Root/drivers/md/dm-crypt.c

1/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/completion.h>
10#include <linux/err.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/bio.h>
15#include <linux/blkdev.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/crypto.h>
19#include <linux/workqueue.h>
20#include <linux/backing-dev.h>
21#include <linux/percpu.h>
22#include <linux/atomic.h>
23#include <linux/scatterlist.h>
24#include <asm/page.h>
25#include <asm/unaligned.h>
26#include <crypto/hash.h>
27#include <crypto/md5.h>
28#include <crypto/algapi.h>
29
30#include <linux/device-mapper.h>
31
32#define DM_MSG_PREFIX "crypt"
33
34/*
35 * context holding the current state of a multi-part conversion
36 */
37struct convert_context {
38    struct completion restart;
39    struct bio *bio_in;
40    struct bio *bio_out;
41    unsigned int offset_in;
42    unsigned int offset_out;
43    unsigned int idx_in;
44    unsigned int idx_out;
45    sector_t cc_sector;
46    atomic_t cc_pending;
47};
48
49/*
50 * per bio private data
51 */
52struct dm_crypt_io {
53    struct crypt_config *cc;
54    struct bio *base_bio;
55    struct work_struct work;
56
57    struct convert_context ctx;
58
59    atomic_t io_pending;
60    int error;
61    sector_t sector;
62    struct dm_crypt_io *base_io;
63};
64
65struct dm_crypt_request {
66    struct convert_context *ctx;
67    struct scatterlist sg_in;
68    struct scatterlist sg_out;
69    sector_t iv_sector;
70};
71
72struct crypt_config;
73
74struct crypt_iv_operations {
75    int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76           const char *opts);
77    void (*dtr)(struct crypt_config *cc);
78    int (*init)(struct crypt_config *cc);
79    int (*wipe)(struct crypt_config *cc);
80    int (*generator)(struct crypt_config *cc, u8 *iv,
81             struct dm_crypt_request *dmreq);
82    int (*post)(struct crypt_config *cc, u8 *iv,
83            struct dm_crypt_request *dmreq);
84};
85
86struct iv_essiv_private {
87    struct crypto_hash *hash_tfm;
88    u8 *salt;
89};
90
91struct iv_benbi_private {
92    int shift;
93};
94
95#define LMK_SEED_SIZE 64 /* hash + 0 */
96struct iv_lmk_private {
97    struct crypto_shash *hash_tfm;
98    u8 *seed;
99};
100
101/*
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
104 */
105enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106
107/*
108 * Duplicated per-CPU state for cipher.
109 */
110struct crypt_cpu {
111    struct ablkcipher_request *req;
112};
113
114/*
115 * The fields in here must be read only after initialization,
116 * changing state should be in crypt_cpu.
117 */
118struct crypt_config {
119    struct dm_dev *dev;
120    sector_t start;
121
122    /*
123     * pool for per bio private data, crypto requests and
124     * encryption requeusts/buffer pages
125     */
126    mempool_t *io_pool;
127    mempool_t *req_pool;
128    mempool_t *page_pool;
129    struct bio_set *bs;
130
131    struct workqueue_struct *io_queue;
132    struct workqueue_struct *crypt_queue;
133
134    char *cipher;
135    char *cipher_string;
136
137    struct crypt_iv_operations *iv_gen_ops;
138    union {
139        struct iv_essiv_private essiv;
140        struct iv_benbi_private benbi;
141        struct iv_lmk_private lmk;
142    } iv_gen_private;
143    sector_t iv_offset;
144    unsigned int iv_size;
145
146    /*
147     * Duplicated per cpu state. Access through
148     * per_cpu_ptr() only.
149     */
150    struct crypt_cpu __percpu *cpu;
151
152    /* ESSIV: struct crypto_cipher *essiv_tfm */
153    void *iv_private;
154    struct crypto_ablkcipher **tfms;
155    unsigned tfms_count;
156
157    /*
158     * Layout of each crypto request:
159     *
160     * struct ablkcipher_request
161     * context
162     * padding
163     * struct dm_crypt_request
164     * padding
165     * IV
166     *
167     * The padding is added so that dm_crypt_request and the IV are
168     * correctly aligned.
169     */
170    unsigned int dmreq_start;
171
172    unsigned long flags;
173    unsigned int key_size;
174    unsigned int key_parts;
175    u8 key[0];
176};
177
178#define MIN_IOS 16
179#define MIN_POOL_PAGES 32
180
181static struct kmem_cache *_crypt_io_pool;
182
183static void clone_init(struct dm_crypt_io *, struct bio *);
184static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186
187static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188{
189    return this_cpu_ptr(cc->cpu);
190}
191
192/*
193 * Use this to access cipher attributes that are the same for each CPU.
194 */
195static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196{
197    return cc->tfms[0];
198}
199
200/*
201 * Different IV generation algorithms:
202 *
203 * plain: the initial vector is the 32-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
205 *
206 * plain64: the initial vector is the 64-bit little-endian version of the sector
207 * number, padded with zeros if necessary.
208 *
209 * essiv: "encrypted sector|salt initial vector", the sector number is
210 * encrypted with the bulk cipher using a salt as key. The salt
211 * should be derived from the bulk cipher's key via hashing.
212 *
213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214 * (needed for LRW-32-AES and possible other narrow block modes)
215 *
216 * null: the initial vector is always zero. Provides compatibility with
217 * obsolete loop_fish2 devices. Do not use for new devices.
218 *
219 * lmk: Compatible implementation of the block chaining mode used
220 * by the Loop-AES block device encryption system
221 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222 * It operates on full 512 byte sectors and uses CBC
223 * with an IV derived from the sector number, the data and
224 * optionally extra IV seed.
225 * This means that after decryption the first block
226 * of sector must be tweaked according to decrypted data.
