Root/drivers/md/raid10.c

1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define NR_RAID10_BIOS 256
62
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
85static int enough(struct r10conf *conf, int ignore);
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87                int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
91
92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93{
94    struct r10conf *conf = data;
95    int size = offsetof(struct r10bio, devs[conf->copies]);
96
97    /* allocate a r10bio with room for raid_disks entries in the
98     * bios array */
99    return kzalloc(size, gfp_flags);
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104    kfree(r10_bio);
105}
106
107/* Maximum size of each resync request */
108#define RESYNC_BLOCK_SIZE (64*1024)
109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123{
124    struct r10conf *conf = data;
125    struct page *page;
126    struct r10bio *r10_bio;
127    struct bio *bio;
128    int i, j;
129    int nalloc;
130
131    r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132    if (!r10_bio)
133        return NULL;
134
135    if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136        test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137        nalloc = conf->copies; /* resync */
138    else
139        nalloc = 2; /* recovery */
140
141    /*
142     * Allocate bios.
143     */
144    for (j = nalloc ; j-- ; ) {
145        bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146        if (!bio)
147            goto out_free_bio;
148        r10_bio->devs[j].bio = bio;
149        if (!conf->have_replacement)
150            continue;
151        bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152        if (!bio)
153            goto out_free_bio;
154        r10_bio->devs[j].repl_bio = bio;
155    }
156    /*
157     * Allocate RESYNC_PAGES data pages and attach them
158     * where needed.
159     */
160    for (j = 0 ; j < nalloc; j++) {
161        struct bio *rbio = r10_bio->devs[j].repl_bio;
162        bio = r10_bio->devs[j].bio;
163        for (i = 0; i < RESYNC_PAGES; i++) {
164            if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165                           &conf->mddev->recovery)) {
166                /* we can share bv_page's during recovery
167                 * and reshape */
168                struct bio *rbio = r10_bio->devs[0].bio;
169                page = rbio->bi_io_vec[i].bv_page;
170                get_page(page);
171            } else
172                page = alloc_page(gfp_flags);
173            if (unlikely(!page))
174                goto out_free_pages;
175
176            bio->bi_io_vec[i].bv_page = page;
177            if (rbio)
178                rbio->bi_io_vec[i].bv_page = page;
179        }
180    }
181
182    return r10_bio;
183
184out_free_pages:
185    for ( ; i > 0 ; i--)
186        safe_put_page(bio->bi_io_vec[i-1].bv_page);
187    while (j--)
188        for (i = 0; i < RESYNC_PAGES ; i++)
189            safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190    j = 0;
191out_free_bio:
192    for ( ; j < nalloc; j++) {
193        if (r10_bio->devs[j].bio)
194            bio_put(r10_bio->devs[j].bio);
195        if (r10_bio->devs[j].repl_bio)
196            bio_put(r10_bio->devs[j].repl_bio);
197    }
198    r10bio_pool_free(r10_bio, conf);
199    return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204    int i;
205    struct r10conf *conf = data;
206    struct r10bio *r10bio = __r10_bio;
207    int j;
208
209    for (j=0; j < conf->copies; j++) {
210        struct bio *bio = r10bio->devs[j].bio;
211        if (bio) {
212            for (i = 0; i < RESYNC_PAGES; i++) {
213                safe_put_page(bio->bi_io_vec[i].bv_page);
214                bio->bi_io_vec[i].bv_page = NULL;
215            }
216            bio_put(bio);
217        }
218        bio = r10bio->devs[j].repl_bio;
219        if (bio)
220            bio_put(bio);
221    }
222    r10bio_pool_free(r10bio, conf);
223}
224
225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226{
227    int i;
228
229    for (i = 0; i < conf->copies; i++) {
230        struct bio **bio = & r10_bio->devs[i].bio;
231        if (!BIO_SPECIAL(*bio))
232            bio_put(*bio);
233        *bio = NULL;
234        bio = &r10_bio->devs[i].repl_bio;
235        if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236            bio_put(*bio);
237        *bio = NULL;
238    }
239}
240
241static void free_r10bio(struct r10bio *r10_bio)
242{
243    struct r10conf *conf = r10_bio->mddev->private;
244
245    put_all_bios(conf, r10_bio);
246    mempool_free(r10_bio, conf->r10bio_pool);
247}
248
249static void put_buf(struct r10bio *r10_bio)
250{
251    struct r10conf *conf = r10_bio->mddev->private;
252
253    mempool_free(r10_bio, conf->r10buf_pool);
254
255    lower_barrier(conf);
256}
257
258static void reschedule_retry(struct r10bio *r10_bio)
259{
260    unsigned long flags;
261    struct mddev *mddev = r10_bio->mddev;
262    struct r10conf *conf = mddev->private;
263
264    spin_lock_irqsave(&conf->device_lock, flags);
265    list_add(&r10_bio->retry_list, &conf->retry_list);
266    conf->nr_queued ++;
267    spin_unlock_irqrestore(&conf->device_lock, flags);
268
269    /* wake up frozen array... */
270    wake_up(&conf->wait_barrier);
271
272    md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280static void raid_end_bio_io(struct r10bio *r10_bio)
281{
282    struct bio *bio = r10_bio->master_bio;
283    int done;
284    struct r10conf *conf = r10_bio->mddev->private;
285
286    if (bio->bi_phys_segments) {
287        unsigned long flags;
288        spin_lock_irqsave(&conf->device_lock, flags);
289        bio->bi_phys_segments--;
290        done = (bio->bi_phys_segments == 0);
291        spin_unlock_irqrestore(&conf->device_lock, flags);
292    } else
293        done = 1;
294    if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295        clear_bit(BIO_UPTODATE, &bio->bi_flags);
296    if (done) {
297        bio_endio(bio, 0);
298        /*
299         * Wake up any possible resync thread that waits for the device
300         * to go idle.
301         */
302        allow_barrier(conf);
303    }
304    free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311{
312    struct r10conf *conf = r10_bio->mddev->private;
313
314    conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315        r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
318/*
319 * Find the disk number which triggered given bio
320 */
321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322             struct bio *bio, int *slotp, int *replp)
323{
324    int slot;
325    int repl = 0;
326
327    for (slot = 0; slot < conf->copies; slot++) {
328        if (r10_bio->devs[slot].bio == bio)
329            break;
330        if (r10_bio->devs[slot].repl_bio == bio) {
331            repl = 1;
332            break;
333        }
334    }
335
336    BUG_ON(slot == conf->copies);
337    update_head_pos(slot, r10_bio);
338
339    if (slotp)
340        *slotp = slot;
341    if (replp)
342        *replp = repl;
343    return r10_bio->devs[slot].devnum;
344}
345
346static void raid10_end_read_request(struct bio *bio, int error)
347{
348    int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349    struct r10bio *r10_bio = bio->bi_private;
350    int slot, dev;
351    struct md_rdev *rdev;
352    struct r10conf *conf = r10_bio->mddev->private;
353
354
355    slot = r10_bio->read_slot;
356    dev = r10_bio->devs[slot].devnum;
357    rdev = r10_bio->devs[slot].rdev;
358    /*
359     * this branch is our 'one mirror IO has finished' event handler:
360     */
361    update_head_pos(slot, r10_bio);
362
363    if (uptodate) {
364        /*
365         * Set R10BIO_Uptodate in our master bio, so that
366         * we will return a good error code to the higher
367         * levels even if IO on some other mirrored buffer fails.
368         *
369         * The 'master' represents the composite IO operation to
370         * user-side. So if something waits for IO, then it will
371         * wait for the 'master' bio.
372         */
373        set_bit(R10BIO_Uptodate, &r10_bio->state);
374    } else {
375        /* If all other devices that store this block have
376         * failed, we want to return the error upwards rather
377         * than fail the last device. Here we redefine
378         * "uptodate" to mean "Don't want to retry"
379         */
380        unsigned long flags;
381        spin_lock_irqsave(&conf->device_lock, flags);
382        if (!enough(conf, rdev->raid_disk))
383            uptodate = 1;
384        spin_unlock_irqrestore(&conf->device_lock, flags);
385    }
386    if (uptodate) {
387        raid_end_bio_io(r10_bio);
388        rdev_dec_pending(rdev, conf->mddev);
389    } else {
390        /*
391         * oops, read error - keep the refcount on the rdev
392         */
393        char b[BDEVNAME_SIZE];
394        printk_ratelimited(KERN_ERR
395                   "md/raid10:%s: %s: rescheduling sector %llu\n",
396                   mdname(conf->mddev),
397                   bdevname(rdev->bdev, b),
398                   (unsigned long long)r10_bio->sector);
399        set_bit(R10BIO_ReadError, &r10_bio->state);
400        reschedule_retry(r10_bio);
401    }
402}
403
404static void close_write(struct r10bio *r10_bio)
405{
406    /* clear the bitmap if all writes complete successfully */
407    bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408            r10_bio->sectors,
409            !test_bit(R10BIO_Degraded, &r10_bio->state),
410            0);
411    md_write_end(r10_bio->mddev);
412}
413
414static void one_write_done(struct r10bio *r10_bio)
415{
416    if (atomic_dec_and_test(&r10_bio->remaining)) {
417        if (test_bit(R10BIO_WriteError, &r10_bio->state))
418            reschedule_retry(r10_bio);
419        else {
420            close_write(r10_bio);
421            if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422                reschedule_retry(r10_bio);
423            else
424                raid_end_bio_io(r10_bio);
425        }
426    }
427}
428
429static void raid10_end_write_request(struct bio *bio, int error)
430{
431    int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432    struct r10bio *r10_bio = bio->bi_private;
433    int dev;
434    int dec_rdev = 1;
435    struct r10conf *conf = r10_bio->mddev->private;
436    int slot, repl;
437    struct md_rdev *rdev = NULL;
438
439    dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441    if (repl)
442        rdev = conf->mirrors[dev].replacement;
443    if (!rdev) {
444        smp_rmb();
445        repl = 0;
446        rdev = conf->mirrors[dev].rdev;
447    }
448    /*
449     * this branch is our 'one mirror IO has finished' event handler:
450     */
451    if (!uptodate) {
452        if (repl)
453            /* Never record new bad blocks to replacement,
454             * just fail it.
455             */
456            md_error(rdev->mddev, rdev);
457        else {
458            set_bit(WriteErrorSeen, &rdev->flags);
459            if (!test_and_set_bit(WantReplacement, &rdev->flags))
460                set_bit(MD_RECOVERY_NEEDED,
461                    &rdev->mddev->recovery);
462            set_bit(R10BIO_WriteError, &r10_bio->state);
463            dec_rdev = 0;
464        }
465    } else {
466        /*
467         * Set R10BIO_Uptodate in our master bio, so that
468         * we will return a good error code for to the higher
469         * levels even if IO on some other mirrored buffer fails.
470         *
471         * The 'master' represents the composite IO operation to
472         * user-side. So if something waits for IO, then it will
473         * wait for the 'master' bio.
474         */
475        sector_t first_bad;
476        int bad_sectors;
477
478        set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480        /* Maybe we can clear some bad blocks. */
481        if (is_badblock(rdev,
482                r10_bio->devs[slot].addr,
483                r10_bio->sectors,
484                &first_bad, &bad_sectors)) {
485            bio_put(bio);
486            if (repl)
487                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488            else
489                r10_bio->devs[slot].bio = IO_MADE_GOOD;
490            dec_rdev = 0;
491            set_bit(R10BIO_MadeGood, &r10_bio->state);
492        }
493    }
494
495    /*
496     *
497     * Let's see if all mirrored write operations have finished
498     * already.
499     */
500    one_write_done(r10_bio);
501    if (dec_rdev)
502        rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503}
504
505/*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531{
532    int n,f;
533    sector_t sector;
534    sector_t chunk;
535    sector_t stripe;
536    int dev;
537    int slot = 0;
538
539    /* now calculate first sector/dev */
540    chunk = r10bio->sector >> geo->chunk_shift;
541    sector = r10bio->sector & geo->chunk_mask;
542
543    chunk *= geo->near_copies;
544    stripe = chunk;
545    dev = sector_div(stripe, geo->raid_disks);
546    if (geo->far_offset)
547        stripe *= geo->far_copies;
548
549    sector += stripe << geo->chunk_shift;
550
551    /* and calculate all the others */
552    for (n = 0; n < geo->near_copies; n++) {
553        int d = dev;
554        sector_t s = sector;
555        r10bio->devs[slot].addr = sector;
556        r10bio->devs[slot].devnum = d;
557        slot++;
558
559        for (f = 1; f < geo->far_copies; f++) {
560            d += geo->near_copies;
561            if (d >= geo->raid_disks)
562                d -= geo->raid_disks;
563            s += geo->stride;
564            r10bio->devs[slot].devnum = d;
565            r10bio->devs[slot].addr = s;
566            slot++;
567        }
568        dev++;
569        if (dev >= geo->raid_disks) {
570            dev = 0;
571            sector += (geo->chunk_mask + 1);
572        }
573    }
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578    struct geom *geo = &conf->geo;
579
580    if (conf->reshape_progress != MaxSector &&
581        ((r10bio->sector >= conf->reshape_progress) !=
582         conf->mddev->reshape_backwards)) {
583        set_bit(R10BIO_Previous, &r10bio->state);
584        geo = &conf->prev;
585    } else
586        clear_bit(R10BIO_Previous, &r10bio->state);
587
588    __raid10_find_phys(geo, r10bio);
589}
590
591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592{
593    sector_t offset, chunk, vchunk;
594    /* Never use conf->prev as this is only called during resync
595     * or recovery, so reshape isn't happening
596     */
597    struct geom *geo = &conf->geo;
598
599    offset = sector & geo->chunk_mask;
600    if (geo->far_offset) {
601        int fc;
602        chunk = sector >> geo->chunk_shift;
603        fc = sector_div(chunk, geo->far_copies);
604        dev -= fc * geo->near_copies;
605        if (dev < 0)
606            dev += geo->raid_disks;
607    } else {
608        while (sector >= geo->stride) {
609            sector -= geo->stride;
610            if (dev < geo->near_copies)
611                dev += geo->raid_disks - geo->near_copies;
612            else
613                dev -= geo->near_copies;
614        }
615        chunk = sector >> geo->chunk_shift;
616    }
617    vchunk = chunk * geo->raid_disks + dev;
618    sector_div(vchunk, geo->near_copies);
619    return (vchunk << geo->chunk_shift) + offset;
620}
621
622/**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632static int raid10_mergeable_bvec(struct request_queue *q,
633                 struct bvec_merge_data *bvm,
634                 struct bio_vec *biovec)
635{
636    struct mddev *mddev = q->queuedata;
637    struct r10conf *conf = mddev->private;
638    sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639    int max;
640    unsigned int chunk_sectors;
641    unsigned int bio_sectors = bvm->bi_size >> 9;
642    struct geom *geo = &conf->geo;
643
644    chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645    if (conf->reshape_progress != MaxSector &&
646        ((sector >= conf->reshape_progress) !=
647         conf->mddev->reshape_backwards))
648        geo = &conf->prev;
649
650    if (geo->near_copies < geo->raid_disks) {
651        max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652                    + bio_sectors)) << 9;
653        if (max < 0)
654            /* bio_add cannot handle a negative return */
655            max = 0;
656        if (max <= biovec->bv_len && bio_sectors == 0)
657            return biovec->bv_len;
658    } else
659        max = biovec->bv_len;
660
661    if (mddev->merge_check_needed) {
662        struct {
663            struct r10bio r10_bio;
664            struct r10dev devs[conf->copies];
665        } on_stack;
666        struct r10bio *r10_bio = &on_stack.r10_bio;
667        int s;
668        if (conf->reshape_progress != MaxSector) {
669            /* Cannot give any guidance during reshape */
670            if (max <= biovec->bv_len && bio_sectors == 0)
671                return biovec->bv_len;
672            return 0;
673        }
674        r10_bio->sector = sector;
675        raid10_find_phys(conf, r10_bio);
676        rcu_read_lock();
677        for (s = 0; s < conf->copies; s++) {
678            int disk = r10_bio->devs[s].devnum;
679            struct md_rdev *rdev = rcu_dereference(
680                conf->mirrors[disk].rdev);
681            if (rdev && !test_bit(Faulty, &rdev->flags)) {
682                struct request_queue *q =
683                    bdev_get_queue(rdev->bdev);
684                if (q->merge_bvec_fn) {
685                    bvm->bi_sector = r10_bio->devs[s].addr
686                        + rdev->data_offset;
687                    bvm->bi_bdev = rdev->bdev;
688                    max = min(max, q->merge_bvec_fn(
689                              q, bvm, biovec));
690                }
691            }
692            rdev = rcu_dereference(conf->mirrors[disk].replacement);
693            if (rdev && !test_bit(Faulty, &rdev->flags)) {
694                struct request_queue *q =
695                    bdev_get_queue(rdev->bdev);
696                if (q->merge_bvec_fn) {
697                    bvm->bi_sector = r10_bio->devs[s].addr
698                        + rdev->data_offset;
699                    bvm->bi_bdev = rdev->bdev;
700                    max = min(max, q->merge_bvec_fn(
701                              q, bvm, biovec));
702                }
703            }
704        }
705        rcu_read_unlock();
706    }
707    return max;
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729static struct md_rdev *read_balance(struct r10conf *conf,
730                    struct r10bio *r10_bio,
731                    int *max_sectors)
732{
733    const sector_t this_sector = r10_bio->sector;
734    int disk, slot;
735    int sectors = r10_bio->sectors;
736    int best_good_sectors;
737    sector_t new_distance, best_dist;
738    struct md_rdev *best_rdev, *rdev = NULL;
739    int do_balance;
740    int best_slot;
741    struct geom *geo = &conf->geo;
742
743    raid10_find_phys(conf, r10_bio);
744    rcu_read_lock();
745retry:
746    sectors = r10_bio->sectors;
747    best_slot = -1;
748    best_rdev = NULL;
749    best_dist = MaxSector;
750    best_good_sectors = 0;
751    do_balance = 1;
752    /*
753     * Check if we can balance. We can balance on the whole
754     * device if no resync is going on (recovery is ok), or below
755     * the resync window. We take the first readable disk when
756     * above the resync window.
