all_tmax) |
154 | cpu_all_tmax = tmax; |
155 | |
156 | /* |
157 | * Darwin has a minimum fan speed of 1000 rpm for the 4-way and |
158 | * 515 for the 2-way. That appears to be overkill, so for now, |
159 | * impose a minimum of 750 or 515. |
160 | */ |
161 | fmin = (nr_cores > 2) ? 750 : 515; |
162 | |
163 | /* Initialize PID loop */ |
164 | pid.interval = 1; /* seconds */ |
165 | pid.history_len = piddata->history_len; |
166 | pid.gd = piddata->gd; |
167 | pid.gp = piddata->gp; |
168 | pid.gr = piddata->gr / piddata->history_len; |
169 | pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8); |
170 | pid.ttarget = tmax - (piddata->target_temp_delta << 16); |
171 | pid.tmax = tmax; |
172 | pid.min = main_fan->ops->get_min(main_fan); |
173 | pid.max = main_fan->ops->get_max(main_fan); |
174 | if (pid.min < fmin) |
175 | pid.min = fmin; |
176 | |
177 | wf_cpu_pid_init(&cpu_pid[cpu], &pid); |
178 | return 0; |
179 | } |
180 | |
181 | static void cpu_max_all_fans(void) |
182 | { |
183 | int i; |
184 | |
185 | /* We max all CPU fans in case of a sensor error. We also do the |
186 | * cpufreq clamping now, even if it's supposedly done later by the |
187 | * generic code anyway, we do it earlier here to react faster |
188 | */ |
189 | if (cpufreq_clamp) |
190 | wf_control_set_max(cpufreq_clamp); |
191 | for (i = 0; i < NR_CPU_FANS; ++i) |
192 | if (cpu_fans[i]) |
193 | wf_control_set_max(cpu_fans[i]); |
194 | } |
195 | |
196 | static int cpu_check_overtemp(s32 temp) |
197 | { |
198 | int new_state = 0; |
199 | s32 t_avg, t_old; |
200 | |
201 | /* First check for immediate overtemps */ |
202 | if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { |
203 | new_state |= FAILURE_LOW_OVERTEMP; |
204 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
205 | printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" |
206 | " temperature !\n"); |
207 | } |
208 | if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { |
209 | new_state |= FAILURE_HIGH_OVERTEMP; |
210 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
211 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
212 | " immediate CPU temperature !\n"); |
213 | } |
214 | |
215 | /* We calculate a history of max temperatures and use that for the |
216 | * overtemp management |
217 | */ |
218 | t_old = cpu_thist[cpu_thist_pt]; |
219 | cpu_thist[cpu_thist_pt] = temp; |
220 | cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; |
221 | cpu_thist_total -= t_old; |
222 | cpu_thist_total += temp; |
223 | t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; |
224 | |
225 | DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", |
226 | FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); |
227 | |
228 | /* Now check for average overtemps */ |
229 | if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { |
230 | new_state |= FAILURE_LOW_OVERTEMP; |
231 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
232 | printk(KERN_ERR "windfarm: Overtemp due to average CPU" |
233 | " temperature !\n"); |
234 | } |
235 | if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { |
236 | new_state |= FAILURE_HIGH_OVERTEMP; |
237 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
238 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
239 | " average CPU temperature !\n"); |
240 | } |
241 | |
242 | /* Now handle overtemp conditions. We don't currently use the windfarm |
243 | * overtemp handling core as it's not fully suited to the needs of those |
244 | * new machine. This will be fixed later. |
245 | */ |
246 | if (new_state) { |
247 | /* High overtemp -> immediate shutdown */ |
248 | if (new_state & FAILURE_HIGH_OVERTEMP) |