227 * Loop-AES can use three encryption schemes:
228 * version 1: is plain aes-cbc mode
229 * version 2: uses 64 multikey scheme with lmk IV generator
230 * version 3: the same as version 2 with additional IV seed
231 * (it uses 65 keys, last key is used as IV seed)
232 *
233 * plumb: unimplemented, see:
234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235 */
236
237static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238                  struct dm_crypt_request *dmreq)
239{
240    memset(iv, 0, cc->iv_size);
241    *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242
243    return 0;
244}
245
246static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247                struct dm_crypt_request *dmreq)
248{
249    memset(iv, 0, cc->iv_size);
250    *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251
252    return 0;
253}
254
255/* Initialise ESSIV - compute salt but no local memory allocations */
256static int crypt_iv_essiv_init(struct crypt_config *cc)
257{
258    struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259    struct hash_desc desc;
260    struct scatterlist sg;
261    struct crypto_cipher *essiv_tfm;
262    int err;
263
264    sg_init_one(&sg, cc->key, cc->key_size);
265    desc.tfm = essiv->hash_tfm;
266    desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267
268    err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269    if (err)
270        return err;
271
272    essiv_tfm = cc->iv_private;
273
274    err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275                crypto_hash_digestsize(essiv->hash_tfm));
276    if (err)
277        return err;
278
279    return 0;
280}
281
282/* Wipe salt and reset key derived from volume key */
283static int crypt_iv_essiv_wipe(struct crypt_config *cc)
284{
285    struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
286    unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
287    struct crypto_cipher *essiv_tfm;
288    int r, err = 0;
289
290    memset(essiv->salt, 0, salt_size);
291
292    essiv_tfm = cc->iv_private;
293    r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
294    if (r)
295        err = r;
296
297    return err;
298}
299
300/* Set up per cpu cipher state */
301static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
302                         struct dm_target *ti,
303                         u8 *salt, unsigned saltsize)
304{
305    struct crypto_cipher *essiv_tfm;
306    int err;
307
308    /* Setup the essiv_tfm with the given salt */
309    essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
310    if (IS_ERR(essiv_tfm)) {
311        ti->error = "Error allocating crypto tfm for ESSIV";
312        return essiv_tfm;
313    }
314
315    if (crypto_cipher_blocksize(essiv_tfm) !=
316        crypto_ablkcipher_ivsize(any_tfm(cc))) {
317        ti->error = "Block size of ESSIV cipher does "
318                "not match IV size of block cipher";
319        crypto_free_cipher(essiv_tfm);
320        return ERR_PTR(-EINVAL);
321    }
322
323    err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
324    if (err) {
325        ti->error = "Failed to set key for ESSIV cipher";
326        crypto_free_cipher(essiv_tfm);
327        return ERR_PTR(err);
328    }
329
330    return essiv_tfm;
331}
332
333static void crypt_iv_essiv_dtr(struct crypt_config *cc)
334{
335    struct crypto_cipher *essiv_tfm;
336    struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
337
338    crypto_free_hash(essiv->hash_tfm);
339    essiv->hash_tfm = NULL;
340
341    kzfree(essiv->salt);
342    essiv->salt = NULL;
343
344    essiv_tfm = cc->iv_private;
345
346    if (essiv_tfm)
347        crypto_free_cipher(essiv_tfm);
348
349    cc->iv_private = NULL;
350}
351
352static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
353                  const char *opts)
354{
355    struct crypto_cipher *essiv_tfm = NULL;
356    struct crypto_hash *hash_tfm = NULL;
357    u8 *salt = NULL;
358    int err;
359
360    if (!opts) {
361        ti->error = "Digest algorithm missing for ESSIV mode";
362        return -EINVAL;
363    }
364
365    /* Allocate hash algorithm */
366    hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
367    if (IS_ERR(hash_tfm)) {
368        ti->error = "Error initializing ESSIV hash";
369        err = PTR_ERR(hash_tfm);
370        goto bad;
371    }
372
373    salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
374    if (!salt) {
375        ti->error = "Error kmallocing salt storage in ESSIV";
376        err = -ENOMEM;
377        goto bad;
378    }
379
380    cc->iv_gen_private.essiv.salt = salt;
381    cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
382
383    essiv_tfm = setup_essiv_cpu(cc, ti, salt,
384                crypto_hash_digestsize(hash_tfm));
385    if (IS_ERR(essiv_tfm)) {
386        crypt_iv_essiv_dtr(cc);
387        return PTR_ERR(essiv_tfm);
388    }
389    cc->iv_private = essiv_tfm;
390
391    return 0;
392
393bad:
394    if (hash_tfm && !IS_ERR(hash_tfm))
395        crypto_free_hash(hash_tfm);
396    kfree(salt);
397    return err;
398}
399
400static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
401                  struct dm_crypt_request *dmreq)
402{
403    struct crypto_cipher *essiv_tfm = cc->iv_private;
404
405    memset(iv, 0, cc->iv_size);
406    *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
407    crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
408
409    return 0;
410}
411
412static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
413                  const char *opts)
414{
415    unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
416    int log = ilog2(bs);
417
418    /* we need to calculate how far we must shift the sector count
419     * to get the cipher block count, we use this shift in _gen */
420
421    if (1 << log != bs) {
422        ti->error = "cypher blocksize is not a power of 2";
423        return -EINVAL;
424    }
425
426    if (log > 9) {
427        ti->error = "cypher blocksize is > 512";
428        return -EINVAL;
429    }
430
431    cc->iv_gen_private.benbi.shift = 9 - log;
432
433    return 0;
434}
435
436static void crypt_iv_benbi_dtr(struct crypt_config *cc)
437{
438}
439
440static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
441                  struct dm_crypt_request *dmreq)
442{
443    __be64 val;
444
445    memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
446
447    val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
448    put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
449
450    return 0;
451}
452
453static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
454                 struct dm_crypt_request *dmreq)
455{
456    memset(iv, 0, cc->iv_size);
457
458    return 0;
459}
460
461static void crypt_iv_lmk_dtr(struct crypt_config *cc)
462{
463    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
464
465    if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
466        crypto_free_shash(lmk->hash_tfm);
467    lmk->hash_tfm = NULL;
468
469    kzfree(lmk->seed);
470    lmk->seed = NULL;
471}
472
473static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
474                const char *opts)
475{
476    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477
478    lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
479    if (IS_ERR(lmk->hash_tfm)) {
480        ti->error = "Error initializing LMK hash";
481        return PTR_ERR(lmk->hash_tfm);
482    }
483
484    /* No seed in LMK version 2 */
485    if (cc->key_parts == cc->tfms_count) {
486        lmk->seed = NULL;
487        return 0;
488    }
489
490    lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
491    if (!lmk->seed) {
492        crypt_iv_lmk_dtr(cc);
493        ti->error = "Error kmallocing seed storage in LMK";
494        return -ENOMEM;
495    }
496
497    return 0;
498}
499
500static int crypt_iv_lmk_init(struct crypt_config *cc)
501{
502    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
503    int subkey_size = cc->key_size / cc->key_parts;
504
505    /* LMK seed is on the position of LMK_KEYS + 1 key */
506    if (lmk->seed)
507        memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
508               crypto_shash_digestsize(lmk->hash_tfm));
509
510    return 0;
511}
512
513static int crypt_iv_lmk_wipe(struct crypt_config *cc)
514{
515    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516
517    if (lmk->seed)
518        memset(lmk->seed, 0, LMK_SEED_SIZE);
519
520    return 0;
521}
522
523static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
524                struct dm_crypt_request *dmreq,
525                u8 *data)
526{