757     */
758    if (conf->mddev->recovery_cp < MaxSector
759        && (this_sector + sectors >= conf->next_resync))
760        do_balance = 0;
761
762    for (slot = 0; slot < conf->copies ; slot++) {
763        sector_t first_bad;
764        int bad_sectors;
765        sector_t dev_sector;
766
767        if (r10_bio->devs[slot].bio == IO_BLOCKED)
768            continue;
769        disk = r10_bio->devs[slot].devnum;
770        rdev = rcu_dereference(conf->mirrors[disk].replacement);
771        if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772            test_bit(Unmerged, &rdev->flags) ||
773            r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774            rdev = rcu_dereference(conf->mirrors[disk].rdev);
775        if (rdev == NULL ||
776            test_bit(Faulty, &rdev->flags) ||
777            test_bit(Unmerged, &rdev->flags))
778            continue;
779        if (!test_bit(In_sync, &rdev->flags) &&
780            r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781            continue;
782
783        dev_sector = r10_bio->devs[slot].addr;
784        if (is_badblock(rdev, dev_sector, sectors,
785                &first_bad, &bad_sectors)) {
786            if (best_dist < MaxSector)
787                /* Already have a better slot */
788                continue;
789            if (first_bad <= dev_sector) {
790                /* Cannot read here. If this is the
791                 * 'primary' device, then we must not read
792                 * beyond 'bad_sectors' from another device.
793                 */
794                bad_sectors -= (dev_sector - first_bad);
795                if (!do_balance && sectors > bad_sectors)
796                    sectors = bad_sectors;
797                if (best_good_sectors > sectors)
798                    best_good_sectors = sectors;
799            } else {
800                sector_t good_sectors =
801                    first_bad - dev_sector;
802                if (good_sectors > best_good_sectors) {
803                    best_good_sectors = good_sectors;
804                    best_slot = slot;
805                    best_rdev = rdev;
806                }
807                if (!do_balance)
808                    /* Must read from here */
809                    break;
810            }
811            continue;
812        } else
813            best_good_sectors = sectors;
814
815        if (!do_balance)
816            break;
817
818        /* This optimisation is debatable, and completely destroys
819         * sequential read speed for 'far copies' arrays. So only
820         * keep it for 'near' arrays, and review those later.
821         */
822        if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823            break;
824
825        /* for far > 1 always use the lowest address */
826        if (geo->far_copies > 1)
827            new_distance = r10_bio->devs[slot].addr;
828        else
829            new_distance = abs(r10_bio->devs[slot].addr -
830                       conf->mirrors[disk].head_position);
831        if (new_distance < best_dist) {
832            best_dist = new_distance;
833            best_slot = slot;
834            best_rdev = rdev;
835        }
836    }
837    if (slot >= conf->copies) {
838        slot = best_slot;
839        rdev = best_rdev;
840    }
841
842    if (slot >= 0) {
843        atomic_inc(&rdev->nr_pending);
844        if (test_bit(Faulty, &rdev->flags)) {
845            /* Cannot risk returning a device that failed
846             * before we inc'ed nr_pending
847             */
848            rdev_dec_pending(rdev, conf->mddev);
849            goto retry;
850        }
851        r10_bio->read_slot = slot;
852    } else
853        rdev = NULL;
854    rcu_read_unlock();
855    *max_sectors = best_good_sectors;
856
857    return rdev;
858}
859
860int md_raid10_congested(struct mddev *mddev, int bits)
861{
862    struct r10conf *conf = mddev->private;
863    int i, ret = 0;
864
865    if ((bits & (1 << BDI_async_congested)) &&
866        conf->pending_count >= max_queued_requests)
867        return 1;
868
869    rcu_read_lock();
870    for (i = 0;
871         (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872             && ret == 0;
873         i++) {
874        struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875        if (rdev && !test_bit(Faulty, &rdev->flags)) {
876            struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878            ret |= bdi_congested(&q->backing_dev_info, bits);
879        }
880    }
881    rcu_read_unlock();
882    return ret;
883}
884EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886static int raid10_congested(void *data, int bits)
887{
888    struct mddev *mddev = data;
889
890    return mddev_congested(mddev, bits) ||
891        md_raid10_congested(mddev, bits);
892}
893
894static void flush_pending_writes(struct r10conf *conf)
895{
896    /* Any writes that have been queued but are awaiting
897     * bitmap updates get flushed here.
898     */
899    spin_lock_irq(&conf->device_lock);
900
901    if (conf->pending_bio_list.head) {
902        struct bio *bio;
903        bio = bio_list_get(&conf->pending_bio_list);
904        conf->pending_count = 0;
905        spin_unlock_irq(&conf->device_lock);
906        /* flush any pending bitmap writes to disk
907         * before proceeding w/ I/O */
908        bitmap_unplug(conf->mddev->bitmap);
909        wake_up(&conf->wait_barrier);
910
911        while (bio) { /* submit pending writes */
912            struct bio *next = bio->bi_next;
913            bio->bi_next = NULL;
914            generic_make_request(bio);
915            bio = next;
916        }
917    } else
918        spin_unlock_irq(&conf->device_lock);
919}
920
921/* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down. This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'. When that returns there
936 * is no backgroup IO happening, It must arrange to call
937 * allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier. Once that returns
939 * there is no normal IO happeing. It must arrange to call
940 * lower_barrier when the particular background IO completes.
941 */
942
943static void raise_barrier(struct r10conf *conf, int force)
944{
945    BUG_ON(force && !conf->barrier);
946    spin_lock_irq(&conf->resync_lock);
947
948    /* Wait until no block IO is waiting (unless 'force') */
949    wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950                conf->resync_lock, );
951
952    /* block any new IO from starting */
953    conf->barrier++;
954
955    /* Now wait for all pending IO to complete */
956    wait_event_lock_irq(conf->wait_barrier,
957                !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
958                conf->resync_lock, );
959
960    spin_unlock_irq(&conf->resync_lock);
961}
962
963static void lower_barrier(struct r10conf *conf)
964{
965    unsigned long flags;
966    spin_lock_irqsave(&conf->resync_lock, flags);
967    conf->barrier--;
968    spin_unlock_irqrestore(&conf->resync_lock, flags);
969    wake_up(&conf->wait_barrier);
970}
971
972static void wait_barrier(struct r10conf *conf)
973{
974    spin_lock_irq(&conf->resync_lock);
975    if (conf->barrier) {
976        conf->nr_waiting++;
977        /* Wait for the barrier to drop.
978         * However if there are already pending
979         * requests (preventing the barrier from
980         * rising completely), and the
981         * pre-process bio queue isn't empty,
982         * then don't wait, as we need to empty
983         * that queue to get the nr_pending
984         * count down.
985         */
986        wait_event_lock_irq(conf->wait_barrier,
987                    !conf->barrier ||
988                    (conf->nr_pending &&
989                     current->bio_list &&
990                     !bio_list_empty(current->bio_list)),
991                    conf->resync_lock,
992            );
993        conf->nr_waiting--;
994    }
995    conf->nr_pending++;
996    spin_unlock_irq(&conf->resync_lock);
997}
998
999static void allow_barrier(struct r10conf *conf)
1000{
1001    unsigned long flags;
1002    spin_lock_irqsave(&conf->resync_lock, flags);
1003    conf->nr_pending--;
1004    spin_unlock_irqrestore(&conf->resync_lock, flags);
1005    wake_up(&conf->wait_barrier);
1006}
1007
1008static void freeze_array(struct r10conf *conf)
1009{
1010    /* stop syncio and normal IO and wait for everything to
1011     * go quiet.
1012     * We increment barrier and nr_waiting, and then
1013     * wait until nr_pending match nr_queued+1
1014     * This is called in the context of one normal IO request
1015     * that has failed. Thus any sync request that might be pending
1016     * will be blocked by nr_pending, and we need to wait for
1017     * pending IO requests to complete or be queued for re-try.
1018     * Thus the number queued (nr_queued) plus this request (1)
1019     * must match the number of pending IOs (nr_pending) before
1020     * we continue.
1021     */
1022    spin_lock_irq(&conf->resync_lock);
1023    conf->barrier++;
1024    conf->nr_waiting++;
1025    wait_event_lock_irq(conf->wait_barrier,
1026                conf->nr_pending == conf->nr_queued+1,
1027                conf->resync_lock,
1028                flush_pending_writes(conf));
1029
1030    spin_unlock_irq(&conf->resync_lock);
1031}
1032
1033static void unfreeze_array(struct r10conf *conf)
1034{
1035    /* reverse the effect of the freeze */
1036    spin_lock_irq(&conf->resync_lock);
1037    conf->barrier--;
1038    conf->nr_waiting--;
1039    wake_up(&conf->wait_barrier);
1040    spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static sector_t choose_data_offset(struct r10bio *r10_bio,
1044                   struct md_rdev *rdev)
1045{
1046    if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1047        test_bit(R10BIO_Previous, &r10_bio->state))
1048        return rdev->data_offset;
1049    else
1050        return rdev->new_data_offset;
1051}
1052
1053static void make_request(struct mddev *mddev, struct bio * bio)
1054{
1055    struct r10conf *conf = mddev->private;
1056    struct r10bio *r10_bio;
1057    struct bio *read_bio;
1058    int i;
1059    sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1060    int chunk_sects = chunk_mask + 1;
1061    const int rw = bio_data_dir(bio);
1062    const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063    const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064    unsigned long flags;
1065    struct md_rdev *blocked_rdev;
1066    int sectors_handled;
1067    int max_sectors;
1068    int sectors;
1069
1070    if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1071        md_flush_request(mddev, bio);
1072        return;
1073    }
1074
1075    /* If this request crosses a chunk boundary, we need to
1076     * split it. This will only happen for 1 PAGE (or less) requests.
1077     */
1078    if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1079             > chunk_sects
1080             && (conf->geo.near_copies < conf->geo.raid_disks
1081             || conf->prev.near_copies < conf->prev.raid_disks))) {
1082        struct bio_pair *bp;
1083        /* Sanity check -- queue functions should prevent this happening */
1084        if (bio->bi_vcnt != 1 ||
1085            bio->bi_idx != 0)
1086            goto bad_map;
1087        /* This is a one page bio that upper layers
1088         * refuse to split for us, so we need to split it.
1089         */
1090        bp = bio_split(bio,
1091                   chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1092
1093        /* Each of these 'make_request' calls will call 'wait_barrier'.
1094         * If the first succeeds but the second blocks due to the resync
1095         * thread raising the barrier, we will deadlock because the
1096         * IO to the underlying device will be queued in generic_make_request
1097         * and will never complete, so will never reduce nr_pending.
1098         * So increment nr_waiting here so no new raise_barriers will
1099         * succeed, and so the second wait_barrier cannot block.
1100         */
1101        spin_lock_irq(&conf->resync_lock);
1102        conf->nr_waiting++;
1103        spin_unlock_irq(&conf->resync_lock);
1104
1105        make_request(mddev, &bp->bio1);
1106        make_request(mddev, &bp->bio2);
1107
1108        spin_lock_irq(&conf->resync_lock);
1109        conf->nr_waiting--;
1110        wake_up(&conf->wait_barrier);
1111        spin_unlock_irq(&conf->resync_lock);
1112
1113        bio_pair_release(bp);
1114        return;
1115    bad_map:
1116        printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117               " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1118               (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1119
1120        bio_io_error(bio);
1121        return;
1122    }
1123
1124    md_write_start(mddev, bio);
1125
1126    /*
1127     * Register the new request and wait if the reconstruction
1128     * thread has put up a bar for new requests.
1129     * Continue immediately if no resync is active currently.
1130     */
1131    wait_barrier(conf);
1132
1133    sectors = bio->bi_size >> 9;
1134    while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1135        bio->bi_sector < conf->reshape_progress &&
1136        bio->bi_sector + sectors > conf->reshape_progress) {
1137        /* IO spans the reshape position. Need to wait for
1138         * reshape to pass
1139         */
1140        allow_barrier(conf);
1141        wait_event(conf->wait_barrier,
1142               conf->reshape_progress <= bio->bi_sector ||
1143               conf->reshape_progress >= bio->bi_sector + sectors);
1144        wait_barrier(conf);
1145    }
1146    if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1147        bio_data_dir(bio) == WRITE &&
1148        (mddev->reshape_backwards
1149         ? (bio->bi_sector < conf->reshape_safe &&
1150        bio->bi_sector + sectors > conf->reshape_progress)
1151         : (bio->bi_sector + sectors > conf->reshape_safe &&
1152        bio->bi_sector < conf->reshape_progress))) {
1153        /* Need to update reshape_position in metadata */
1154        mddev->reshape_position = conf->reshape_progress;
1155        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1156        set_bit(MD_CHANGE_PENDING, &mddev->flags);
1157        md_wakeup_thread(mddev->thread);
1158        wait_event(mddev->sb_wait,
1159               !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1160
1161        conf->reshape_safe = mddev->reshape_position;
1162    }
1163
1164    r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1165
1166    r10_bio->master_bio = bio;
1167    r10_bio->sectors = sectors;
1168
1169    r10_bio->mddev = mddev;
1170    r10_bio->sector = bio->bi_sector;
1171    r10_bio->state = 0;
1172
1173    /* We might need to issue multiple reads to different
1174     * devices if there are bad blocks around, so we keep
1175     * track of the number of reads in bio->bi_phys_segments.
1176     * If this is 0, there is only one r10_bio and no locking
1177     * will be needed when the request completes. If it is
1178     * non-zero, then it is the number of not-completed requests.