249 | machine_power_off(); |
250 | if ((failure_state & new_state) != new_state) |
251 | cpu_max_all_fans(); |
252 | failure_state |= new_state; |
253 | } else if ((failure_state & FAILURE_LOW_OVERTEMP) && |
254 | (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { |
255 | printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); |
256 | failure_state &= ~FAILURE_LOW_OVERTEMP; |
257 | } |
258 | |
259 | return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); |
260 | } |
261 | |
262 | static void cpu_fans_tick(void) |
263 | { |
264 | int err, cpu; |
265 | s32 greatest_delta = 0; |
266 | s32 temp, power, t_max = 0; |
267 | int i, t, target = 0; |
268 | struct wf_sensor *sr; |
269 | struct wf_control *ct; |
270 | struct wf_cpu_pid_state *sp; |
271 | |
272 | DBG_LOTS(KERN_DEBUG); |
273 | for (cpu = 0; cpu < nr_cores; ++cpu) { |
274 | /* Get CPU core temperature */ |
275 | sr = sens_cpu_temp[cpu]; |
276 | err = sr->ops->get_value(sr, &temp); |
277 | if (err) { |
278 | DBG("\n"); |
279 | printk(KERN_WARNING "windfarm: CPU %d temperature " |
280 | "sensor error %d\n", cpu, err); |
281 | failure_state |= FAILURE_SENSOR; |
282 | cpu_max_all_fans(); |
283 | return; |
284 | } |
285 | |
286 | /* Keep track of highest temp */ |
287 | t_max = max(t_max, temp); |
288 | |
289 | /* Get CPU power */ |
290 | sr = sens_cpu_power[cpu]; |
291 | err = sr->ops->get_value(sr, &power); |
292 | if (err) { |
293 | DBG("\n"); |
294 | printk(KERN_WARNING "windfarm: CPU %d power " |
295 | "sensor error %d\n", cpu, err); |
296 | failure_state |= FAILURE_SENSOR; |
297 | cpu_max_all_fans(); |
298 | return; |
299 | } |
300 | |
301 | /* Run PID */ |
302 | sp = &cpu_pid[cpu]; |
303 | t = wf_cpu_pid_run(sp, power, temp); |
304 | |
305 | if (cpu == 0 || sp->last_delta > greatest_delta) { |
306 | greatest_delta = sp->last_delta; |
307 | target = t; |
308 | } |
309 | DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ", |
310 | cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp)); |
311 | } |
312 | DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max)); |
313 | |
314 | /* Darwin limits decrease to 20 per iteration */ |
315 | if (target < (cpu_last_target - 20)) |
316 | target = cpu_last_target - 20; |
317 | cpu_last_target = target; |
318 | for (cpu = 0; cpu < nr_cores; ++cpu) |
319 | cpu_pid[cpu].target = target; |
320 | |
321 | /* Handle possible overtemps */ |
322 | if (cpu_check_overtemp(t_max)) |
323 | return; |
324 | |
325 | /* Set fans */ |
326 | for (i = 0; i < NR_CPU_FANS; ++i) { |
327 | ct = cpu_fans[i]; |
328 | if (ct == NULL) |
329 | continue; |
330 | err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100); |
331 | if (err) { |
332 | printk(KERN_WARNING "windfarm: fan %s reports " |
333 | "error %d\n", ct->name, err); |
334 | failure_state |= FAILURE_FAN; |
335 | break; |
336 | } |
337 | } |
338 | } |
339 | |
340 | /* Backside/U4 fan */ |
341 | static struct wf_pid_param backside_param = { |
342 | .interval = 5, |
343 | .history_len = 2, |
344 | .gd = 48 << 20, |
345 | .gp = 5 << 20, |
346 | .gr = 0, |
347 | .itarget = 64 << 16, |
348 | .additive = 1, |
349 | }; |
350 | |
351 | static void backside_fan_tick(void) |
352 | { |
353 | s32 temp; |
354 | int speed; |
355 | int err; |
356 | |
357 | if (!backside_fan || !u4_temp) |
358 | return; |
359 | if (!backside_tick) { |
360 | /* first time; initialize things */ |
361 | printk(KERN_INFO "windfarm: Backside control loop started.\n"); |
362 | backside_param.min = backside_fan->ops->get_min(backside_fan); |
363 | backside_param.max = backside_fan->ops->get_max(backside_fan); |
364 | wf_pid_init(&backside_pid, &backside_param); |
365 | backside_tick = 1; |