527    struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528    struct {
529        struct shash_desc desc;
530        char ctx[crypto_shash_descsize(lmk->hash_tfm)];
531    } sdesc;
532    struct md5_state md5state;
533    u32 buf[4];
534    int i, r;
535
536    sdesc.desc.tfm = lmk->hash_tfm;
537    sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
538
539    r = crypto_shash_init(&sdesc.desc);
540    if (r)
541        return r;
542
543    if (lmk->seed) {
544        r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
545        if (r)
546            return r;
547    }
548
549    /* Sector is always 512B, block size 16, add data of blocks 1-31 */
550    r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
551    if (r)
552        return r;
553
554    /* Sector is cropped to 56 bits here */
555    buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
556    buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
557    buf[2] = cpu_to_le32(4024);
558    buf[3] = 0;
559    r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
560    if (r)
561        return r;
562
563    /* No MD5 padding here */
564    r = crypto_shash_export(&sdesc.desc, &md5state);
565    if (r)
566        return r;
567
568    for (i = 0; i < MD5_HASH_WORDS; i++)
569        __cpu_to_le32s(&md5state.hash[i]);
570    memcpy(iv, &md5state.hash, cc->iv_size);
571
572    return 0;
573}
574
575static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
576                struct dm_crypt_request *dmreq)
577{
578    u8 *src;
579    int r = 0;
580
581    if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
582        src = kmap_atomic(sg_page(&dmreq->sg_in));
583        r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
584        kunmap_atomic(src);
585    } else
586        memset(iv, 0, cc->iv_size);
587
588    return r;
589}
590
591static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
592                 struct dm_crypt_request *dmreq)
593{
594    u8 *dst;
595    int r;
596
597    if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
598        return 0;
599
600    dst = kmap_atomic(sg_page(&dmreq->sg_out));
601    r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
602
603    /* Tweak the first block of plaintext sector */
604    if (!r)
605        crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
606
607    kunmap_atomic(dst);
608    return r;
609}
610
611static struct crypt_iv_operations crypt_iv_plain_ops = {
612    .generator = crypt_iv_plain_gen
613};
614
615static struct crypt_iv_operations crypt_iv_plain64_ops = {
616    .generator = crypt_iv_plain64_gen
617};
618
619static struct crypt_iv_operations crypt_iv_essiv_ops = {
620    .ctr = crypt_iv_essiv_ctr,
621    .dtr = crypt_iv_essiv_dtr,
622    .init = crypt_iv_essiv_init,
623    .wipe = crypt_iv_essiv_wipe,
624    .generator = crypt_iv_essiv_gen
625};
626
627static struct crypt_iv_operations crypt_iv_benbi_ops = {
628    .ctr = crypt_iv_benbi_ctr,
629    .dtr = crypt_iv_benbi_dtr,
630    .generator = crypt_iv_benbi_gen
631};
632
633static struct crypt_iv_operations crypt_iv_null_ops = {
634    .generator = crypt_iv_null_gen
635};
636
637static struct crypt_iv_operations crypt_iv_lmk_ops = {
638    .ctr = crypt_iv_lmk_ctr,
639    .dtr = crypt_iv_lmk_dtr,
640    .init = crypt_iv_lmk_init,
641    .wipe = crypt_iv_lmk_wipe,
642    .generator = crypt_iv_lmk_gen,
643    .post = crypt_iv_lmk_post
644};
645
646static void crypt_convert_init(struct crypt_config *cc,
647                   struct convert_context *ctx,
648                   struct bio *bio_out, struct bio *bio_in,
649                   sector_t sector)
650{
651    ctx->bio_in = bio_in;
652    ctx->bio_out = bio_out;
653    ctx->offset_in = 0;
654    ctx->offset_out = 0;
655    ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
656    ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
657    ctx->cc_sector = sector + cc->iv_offset;
658    init_completion(&ctx->restart);
659}
660
661static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
662                         struct ablkcipher_request *req)
663{
664    return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
665}
666
667static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
668                           struct dm_crypt_request *dmreq)
669{
670    return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
671}
672
673static u8 *iv_of_dmreq(struct crypt_config *cc,
674               struct dm_crypt_request *dmreq)
675{
676    return (u8 *)ALIGN((unsigned long)(dmreq + 1),
677        crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
678}
679
680static int crypt_convert_block(struct crypt_config *cc,
681                   struct convert_context *ctx,
682                   struct ablkcipher_request *req)
683{
684    struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
685    struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
686    struct dm_crypt_request *dmreq;
687    u8 *iv;
688    int r;
689
690    dmreq = dmreq_of_req(cc, req);
691    iv = iv_of_dmreq(cc, dmreq);
692
693    dmreq->iv_sector = ctx->cc_sector;
694    dmreq->ctx = ctx;
695    sg_init_table(&dmreq->sg_in, 1);
696    sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
697            bv_in->bv_offset + ctx->offset_in);
698
699    sg_init_table(&dmreq->sg_out, 1);
700    sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
701            bv_out->bv_offset + ctx->offset_out);
702
703    ctx->offset_in += 1 << SECTOR_SHIFT;
704    if (ctx->offset_in >= bv_in->bv_len) {
705        ctx->offset_in = 0;
706        ctx->idx_in++;
707    }
708
709    ctx->offset_out += 1 << SECTOR_SHIFT;
710    if (ctx->offset_out >= bv_out->bv_len) {
711        ctx->offset_out = 0;
712        ctx->idx_out++;
713    }
714
715    if (cc->iv_gen_ops) {
716        r = cc->iv_gen_ops->generator(cc, iv, dmreq);
717        if (r < 0)
718            return r;
719    }
720
721    ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
722                     1 << SECTOR_SHIFT, iv);
723
724    if (bio_data_dir(ctx->bio_in) == WRITE)
725        r = crypto_ablkcipher_encrypt(req);
726    else
727        r = crypto_ablkcipher_decrypt(req);
728
729    if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
730        r = cc->iv_gen_ops->post(cc, iv, dmreq);
731
732    return r;
733}
734
735static void kcryptd_async_done(struct crypto_async_request *async_req,
736                   int error);
737
738static void crypt_alloc_req(struct crypt_config *cc,
739                struct convert_context *ctx)
740{
741    struct crypt_cpu *this_cc = this_crypt_config(cc);
742    unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
743
744    if (!this_cc->req)
745        this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
746
747    ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
748    ablkcipher_request_set_callback(this_cc->req,
749        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
750        kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
751}
752
753/*
754 * Encrypt / decrypt data from one bio to another one (can be the same one)
755 */
756static int crypt_convert(struct crypt_config *cc,
757             struct convert_context *ctx)
758{
759    struct crypt_cpu *this_cc = this_crypt_config(cc);
760    int r;
761
762    atomic_set(&ctx->cc_pending, 1);
763
764    while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
765          ctx->idx_out < ctx->bio_out->bi_vcnt) {
766
767        crypt_alloc_req(cc, ctx);
768
769        atomic_inc(&ctx->cc_pending);
770
771        r = crypt_convert_block(cc, ctx, this_cc->req);
772
773        switch (r) {
774        /* async */
775        case -EBUSY:
776            wait_for_completion(&ctx->restart);
777            INIT_COMPLETION(ctx->restart);
778            /* fall through*/
779        case -EINPROGRESS:
780            this_cc->req = NULL;
781            ctx->cc_sector++;
782            continue;
783
784        /* sync */
785        case 0:
786            atomic_dec(&ctx->cc_pending);
787            ctx->cc_sector++;
788            cond_resched();
789            continue;
790
791        /* error */
792        default:
793            atomic_dec(&ctx->cc_pending);
794            return r;
795        }
796    }
797
798    return 0;
799}
800
801static void dm_crypt_bio_destructor(struct bio *bio)
802{
803    struct dm_crypt_io *io = bio->bi_private;
804    struct crypt_config *cc = io->cc;
805
806    bio_free(bio, cc->bs);
807}
808
809/*
810 * Generate a new unfragmented bio with the given size
811 * This should never violate the device limitations
812 * May return a smaller bio when running out of pages, indicated by
813 * *out_of_pages set to 1.