1179     */
1180    bio->bi_phys_segments = 0;
1181    clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1182
1183    if (rw == READ) {
1184        /*
1185         * read balancing logic:
1186         */
1187        struct md_rdev *rdev;
1188        int slot;
1189
1190read_again:
1191        rdev = read_balance(conf, r10_bio, &max_sectors);
1192        if (!rdev) {
1193            raid_end_bio_io(r10_bio);
1194            return;
1195        }
1196        slot = r10_bio->read_slot;
1197
1198        read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1199        md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1200                max_sectors);
1201
1202        r10_bio->devs[slot].bio = read_bio;
1203        r10_bio->devs[slot].rdev = rdev;
1204
1205        read_bio->bi_sector = r10_bio->devs[slot].addr +
1206            choose_data_offset(r10_bio, rdev);
1207        read_bio->bi_bdev = rdev->bdev;
1208        read_bio->bi_end_io = raid10_end_read_request;
1209        read_bio->bi_rw = READ | do_sync;
1210        read_bio->bi_private = r10_bio;
1211
1212        if (max_sectors < r10_bio->sectors) {
1213            /* Could not read all from this device, so we will
1214             * need another r10_bio.
1215             */
1216            sectors_handled = (r10_bio->sectors + max_sectors
1217                       - bio->bi_sector);
1218            r10_bio->sectors = max_sectors;
1219            spin_lock_irq(&conf->device_lock);
1220            if (bio->bi_phys_segments == 0)
1221                bio->bi_phys_segments = 2;
1222            else
1223                bio->bi_phys_segments++;
1224            spin_unlock(&conf->device_lock);
1225            /* Cannot call generic_make_request directly
1226             * as that will be queued in __generic_make_request
1227             * and subsequent mempool_alloc might block
1228             * waiting for it. so hand bio over to raid10d.
1229             */
1230            reschedule_retry(r10_bio);
1231
1232            r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1233
1234            r10_bio->master_bio = bio;
1235            r10_bio->sectors = ((bio->bi_size >> 9)
1236                        - sectors_handled);
1237            r10_bio->state = 0;
1238            r10_bio->mddev = mddev;
1239            r10_bio->sector = bio->bi_sector + sectors_handled;
1240            goto read_again;
1241        } else
1242            generic_make_request(read_bio);
1243        return;
1244    }
1245
1246    /*
1247     * WRITE:
1248     */
1249    if (conf->pending_count >= max_queued_requests) {
1250        md_wakeup_thread(mddev->thread);
1251        wait_event(conf->wait_barrier,
1252               conf->pending_count < max_queued_requests);
1253    }
1254    /* first select target devices under rcu_lock and
1255     * inc refcount on their rdev. Record them by setting
1256     * bios[x] to bio
1257     * If there are known/acknowledged bad blocks on any device
1258     * on which we have seen a write error, we want to avoid
1259     * writing to those blocks. This potentially requires several
1260     * writes to write around the bad blocks. Each set of writes
1261     * gets its own r10_bio with a set of bios attached. The number
1262     * of r10_bios is recored in bio->bi_phys_segments just as with
1263     * the read case.
1264     */
1265
1266    r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1267    raid10_find_phys(conf, r10_bio);
1268retry_write:
1269    blocked_rdev = NULL;
1270    rcu_read_lock();
1271    max_sectors = r10_bio->sectors;
1272
1273    for (i = 0; i < conf->copies; i++) {
1274        int d = r10_bio->devs[i].devnum;
1275        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1276        struct md_rdev *rrdev = rcu_dereference(
1277            conf->mirrors[d].replacement);
1278        if (rdev == rrdev)
1279            rrdev = NULL;
1280        if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1281            atomic_inc(&rdev->nr_pending);
1282            blocked_rdev = rdev;
1283            break;
1284        }
1285        if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1286            atomic_inc(&rrdev->nr_pending);
1287            blocked_rdev = rrdev;
1288            break;
1289        }
1290        if (rrdev && (test_bit(Faulty, &rrdev->flags)
1291                  || test_bit(Unmerged, &rrdev->flags)))
1292            rrdev = NULL;
1293
1294        r10_bio->devs[i].bio = NULL;
1295        r10_bio->devs[i].repl_bio = NULL;
1296        if (!rdev || test_bit(Faulty, &rdev->flags) ||
1297            test_bit(Unmerged, &rdev->flags)) {
1298            set_bit(R10BIO_Degraded, &r10_bio->state);
1299            continue;
1300        }
1301        if (test_bit(WriteErrorSeen, &rdev->flags)) {
1302            sector_t first_bad;
1303            sector_t dev_sector = r10_bio->devs[i].addr;
1304            int bad_sectors;
1305            int is_bad;
1306
1307            is_bad = is_badblock(rdev, dev_sector,
1308                         max_sectors,
1309                         &first_bad, &bad_sectors);
1310            if (is_bad < 0) {
1311                /* Mustn't write here until the bad block
1312                 * is acknowledged
1313                 */
1314                atomic_inc(&rdev->nr_pending);
1315                set_bit(BlockedBadBlocks, &rdev->flags);
1316                blocked_rdev = rdev;
1317                break;
1318            }
1319            if (is_bad && first_bad <= dev_sector) {
1320                /* Cannot write here at all */
1321                bad_sectors -= (dev_sector - first_bad);
1322                if (bad_sectors < max_sectors)
1323                    /* Mustn't write more than bad_sectors
1324                     * to other devices yet
1325                     */
1326                    max_sectors = bad_sectors;
1327                /* We don't set R10BIO_Degraded as that
1328                 * only applies if the disk is missing,
1329                 * so it might be re-added, and we want to
1330                 * know to recover this chunk.
1331                 * In this case the device is here, and the
1332                 * fact that this chunk is not in-sync is
1333                 * recorded in the bad block log.
1334                 */
1335                continue;
1336            }
1337            if (is_bad) {
1338                int good_sectors = first_bad - dev_sector;
1339                if (good_sectors < max_sectors)
1340                    max_sectors = good_sectors;
1341            }
1342        }
1343        r10_bio->devs[i].bio = bio;
1344        atomic_inc(&rdev->nr_pending);
1345        if (rrdev) {
1346            r10_bio->devs[i].repl_bio = bio;
1347            atomic_inc(&rrdev->nr_pending);
1348        }
1349    }
1350    rcu_read_unlock();
1351
1352    if (unlikely(blocked_rdev)) {
1353        /* Have to wait for this device to get unblocked, then retry */
1354        int j;
1355        int d;
1356
1357        for (j = 0; j < i; j++) {
1358            if (r10_bio->devs[j].bio) {
1359                d = r10_bio->devs[j].devnum;
1360                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1361            }
1362            if (r10_bio->devs[j].repl_bio) {
1363                struct md_rdev *rdev;
1364                d = r10_bio->devs[j].devnum;
1365                rdev = conf->mirrors[d].replacement;
1366                if (!rdev) {
1367                    /* Race with remove_disk */
1368                    smp_mb();
1369                    rdev = conf->mirrors[d].rdev;
1370                }
1371                rdev_dec_pending(rdev, mddev);
1372            }
1373        }
1374        allow_barrier(conf);
1375        md_wait_for_blocked_rdev(blocked_rdev, mddev);
1376        wait_barrier(conf);
1377        goto retry_write;
1378    }
1379
1380    if (max_sectors < r10_bio->sectors) {
1381        /* We are splitting this into multiple parts, so
1382         * we need to prepare for allocating another r10_bio.
1383         */
1384        r10_bio->sectors = max_sectors;
1385        spin_lock_irq(&conf->device_lock);
1386        if (bio->bi_phys_segments == 0)
1387            bio->bi_phys_segments = 2;
1388        else
1389            bio->bi_phys_segments++;
1390        spin_unlock_irq(&conf->device_lock);
1391    }
1392    sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1393
1394    atomic_set(&r10_bio->remaining, 1);
1395    bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1396
1397    for (i = 0; i < conf->copies; i++) {
1398        struct bio *mbio;
1399        int d = r10_bio->devs[i].devnum;
1400        if (!r10_bio->devs[i].bio)
1401            continue;
1402
1403        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404        md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405                max_sectors);
1406        r10_bio->devs[i].bio = mbio;
1407
1408        mbio->bi_sector = (r10_bio->devs[i].addr+
1409                   choose_data_offset(r10_bio,
1410                              conf->mirrors[d].rdev));
1411        mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1412        mbio->bi_end_io = raid10_end_write_request;
1413        mbio->bi_rw = WRITE | do_sync | do_fua;
1414        mbio->bi_private = r10_bio;
1415
1416        atomic_inc(&r10_bio->remaining);
1417        spin_lock_irqsave(&conf->device_lock, flags);
1418        bio_list_add(&conf->pending_bio_list, mbio);
1419        conf->pending_count++;
1420        spin_unlock_irqrestore(&conf->device_lock, flags);
1421        if (!mddev_check_plugged(mddev))
1422            md_wakeup_thread(mddev->thread);
1423
1424        if (!r10_bio->devs[i].repl_bio)
1425            continue;
1426
1427        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1428        md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1429                max_sectors);
1430        r10_bio->devs[i].repl_bio = mbio;
1431
1432        /* We are actively writing to the original device
1433         * so it cannot disappear, so the replacement cannot
1434         * become NULL here
1435         */
1436        mbio->bi_sector = (r10_bio->devs[i].addr +
1437                   choose_data_offset(
1438                       r10_bio,
1439                       conf->mirrors[d].replacement));
1440        mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1441        mbio->bi_end_io = raid10_end_write_request;
1442        mbio->bi_rw = WRITE | do_sync | do_fua;
1443        mbio->bi_private = r10_bio;
1444
1445        atomic_inc(&r10_bio->remaining);
1446        spin_lock_irqsave(&conf->device_lock, flags);
1447        bio_list_add(&conf->pending_bio_list, mbio);
1448        conf->pending_count++;
1449        spin_unlock_irqrestore(&conf->device_lock, flags);
1450        if (!mddev_check_plugged(mddev))
1451            md_wakeup_thread(mddev->thread);
1452    }
1453
1454    /* Don't remove the bias on 'remaining' (one_write_done) until
1455     * after checking if we need to go around again.
1456     */
1457
1458    if (sectors_handled < (bio->bi_size >> 9)) {
1459        one_write_done(r10_bio);
1460        /* We need another r10_bio. It has already been counted
1461         * in bio->bi_phys_segments.
1462         */
1463        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1464
1465        r10_bio->master_bio = bio;
1466        r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1467
1468        r10_bio->mddev = mddev;
1469        r10_bio->sector = bio->bi_sector + sectors_handled;
1470        r10_bio->state = 0;
1471        goto retry_write;
1472    }
1473    one_write_done(r10_bio);
1474
1475    /* In case raid10d snuck in to freeze_array */
1476    wake_up(&conf->wait_barrier);
1477}
1478
1479static void status(struct seq_file *seq, struct mddev *mddev)
1480{
1481    struct r10conf *conf = mddev->private;
1482    int i;
1483
1484    if (conf->geo.near_copies < conf->geo.raid_disks)
1485        seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1486    if (conf->geo.near_copies > 1)
1487        seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488    if (conf->geo.far_copies > 1) {
1489        if (conf->geo.far_offset)
1490            seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1491        else
1492            seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1493    }
1494    seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495                    conf->geo.raid_disks - mddev->degraded);
1496    for (i = 0; i < conf->geo.raid_disks; i++)
1497        seq_printf(seq, "%s",
1498                  conf->mirrors[i].rdev &&
1499                  test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1500    seq_printf(seq, "]");
1501}
1502
1503/* check if there are enough drives for
1504 * every block to appear on atleast one.
1505 * Don't consider the device numbered 'ignore'
1506 * as we might be about to remove it.
1507 */
1508static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1509{
1510    int first = 0;
1511
1512    do {
1513        int n = conf->copies;
1514        int cnt = 0;
1515        int this = first;
1516        while (n--) {
1517            if (conf->mirrors[this].rdev &&
1518                this != ignore)
1519                cnt++;
1520            this = (this+1) % geo->raid_disks;
1521        }
1522        if (cnt == 0)
1523            return 0;
1524        first = (first + geo->near_copies) % geo->raid_disks;
1525    } while (first != 0);
1526    return 1;
1527}
1528
1529static int enough(struct r10conf *conf, int ignore)
1530{
1531    return _enough(conf, &conf->geo, ignore) &&
1532        _enough(conf, &conf->prev, ignore);
1533}
1534
1535static void error(struct mddev *mddev, struct md_rdev *rdev)
1536{
1537    char b[BDEVNAME_SIZE];
1538    struct r10conf *conf = mddev->private;
1539
1540    /*
1541     * If it is not operational, then we have already marked it as dead
1542     * else if it is the last working disks, ignore the error, let the
1543     * next level up know.
1544     * else mark the drive as failed
1545     */
1546    if (test_bit(In_sync, &rdev->flags)
1547        && !enough(conf, rdev->raid_disk))
1548        /*
1549         * Don't fail the drive, just return an IO error.
1550         */
1551        return;
1552    if (test_and_clear_bit(In_sync, &rdev->flags)) {
1553        unsigned long flags;
1554        spin_lock_irqsave(&conf->device_lock, flags);
1555        mddev->degraded++;
1556        spin_unlock_irqrestore(&conf->device_lock, flags);
1557        /*
1558         * if recovery is running, make sure it aborts.
1559         */
1560        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1561    }
1562    set_bit(Blocked, &rdev->flags);
1563    set_bit(Faulty, &rdev->flags);
1564    set_bit(MD_CHANGE_DEVS, &mddev->flags);
1565    printk(KERN_ALERT
1566           "md/raid10:%s: Disk failure on %s, disabling device.\n"
1567           "md/raid10:%s: Operation continuing on %d devices.\n",
1568           mdname(mddev), bdevname(rdev->bdev, b),
1569           mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1570}
1571
1572static void print_conf(struct r10conf *conf)
1573{
1574    int i;
1575    struct raid10_info *tmp;
1576
1577    printk(KERN_DEBUG "RAID10 conf printout:\n");
1578    if (!conf) {
1579        printk(KERN_DEBUG "(!conf)\n");
1580        return;
1581    }
1582    printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1583        conf->geo.raid_disks);
1584
1585    for (i = 0; i < conf->geo.raid_disks; i++) {
1586        char b[BDEVNAME_SIZE];
1587        tmp = conf->mirrors + i;
1588        if (tmp->rdev)
1589            printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1590                i, !test_bit(In_sync, &tmp->rdev->flags),
1591                    !test_bit(Faulty, &tmp->rdev->flags),
1592                bdevname(tmp->rdev->bdev,b));
1593    }
1594}
1595
1596static void close_sync(struct r10conf *conf)
1597{
1598    wait_barrier(conf);
1599    allow_barrier(conf);
1600
1601    mempool_destroy(conf->r10buf_pool);
1602    conf->r10buf_pool = NULL;
1603}
1604
1605static int raid10_spare_active(struct mddev *mddev)
1606{
1607    int i;
1608    struct r10conf *conf = mddev->private;
1609    struct raid10_info *tmp;
1610    int count = 0;
1611    unsigned long flags;
1612
1613    /*
1614     * Find all non-in_sync disks within the RAID10 configuration
1615     * and mark them in_sync
1616     */
1617    for (i = 0; i < conf->geo.raid_disks; i++) {
1618        tmp = conf->mirrors + i;
1619        if (tmp->replacement
1620            && tmp->replacement->recovery_offset == MaxSector
1621            && !test_bit(Faulty, &tmp->replacement->flags)
1622            && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1623            /* Replacement has just become active */
1624            if (!tmp->rdev
1625                || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1626                count++;
1627            if (tmp->rdev) {
1628                /* Replaced device not technically faulty,
1629                 * but we need to be sure it gets removed
1630                 * and never re-added.