366 | } |
367 | if (--backside_tick > 0) |
368 | return; |
369 | backside_tick = backside_pid.param.interval; |
370 | |
371 | err = u4_temp->ops->get_value(u4_temp, &temp); |
372 | if (err) { |
373 | printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", |
374 | err); |
375 | failure_state |= FAILURE_SENSOR; |
376 | wf_control_set_max(backside_fan); |
377 | return; |
378 | } |
379 | speed = wf_pid_run(&backside_pid, temp); |
380 | DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", |
381 | FIX32TOPRINT(temp), speed); |
382 | |
383 | err = backside_fan->ops->set_value(backside_fan, speed); |
384 | if (err) { |
385 | printk(KERN_WARNING "windfarm: backside fan error %d\n", err); |
386 | failure_state |= FAILURE_FAN; |
387 | } |
388 | } |
389 | |
390 | /* Drive bay fan */ |
391 | static struct wf_pid_param drive_bay_prm = { |
392 | .interval = 5, |
393 | .history_len = 2, |
394 | .gd = 30 << 20, |
395 | .gp = 5 << 20, |
396 | .gr = 0, |
397 | .itarget = 40 << 16, |
398 | .additive = 1, |
399 | }; |
400 | |
401 | static void drive_bay_fan_tick(void) |
402 | { |
403 | s32 temp; |
404 | int speed; |
405 | int err; |
406 | |
407 | if (!drive_bay_fan || !hd_temp) |
408 | return; |
409 | if (!drive_bay_tick) { |
410 | /* first time; initialize things */ |
411 | printk(KERN_INFO "windfarm: Drive bay control loop started.\n"); |
412 | drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan); |
413 | drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan); |
414 | wf_pid_init(&drive_bay_pid, &drive_bay_prm); |
415 | drive_bay_tick = 1; |
416 | } |
417 | if (--drive_bay_tick > 0) |
418 | return; |
419 | drive_bay_tick = drive_bay_pid.param.interval; |
420 | |
421 | err = hd_temp->ops->get_value(hd_temp, &temp); |
422 | if (err) { |
423 | printk(KERN_WARNING "windfarm: drive bay temp sensor " |
424 | "error %d\n", err); |
425 | failure_state |= FAILURE_SENSOR; |
426 | wf_control_set_max(drive_bay_fan); |
427 | return; |
428 | } |
429 | speed = wf_pid_run(&drive_bay_pid, temp); |
430 | DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n", |
431 | FIX32TOPRINT(temp), speed); |
432 | |
433 | err = drive_bay_fan->ops->set_value(drive_bay_fan, speed); |
434 | if (err) { |
435 | printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); |
436 | failure_state |= FAILURE_FAN; |
437 | } |
438 | } |
439 | |
440 | /* PCI slots area fan */ |
441 | /* This makes the fan speed proportional to the power consumed */ |
442 | static struct wf_pid_param slots_param = { |
443 | .interval = 1, |
444 | .history_len = 2, |
445 | .gd = 0, |
446 | .gp = 0, |
447 | .gr = 0x1277952, |
448 | .itarget = 0, |
449 | .min = 1560, |
450 | .max = 3510, |
451 | }; |
452 | |
453 | static void slots_fan_tick(void) |
454 | { |
455 | s32 power; |
456 | int speed; |
457 | int err; |
458 | |
459 | if (!slots_fan || !slots_power) |
460 | return; |
461 | if (!slots_started) { |
462 | /* first time; initialize things */ |
463 | printk(KERN_INFO "windfarm: Slots control loop started.\n"); |
464 | wf_pid_init(&slots_pid, &slots_param); |
465 | slots_started = 1; |
466 | } |
467 | |
468 | err = slots_power->ops->get_value(slots_power, &power); |
469 | if (err) { |
470 | printk(KERN_WARNING "windfarm: slots power sensor error %d\n", |
471 | err); |
472 | failure_state |= FAILURE_SENSOR; |
473 | wf_control_set_max(slots_fan); |
474 | return; |
475 | } |
476 | speed = wf_pid_run(&slots_pid, power); |
477 | DBG_LOTS("slots PID power=%d.%.3d speed=%d\n", |
478 | FIX32TOPRINT(power), speed); |
479 | |
480 | err = slots_fan->ops->set_value(slots_fan, speed); |
481 | if (err) { |
482 | printk(KERN_WARNING "windfarm: slots fan error %d\n", err); |