814 */
815static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
816                      unsigned *out_of_pages)
817{
818    struct crypt_config *cc = io->cc;
819    struct bio *clone;
820    unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
821    gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
822    unsigned i, len;
823    struct page *page;
824
825    clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
826    if (!clone)
827        return NULL;
828
829    clone_init(io, clone);
830    *out_of_pages = 0;
831
832    for (i = 0; i < nr_iovecs; i++) {
833        page = mempool_alloc(cc->page_pool, gfp_mask);
834        if (!page) {
835            *out_of_pages = 1;
836            break;
837        }
838
839        /*
840         * If additional pages cannot be allocated without waiting,
841         * return a partially-allocated bio. The caller will then try
842         * to allocate more bios while submitting this partial bio.
843         */
844        gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
845
846        len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
847
848        if (!bio_add_page(clone, page, len, 0)) {
849            mempool_free(page, cc->page_pool);
850            break;
851        }
852
853        size -= len;
854    }
855
856    if (!clone->bi_size) {
857        bio_put(clone);
858        return NULL;
859    }
860
861    return clone;
862}
863
864static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
865{
866    unsigned int i;
867    struct bio_vec *bv;
868
869    for (i = 0; i < clone->bi_vcnt; i++) {
870        bv = bio_iovec_idx(clone, i);
871        BUG_ON(!bv->bv_page);
872        mempool_free(bv->bv_page, cc->page_pool);
873        bv->bv_page = NULL;
874    }
875}
876
877static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
878                      struct bio *bio, sector_t sector)
879{
880    struct dm_crypt_io *io;
881
882    io = mempool_alloc(cc->io_pool, GFP_NOIO);
883    io->cc = cc;
884    io->base_bio = bio;
885    io->sector = sector;
886    io->error = 0;
887    io->base_io = NULL;
888    atomic_set(&io->io_pending, 0);
889
890    return io;
891}
892
893static void crypt_inc_pending(struct dm_crypt_io *io)
894{
895    atomic_inc(&io->io_pending);
896}
897
898/*
899 * One of the bios was finished. Check for completion of
900 * the whole request and correctly clean up the buffer.
901 * If base_io is set, wait for the last fragment to complete.
902 */
903static void crypt_dec_pending(struct dm_crypt_io *io)
904{
905    struct crypt_config *cc = io->cc;
906    struct bio *base_bio = io->base_bio;
907    struct dm_crypt_io *base_io = io->base_io;
908    int error = io->error;
909
910    if (!atomic_dec_and_test(&io->io_pending))
911        return;
912
913    mempool_free(io, cc->io_pool);
914
915    if (likely(!base_io))
916        bio_endio(base_bio, error);
917    else {
918        if (error && !base_io->error)
919            base_io->error = error;
920        crypt_dec_pending(base_io);
921    }
922}
923
924/*
925 * kcryptd/kcryptd_io:
926 *
927 * Needed because it would be very unwise to do decryption in an
928 * interrupt context.
929 *
930 * kcryptd performs the actual encryption or decryption.
931 *
932 * kcryptd_io performs the IO submission.
933 *
934 * They must be separated as otherwise the final stages could be
935 * starved by new requests which can block in the first stages due
936 * to memory allocation.
937 *
938 * The work is done per CPU global for all dm-crypt instances.
939 * They should not depend on each other and do not block.
940 */
941static void crypt_endio(struct bio *clone, int error)
942{
943    struct dm_crypt_io *io = clone->bi_private;
944    struct crypt_config *cc = io->cc;
945    unsigned rw = bio_data_dir(clone);
946
947    if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
948        error = -EIO;
949
950    /*
951     * free the processed pages
952     */
953    if (rw == WRITE)
954        crypt_free_buffer_pages(cc, clone);
955
956    bio_put(clone);
957
958    if (rw == READ && !error) {
959        kcryptd_queue_crypt(io);
960        return;
961    }
962
963    if (unlikely(error))
964        io->error = error;
965
966    crypt_dec_pending(io);
967}
968
969static void clone_init(struct dm_crypt_io *io, struct bio *clone)
970{
971    struct crypt_config *cc = io->cc;
972
973    clone->bi_private = io;
974    clone->bi_end_io = crypt_endio;
975    clone->bi_bdev = cc->dev->bdev;
976    clone->bi_rw = io->base_bio->bi_rw;
977    clone->bi_destructor = dm_crypt_bio_destructor;
978}
979
980static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
981{
982    struct crypt_config *cc = io->cc;
983    struct bio *base_bio = io->base_bio;
984    struct bio *clone;
985
986    /*
987     * The block layer might modify the bvec array, so always
988     * copy the required bvecs because we need the original
989     * one in order to decrypt the whole bio data *afterwards*.