1631                 */
1632                set_bit(Faulty, &tmp->rdev->flags);
1633                sysfs_notify_dirent_safe(
1634                    tmp->rdev->sysfs_state);
1635            }
1636            sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1637        } else if (tmp->rdev
1638               && !test_bit(Faulty, &tmp->rdev->flags)
1639               && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1640            count++;
1641            sysfs_notify_dirent(tmp->rdev->sysfs_state);
1642        }
1643    }
1644    spin_lock_irqsave(&conf->device_lock, flags);
1645    mddev->degraded -= count;
1646    spin_unlock_irqrestore(&conf->device_lock, flags);
1647
1648    print_conf(conf);
1649    return count;
1650}
1651
1652
1653static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1654{
1655    struct r10conf *conf = mddev->private;
1656    int err = -EEXIST;
1657    int mirror;
1658    int first = 0;
1659    int last = conf->geo.raid_disks - 1;
1660    struct request_queue *q = bdev_get_queue(rdev->bdev);
1661
1662    if (mddev->recovery_cp < MaxSector)
1663        /* only hot-add to in-sync arrays, as recovery is
1664         * very different from resync
1665         */
1666        return -EBUSY;
1667    if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1668        return -EINVAL;
1669
1670    if (rdev->raid_disk >= 0)
1671        first = last = rdev->raid_disk;
1672
1673    if (q->merge_bvec_fn) {
1674        set_bit(Unmerged, &rdev->flags);
1675        mddev->merge_check_needed = 1;
1676    }
1677
1678    if (rdev->saved_raid_disk >= first &&
1679        conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1680        mirror = rdev->saved_raid_disk;
1681    else
1682        mirror = first;
1683    for ( ; mirror <= last ; mirror++) {
1684        struct raid10_info *p = &conf->mirrors[mirror];
1685        if (p->recovery_disabled == mddev->recovery_disabled)
1686            continue;
1687        if (p->rdev) {
1688            if (!test_bit(WantReplacement, &p->rdev->flags) ||
1689                p->replacement != NULL)
1690                continue;
1691            clear_bit(In_sync, &rdev->flags);
1692            set_bit(Replacement, &rdev->flags);
1693            rdev->raid_disk = mirror;
1694            err = 0;
1695            disk_stack_limits(mddev->gendisk, rdev->bdev,
1696                      rdev->data_offset << 9);
1697            conf->fullsync = 1;
1698            rcu_assign_pointer(p->replacement, rdev);
1699            break;
1700        }
1701
1702        disk_stack_limits(mddev->gendisk, rdev->bdev,
1703                  rdev->data_offset << 9);
1704
1705        p->head_position = 0;
1706        p->recovery_disabled = mddev->recovery_disabled - 1;
1707        rdev->raid_disk = mirror;
1708        err = 0;
1709        if (rdev->saved_raid_disk != mirror)
1710            conf->fullsync = 1;
1711        rcu_assign_pointer(p->rdev, rdev);
1712        break;
1713    }
1714    if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1715        /* Some requests might not have seen this new
1716         * merge_bvec_fn. We must wait for them to complete
1717         * before merging the device fully.
1718         * First we make sure any code which has tested
1719         * our function has submitted the request, then
1720         * we wait for all outstanding requests to complete.
1721         */
1722        synchronize_sched();
1723        raise_barrier(conf, 0);
1724        lower_barrier(conf);
1725        clear_bit(Unmerged, &rdev->flags);
1726    }
1727    md_integrity_add_rdev(rdev, mddev);
1728    print_conf(conf);
1729    return err;
1730}
1731
1732static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1733{
1734    struct r10conf *conf = mddev->private;
1735    int err = 0;
1736    int number = rdev->raid_disk;
1737    struct md_rdev **rdevp;
1738    struct raid10_info *p = conf->mirrors + number;
1739
1740    print_conf(conf);
1741    if (rdev == p->rdev)
1742        rdevp = &p->rdev;
1743    else if (rdev == p->replacement)
1744        rdevp = &p->replacement;
1745    else
1746        return 0;
1747
1748    if (test_bit(In_sync, &rdev->flags) ||
1749        atomic_read(&rdev->nr_pending)) {
1750        err = -EBUSY;
1751        goto abort;
1752    }
1753    /* Only remove faulty devices if recovery
1754     * is not possible.
1755     */
1756    if (!test_bit(Faulty, &rdev->flags) &&
1757        mddev->recovery_disabled != p->recovery_disabled &&
1758        (!p->replacement || p->replacement == rdev) &&
1759        number < conf->geo.raid_disks &&
1760        enough(conf, -1)) {
1761        err = -EBUSY;
1762        goto abort;
1763    }
1764    *rdevp = NULL;
1765    synchronize_rcu();
1766    if (atomic_read(&rdev->nr_pending)) {
1767        /* lost the race, try later */
1768        err = -EBUSY;
1769        *rdevp = rdev;
1770        goto abort;
1771    } else if (p->replacement) {
1772        /* We must have just cleared 'rdev' */
1773        p->rdev = p->replacement;
1774        clear_bit(Replacement, &p->replacement->flags);
1775        smp_mb(); /* Make sure other CPUs may see both as identical
1776               * but will never see neither -- if they are careful.
1777               */
1778        p->replacement = NULL;
1779        clear_bit(WantReplacement, &rdev->flags);
1780    } else
1781        /* We might have just remove the Replacement as faulty
1782         * Clear the flag just in case
1783         */
1784        clear_bit(WantReplacement, &rdev->flags);
1785
1786    err = md_integrity_register(mddev);
1787
1788abort:
1789
1790    print_conf(conf);
1791    return err;
1792}
1793
1794
1795static void end_sync_read(struct bio *bio, int error)
1796{
1797    struct r10bio *r10_bio = bio->bi_private;
1798    struct r10conf *conf = r10_bio->mddev->private;
1799    int d;
1800
1801    if (bio == r10_bio->master_bio) {
1802        /* this is a reshape read */
1803        d = r10_bio->read_slot; /* really the read dev */
1804    } else
1805        d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1806
1807    if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1808        set_bit(R10BIO_Uptodate, &r10_bio->state);
1809    else
1810        /* The write handler will notice the lack of
1811         * R10BIO_Uptodate and record any errors etc
1812         */
1813        atomic_add(r10_bio->sectors,
1814               &conf->mirrors[d].rdev->corrected_errors);
1815
1816    /* for reconstruct, we always reschedule after a read.
1817     * for resync, only after all reads
1818     */
1819    rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1820    if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1821        atomic_dec_and_test(&r10_bio->remaining)) {
1822        /* we have read all the blocks,
1823         * do the comparison in process context in raid10d
1824         */
1825        reschedule_retry(r10_bio);
1826    }
1827}
1828
1829static void end_sync_request(struct r10bio *r10_bio)
1830{
1831    struct mddev *mddev = r10_bio->mddev;
1832
1833    while (atomic_dec_and_test(&r10_bio->remaining)) {
1834        if (r10_bio->master_bio == NULL) {
1835            /* the primary of several recovery bios */
1836            sector_t s = r10_bio->sectors;
1837            if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1838                test_bit(R10BIO_WriteError, &r10_bio->state))
1839                reschedule_retry(r10_bio);
1840            else
1841                put_buf(r10_bio);
1842            md_done_sync(mddev, s, 1);
1843            break;
1844        } else {
1845            struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1846            if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1847                test_bit(R10BIO_WriteError, &r10_bio->state))
1848                reschedule_retry(r10_bio);
1849            else
1850                put_buf(r10_bio);
1851            r10_bio = r10_bio2;
1852        }
1853    }
1854}
1855
1856static void end_sync_write(struct bio *bio, int error)
1857{
1858    int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1859    struct r10bio *r10_bio = bio->bi_private;
1860    struct mddev *mddev = r10_bio->mddev;
1861    struct r10conf *conf = mddev->private;
1862    int d;
1863    sector_t first_bad;
1864    int bad_sectors;
1865    int slot;
1866    int repl;
1867    struct md_rdev *rdev = NULL;
1868
1869    d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1870    if (repl)
1871        rdev = conf->mirrors[d].replacement;
1872    else
1873        rdev = conf->mirrors[d].rdev;
1874
1875    if (!uptodate) {
1876        if (repl)
1877            md_error(mddev, rdev);
1878        else {
1879            set_bit(WriteErrorSeen, &rdev->flags);
1880            if (!test_and_set_bit(WantReplacement, &rdev->flags))
1881                set_bit(MD_RECOVERY_NEEDED,
1882                    &rdev->mddev->recovery);
1883            set_bit(R10BIO_WriteError, &r10_bio->state);
1884        }
1885    } else if (is_badblock(rdev,
1886                 r10_bio->devs[slot].addr,
1887                 r10_bio->sectors,
1888                 &first_bad, &bad_sectors))
1889        set_bit(R10BIO_MadeGood, &r10_bio->state);
1890
1891    rdev_dec_pending(rdev, mddev);
1892
1893    end_sync_request(r10_bio);
1894}
1895
1896/*
1897 * Note: sync and recover and handled very differently for raid10
1898 * This code is for resync.
1899 * For resync, we read through virtual addresses and read all blocks.
1900 * If there is any error, we schedule a write. The lowest numbered
1901 * drive is authoritative.
1902 * However requests come for physical address, so we need to map.
1903 * For every physical address there are raid_disks/copies virtual addresses,
1904 * which is always are least one, but is not necessarly an integer.
1905 * This means that a physical address can span multiple chunks, so we may
1906 * have to submit multiple io requests for a single sync request.
1907 */
1908/*
1909 * We check if all blocks are in-sync and only write to blocks that
1910 * aren't in sync
1911 */
1912static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1913{
1914    struct r10conf *conf = mddev->private;
1915    int i, first;
1916    struct bio *tbio, *fbio;
1917    int vcnt;
1918
1919    atomic_set(&r10_bio->remaining, 1);
1920
1921    /* find the first device with a block */
1922    for (i=0; i<conf->copies; i++)
1923        if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1924            break;
1925
1926    if (i == conf->copies)
1927        goto done;
1928
1929    first = i;
1930    fbio = r10_bio->devs[i].bio;
1931
1932    vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1933    /* now find blocks with errors */
1934    for (i=0 ; i < conf->copies ; i++) {
1935        int j, d;
1936
1937        tbio = r10_bio->devs[i].bio;
1938
1939        if (tbio->bi_end_io != end_sync_read)
1940            continue;
1941        if (i == first)
1942            continue;
1943        if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1944            /* We know that the bi_io_vec layout is the same for
1945             * both 'first' and 'i', so we just compare them.
1946             * All vec entries are PAGE_SIZE;
1947             */
1948            for (j = 0; j < vcnt; j++)
1949                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1950                       page_address(tbio->bi_io_vec[j].bv_page),
1951                       fbio->bi_io_vec[j].bv_len))
1952                    break;
1953            if (j == vcnt)
1954                continue;
1955            mddev->resync_mismatches += r10_bio->sectors;
1956            if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1957                /* Don't fix anything. */
1958                continue;
1959        }
1960        /* Ok, we need to write this bio, either to correct an
1961         * inconsistency or to correct an unreadable block.
1962         * First we need to fixup bv_offset, bv_len and
1963         * bi_vecs, as the read request might have corrupted these
1964         */
1965        tbio->bi_vcnt = vcnt;
1966        tbio->bi_size = r10_bio->sectors << 9;
1967        tbio->bi_idx = 0;
1968        tbio->bi_phys_segments = 0;
1969        tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1970        tbio->bi_flags |= 1 << BIO_UPTODATE;
1971        tbio->bi_next = NULL;
1972        tbio->bi_rw = WRITE;
1973        tbio->bi_private = r10_bio;
1974        tbio->bi_sector = r10_bio->devs[i].addr;
1975
1976        for (j=0; j < vcnt ; j++) {
1977            tbio->bi_io_vec[j].bv_offset = 0;
1978            tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1979
1980            memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1981                   page_address(fbio->bi_io_vec[j].bv_page),
1982                   PAGE_SIZE);
1983        }
1984        tbio->bi_end_io = end_sync_write;
1985
1986        d = r10_bio->devs[i].devnum;
1987        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1988        atomic_inc(&r10_bio->remaining);
1989        md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1990
1991        tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1992        tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1993        generic_make_request(tbio);
1994    }
1995
1996    /* Now write out to any replacement devices
1997     * that are active
1998     */
1999    for (i = 0; i < conf->copies; i++) {
2000        int j, d;
2001
2002        tbio = r10_bio->devs[i].repl_bio;
2003        if (!tbio || !tbio->bi_end_io)
2004            continue;
2005        if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2006            && r10_bio->devs[i].bio != fbio)
2007            for (j = 0; j < vcnt; j++)
2008                memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2009                       page_address(fbio->bi_io_vec[j].bv_page),
2010                       PAGE_SIZE);
2011        d = r10_bio->devs[i].devnum;
2012        atomic_inc(&r10_bio->remaining);
2013        md_sync_acct(conf->mirrors[d].replacement->bdev,
2014                 tbio->bi_size >> 9);
2015        generic_make_request(tbio);
2016    }
2017
2018done:
2019    if (atomic_dec_and_test(&r10_bio->remaining)) {
2020        md_done_sync(mddev, r10_bio->sectors, 1);
2021        put_buf(r10_bio);
2022    }
2023}
2024
2025/*
2026 * Now for the recovery code.
2027 * Recovery happens across physical sectors.
2028 * We recover all non-is_sync drives by finding the virtual address of
2029 * each, and then choose a working drive that also has that virt address.
2030 * There is a separate r10_bio for each non-in_sync drive.
2031 * Only the first two slots are in use. The first for reading,
2032 * The second for writing.
2033 *
2034 */
2035static void fix_recovery_read_error(struct r10bio *r10_bio)
2036{
2037    /* We got a read error during recovery.
2038     * We repeat the read in smaller page-sized sections.
2039     * If a read succeeds, write it to the new device or record
2040     * a bad block if we cannot.
2041     * If a read fails, record a bad block on both old and
2042     * new devices.
2043     */
2044    struct mddev *mddev = r10_bio->mddev;
2045    struct r10conf *conf = mddev->private;
2046    struct bio *bio = r10_bio->devs[0].bio;
2047    sector_t sect = 0;
2048    int sectors = r10_bio->sectors;
2049    int idx = 0;
2050    int dr = r10_bio->devs[0].devnum;
2051    int dw = r10_bio->devs[1].devnum;
2052
2053    while (sectors) {
2054        int s = sectors;
2055        struct md_rdev *rdev;
2056        sector_t addr;
2057        int ok;
2058
2059        if (s > (PAGE_SIZE>>9))
2060            s = PAGE_SIZE >> 9;
2061
2062        rdev = conf->mirrors[dr].rdev;
2063        addr = r10_bio->devs[0].addr + sect,
2064        ok = sync_page_io(rdev,
2065                  addr,
2066                  s << 9,
2067                  bio->bi_io_vec[idx].bv_page,
2068                  READ, false);
2069        if (ok) {
2070            rdev = conf->mirrors[dw].rdev;
2071            addr = r10_bio->devs[1].addr + sect;
2072            ok = sync_page_io(rdev,
2073                      addr,
2074                      s << 9,
2075                      bio->bi_io_vec[idx].bv_page,
2076                      WRITE, false);
2077            if (!ok) {
2078                set_bit(WriteErrorSeen, &rdev->flags);
2079                if (!test_and_set_bit(WantReplacement,
2080                              &rdev->flags))
2081                    set_bit(MD_RECOVERY_NEEDED,
2082                        &rdev->mddev->recovery);
2083            }
2084        }
2085        if (!ok) {
2086            /* We don't worry if we cannot set a bad block -
2087             * it really is bad so there is no loss in not
2088             * recording it yet
2089             */
2090            rdev_set_badblocks(rdev, addr, s, 0);
2091
2092            if (rdev != conf->mirrors[dw].rdev) {
2093                /* need bad block on destination too */
2094                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2095                addr = r10_bio->devs[1].addr + sect;
2096                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2097                if (!ok) {
2098                    /* just abort the recovery */
2099                    printk(KERN_NOTICE
2100                           "md/raid10:%s: recovery aborted"
2101                           " due to read error\n",
2102                           mdname(mddev));
2103
2104                    conf->mirrors[dw].recovery_disabled
2105                        = mddev->recovery_disabled;
2106                    set_bit(MD_RECOVERY_INTR,
2107                        &mddev->recovery);
2108                    break;
2109                }
2110            }
2111        }
2112
2113        sectors -= s;
2114        sect += s;
2115        idx++;
2116    }
2117}
2118
2119static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2120{
2121    struct r10conf *conf = mddev->private;
2122    int d;
2123    struct bio *wbio, *wbio2;
2124
2125    if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2126        fix_recovery_read_error(r10_bio);
2127        end_sync_request(r10_bio);
2128        return;
2129    }
2130
2131    /*
2132     * share the pages with the first bio
2133     * and submit the write request
2134     */
2135    d = r10_bio->devs[1].devnum;
2136    wbio = r10_bio->devs[1].bio;
2137    wbio2 = r10_bio->devs[1].repl_bio;
2138    if (wbio->bi_end_io) {
2139        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2140        md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2141        generic_make_request(wbio);
2142    }
2143    if (wbio2 && wbio2->bi_end_io) {
2144        atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2145        md_sync_acct(conf->mirrors[d].replacement->bdev,
2146                 wbio2->bi_size >> 9);
2147        generic_make_request(wbio2);
2148    }
2149}
2150
2151
2152/*
2153 * Used by fix_read_error() to decay the per rdev read_errors.