483 | failure_state |= FAILURE_FAN; |
484 | } |
485 | } |
486 | |
487 | static void set_fail_state(void) |
488 | { |
489 | int i; |
490 | |
491 | if (cpufreq_clamp) |
492 | wf_control_set_max(cpufreq_clamp); |
493 | for (i = 0; i < NR_CPU_FANS; ++i) |
494 | if (cpu_fans[i]) |
495 | wf_control_set_max(cpu_fans[i]); |
496 | if (backside_fan) |
497 | wf_control_set_max(backside_fan); |
498 | if (slots_fan) |
499 | wf_control_set_max(slots_fan); |
500 | if (drive_bay_fan) |
501 | wf_control_set_max(drive_bay_fan); |
502 | } |
503 | |
504 | static void pm112_tick(void) |
505 | { |
506 | int i, last_failure; |
507 | |
508 | if (!started) { |
509 | started = 1; |
510 | printk(KERN_INFO "windfarm: CPUs control loops started.\n"); |
511 | for (i = 0; i < nr_cores; ++i) { |
512 | if (create_cpu_loop(i) < 0) { |
513 | failure_state = FAILURE_PERM; |
514 | set_fail_state(); |
515 | break; |
516 | } |
517 | } |
518 | DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); |
519 | |
520 | #ifdef HACKED_OVERTEMP |
521 | cpu_all_tmax = 60 << 16; |
522 | #endif |
523 | } |
524 | |
525 | /* Permanent failure, bail out */ |
526 | if (failure_state & FAILURE_PERM) |
527 | return; |
528 | /* Clear all failure bits except low overtemp which will be eventually |
529 | * cleared by the control loop itself |
530 | */ |
531 | last_failure = failure_state; |
532 | failure_state &= FAILURE_LOW_OVERTEMP; |
533 | cpu_fans_tick(); |
534 | backside_fan_tick(); |
535 | slots_fan_tick(); |
536 | drive_bay_fan_tick(); |
537 | |
538 | DBG_LOTS("last_failure: 0x%x, failure_state: %x\n", |
539 | last_failure, failure_state); |
540 | |
541 | /* Check for failures. Any failure causes cpufreq clamping */ |
542 | if (failure_state && last_failure == 0 && cpufreq_clamp) |
543 | wf_control_set_max(cpufreq_clamp); |
544 | if (failure_state == 0 && last_failure && cpufreq_clamp) |
545 | wf_control_set_min(cpufreq_clamp); |
546 | |
547 | /* That's it for now, we might want to deal with other failures |
548 | * differently in the future though |
549 | */ |
550 | } |
551 | |
552 | static void pm112_new_control(struct wf_control *ct) |
553 | { |
554 | int i, max_exhaust; |
555 | |
556 | if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) { |
557 | if (wf_get_control(ct) == 0) |
558 | cpufreq_clamp = ct; |
559 | } |
560 | |
561 | for (i = 0; i < NR_CPU_FANS; ++i) { |
562 | if (!strcmp(ct->name, cpu_fan_names[i])) { |
563 | if (cpu_fans[i] == NULL && wf_get_control(ct) == 0) |
564 | cpu_fans[i] = ct; |
565 | break; |
566 | } |
567 | } |
568 | if (i >= NR_CPU_FANS) { |
569 | /* not a CPU fan, try the others */ |
570 | if (!strcmp(ct->name, "backside-fan")) { |
571 | if (backside_fan == NULL && wf_get_control(ct) == 0) |
572 | backside_fan = ct; |
573 | } else if (!strcmp(ct->name, "slots-fan")) { |
574 | if (slots_fan == NULL && wf_get_control(ct) == 0) |
575 | slots_fan = ct; |
576 | } else if (!strcmp(ct->name, "drive-bay-fan")) { |
577 | if (drive_bay_fan == NULL && wf_get_control(ct) == 0) |
578 | drive_bay_fan = ct; |
579 | } |
580 | return; |
581 | } |
582 | |
583 | for (i = 0; i < CPU_FANS_REQD; ++i) |
584 | if (cpu_fans[i] == NULL) |
585 | return; |
586 | |
587 | /* work out pump scaling factors */ |
588 | max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]); |
589 | for (i = FIRST_PUMP; i <= LAST_PUMP; ++i) |
590 | if ((ct = cpu_fans[i]) != NULL) |
591 | cpu_fan_scale[i] = |
592 | ct->ops->get_max(ct) * 100 / max_exhaust; |
593 | |
594 | have_all_controls = 1; |
595 | } |
596 | |
597 | static void pm112_new_sensor(struct wf_sensor *sr) |
598 | { |
599 | unsigned int i; |
600 | |