990     */
991    clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
992    if (!clone)
993        return 1;
994
995    crypt_inc_pending(io);
996
997    clone_init(io, clone);
998    clone->bi_idx = 0;
999    clone->bi_vcnt = bio_segments(base_bio);
1000    clone->bi_size = base_bio->bi_size;
1001    clone->bi_sector = cc->start + io->sector;
1002    memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1003           sizeof(struct bio_vec) * clone->bi_vcnt);
1004
1005    generic_make_request(clone);
1006    return 0;
1007}
1008
1009static void kcryptd_io_write(struct dm_crypt_io *io)
1010{
1011    struct bio *clone = io->ctx.bio_out;
1012    generic_make_request(clone);
1013}
1014
1015static void kcryptd_io(struct work_struct *work)
1016{
1017    struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1018
1019    if (bio_data_dir(io->base_bio) == READ) {
1020        crypt_inc_pending(io);
1021        if (kcryptd_io_read(io, GFP_NOIO))
1022            io->error = -ENOMEM;
1023        crypt_dec_pending(io);
1024    } else
1025        kcryptd_io_write(io);
1026}
1027
1028static void kcryptd_queue_io(struct dm_crypt_io *io)
1029{
1030    struct crypt_config *cc = io->cc;
1031
1032    INIT_WORK(&io->work, kcryptd_io);
1033    queue_work(cc->io_queue, &io->work);
1034}
1035
1036static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1037{
1038    struct bio *clone = io->ctx.bio_out;
1039    struct crypt_config *cc = io->cc;
1040
1041    if (unlikely(io->error < 0)) {
1042        crypt_free_buffer_pages(cc, clone);
1043        bio_put(clone);
1044        crypt_dec_pending(io);
1045        return;
1046    }
1047
1048    /* crypt_convert should have filled the clone bio */
1049    BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1050
1051    clone->bi_sector = cc->start + io->sector;
1052
1053    if (async)
1054        kcryptd_queue_io(io);
1055    else
1056        generic_make_request(clone);
1057}
1058
1059static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1060{
1061    struct crypt_config *cc = io->cc;
1062    struct bio *clone;
1063    struct dm_crypt_io *new_io;
1064    int crypt_finished;
1065    unsigned out_of_pages = 0;
1066    unsigned remaining = io->base_bio->bi_size;
1067    sector_t sector = io->sector;
1068    int r;
1069
1070    /*
1071     * Prevent io from disappearing until this function completes.
1072     */
1073    crypt_inc_pending(io);
1074    crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1075
1076    /*
1077     * The allocated buffers can be smaller than the whole bio,
1078     * so repeat the whole process until all the data can be handled.
1079     */
1080    while (remaining) {
1081        clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1082        if (unlikely(!clone)) {
1083            io->error = -ENOMEM;
1084            break;
1085        }
1086
1087        io->ctx.bio_out = clone;
1088        io->ctx.idx_out = 0;
1089
1090        remaining -= clone->bi_size;
1091        sector += bio_sectors(clone);
1092
1093        crypt_inc_pending(io);
1094
1095        r = crypt_convert(cc, &io->ctx);
1096        if (r < 0)
1097            io->error = -EIO;
1098
1099        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1100
1101        /* Encryption was already finished, submit io now */
1102        if (crypt_finished) {
1103            kcryptd_crypt_write_io_submit(io, 0);
1104
1105            /*
1106             * If there was an error, do not try next fragments.
1107             * For async, error is processed in async handler.
1108             */
1109            if (unlikely(r < 0))
1110                break;
1111
1112            io->sector = sector;
1113        }
1114
1115        /*
1116         * Out of memory -> run queues
1117         * But don't wait if split was due to the io size restriction
1118         */
1119        if (unlikely(out_of_pages))
1120            congestion_wait(BLK_RW_ASYNC, HZ/100);
1121
1122        /*
1123         * With async crypto it is unsafe to share the crypto context
1124         * between fragments, so switch to a new dm_crypt_io structure.
1125         */
1126        if (unlikely(!crypt_finished && remaining)) {
1127            new_io = crypt_io_alloc(io->cc, io->base_bio,
1128                        sector);
1129            crypt_inc_pending(new_io);
1130            crypt_convert_init(cc, &new_io->ctx, NULL,
1131                       io->base_bio, sector);
1132            new_io->ctx.idx_in = io->ctx.idx_in;
1133            new_io->ctx.offset_in = io->ctx.offset_in;
1134
1135            /*
1136             * Fragments after the first use the base_io
1137             * pending count.
1138             */
1139            if (!io->base_io)
1140                new_io->base_io = io;
1141            else {
1142                new_io->base_io = io->base_io;
1143                crypt_inc_pending(io->base_io);
1144                crypt_dec_pending(io);
1145            }
1146
1147            io = new_io;
1148        }
1149    }
1150
1151    crypt_dec_pending(io);
1152}
1153
1154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1155{
1156    crypt_dec_pending(io);
1157}
1158
1159static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1160{
1161    struct crypt_config *cc = io->cc;
1162    int r = 0;
1163
1164    crypt_inc_pending(io);
1165
1166    crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1167               io->sector);
1168
1169    r = crypt_convert(cc, &io->ctx);
1170    if (r < 0)
1171        io->error = -EIO;
1172
1173    if (atomic_dec_and_test(&io->ctx.cc_pending))
1174        kcryptd_crypt_read_done(io);
1175
1176    crypt_dec_pending(io);
1177}
1178
1179static void kcryptd_async_done(struct crypto_async_request *async_req,
1180                   int error)
1181{
1182    struct dm_crypt_request *dmreq = async_req->data;
1183    struct convert_context *ctx = dmreq->ctx;
1184    struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1185    struct crypt_config *cc = io->cc;
1186
1187    if (error == -EINPROGRESS) {
1188        complete(&ctx->restart);
1189        return;
1190    }
1191
1192    if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1193        error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1194
1195    if (error < 0)
1196        io->error = -EIO;
1197
1198    mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1199
1200    if (!atomic_dec_and_test(&ctx->cc_pending))
1201        return;
1202
1203    if (bio_data_dir(io->base_bio) == READ)
1204        kcryptd_crypt_read_done(io);
1205    else
1206        kcryptd_crypt_write_io_submit(io, 1);
1207}
1208
1209static void kcryptd_crypt(struct work_struct *work)
1210{
1211    struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1212
1213    if (bio_data_dir(io->base_bio) == READ)