2154 * We halve the read error count for every hour that has elapsed
2155 * since the last recorded read error.
2156 *
2157 */
2158static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2159{
2160    struct timespec cur_time_mon;
2161    unsigned long hours_since_last;
2162    unsigned int read_errors = atomic_read(&rdev->read_errors);
2163
2164    ktime_get_ts(&cur_time_mon);
2165
2166    if (rdev->last_read_error.tv_sec == 0 &&
2167        rdev->last_read_error.tv_nsec == 0) {
2168        /* first time we've seen a read error */
2169        rdev->last_read_error = cur_time_mon;
2170        return;
2171    }
2172
2173    hours_since_last = (cur_time_mon.tv_sec -
2174                rdev->last_read_error.tv_sec) / 3600;
2175
2176    rdev->last_read_error = cur_time_mon;
2177
2178    /*
2179     * if hours_since_last is > the number of bits in read_errors
2180     * just set read errors to 0. We do this to avoid
2181     * overflowing the shift of read_errors by hours_since_last.
2182     */
2183    if (hours_since_last >= 8 * sizeof(read_errors))
2184        atomic_set(&rdev->read_errors, 0);
2185    else
2186        atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2187}
2188
2189static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2190                int sectors, struct page *page, int rw)
2191{
2192    sector_t first_bad;
2193    int bad_sectors;
2194
2195    if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2196        && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2197        return -1;
2198    if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2199        /* success */
2200        return 1;
2201    if (rw == WRITE) {
2202        set_bit(WriteErrorSeen, &rdev->flags);
2203        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2204            set_bit(MD_RECOVERY_NEEDED,
2205                &rdev->mddev->recovery);
2206    }
2207    /* need to record an error - either for the block or the device */
2208    if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2209        md_error(rdev->mddev, rdev);
2210    return 0;
2211}
2212
2213/*
2214 * This is a kernel thread which:
2215 *
2216 * 1. Retries failed read operations on working mirrors.
2217 * 2. Updates the raid superblock when problems encounter.
2218 * 3. Performs writes following reads for array synchronising.
2219 */
2220
2221static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2222{
2223    int sect = 0; /* Offset from r10_bio->sector */
2224    int sectors = r10_bio->sectors;
2225    struct md_rdev*rdev;
2226    int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2227    int d = r10_bio->devs[r10_bio->read_slot].devnum;
2228
2229    /* still own a reference to this rdev, so it cannot
2230     * have been cleared recently.
2231     */
2232    rdev = conf->mirrors[d].rdev;
2233
2234    if (test_bit(Faulty, &rdev->flags))
2235        /* drive has already been failed, just ignore any
2236           more fix_read_error() attempts */
2237        return;
2238
2239    check_decay_read_errors(mddev, rdev);
2240    atomic_inc(&rdev->read_errors);
2241    if (atomic_read(&rdev->read_errors) > max_read_errors) {
2242        char b[BDEVNAME_SIZE];
2243        bdevname(rdev->bdev, b);
2244
2245        printk(KERN_NOTICE
2246               "md/raid10:%s: %s: Raid device exceeded "
2247               "read_error threshold [cur %d:max %d]\n",
2248               mdname(mddev), b,
2249               atomic_read(&rdev->read_errors), max_read_errors);
2250        printk(KERN_NOTICE
2251               "md/raid10:%s: %s: Failing raid device\n",
2252               mdname(mddev), b);
2253        md_error(mddev, conf->mirrors[d].rdev);
2254        r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2255        return;
2256    }
2257
2258    while(sectors) {
2259        int s = sectors;
2260        int sl = r10_bio->read_slot;
2261        int success = 0;
2262        int start;
2263
2264        if (s > (PAGE_SIZE>>9))
2265            s = PAGE_SIZE >> 9;
2266
2267        rcu_read_lock();
2268        do {
2269            sector_t first_bad;
2270            int bad_sectors;
2271
2272            d = r10_bio->devs[sl].devnum;
2273            rdev = rcu_dereference(conf->mirrors[d].rdev);
2274            if (rdev &&
2275                !test_bit(Unmerged, &rdev->flags) &&
2276                test_bit(In_sync, &rdev->flags) &&
2277                is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2278                    &first_bad, &bad_sectors) == 0) {
2279                atomic_inc(&rdev->nr_pending);
2280                rcu_read_unlock();
2281                success = sync_page_io(rdev,
2282                               r10_bio->devs[sl].addr +
2283                               sect,
2284                               s<<9,
2285                               conf->tmppage, READ, false);
2286                rdev_dec_pending(rdev, mddev);
2287                rcu_read_lock();
2288                if (success)
2289                    break;
2290            }
2291            sl++;
2292            if (sl == conf->copies)
2293                sl = 0;
2294        } while (!success && sl != r10_bio->read_slot);
2295        rcu_read_unlock();
2296
2297        if (!success) {
2298            /* Cannot read from anywhere, just mark the block
2299             * as bad on the first device to discourage future
2300             * reads.
2301             */
2302            int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2303            rdev = conf->mirrors[dn].rdev;
2304
2305            if (!rdev_set_badblocks(
2306                    rdev,
2307                    r10_bio->devs[r10_bio->read_slot].addr
2308                    + sect,
2309                    s, 0)) {
2310                md_error(mddev, rdev);
2311                r10_bio->devs[r10_bio->read_slot].bio
2312                    = IO_BLOCKED;
2313            }
2314            break;
2315        }
2316
2317        start = sl;
2318        /* write it back and re-read */
2319        rcu_read_lock();
2320        while (sl != r10_bio->read_slot) {
2321            char b[BDEVNAME_SIZE];
2322
2323            if (sl==0)
2324                sl = conf->copies;
2325            sl--;
2326            d = r10_bio->devs[sl].devnum;
2327            rdev = rcu_dereference(conf->mirrors[d].rdev);
2328            if (!rdev ||
2329                test_bit(Unmerged, &rdev->flags) ||
2330                !test_bit(In_sync, &rdev->flags))
2331                continue;
2332
2333            atomic_inc(&rdev->nr_pending);
2334            rcu_read_unlock();
2335            if (r10_sync_page_io(rdev,
2336                         r10_bio->devs[sl].addr +
2337                         sect,
2338                         s, conf->tmppage, WRITE)
2339                == 0) {
2340                /* Well, this device is dead */
2341                printk(KERN_NOTICE
2342                       "md/raid10:%s: read correction "
2343                       "write failed"
2344                       " (%d sectors at %llu on %s)\n",
2345                       mdname(mddev), s,
2346                       (unsigned long long)(
2347                           sect +
2348                           choose_data_offset(r10_bio,
2349                                  rdev)),
2350                       bdevname(rdev->bdev, b));
2351                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2352                       "drive\n",
2353                       mdname(mddev),
2354                       bdevname(rdev->bdev, b));
2355            }
2356            rdev_dec_pending(rdev, mddev);
2357            rcu_read_lock();
2358        }
2359        sl = start;
2360        while (sl != r10_bio->read_slot) {
2361            char b[BDEVNAME_SIZE];
2362
2363            if (sl==0)
2364                sl = conf->copies;
2365            sl--;
2366            d = r10_bio->devs[sl].devnum;
2367            rdev = rcu_dereference(conf->mirrors[d].rdev);
2368            if (!rdev ||
2369                !test_bit(In_sync, &rdev->flags))
2370                continue;
2371
2372            atomic_inc(&rdev->nr_pending);
2373            rcu_read_unlock();
2374            switch (r10_sync_page_io(rdev,
2375                         r10_bio->devs[sl].addr +
2376                         sect,
2377                         s, conf->tmppage,
2378                         READ)) {
2379            case 0:
2380                /* Well, this device is dead */
2381                printk(KERN_NOTICE
2382                       "md/raid10:%s: unable to read back "
2383                       "corrected sectors"
2384                       " (%d sectors at %llu on %s)\n",
2385                       mdname(mddev), s,
2386                       (unsigned long long)(
2387                           sect +
2388                           choose_data_offset(r10_bio, rdev)),
2389                       bdevname(rdev->bdev, b));
2390                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2391                       "drive\n",
2392                       mdname(mddev),
2393                       bdevname(rdev->bdev, b));
2394                break;
2395            case 1:
2396                printk(KERN_INFO
2397                       "md/raid10:%s: read error corrected"
2398                       " (%d sectors at %llu on %s)\n",
2399                       mdname(mddev), s,
2400                       (unsigned long long)(
2401                           sect +
2402                           choose_data_offset(r10_bio, rdev)),
2403                       bdevname(rdev->bdev, b));
2404                atomic_add(s, &rdev->corrected_errors);
2405            }
2406
2407            rdev_dec_pending(rdev, mddev);
2408            rcu_read_lock();
2409        }
2410        rcu_read_unlock();
2411
2412        sectors -= s;
2413        sect += s;
2414    }
2415}
2416
2417static void bi_complete(struct bio *bio, int error)
2418{
2419    complete((struct completion *)bio->bi_private);
2420}
2421
2422static int submit_bio_wait(int rw, struct bio *bio)
2423{
2424    struct completion event;
2425    rw |= REQ_SYNC;
2426
2427    init_completion(&event);
2428    bio->bi_private = &event;
2429    bio->bi_end_io = bi_complete;
2430    submit_bio(rw, bio);
2431    wait_for_completion(&event);
2432
2433    return test_bit(BIO_UPTODATE, &bio->bi_flags);
2434}
2435
2436static int narrow_write_error(struct r10bio *r10_bio, int i)
2437{
2438    struct bio *bio = r10_bio->master_bio;
2439    struct mddev *mddev = r10_bio->mddev;
2440    struct r10conf *conf = mddev->private;
2441    struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442    /* bio has the data to be written to slot 'i' where
2443     * we just recently had a write error.
2444     * We repeatedly clone the bio and trim down to one block,
2445     * then try the write. Where the write fails we record
2446     * a bad block.
2447     * It is conceivable that the bio doesn't exactly align with
2448     * blocks. We must handle this.
2449     *
2450     * We currently own a reference to the rdev.
2451     */
2452
2453    int block_sectors;
2454    sector_t sector;
2455    int sectors;
2456    int sect_to_write = r10_bio->sectors;
2457    int ok = 1;
2458
2459    if (rdev->badblocks.shift < 0)
2460        return 0;
2461
2462    block_sectors = 1 << rdev->badblocks.shift;
2463    sector = r10_bio->sector;
2464    sectors = ((r10_bio->sector + block_sectors)
2465           & ~(sector_t)(block_sectors - 1))
2466        - sector;
2467
2468    while (sect_to_write) {
2469        struct bio *wbio;
2470        if (sectors > sect_to_write)
2471            sectors = sect_to_write;
2472        /* Write at 'sector' for 'sectors' */
2473        wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2474        md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2475        wbio->bi_sector = (r10_bio->devs[i].addr+
2476                   choose_data_offset(r10_bio, rdev) +
2477                   (sector - r10_bio->sector));
2478        wbio->bi_bdev = rdev->bdev;
2479        if (submit_bio_wait(WRITE, wbio) == 0)
2480            /* Failure! */
2481            ok = rdev_set_badblocks(rdev, sector,
2482                        sectors, 0)
2483                && ok;
2484
2485        bio_put(wbio);
2486        sect_to_write -= sectors;
2487        sector += sectors;
2488        sectors = block_sectors;
2489    }
2490    return ok;
2491}
2492
2493static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494{
2495    int slot = r10_bio->read_slot;
2496    struct bio *bio;
2497    struct r10conf *conf = mddev->private;
2498    struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499    char b[BDEVNAME_SIZE];
2500    unsigned long do_sync;
2501    int max_sectors;
2502
2503    /* we got a read error. Maybe the drive is bad. Maybe just
2504     * the block and we can fix it.
2505     * We freeze all other IO, and try reading the block from
2506     * other devices. When we find one, we re-write
2507     * and check it that fixes the read error.
2508     * This is all done synchronously while the array is
2509     * frozen.
2510     */
2511    bio = r10_bio->devs[slot].bio;
2512    bdevname(bio->bi_bdev, b);
2513    bio_put(bio);
2514    r10_bio->devs[slot].bio = NULL;
2515
2516    if (mddev->ro == 0) {
2517        freeze_array(conf);
2518        fix_read_error(conf, mddev, r10_bio);
2519        unfreeze_array(conf);
2520    } else
2521        r10_bio->devs[slot].bio = IO_BLOCKED;
2522
2523    rdev_dec_pending(rdev, mddev);
2524
2525read_more:
2526    rdev = read_balance(conf, r10_bio, &max_sectors);
2527    if (rdev == NULL) {
2528        printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529               " read error for block %llu\n",
2530               mdname(mddev), b,
2531               (unsigned long long)r10_bio->sector);
2532        raid_end_bio_io(r10_bio);
2533        return;
2534    }
2535
2536    do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2537    slot = r10_bio->read_slot;
2538    printk_ratelimited(
2539        KERN_ERR
2540        "md/raid10:%s: %s: redirecting "
2541        "sector %llu to another mirror\n",
2542        mdname(mddev),
2543        bdevname(rdev->bdev, b),
2544        (unsigned long long)r10_bio->sector);
2545    bio = bio_clone_mddev(r10_bio->master_bio,
2546                  GFP_NOIO, mddev);
2547    md_trim_bio(bio,
2548            r10_bio->sector - bio->bi_sector,
2549            max_sectors);
2550    r10_bio->devs[slot].bio = bio;
2551    r10_bio->devs[slot].rdev = rdev;
2552    bio->bi_sector = r10_bio->devs[slot].addr
2553        + choose_data_offset(r10_bio, rdev);
2554    bio->bi_bdev = rdev->bdev;
2555    bio->bi_rw = READ | do_sync;
2556    bio->bi_private = r10_bio;
2557    bio->bi_end_io = raid10_end_read_request;
2558    if (max_sectors < r10_bio->sectors) {
2559        /* Drat - have to split this up more */
2560        struct bio *mbio = r10_bio->master_bio;
2561        int sectors_handled =
2562            r10_bio->sector + max_sectors
2563            - mbio->bi_sector;
2564        r10_bio->sectors = max_sectors;
2565        spin_lock_irq(&conf->device_lock);
2566        if (mbio->bi_phys_segments == 0)
2567            mbio->bi_phys_segments = 2;
2568        else
2569            mbio->bi_phys_segments++;
2570        spin_unlock_irq(&conf->device_lock);
2571        generic_make_request(bio);
2572
2573        r10_bio = mempool_alloc(conf->r10bio_pool,
2574                    GFP_NOIO);
2575        r10_bio->master_bio = mbio;
2576        r10_bio->sectors = (mbio->bi_size >> 9)
2577            - sectors_handled;
2578        r10_bio->state = 0;
2579        set_bit(R10BIO_ReadError,
2580            &r10_bio->state);
2581        r10_bio->mddev = mddev;
2582        r10_bio->sector = mbio->bi_sector
2583            + sectors_handled;
2584
2585        goto read_more;
2586    } else
2587        generic_make_request(bio);
2588}
2589
2590static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2591{
2592    /* Some sort of write request has finished and it
2593     * succeeded in writing where we thought there was a
2594     * bad block. So forget the bad block.