601 | if (!strncmp(sr->name, "cpu-temp-", 9)) { |
602 | i = sr->name[9] - '0'; |
603 | if (sr->name[10] == 0 && i < NR_CORES && |
604 | sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0) |
605 | sens_cpu_temp[i] = sr; |
606 | |
607 | } else if (!strncmp(sr->name, "cpu-power-", 10)) { |
608 | i = sr->name[10] - '0'; |
609 | if (sr->name[11] == 0 && i < NR_CORES && |
610 | sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0) |
611 | sens_cpu_power[i] = sr; |
612 | } else if (!strcmp(sr->name, "hd-temp")) { |
613 | if (hd_temp == NULL && wf_get_sensor(sr) == 0) |
614 | hd_temp = sr; |
615 | } else if (!strcmp(sr->name, "slots-power")) { |
616 | if (slots_power == NULL && wf_get_sensor(sr) == 0) |
617 | slots_power = sr; |
618 | } else if (!strcmp(sr->name, "backside-temp")) { |
619 | if (u4_temp == NULL && wf_get_sensor(sr) == 0) |
620 | u4_temp = sr; |
621 | } else |
622 | return; |
623 | |
624 | /* check if we have all the sensors we need */ |
625 | for (i = 0; i < nr_cores; ++i) |
626 | if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL) |
627 | return; |
628 | |
629 | have_all_sensors = 1; |
630 | } |
631 | |
632 | static int pm112_wf_notify(struct notifier_block *self, |
633 | unsigned long event, void *data) |
634 | { |
635 | switch (event) { |
636 | case WF_EVENT_NEW_SENSOR: |
637 | pm112_new_sensor(data); |
638 | break; |
639 | case WF_EVENT_NEW_CONTROL: |
640 | pm112_new_control(data); |
641 | break; |
642 | case WF_EVENT_TICK: |
643 | if (have_all_controls && have_all_sensors) |
644 | pm112_tick(); |
645 | } |
646 | return 0; |
647 | } |
648 | |
649 | static struct notifier_block pm112_events = { |
650 | .notifier_call = pm112_wf_notify, |
651 | }; |
652 | |
653 | static int wf_pm112_probe(struct platform_device *dev) |
654 | { |
655 | wf_register_client(&pm112_events); |
656 | return 0; |
657 | } |
658 | |
659 | static int __devexit wf_pm112_remove(struct platform_device *dev) |
660 | { |
661 | wf_unregister_client(&pm112_events); |
662 | /* should release all sensors and controls */ |
663 | return 0; |
664 | } |
665 | |
666 | static struct platform_driver wf_pm112_driver = { |
667 | .probe = wf_pm112_probe, |
668 | .remove = __devexit_p(wf_pm112_remove), |
669 | .driver = { |
670 | .name = "windfarm", |
671 | .owner = THIS_MODULE, |
672 | }, |
673 | }; |
674 | |
675 | static int __init wf_pm112_init(void) |
676 | { |
677 | struct device_node *cpu; |
678 | |
679 | if (!of_machine_is_compatible("PowerMac11,2")) |
680 | return -ENODEV; |
681 | |
682 | /* Count the number of CPU cores */ |
683 | nr_cores = 0; |
684 | for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; ) |
685 | ++nr_cores; |
686 | |
687 | printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n"); |
688 | |
689 | #ifdef MODULE |
690 | request_module("windfarm_smu_controls"); |
691 | request_module("windfarm_smu_sensors"); |
692 | request_module("windfarm_smu_sat"); |
693 | request_module("windfarm_lm75_sensor"); |
694 | request_module("windfarm_max6690_sensor"); |
695 | request_module("windfarm_cpufreq_clamp"); |
696 | |
697 | #endif /* MODULE */ |
698 | |
699 | platform_driver_register(&wf_pm112_driver); |
700 | return 0; |
701 | } |
702 | |
703 | static void __exit wf_pm112_exit(void) |
704 | { |
705 | platform_driver_unregister(&wf_pm112_driver); |
706 | } |
707 | |
708 | module_init(wf_pm112_init); |
709 | module_exit(wf_pm112_exit); |
710 | |
711 | MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>"); |
712 | MODULE_DESCRIPTION("Thermal control for PowerMac11,2"); |
713 | MODULE_LICENSE("GPL"); |
714 | MODULE_ALIAS("platform:windfarm"); |
715 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9