1214        kcryptd_crypt_read_convert(io);
1215    else
1216        kcryptd_crypt_write_convert(io);
1217}
1218
1219static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1220{
1221    struct crypt_config *cc = io->cc;
1222
1223    INIT_WORK(&io->work, kcryptd_crypt);
1224    queue_work(cc->crypt_queue, &io->work);
1225}
1226
1227/*
1228 * Decode key from its hex representation
1229 */
1230static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1231{
1232    char buffer[3];
1233    unsigned int i;
1234
1235    buffer[2] = '\0';
1236
1237    for (i = 0; i < size; i++) {
1238        buffer[0] = *hex++;
1239        buffer[1] = *hex++;
1240
1241        if (kstrtou8(buffer, 16, &key[i]))
1242            return -EINVAL;
1243    }
1244
1245    if (*hex != '\0')
1246        return -EINVAL;
1247
1248    return 0;
1249}
1250
1251/*
1252 * Encode key into its hex representation
1253 */
1254static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1255{
1256    unsigned int i;
1257
1258    for (i = 0; i < size; i++) {
1259        sprintf(hex, "%02x", *key);
1260        hex += 2;
1261        key++;
1262    }
1263}
1264
1265static void crypt_free_tfms(struct crypt_config *cc)
1266{
1267    unsigned i;
1268
1269    if (!cc->tfms)
1270        return;
1271
1272    for (i = 0; i < cc->tfms_count; i++)
1273        if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1274            crypto_free_ablkcipher(cc->tfms[i]);
1275            cc->tfms[i] = NULL;
1276        }
1277
1278    kfree(cc->tfms);
1279    cc->tfms = NULL;
1280}
1281
1282static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1283{
1284    unsigned i;
1285    int err;
1286
1287    cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1288               GFP_KERNEL);
1289    if (!cc->tfms)
1290        return -ENOMEM;
1291
1292    for (i = 0; i < cc->tfms_count; i++) {
1293        cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1294        if (IS_ERR(cc->tfms[i])) {
1295            err = PTR_ERR(cc->tfms[i]);
1296            crypt_free_tfms(cc);
1297            return err;
1298        }
1299    }
1300
1301    return 0;
1302}
1303
1304static int crypt_setkey_allcpus(struct crypt_config *cc)
1305{
1306    unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1307    int err = 0, i, r;
1308
1309    for (i = 0; i < cc->tfms_count; i++) {
1310        r = crypto_ablkcipher_setkey(cc->tfms[i],
1311                         cc->key + (i * subkey_size),
1312                         subkey_size);
1313        if (r)
1314            err = r;
1315    }
1316
1317    return err;
1318}
1319
1320static int crypt_set_key(struct crypt_config *cc, char *key)
1321{
1322    int r = -EINVAL;
1323    int key_string_len = strlen(key);
1324
1325    /* The key size may not be changed. */
1326    if (cc->key_size != (key_string_len >> 1))
1327        goto out;
1328
1329    /* Hyphen (which gives a key_size of zero) means there is no key. */
1330    if (!cc->key_size && strcmp(key, "-"))
1331        goto out;
1332
1333    if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1334        goto out;
1335
1336    set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1337
1338    r = crypt_setkey_allcpus(cc);
1339
1340out:
1341    /* Hex key string not needed after here, so wipe it. */
1342    memset(key, '0', key_string_len);
1343
1344    return r;
1345}
1346
1347static int crypt_wipe_key(struct crypt_config *cc)
1348{
1349    clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1350    memset(&cc->key, 0, cc->key_size * sizeof(u8));
1351
1352    return crypt_setkey_allcpus(cc);
1353}
1354
1355static void crypt_dtr(struct dm_target *ti)
1356{
1357    struct crypt_config *cc = ti->private;
1358    struct crypt_cpu *cpu_cc;
1359    int cpu;
1360
1361    ti->private = NULL;
1362
1363    if (!cc)
1364        return;
1365
1366    if (cc->io_queue)
1367        destroy_workqueue(cc->io_queue);
1368    if (cc->crypt_queue)
1369        destroy_workqueue(cc->crypt_queue);
1370
1371    if (cc->cpu)
1372        for_each_possible_cpu(cpu) {
1373            cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1374            if (cpu_cc->req)
1375                mempool_free(cpu_cc->req, cc->req_pool);
1376        }
1377
1378    crypt_free_tfms(cc);
1379
1380    if (cc->bs)
1381        bioset_free(cc->bs);
1382
1383    if (cc->page_pool)
1384        mempool_destroy(cc->page_pool);
1385    if (cc->req_pool)
1386        mempool_destroy(cc->req_pool);
1387    if (cc->io_pool)
1388        mempool_destroy(cc->io_pool);
1389
1390    if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1391        cc->iv_gen_ops->dtr(cc);
1392
1393    if (cc->dev)
1394        dm_put_device(ti, cc->dev);
1395
1396    if (cc->cpu)
1397        free_percpu(cc->cpu);
1398
1399    kzfree(cc->cipher);
1400    kzfree(cc->cipher_string);
1401
1402    /* Must zero key material before freeing */
1403    kzfree(cc);
1404}
1405
1406static int crypt_ctr_cipher(struct dm_target *ti,
1407                char *cipher_in, char *key)
1408{
1409    struct crypt_config *cc = ti->private;
1410    char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1411    char *cipher_api = NULL;
1412    int ret = -EINVAL;
1413    char dummy;
1414
1415    /* Convert to crypto api definition? */
1416    if (strchr(cipher_in, '(')) {
1417        ti->error = "Bad cipher specification";
1418        return -EINVAL;
1419    }
1420
1421    cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1422    if (!cc->cipher_string)
1423        goto bad_mem;
1424
1425    /*
1426     * Legacy dm-crypt cipher specification
1427     * cipher[:keycount]-mode-iv:ivopts
1428     */
1429    tmp = cipher_in;
1430    keycount = strsep(&tmp, "-");
1431    cipher = strsep(&keycount, ":");
1432
1433    if (!keycount)
1434        cc->tfms_count = 1;
1435    else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1436         !is_power_of_2(cc->tfms_count)) {
1437        ti->error = "Bad cipher key count specification";
1438        return -EINVAL;
1439    }
1440    cc->key_parts = cc->tfms_count;
1441
1442    cc->cipher = kstrdup(cipher, GFP_KERNEL);
1443    if (!cc->cipher)
1444        goto bad_mem;
1445
1446    chainmode = strsep(&tmp, "-");
1447    ivopts = strsep(&tmp, "-");
1448    ivmode = strsep(&ivopts, ":");
1449
1450    if (tmp)
1451        DMWARN("Ignoring unexpected additional cipher options");
1452
1453    cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1454                 __alignof__(struct crypt_cpu));
1455    if (!cc->cpu) {
1456        ti->error = "Cannot allocate per cpu state";
1457        goto bad_mem;
1458    }
1459
1460    /*
1461     * For compatibility with the original dm-crypt mapping format, if
1462     * only the cipher name is supplied, use cbc-plain.