2595     * Or possibly if failed and we need to record
2596     * a bad block.
2597     */
2598    int m;
2599    struct md_rdev *rdev;
2600
2601    if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2602        test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2603        for (m = 0; m < conf->copies; m++) {
2604            int dev = r10_bio->devs[m].devnum;
2605            rdev = conf->mirrors[dev].rdev;
2606            if (r10_bio->devs[m].bio == NULL)
2607                continue;
2608            if (test_bit(BIO_UPTODATE,
2609                     &r10_bio->devs[m].bio->bi_flags)) {
2610                rdev_clear_badblocks(
2611                    rdev,
2612                    r10_bio->devs[m].addr,
2613                    r10_bio->sectors, 0);
2614            } else {
2615                if (!rdev_set_badblocks(
2616                        rdev,
2617                        r10_bio->devs[m].addr,
2618                        r10_bio->sectors, 0))
2619                    md_error(conf->mddev, rdev);
2620            }
2621            rdev = conf->mirrors[dev].replacement;
2622            if (r10_bio->devs[m].repl_bio == NULL)
2623                continue;
2624            if (test_bit(BIO_UPTODATE,
2625                     &r10_bio->devs[m].repl_bio->bi_flags)) {
2626                rdev_clear_badblocks(
2627                    rdev,
2628                    r10_bio->devs[m].addr,
2629                    r10_bio->sectors, 0);
2630            } else {
2631                if (!rdev_set_badblocks(
2632                        rdev,
2633                        r10_bio->devs[m].addr,
2634                        r10_bio->sectors, 0))
2635                    md_error(conf->mddev, rdev);
2636            }
2637        }
2638        put_buf(r10_bio);
2639    } else {
2640        for (m = 0; m < conf->copies; m++) {
2641            int dev = r10_bio->devs[m].devnum;
2642            struct bio *bio = r10_bio->devs[m].bio;
2643            rdev = conf->mirrors[dev].rdev;
2644            if (bio == IO_MADE_GOOD) {
2645                rdev_clear_badblocks(
2646                    rdev,
2647                    r10_bio->devs[m].addr,
2648                    r10_bio->sectors, 0);
2649                rdev_dec_pending(rdev, conf->mddev);
2650            } else if (bio != NULL &&
2651                   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2652                if (!narrow_write_error(r10_bio, m)) {
2653                    md_error(conf->mddev, rdev);
2654                    set_bit(R10BIO_Degraded,
2655                        &r10_bio->state);
2656                }
2657                rdev_dec_pending(rdev, conf->mddev);
2658            }
2659            bio = r10_bio->devs[m].repl_bio;
2660            rdev = conf->mirrors[dev].replacement;
2661            if (rdev && bio == IO_MADE_GOOD) {
2662                rdev_clear_badblocks(
2663                    rdev,
2664                    r10_bio->devs[m].addr,
2665                    r10_bio->sectors, 0);
2666                rdev_dec_pending(rdev, conf->mddev);
2667            }
2668        }
2669        if (test_bit(R10BIO_WriteError,
2670                 &r10_bio->state))
2671            close_write(r10_bio);
2672        raid_end_bio_io(r10_bio);
2673    }
2674}
2675
2676static void raid10d(struct mddev *mddev)
2677{
2678    struct r10bio *r10_bio;
2679    unsigned long flags;
2680    struct r10conf *conf = mddev->private;
2681    struct list_head *head = &conf->retry_list;
2682    struct blk_plug plug;
2683
2684    md_check_recovery(mddev);
2685
2686    blk_start_plug(&plug);
2687    for (;;) {
2688
2689        flush_pending_writes(conf);
2690
2691        spin_lock_irqsave(&conf->device_lock, flags);
2692        if (list_empty(head)) {
2693            spin_unlock_irqrestore(&conf->device_lock, flags);
2694            break;
2695        }
2696        r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2697        list_del(head->prev);
2698        conf->nr_queued--;
2699        spin_unlock_irqrestore(&conf->device_lock, flags);
2700
2701        mddev = r10_bio->mddev;
2702        conf = mddev->private;
2703        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2704            test_bit(R10BIO_WriteError, &r10_bio->state))
2705            handle_write_completed(conf, r10_bio);
2706        else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2707            reshape_request_write(mddev, r10_bio);
2708        else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2709            sync_request_write(mddev, r10_bio);
2710        else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2711            recovery_request_write(mddev, r10_bio);
2712        else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2713            handle_read_error(mddev, r10_bio);
2714        else {
2715            /* just a partial read to be scheduled from a
2716             * separate context
2717             */
2718            int slot = r10_bio->read_slot;
2719            generic_make_request(r10_bio->devs[slot].bio);
2720        }
2721
2722        cond_resched();
2723        if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2724            md_check_recovery(mddev);
2725    }
2726    blk_finish_plug(&plug);
2727}
2728
2729
2730static int init_resync(struct r10conf *conf)
2731{
2732    int buffs;
2733    int i;
2734
2735    buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2736    BUG_ON(conf->r10buf_pool);
2737    conf->have_replacement = 0;
2738    for (i = 0; i < conf->geo.raid_disks; i++)
2739        if (conf->mirrors[i].replacement)
2740            conf->have_replacement = 1;
2741    conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2742    if (!conf->r10buf_pool)
2743        return -ENOMEM;
2744    conf->next_resync = 0;
2745    return 0;
2746}
2747
2748/*
2749 * perform a "sync" on one "block"
2750 *
2751 * We need to make sure that no normal I/O request - particularly write
2752 * requests - conflict with active sync requests.
2753 *
2754 * This is achieved by tracking pending requests and a 'barrier' concept
2755 * that can be installed to exclude normal IO requests.
2756 *
2757 * Resync and recovery are handled very differently.
2758 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2759 *
2760 * For resync, we iterate over virtual addresses, read all copies,
2761 * and update if there are differences. If only one copy is live,
2762 * skip it.
2763 * For recovery, we iterate over physical addresses, read a good
2764 * value for each non-in_sync drive, and over-write.
2765 *
2766 * So, for recovery we may have several outstanding complex requests for a
2767 * given address, one for each out-of-sync device. We model this by allocating
2768 * a number of r10_bio structures, one for each out-of-sync device.
2769 * As we setup these structures, we collect all bio's together into a list
2770 * which we then process collectively to add pages, and then process again
2771 * to pass to generic_make_request.
2772 *
2773 * The r10_bio structures are linked using a borrowed master_bio pointer.
2774 * This link is counted in ->remaining. When the r10_bio that points to NULL
2775 * has its remaining count decremented to 0, the whole complex operation
2776 * is complete.
2777 *
2778 */
2779
2780static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2781                 int *skipped, int go_faster)
2782{
2783    struct r10conf *conf = mddev->private;
2784    struct r10bio *r10_bio;
2785    struct bio *biolist = NULL, *bio;
2786    sector_t max_sector, nr_sectors;
2787    int i;
2788    int max_sync;
2789    sector_t sync_blocks;
2790    sector_t sectors_skipped = 0;
2791    int chunks_skipped = 0;
2792    sector_t chunk_mask = conf->geo.chunk_mask;
2793
2794    if (!conf->r10buf_pool)
2795        if (init_resync(conf))
2796            return 0;
2797
2798 skipped:
2799    max_sector = mddev->dev_sectors;
2800    if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2801        test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2802        max_sector = mddev->resync_max_sectors;
2803    if (sector_nr >= max_sector) {
2804        /* If we aborted, we need to abort the
2805         * sync on the 'current' bitmap chucks (there can
2806         * be several when recovering multiple devices).
2807         * as we may have started syncing it but not finished.
2808         * We can find the current address in
2809         * mddev->curr_resync, but for recovery,
2810         * we need to convert that to several
2811         * virtual addresses.
2812         */
2813        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2814            end_reshape(conf);
2815            return 0;
2816        }
2817
2818        if (mddev->curr_resync < max_sector) { /* aborted */
2819            if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2820                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2821                        &sync_blocks, 1);
2822            else for (i = 0; i < conf->geo.raid_disks; i++) {
2823                sector_t sect =
2824                    raid10_find_virt(conf, mddev->curr_resync, i);
2825                bitmap_end_sync(mddev->bitmap, sect,
2826                        &sync_blocks, 1);
2827            }
2828        } else {
2829            /* completed sync */
2830            if ((!mddev->bitmap || conf->fullsync)
2831                && conf->have_replacement
2832                && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2833                /* Completed a full sync so the replacements
2834                 * are now fully recovered.
2835                 */
2836                for (i = 0; i < conf->geo.raid_disks; i++)
2837                    if (conf->mirrors[i].replacement)
2838                        conf->mirrors[i].replacement
2839                            ->recovery_offset
2840                            = MaxSector;
2841            }
2842            conf->fullsync = 0;
2843        }
2844        bitmap_close_sync(mddev->bitmap);
2845        close_sync(conf);
2846        *skipped = 1;
2847        return sectors_skipped;
2848    }
2849
2850    if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851        return reshape_request(mddev, sector_nr, skipped);
2852
2853    if (chunks_skipped >= conf->geo.raid_disks) {
2854        /* if there has been nothing to do on any drive,
2855         * then there is nothing to do at all..
2856         */
2857        *skipped = 1;
2858        return (max_sector - sector_nr) + sectors_skipped;
2859    }
2860
2861    if (max_sector > mddev->resync_max)
2862        max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863
2864    /* make sure whole request will fit in a chunk - if chunks
2865     * are meaningful
2866     */
2867    if (conf->geo.near_copies < conf->geo.raid_disks &&
2868        max_sector > (sector_nr | chunk_mask))
2869        max_sector = (sector_nr | chunk_mask) + 1;
2870    /*
2871     * If there is non-resync activity waiting for us then
2872     * put in a delay to throttle resync.
2873     */
2874    if (!go_faster && conf->nr_waiting)
2875        msleep_interruptible(1000);
2876
2877    /* Again, very different code for resync and recovery.
2878     * Both must result in an r10bio with a list of bios that
2879     * have bi_end_io, bi_sector, bi_bdev set,
2880     * and bi_private set to the r10bio.
2881     * For recovery, we may actually create several r10bios
2882     * with 2 bios in each, that correspond to the bios in the main one.
2883     * In this case, the subordinate r10bios link back through a
2884     * borrowed master_bio pointer, and the counter in the master
2885     * includes a ref from each subordinate.
2886     */
2887    /* First, we decide what to do and set ->bi_end_io
2888     * To end_sync_read if we want to read, and
2889     * end_sync_write if we will want to write.
2890     */
2891
2892    max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2893    if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2894        /* recovery... the complicated one */
2895        int j;
2896        r10_bio = NULL;
2897
2898        for (i = 0 ; i < conf->geo.raid_disks; i++) {
2899            int still_degraded;
2900            struct r10bio *rb2;
2901            sector_t sect;
2902            int must_sync;
2903            int any_working;
2904            struct raid10_info *mirror = &conf->mirrors[i];
2905
2906            if ((mirror->rdev == NULL ||
2907                 test_bit(In_sync, &mirror->rdev->flags))
2908                &&
2909                (mirror->replacement == NULL ||
2910                 test_bit(Faulty,
2911                      &mirror->replacement->flags)))
2912                continue;
2913
2914            still_degraded = 0;
2915            /* want to reconstruct this device */
2916            rb2 = r10_bio;
2917            sect = raid10_find_virt(conf, sector_nr, i);
2918            if (sect >= mddev->resync_max_sectors) {
2919                /* last stripe is not complete - don't
2920                 * try to recover this sector.
2921                 */
2922                continue;
2923            }
2924            /* Unless we are doing a full sync, or a replacement
2925             * we only need to recover the block if it is set in
2926             * the bitmap
2927             */
2928            must_sync = bitmap_start_sync(mddev->bitmap, sect,
2929                              &sync_blocks, 1);
2930            if (sync_blocks < max_sync)
2931                max_sync = sync_blocks;
2932            if (!must_sync &&
2933                mirror->replacement == NULL &&
2934                !conf->fullsync) {
2935                /* yep, skip the sync_blocks here, but don't assume
2936                 * that there will never be anything to do here
2937                 */
2938                chunks_skipped = -1;
2939                continue;
2940            }
2941
2942            r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2943            raise_barrier(conf, rb2 != NULL);
2944            atomic_set(&r10_bio->remaining, 0);
2945
2946            r10_bio->master_bio = (struct bio*)rb2;
2947            if (rb2)
2948                atomic_inc(&rb2->remaining);
2949            r10_bio->mddev = mddev;
2950            set_bit(R10BIO_IsRecover, &r10_bio->state);
2951            r10_bio->sector = sect;
2952
2953            raid10_find_phys(conf, r10_bio);
2954
2955            /* Need to check if the array will still be
2956             * degraded
2957             */
2958            for (j = 0; j < conf->geo.raid_disks; j++)
2959                if (conf->mirrors[j].rdev == NULL ||
2960                    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2961                    still_degraded = 1;
2962                    break;
2963                }
2964
2965            must_sync = bitmap_start_sync(mddev->bitmap, sect,
2966                              &sync_blocks, still_degraded);
2967
2968            any_working = 0;
2969            for (j=0; j<conf->copies;j++) {
2970                int k;
2971                int d = r10_bio->devs[j].devnum;
2972                sector_t from_addr, to_addr;
2973                struct md_rdev *rdev;
2974                sector_t sector, first_bad;
2975                int bad_sectors;
2976                if (!conf->mirrors[d].rdev ||
2977                    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2978                    continue;
2979                /* This is where we read from */
2980                any_working = 1;
2981                rdev = conf->mirrors[d].rdev;
2982                sector = r10_bio->devs[j].addr;
2983
2984                if (is_badblock(rdev, sector, max_sync,
2985                        &first_bad, &bad_sectors)) {
2986                    if (first_bad > sector)
2987                        max_sync = first_bad - sector;
2988                    else {
2989                        bad_sectors -= (sector
2990                                - first_bad);
2991                        if (max_sync > bad_sectors)
2992                            max_sync = bad_sectors;
2993                        continue;
2994                    }
2995                }
2996                bio = r10_bio->devs[0].bio;
2997                bio->bi_next = biolist;
2998                biolist = bio;
2999                bio->bi_private = r10_bio;
3000                bio->bi_end_io = end_sync_read;
3001                bio->bi_rw = READ;
3002                from_addr = r10_bio->devs[j].addr;
3003                bio->bi_sector = from_addr + rdev->data_offset;
3004                bio->bi_bdev = rdev->bdev;
3005                atomic_inc(&rdev->nr_pending);
3006                /* and we write to 'i' (if not in_sync) */
3007
3008                for (k=0; k<conf->copies; k++)
3009                    if (r10_bio->devs[k].devnum == i)
3010                        break;
3011                BUG_ON(k == conf->copies);
3012                to_addr = r10_bio->devs[k].addr;
3013                r10_bio->devs[0].devnum = d;
3014                r10_bio->devs[0].addr = from_addr;
3015                r10_bio->devs[1].devnum = i;
3016                r10_bio->devs[1].addr = to_addr;
3017
3018                rdev = mirror->rdev;
3019                if (!test_bit(In_sync, &rdev->flags)) {
3020                    bio = r10_bio->devs[1].bio;
3021                    bio->bi_next = biolist;
3022                    biolist = bio;
3023                    bio->bi_private = r10_bio;
3024                    bio->bi_end_io = end_sync_write;
3025                    bio->bi_rw = WRITE;
3026                    bio->bi_sector = to_addr
3027                        + rdev->data_offset;
3028                    bio->bi_bdev = rdev->bdev;
3029                    atomic_inc(&r10_bio->remaining);
3030                } else
3031                    r10_bio->devs[1].bio->bi_end_io = NULL;
3032
3033                /* and maybe write to replacement */
3034                bio = r10_bio->devs[1].repl_bio;
3035                if (bio)
3036                    bio->bi_end_io = NULL;
3037                rdev = mirror->replacement;
3038                /* Note: if rdev != NULL, then bio
3039                 * cannot be NULL as r10buf_pool_alloc will
3040                 * have allocated it.