1463     */
1464    if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1465        chainmode = "cbc";
1466        ivmode = "plain";
1467    }
1468
1469    if (strcmp(chainmode, "ecb") && !ivmode) {
1470        ti->error = "IV mechanism required";
1471        return -EINVAL;
1472    }
1473
1474    cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1475    if (!cipher_api)
1476        goto bad_mem;
1477
1478    ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1479               "%s(%s)", chainmode, cipher);
1480    if (ret < 0) {
1481        kfree(cipher_api);
1482        goto bad_mem;
1483    }
1484
1485    /* Allocate cipher */
1486    ret = crypt_alloc_tfms(cc, cipher_api);
1487    if (ret < 0) {
1488        ti->error = "Error allocating crypto tfm";
1489        goto bad;
1490    }
1491
1492    /* Initialize and set key */
1493    ret = crypt_set_key(cc, key);
1494    if (ret < 0) {
1495        ti->error = "Error decoding and setting key";
1496        goto bad;
1497    }
1498
1499    /* Initialize IV */
1500    cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1501    if (cc->iv_size)
1502        /* at least a 64 bit sector number should fit in our buffer */
1503        cc->iv_size = max(cc->iv_size,
1504                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1505    else if (ivmode) {
1506        DMWARN("Selected cipher does not support IVs");
1507        ivmode = NULL;
1508    }
1509
1510    /* Choose ivmode, see comments at iv code. */
1511    if (ivmode == NULL)
1512        cc->iv_gen_ops = NULL;
1513    else if (strcmp(ivmode, "plain") == 0)
1514        cc->iv_gen_ops = &crypt_iv_plain_ops;
1515    else if (strcmp(ivmode, "plain64") == 0)
1516        cc->iv_gen_ops = &crypt_iv_plain64_ops;
1517    else if (strcmp(ivmode, "essiv") == 0)
1518        cc->iv_gen_ops = &crypt_iv_essiv_ops;
1519    else if (strcmp(ivmode, "benbi") == 0)
1520        cc->iv_gen_ops = &crypt_iv_benbi_ops;
1521    else if (strcmp(ivmode, "null") == 0)
1522        cc->iv_gen_ops = &crypt_iv_null_ops;
1523    else if (strcmp(ivmode, "lmk") == 0) {
1524        cc->iv_gen_ops = &crypt_iv_lmk_ops;
1525        /* Version 2 and 3 is recognised according
1526         * to length of provided multi-key string.
1527         * If present (version 3), last key is used as IV seed.
1528         */
1529        if (cc->key_size % cc->key_parts)
1530            cc->key_parts++;
1531    } else {
1532        ret = -EINVAL;
1533        ti->error = "Invalid IV mode";
1534        goto bad;
1535    }
1536
1537    /* Allocate IV */
1538    if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1539        ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1540        if (ret < 0) {
1541            ti->error = "Error creating IV";
1542            goto bad;
1543        }
1544    }
1545
1546    /* Initialize IV (set keys for ESSIV etc) */
1547    if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1548        ret = cc->iv_gen_ops->init(cc);
1549        if (ret < 0) {
1550            ti->error = "Error initialising IV";
1551            goto bad;
1552        }
1553    }
1554
1555    ret = 0;
1556bad:
1557    kfree(cipher_api);
1558    return ret;
1559
1560bad_mem:
1561    ti->error = "Cannot allocate cipher strings";
1562    return -ENOMEM;
1563}
1564
1565/*
1566 * Construct an encryption mapping:
1567 * <cipher> <key> <iv_offset> <dev_path> <start>
1568 */
1569static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1570{
1571    struct crypt_config *cc;
1572    unsigned int key_size, opt_params;
1573    unsigned long long tmpll;
1574    int ret;
1575    struct dm_arg_set as;
1576    const char *opt_string;
1577    char dummy;
1578
1579    static struct dm_arg _args[] = {
1580        {0, 1, "Invalid number of feature args"},
1581    };
1582
1583    if (argc < 5) {
1584        ti->error = "Not enough arguments";
1585        return -EINVAL;
1586    }
1587
1588    key_size = strlen(argv[1]) >> 1;
1589
1590    cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1591    if (!cc) {
1592        ti->error = "Cannot allocate encryption context";
1593        return -ENOMEM;
1594    }
1595    cc->key_size = key_size;
1596
1597    ti->private = cc;
1598    ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1599    if (ret < 0)
1600        goto bad;
1601
1602    ret = -ENOMEM;
1603    cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1604    if (!cc->io_pool) {
1605        ti->error = "Cannot allocate crypt io mempool";
1606        goto bad;
1607    }
1608
1609    cc->dmreq_start = sizeof(struct ablkcipher_request);
1610    cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1611    cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1612    cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1613               ~(crypto_tfm_ctx_alignment() - 1);
1614
1615    cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1616            sizeof(struct dm_crypt_request) + cc->iv_size);
1617    if (!cc->req_pool) {
1618        ti->error = "Cannot allocate crypt request mempool";
1619        goto bad;
1620    }
1621
1622    cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1623    if (!cc->page_pool) {
1624        ti->error = "Cannot allocate page mempool";
1625        goto bad;
1626    }
1627
1628    cc->bs = bioset_create(MIN_IOS, 0);
1629    if (!cc->bs) {
1630        ti->error = "Cannot allocate crypt bioset";
1631        goto bad;
1632    }
1633
1634    ret = -EINVAL;
1635    if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1636        ti->error = "Invalid iv_offset sector";
1637        goto bad;
1638    }
1639    cc->iv_offset = tmpll;
1640
1641    if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1642        ti->error = "Device lookup failed";
1643        goto bad;
1644    }
1645
1646    if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1647        ti->error = "Invalid device sector";
1648        goto bad;
1649    }
1650    cc->start = tmpll;
1651
1652    argv += 5;
1653    argc -= 5;
1654
1655    /* Optional parameters */
1656    if (argc) {
1657        as.argc = argc;
1658        as.argv = argv;
1659
1660        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1661        if (ret)
1662            goto bad;
1663
1664        opt_string = dm_shift_arg(&as);
1665
1666        if (opt_params == 1 && opt_string &&
1667            !strcasecmp(opt_string, "allow_discards"))
1668            ti->num_discard_requests = 1;
1669        else if (opt_params) {
1670            ret = -EINVAL;
1671            ti->error = "Invalid feature arguments";
1672            goto bad;
1673        }
1674    }
1675
1676    ret = -ENOMEM;
1677    cc->io_queue = alloc_workqueue("kcryptd_io",
1678                       WQ_NON_REENTRANT|
1679                       WQ_MEM_RECLAIM,
1680                       1);
1681    if (!cc->io_queue) {
1682        ti->error = "Couldn't create kcryptd io queue";
1683        goto bad;
1684    }
1685
1686    cc->crypt_queue = alloc_workqueue("kcryptd",
1687                      WQ_NON_REENTRANT|
1688                      WQ_CPU_INTENSIVE|
1689                      WQ_MEM_RECLAIM,
1690                      1);
1691    if (!cc->crypt_queue) {
1692        ti->error = "Couldn't create kcryptd queue";
1693        goto bad;
1694    }
1695
1696    ti->num_flush_requests = 1;
1697    ti->discard_zeroes_data_unsupported = true;
1698
1699    return 0;
1700
1701bad:
1702    crypt_dtr(ti);
1703    return ret;
1704}
1705
1706static int crypt_map(struct dm_target *ti, struct bio *bio,
1707             union map_info *map_context)
1708{
1709    struct dm_crypt_io *io;
1710    struct crypt_config *cc = ti->private;
1711
1712    /*
1713     * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1714     * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1715     * - for REQ_DISCARD caller must use flush if IO ordering matters
1716     */
1717    if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1718        bio->bi_bdev = cc->dev->bdev;
1719        if (bio_sectors(bio))
1720            bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1721        return DM_MAPIO_REMAPPED;
1722    }
1723
1724    io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1725
1726    if (bio_data_dir(io->base_bio) == READ) {
1727        if (kcryptd_io_read(io, GFP_NOWAIT))
1728            kcryptd_queue_io(io);
1729    } else
1730        kcryptd_queue_crypt(io);
1731
1732    return DM_MAPIO_SUBMITTED;
1733}
1734
1735static int crypt_status(struct dm_target *ti, status_type_t type,
1736            unsigned status_flags, char *result, unsigned maxlen)
1737{
1738    struct crypt_config *cc = ti->private;
1739    unsigned int sz = 0;
1740
1741    switch (type) {
1742    case STATUSTYPE_INFO:
1743        result[0] = '\0';
1744        break;
1745
1746    case STATUSTYPE_TABLE:
1747        DMEMIT("%s ", cc->cipher_string);
1748
1749        if (cc->key_size > 0) {
1750            if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1751                return -ENOMEM;
1752
1753            crypt_encode_key(result + sz, cc->key, cc->key_size);
1754            sz += cc->key_size << 1;
1755        } else {
1756            if (sz >= maxlen)
1757                return -ENOMEM;
1758            result[sz++] = '-';
1759        }
1760
1761        DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1762                cc->dev->name, (unsigned long long)cc->start);
1763
1764        if (ti->num_discard_requests)
1765            DMEMIT(" 1 allow_discards");
1766
1767        break;
1768    }
1769    return 0;
1770}
1771
1772static void crypt_postsuspend(struct dm_target *ti)
1773{
1774    struct crypt_config *cc = ti->private;
1775
1776    set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1777}
1778
1779static int crypt_preresume(struct dm_target *ti)
1780{
1781    struct crypt_config *cc = ti->private;
1782
1783    if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1784        DMERR("aborting resume - crypt key is not set.");
1785        return -EAGAIN;
1786    }
1787
1788    return 0;
1789}
1790
1791static void crypt_resume(struct dm_target *ti)
1792{
1793    struct crypt_config *cc = ti->private;
1794
1795    clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1796}
1797
1798/* Message interface
1799 * key set <key>
1800 * key wipe
1801 */
1802static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1803{
1804    struct crypt_config *cc = ti->private;
1805    int ret = -EINVAL;
1806
1807    if (argc < 2)
1808        goto error;
1809
1810    if (!strcasecmp(argv[0], "key")) {
1811        if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1812            DMWARN("not suspended during key manipulation.");
1813            return -EINVAL;
1814        }
1815        if (argc == 3 && !strcasecmp(argv[1], "set")) {
1816            ret = crypt_set_key(cc, argv[2]);
1817            if (ret)
1818                return ret;
1819            if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1820                ret = cc->iv_gen_ops->init(cc);
1821            return ret;
1822        }
1823        if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1824            if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1825                ret = cc->iv_gen_ops->wipe(cc);
1826                if (ret)
1827                    return ret;
1828            }
1829            return crypt_wipe_key(cc);
1830        }
1831    }
1832
1833error:
1834    DMWARN("unrecognised message received.");
1835    return -EINVAL;
1836}
1837
1838static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1839               struct bio_vec *biovec, int max_size)
1840{
1841    struct crypt_config *cc = ti->private;
1842    struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1843
1844    if (!q->merge_bvec_fn)
1845        return max_size;
1846
1847    bvm->bi_bdev = cc->dev->bdev;
1848    bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1849
1850    return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1851}
1852
1853static int crypt_iterate_devices(struct dm_target *ti,
1854                 iterate_devices_callout_fn fn, void *data)
1855{
1856    struct crypt_config *cc = ti->private;
1857
1858    return fn(ti, cc->dev, cc->start, ti->len, data);
1859}
1860
1861static struct target_type crypt_target = {
1862    .name = "crypt",
1863    .version = {1, 11, 0},
1864    .module = THIS_MODULE,
1865    .ctr = crypt_ctr,
1866    .dtr = crypt_dtr,
1867    .map = crypt_map,
1868    .status = crypt_status,
1869    .postsuspend = crypt_postsuspend,
1870    .preresume = crypt_preresume,
1871    .resume = crypt_resume,
1872    .message = crypt_message,
1873    .merge = crypt_merge,
1874    .iterate_devices = crypt_iterate_devices,
1875};
1876
1877static int __init dm_crypt_init(void)
1878{
1879    int r;
1880
1881    _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1882    if (!_crypt_io_pool)
1883        return -ENOMEM;
1884
1885    r = dm_register_target(&crypt_target);
1886    if (r < 0) {
1887        DMERR("register failed %d", r);
1888        kmem_cache_destroy(_crypt_io_pool);
1889    }
1890
1891    return r;
1892}
1893
1894static void __exit dm_crypt_exit(void)
1895{
1896    dm_unregister_target(&crypt_target);
1897    kmem_cache_destroy(_crypt_io_pool);
1898}
1899
1900module_init(dm_crypt_init);
1901module_exit(dm_crypt_exit);
1902
1903MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1904MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1905MODULE_LICENSE("GPL");
1906

Archive Download this file



interactive