3041                 * So the second test here is pointless.
3042                 * But it keeps semantic-checkers happy, and
3043                 * this comment keeps human reviewers
3044                 * happy.
3045                 */
3046                if (rdev == NULL || bio == NULL ||
3047                    test_bit(Faulty, &rdev->flags))
3048                    break;
3049                bio->bi_next = biolist;
3050                biolist = bio;
3051                bio->bi_private = r10_bio;
3052                bio->bi_end_io = end_sync_write;
3053                bio->bi_rw = WRITE;
3054                bio->bi_sector = to_addr + rdev->data_offset;
3055                bio->bi_bdev = rdev->bdev;
3056                atomic_inc(&r10_bio->remaining);
3057                break;
3058            }
3059            if (j == conf->copies) {
3060                /* Cannot recover, so abort the recovery or
3061                 * record a bad block */
3062                put_buf(r10_bio);
3063                if (rb2)
3064                    atomic_dec(&rb2->remaining);
3065                r10_bio = rb2;
3066                if (any_working) {
3067                    /* problem is that there are bad blocks
3068                     * on other device(s)
3069                     */
3070                    int k;
3071                    for (k = 0; k < conf->copies; k++)
3072                        if (r10_bio->devs[k].devnum == i)
3073                            break;
3074                    if (!test_bit(In_sync,
3075                              &mirror->rdev->flags)
3076                        && !rdev_set_badblocks(
3077                            mirror->rdev,
3078                            r10_bio->devs[k].addr,
3079                            max_sync, 0))
3080                        any_working = 0;
3081                    if (mirror->replacement &&
3082                        !rdev_set_badblocks(
3083                            mirror->replacement,
3084                            r10_bio->devs[k].addr,
3085                            max_sync, 0))
3086                        any_working = 0;
3087                }
3088                if (!any_working) {
3089                    if (!test_and_set_bit(MD_RECOVERY_INTR,
3090                                  &mddev->recovery))
3091                        printk(KERN_INFO "md/raid10:%s: insufficient "
3092                               "working devices for recovery.\n",
3093                               mdname(mddev));
3094                    mirror->recovery_disabled
3095                        = mddev->recovery_disabled;
3096                }
3097                break;
3098            }
3099        }
3100        if (biolist == NULL) {
3101            while (r10_bio) {
3102                struct r10bio *rb2 = r10_bio;
3103                r10_bio = (struct r10bio*) rb2->master_bio;
3104                rb2->master_bio = NULL;
3105                put_buf(rb2);
3106            }
3107            goto giveup;
3108        }
3109    } else {
3110        /* resync. Schedule a read for every block at this virt offset */
3111        int count = 0;
3112
3113        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3114
3115        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3116                       &sync_blocks, mddev->degraded) &&
3117            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3118                         &mddev->recovery)) {
3119            /* We can skip this block */
3120            *skipped = 1;
3121            return sync_blocks + sectors_skipped;
3122        }
3123        if (sync_blocks < max_sync)
3124            max_sync = sync_blocks;
3125        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3126
3127        r10_bio->mddev = mddev;
3128        atomic_set(&r10_bio->remaining, 0);
3129        raise_barrier(conf, 0);
3130        conf->next_resync = sector_nr;
3131
3132        r10_bio->master_bio = NULL;
3133        r10_bio->sector = sector_nr;
3134        set_bit(R10BIO_IsSync, &r10_bio->state);
3135        raid10_find_phys(conf, r10_bio);
3136        r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3137
3138        for (i = 0; i < conf->copies; i++) {
3139            int d = r10_bio->devs[i].devnum;
3140            sector_t first_bad, sector;
3141            int bad_sectors;
3142
3143            if (r10_bio->devs[i].repl_bio)
3144                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3145
3146            bio = r10_bio->devs[i].bio;
3147            bio->bi_end_io = NULL;
3148            clear_bit(BIO_UPTODATE, &bio->bi_flags);
3149            if (conf->mirrors[d].rdev == NULL ||
3150                test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3151                continue;
3152            sector = r10_bio->devs[i].addr;
3153            if (is_badblock(conf->mirrors[d].rdev,
3154                    sector, max_sync,
3155                    &first_bad, &bad_sectors)) {
3156                if (first_bad > sector)
3157                    max_sync = first_bad - sector;
3158                else {
3159                    bad_sectors -= (sector - first_bad);
3160                    if (max_sync > bad_sectors)
3161                        max_sync = max_sync;
3162                    continue;
3163                }
3164            }
3165            atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3166            atomic_inc(&r10_bio->remaining);
3167            bio->bi_next = biolist;
3168            biolist = bio;
3169            bio->bi_private = r10_bio;
3170            bio->bi_end_io = end_sync_read;
3171            bio->bi_rw = READ;
3172            bio->bi_sector = sector +
3173                conf->mirrors[d].rdev->data_offset;
3174            bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3175            count++;
3176
3177            if (conf->mirrors[d].replacement == NULL ||
3178                test_bit(Faulty,
3179                     &conf->mirrors[d].replacement->flags))
3180                continue;
3181
3182            /* Need to set up for writing to the replacement */
3183            bio = r10_bio->devs[i].repl_bio;
3184            clear_bit(BIO_UPTODATE, &bio->bi_flags);
3185
3186            sector = r10_bio->devs[i].addr;
3187            atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3188            bio->bi_next = biolist;
3189            biolist = bio;
3190            bio->bi_private = r10_bio;
3191            bio->bi_end_io = end_sync_write;
3192            bio->bi_rw = WRITE;
3193            bio->bi_sector = sector +
3194                conf->mirrors[d].replacement->data_offset;
3195            bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3196            count++;
3197        }
3198
3199        if (count < 2) {
3200            for (i=0; i<conf->copies; i++) {
3201                int d = r10_bio->devs[i].devnum;
3202                if (r10_bio->devs[i].bio->bi_end_io)
3203                    rdev_dec_pending(conf->mirrors[d].rdev,
3204                             mddev);
3205                if (r10_bio->devs[i].repl_bio &&
3206                    r10_bio->devs[i].repl_bio->bi_end_io)
3207                    rdev_dec_pending(
3208                        conf->mirrors[d].replacement,
3209                        mddev);
3210            }
3211            put_buf(r10_bio);
3212            biolist = NULL;
3213            goto giveup;
3214        }
3215    }
3216
3217    for (bio = biolist; bio ; bio=bio->bi_next) {
3218
3219        bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3220        if (bio->bi_end_io)
3221            bio->bi_flags |= 1 << BIO_UPTODATE;
3222        bio->bi_vcnt = 0;
3223        bio->bi_idx = 0;
3224        bio->bi_phys_segments = 0;
3225        bio->bi_size = 0;
3226    }
3227
3228    nr_sectors = 0;
3229    if (sector_nr + max_sync < max_sector)
3230        max_sector = sector_nr + max_sync;
3231    do {
3232        struct page *page;
3233        int len = PAGE_SIZE;
3234        if (sector_nr + (len>>9) > max_sector)
3235            len = (max_sector - sector_nr) << 9;
3236        if (len == 0)
3237            break;
3238        for (bio= biolist ; bio ; bio=bio->bi_next) {
3239            struct bio *bio2;
3240            page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3241            if (bio_add_page(bio, page, len, 0))
3242                continue;
3243
3244            /* stop here */
3245            bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3246            for (bio2 = biolist;
3247                 bio2 && bio2 != bio;
3248                 bio2 = bio2->bi_next) {
3249                /* remove last page from this bio */
3250                bio2->bi_vcnt--;
3251                bio2->bi_size -= len;
3252                bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3253            }
3254            goto bio_full;
3255        }
3256        nr_sectors += len>>9;
3257        sector_nr += len>>9;
3258    } while (biolist->bi_vcnt < RESYNC_PAGES);
3259 bio_full:
3260    r10_bio->sectors = nr_sectors;
3261
3262    while (biolist) {
3263        bio = biolist;
3264        biolist = biolist->bi_next;
3265
3266        bio->bi_next = NULL;
3267        r10_bio = bio->bi_private;
3268        r10_bio->sectors = nr_sectors;
3269
3270        if (bio->bi_end_io == end_sync_read) {
3271            md_sync_acct(bio->bi_bdev, nr_sectors);
3272            generic_make_request(bio);
3273        }
3274    }
3275
3276    if (sectors_skipped)
3277        /* pretend they weren't skipped, it makes
3278         * no important difference in this case
3279         */
3280        md_done_sync(mddev, sectors_skipped, 1);
3281
3282    return sectors_skipped + nr_sectors;
3283 giveup:
3284    /* There is nowhere to write, so all non-sync
3285     * drives must be failed or in resync, all drives
3286     * have a bad block, so try the next chunk...
3287     */
3288    if (sector_nr + max_sync < max_sector)
3289        max_sector = sector_nr + max_sync;
3290
3291    sectors_skipped += (max_sector - sector_nr);
3292    chunks_skipped ++;
3293    sector_nr = max_sector;
3294    goto skipped;
3295}
3296
3297static sector_t
3298raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3299{
3300    sector_t size;
3301    struct r10conf *conf = mddev->private;
3302
3303    if (!raid_disks)
3304        raid_disks = min(conf->geo.raid_disks,
3305                 conf->prev.raid_disks);
3306    if (!sectors)
3307        sectors = conf->dev_sectors;
3308
3309    size = sectors >> conf->geo.chunk_shift;
3310    sector_div(size, conf->geo.far_copies);
3311    size = size * raid_disks;
3312    sector_div(size, conf->geo.near_copies);
3313
3314    return size << conf->geo.chunk_shift;
3315}
3316
3317static void calc_sectors(struct r10conf *conf, sector_t size)
3318{
3319    /* Calculate the number of sectors-per-device that will
3320     * actually be used, and set conf->dev_sectors and
3321     * conf->stride
3322     */
3323
3324    size = size >> conf->geo.chunk_shift;
3325    sector_div(size, conf->geo.far_copies);
3326    size = size * conf->geo.raid_disks;
3327    sector_div(size, conf->geo.near_copies);
3328    /* 'size' is now the number of chunks in the array */
3329    /* calculate "used chunks per device" */
3330    size = size * conf->copies;
3331
3332    /* We need to round up when dividing by raid_disks to
3333     * get the stride size.
3334     */
3335    size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3336
3337    conf->dev_sectors = size << conf->geo.chunk_shift;
3338
3339    if (conf->geo.far_offset)
3340        conf->geo.stride = 1 << conf->geo.chunk_shift;
3341    else {
3342        sector_div(size, conf->geo.far_copies);
3343        conf->geo.stride = size << conf->geo.chunk_shift;
3344    }
3345}
3346
3347enum geo_type {geo_new, geo_old, geo_start};
3348static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3349{
3350    int nc, fc, fo;
3351    int layout, chunk, disks;
3352    switch (new) {
3353    case geo_old:
3354        layout = mddev->layout;
3355        chunk = mddev->chunk_sectors;
3356        disks = mddev->raid_disks - mddev->delta_disks;
3357        break;
3358    case geo_new:
3359        layout = mddev->new_layout;
3360        chunk = mddev->new_chunk_sectors;
3361        disks = mddev->raid_disks;
3362        break;
3363    default: /* avoid 'may be unused' warnings */
3364    case geo_start: /* new when starting reshape - raid_disks not
3365             * updated yet. */
3366        layout = mddev->new_layout;
3367        chunk = mddev->new_chunk_sectors;
3368        disks = mddev->raid_disks + mddev->delta_disks;
3369        break;
3370    }
3371    if (layout >> 17)
3372        return -1;
3373    if (chunk < (PAGE_SIZE >> 9) ||
3374        !is_power_of_2(chunk))
3375        return -2;
3376    nc = layout & 255;
3377    fc = (layout >> 8) & 255;
3378    fo = layout & (1<<16);
3379    geo->raid_disks = disks;
3380    geo->near_copies = nc;
3381    geo->far_copies = fc;
3382    geo->far_offset = fo;
3383    geo->chunk_mask = chunk - 1;
3384    geo->chunk_shift = ffz(~chunk);
3385    return nc*fc;
3386}
3387
3388static struct r10conf *setup_conf(struct mddev *mddev)
3389{
3390    struct r10conf *conf = NULL;
3391    int err = -EINVAL;
3392    struct geom geo;
3393    int copies;
3394
3395    copies = setup_geo(&geo, mddev, geo_new);
3396
3397    if (copies == -2) {
3398        printk(KERN_ERR "md/raid10:%s: chunk size must be "
3399               "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3400               mdname(mddev), PAGE_SIZE);
3401        goto out;
3402    }
3403
3404    if (copies < 2 || copies > mddev->raid_disks) {
3405        printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3406               mdname(mddev), mddev->new_layout);
3407        goto out;
3408    }
3409
3410    err = -ENOMEM;
3411    conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3412    if (!conf)
3413        goto out;
3414
3415    /* FIXME calc properly */
3416    conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3417                                max(0,mddev->delta_disks)),
3418                GFP_KERNEL);
3419    if (!conf->mirrors)
3420        goto out;
3421
3422    conf->tmppage = alloc_page(GFP_KERNEL);
3423    if (!conf->tmppage)
3424        goto out;
3425
3426    conf->geo = geo;
3427    conf->copies = copies;
3428    conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3429                       r10bio_pool_free, conf);
3430    if (!conf->r10bio_pool)
3431        goto out;
3432
3433    calc_sectors(conf, mddev->dev_sectors);
3434    if (mddev->reshape_position == MaxSector) {
3435        conf->prev = conf->geo;
3436        conf->reshape_progress = MaxSector;
3437    } else {
3438        if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3439            err = -EINVAL;
3440            goto out;
3441        }
3442        conf->reshape_progress = mddev->reshape_position;
3443        if (conf->prev.far_offset)
3444            conf->prev.stride = 1 << conf->prev.chunk_shift;
3445        else
3446            /* far_copies must be 1 */
3447            conf->prev.stride = conf->dev_sectors;
3448    }
3449    spin_lock_init(&conf->device_lock);
3450    INIT_LIST_HEAD(&conf->retry_list);
3451
3452    spin_lock_init(&conf->resync_lock);
3453    init_waitqueue_head(&conf->wait_barrier);
3454
3455    conf->thread = md_register_thread(raid10d, mddev, "raid10");
3456    if (!conf->thread)
3457        goto out;
3458
3459    conf->mddev = mddev;
3460    return conf;
3461
3462 out:
3463    if (err == -ENOMEM)
3464        printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3465               mdname(mddev));
3466    if (conf) {
3467        if (conf->r10bio_pool)
3468            mempool_destroy(conf->r10bio_pool);
3469        kfree(conf->mirrors);
3470        safe_put_page(conf->tmppage);
3471        kfree(conf);
3472    }
3473    return ERR_PTR(err);
3474}
3475
3476static int run(struct mddev *mddev)
3477{
3478    struct r10conf *conf;
3479    int i, disk_idx, chunk_size;
3480    struct raid10_info *disk;
3481    struct md_rdev *rdev;
3482    sector_t size;
3483    sector_t min_offset_diff = 0;
3484    int first = 1;
3485
3486    if (mddev->private == NULL) {
3487        conf = setup_conf(mddev);
3488        if (IS_ERR(conf))
3489            return PTR_ERR(conf);
3490        mddev->private = conf;
3491    }
3492    conf = mddev->private;
3493    if (!conf)
3494        goto out;
3495
3496    mddev->thread = conf->thread;
3497    conf->thread = NULL;
3498
3499    chunk_size = mddev->chunk_sectors << 9;
3500    if (mddev->queue) {
3501        blk_queue_io_min(mddev->queue, chunk_size);
3502        if (conf->geo.raid_disks % conf->geo.near_copies)
3503            blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3504        else
3505            blk_queue_io_opt(mddev->queue, chunk_size *
3506                     (conf->geo.raid_disks / conf->geo.near_copies));
3507    }
3508
3509    rdev_for_each(rdev, mddev) {
3510        long long diff;
3511        struct request_queue *q;
3512
3513        disk_idx = rdev->raid_disk;
3514        if (disk_idx < 0)
3515            continue;
3516        if (disk_idx >= conf->geo.raid_disks &&
3517            disk_idx >= conf->prev.raid_disks)
3518            continue;
3519        disk = conf->mirrors + disk_idx;
3520
3521        if (test_bit(Replacement, &rdev->flags)) {
3522            if (disk->replacement)
3523                goto out_free_conf;
3524            disk->replacement = rdev;
3525        } else {
3526            if (disk->rdev)
3527                goto out_free_conf;
3528            disk->rdev = rdev;
3529        }
3530        q = bdev_get_queue(rdev->bdev);
3531        if (q->merge_bvec_fn)
3532            mddev->merge_check_needed = 1;
3533        diff = (rdev->new_data_offset - rdev->data_offset);
3534        if (!mddev->reshape_backwards)
3535            diff = -diff;
3536        if (diff < 0)
3537            diff = 0;
3538        if (first || diff < min_offset_diff)
3539            min_offset_diff = diff;
3540
3541        if (mddev->gendisk)
3542            disk_stack_limits(mddev->gendisk, rdev->bdev,
3543                      rdev->data_offset << 9);
3544
3545        disk->head_position = 0;
3546    }
3547
3548    /* need to check that every block has at least one working mirror */
3549    if (!enough(conf, -1)) {
3550        printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3551               mdname(mddev));
3552        goto out_free_conf;
3553    }
3554
3555    if (conf->reshape_progress != MaxSector) {
3556        /* must ensure that shape change is supported */
3557        if (conf->geo.far_copies != 1 &&
3558            conf->geo.far_offset == 0)
3559            goto out_free_conf;
3560        if (conf->prev.far_copies != 1 &&
3561            conf->geo.far_offset == 0)
3562            goto out_free_conf;
3563    }
3564
3565    mddev->degraded = 0;
3566    for (i = 0;
3567         i < conf->geo.raid_disks
3568             || i < conf->prev.raid_disks;
3569         i++) {
3570
3571        disk = conf->mirrors + i;
3572
3573        if (!disk->rdev && disk->replacement) {
3574            /* The replacement is all we have - use it */
3575            disk->rdev = disk->replacement;
3576            disk->replacement = NULL;
3577            clear_bit(Replacement, &disk->rdev->flags);
3578        }
3579
3580        if (!disk->rdev ||
3581            !test_bit(In_sync, &disk->rdev->flags)) {
3582            disk->head_position = 0;
3583            mddev->degraded++;
3584            if (disk->rdev)
3585                conf->fullsync = 1;
3586        }
3587        disk->recovery_disabled = mddev->recovery_disabled - 1;
3588    }
3589
3590    if (mddev->recovery_cp != MaxSector)
3591        printk(KERN_NOTICE "md/raid10:%s: not clean"
3592               " -- starting background reconstruction\n",
3593               mdname(mddev));
3594    printk(KERN_INFO
3595        "md/raid10:%s: active with %d out of %d devices\n",
3596        mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3597        conf->geo.raid_disks);
3598    /*
3599     * Ok, everything is just fine now
3600     */
3601    mddev->dev_sectors = conf->dev_sectors;
3602    size = raid10_size(mddev, 0, 0);
3603    md_set_array_sectors(mddev, size);
3604    mddev->resync_max_sectors = size;
3605
3606    if (mddev->queue) {
3607        int stripe = conf->geo.raid_disks *
3608            ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3609        mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3610        mddev->queue->backing_dev_info.congested_data = mddev;
3611
3612        /* Calculate max read-ahead size.
3613         * We need to readahead at least twice a whole stripe....
3614         * maybe...
3615         */
3616        stripe /= conf->geo.near_copies;
3617        if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3618            mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3619        blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3620    }
3621
3622
3623    if (md_integrity_register(mddev))
3624        goto out_free_conf;
3625
3626    if (conf->reshape_progress != MaxSector) {
3627        unsigned long before_length, after_length;
3628
3629        before_length = ((1 << conf->prev.chunk_shift) *
3630                 conf->prev.far_copies);
3631        after_length = ((1 << conf->geo.chunk_shift) *
3632                conf->geo.far_copies);
3633
3634        if (max(before_length, after_length) > min_offset_diff) {
3635            /* This cannot work */
3636            printk("md/raid10: offset difference not enough to continue reshape\n");
3637            goto out_free_conf;
3638        }
3639        conf->offset_diff = min_offset_diff;
3640
3641        conf->reshape_safe = conf->reshape_progress;
3642        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3643        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3644        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3645        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3646        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3647                            "reshape");
3648    }
3649
3650    return 0;
3651
3652out_free_conf:
3653    md_unregister_thread(&mddev->thread);
3654    if (conf->r10bio_pool)
3655        mempool_destroy(conf->r10bio_pool);
3656    safe_put_page(conf->tmppage);
3657    kfree(conf->mirrors);
3658    kfree(conf);
3659    mddev->private = NULL;
3660out:
3661    return -EIO;
3662}
3663
3664static int stop(struct mddev *mddev)
3665{
3666    struct r10conf *conf = mddev->private;
3667
3668    raise_barrier(conf, 0);
3669    lower_barrier(conf);
3670
3671    md_unregister_thread(&mddev->thread);
3672    if (mddev->queue)
3673        /* the unplug fn references 'conf'*/
3674        blk_sync_queue(mddev->queue);
3675
3676    if (conf->r10bio_pool)
3677        mempool_destroy(conf->r10bio_pool);
3678    kfree(conf->mirrors);
3679    kfree(conf);
3680    mddev->private = NULL;
3681    return 0;
3682}
3683
3684static void raid10_quiesce(struct mddev *mddev, int state)
3685{
3686    struct r10conf *conf = mddev->private;
3687
3688    switch(state) {
3689    case 1:
3690        raise_barrier(conf, 0);
3691        break;
3692    case 0:
3693        lower_barrier(conf);
3694        break;
3695    }
3696}
3697
3698static int raid10_resize(struct mddev *mddev, sector_t sectors)
3699{
3700    /* Resize of 'far' arrays is not supported.
3701     * For 'near' and 'offset' arrays we can set the
3702     * number of sectors used to be an appropriate multiple
3703     * of the chunk size.
3704     * For 'offset', this is far_copies*chunksize.
3705     * For 'near' the multiplier is the LCM of
3706     * near_copies and raid_disks.
3707     * So if far_copies > 1 && !far_offset, fail.
3708     * Else find LCM(raid_disks, near_copy)*far_copies and
3709     * multiply by chunk_size. Then round to this number.
3710     * This is mostly done by raid10_size()
3711     */
3712    struct r10conf *conf = mddev->private;
3713    sector_t oldsize, size;
3714
3715    if (mddev->reshape_position != MaxSector)
3716        return -EBUSY;
3717
3718    if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3719        return -EINVAL;
3720
3721    oldsize = raid10_size(mddev, 0, 0);
3722    size = raid10_size(mddev, sectors, 0);
3723    if (mddev->external_size &&
3724        mddev->array_sectors > size)
3725        return -EINVAL;
3726    if (mddev->bitmap) {
3727        int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3728        if (ret)
3729            return ret;
3730    }
3731    md_set_array_sectors(mddev, size);
3732    set_capacity(mddev->gendisk, mddev->array_sectors);
3733    revalidate_disk(mddev->gendisk);
3734    if (sectors > mddev->dev_sectors &&
3735        mddev->recovery_cp > oldsize) {
3736        mddev->recovery_cp = oldsize;
3737        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3738    }
3739    calc_sectors(conf, sectors);
3740    mddev->dev_sectors = conf->dev_sectors;
3741    mddev->resync_max_sectors = size;
3742    return 0;
3743}
3744
3745static void *raid10_takeover_raid0(struct mddev *mddev)
3746{
3747    struct md_rdev *rdev;
3748    struct r10conf *conf;
3749
3750    if (mddev->degraded > 0) {
3751        printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3752               mdname(mddev));
3753        return ERR_PTR(-EINVAL);
3754    }
3755
3756    /* Set new parameters */
3757    mddev->new_level = 10;
3758    /* new layout: far_copies = 1, near_copies = 2 */
3759    mddev->new_layout = (1<<8) + 2;
3760    mddev->new_chunk_sectors = mddev->chunk_sectors;
3761    mddev->delta_disks = mddev->raid_disks;
3762    mddev->raid_disks *= 2;
3763    /* make sure it will be not marked as dirty */
3764    mddev->recovery_cp = MaxSector;
3765
3766    conf = setup_conf(mddev);
3767    if (!IS_ERR(conf)) {
3768        rdev_for_each(rdev, mddev)
3769            if (rdev->raid_disk >= 0)
3770                rdev->new_raid_disk = rdev->raid_disk * 2;
3771        conf->barrier = 1;
3772    }
3773
3774    return conf;
3775}
3776
3777static void *raid10_takeover(struct mddev *mddev)
3778{
3779    struct r0conf *raid0_conf;
3780
3781    /* raid10 can take over:
3782     * raid0 - providing it has only two drives
3783     */
3784    if (mddev->level == 0) {
3785        /* for raid0 takeover only one zone is supported */
3786        raid0_conf = mddev->private;
3787        if (raid0_conf->nr_strip_zones > 1) {
3788            printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3789                   " with more than one zone.\n",
3790                   mdname(mddev));
3791            return ERR_PTR(-EINVAL);
3792        }
3793        return raid10_takeover_raid0(mddev);
3794    }
3795    return ERR_PTR(-EINVAL);
3796}
3797
3798static int raid10_check_reshape(struct mddev *mddev)
3799{
3800    /* Called when there is a request to change
3801     * - layout (to ->new_layout)
3802     * - chunk size (to ->new_chunk_sectors)
3803     * - raid_disks (by delta_disks)
3804     * or when trying to restart a reshape that was ongoing.
3805     *
3806     * We need to validate the request and possibly allocate
3807     * space if that might be an issue later.
3808     *
3809     * Currently we reject any reshape of a 'far' mode array,
3810     * allow chunk size to change if new is generally acceptable,
3811     * allow raid_disks to increase, and allow
3812     * a switch between 'near' mode and 'offset' mode.
3813     */
3814    struct r10conf *conf = mddev->private;
3815    struct geom geo;
3816
3817    if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3818        return -EINVAL;
3819
3820    if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3821        /* mustn't change number of copies */
3822        return -EINVAL;
3823    if (geo.far_copies > 1 && !geo.far_offset)
3824        /* Cannot switch to 'far' mode */
3825        return -EINVAL;
3826
3827    if (mddev->array_sectors & geo.chunk_mask)
3828            /* not factor of array size */
3829            return -EINVAL;
3830
3831    if (!enough(conf, -1))
3832        return -EINVAL;
3833
3834    kfree(conf->mirrors_new);
3835    conf->mirrors_new = NULL;
3836    if (mddev->delta_disks > 0) {
3837        /* allocate new 'mirrors' list */
3838        conf->mirrors_new = kzalloc(
3839            sizeof(struct raid10_info)
3840            *(mddev->raid_disks +
3841              mddev->delta_disks),
3842            GFP_KERNEL);
3843        if (!conf->mirrors_new)
3844            return -ENOMEM;
3845    }
3846    return 0;
3847}
3848
3849/*
3850 * Need to check if array has failed when deciding whether to:
3851 * - start an array
3852 * - remove non-faulty devices
3853 * - add a spare
3854 * - allow a reshape
3855 * This determination is simple when no reshape is happening.
3856 * However if there is a reshape, we need to carefully check
3857 * both the before and after sections.
3858 * This is because some failed devices may only affect one
3859 * of the two sections, and some non-in_sync devices may
3860 * be insync in the section most affected by failed devices.
3861 */
3862static int calc_degraded(struct r10conf *conf)
3863{
3864    int degraded, degraded2;
3865    int i;
3866
3867    rcu_read_lock();
3868    degraded = 0;
3869    /* 'prev' section first */
3870    for (i = 0; i < conf->prev.raid_disks; i++) {
3871        struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3872        if (!rdev || test_bit(Faulty, &rdev->flags))
3873            degraded++;
3874        else if (!test_bit(In_sync, &rdev->flags))
3875            /* When we can reduce the number of devices in
3876             * an array, this might not contribute to
3877             * 'degraded'. It does now.
3878             */
3879            degraded++;
3880    }
3881    rcu_read_unlock();
3882    if (conf->geo.raid_disks == conf->prev.raid_disks)
3883        return degraded;
3884    rcu_read_lock();
3885    degraded2 = 0;
3886    for (i = 0; i < conf->geo.raid_disks; i++) {
3887        struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3888        if (!rdev || test_bit(Faulty, &rdev->flags))
3889            degraded2++;
3890        else if (!test_bit(In_sync, &rdev->flags)) {
3891            /* If reshape is increasing the number of devices,
3892             * this section has already been recovered, so
3893             * it doesn't contribute to degraded.
3894             * else it does.
3895             */
3896            if (conf->geo.raid_disks <= conf->prev.raid_disks)
3897                degraded2++;
3898        }
3899    }
3900    rcu_read_unlock();
3901    if (degraded2 > degraded)
3902        return degraded2;
3903    return degraded;
3904}
3905
3906static int raid10_start_reshape(struct mddev *mddev)
3907{
3908    /* A 'reshape' has been requested. This commits
3909     * the various 'new' fields and sets MD_RECOVER_RESHAPE
3910     * This also checks if there are enough spares and adds them
3911     * to the array.
3912     * We currently require enough spares to make the final
3913     * array non-degraded. We also require that the difference
3914     * between old and new data_offset - on each device - is
3915     * enough that we never risk over-writing.
3916     */
3917
3918    unsigned long before_length, after_length;
3919    sector_t min_offset_diff = 0;
3920    int first = 1;
3921    struct geom new;
3922    struct r10conf *conf = mddev->private;
3923    struct md_rdev *rdev;
3924    int spares = 0;
3925    int ret;
3926
3927    if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3928        return -EBUSY;
3929
3930    if (setup_geo(&new, mddev, geo_start) != conf->copies)
3931        return -EINVAL;
3932
3933    before_length = ((1 << conf->prev.chunk_shift) *
3934             conf->prev.far_copies);
3935    after_length = ((1 << conf->geo.chunk_shift) *
3936            conf->geo.far_copies);
3937
3938    rdev_for_each(rdev, mddev) {
3939        if (!test_bit(In_sync, &rdev->flags)
3940            && !test_bit(Faulty, &rdev->flags))
3941            spares++;
3942        if (rdev->raid_disk >= 0) {
3943            long long diff = (rdev->new_data_offset
3944                      - rdev->data_offset);
3945            if (!mddev->reshape_backwards)
3946                diff = -diff;
3947            if (diff < 0)
3948                diff = 0;
3949            if (first || diff < min_offset_diff)
3950                min_offset_diff = diff;
3951        }
3952    }
3953
3954    if (max(before_length, after_length) > min_offset_diff)
3955        return -EINVAL;
3956
3957    if (spares < mddev->delta_disks)
3958        return -EINVAL;
3959
3960    conf->offset_diff = min_offset_diff;
3961    spin_lock_irq(&conf->device_lock);
3962    if (conf->mirrors_new) {
3963        memcpy(conf->mirrors_new, conf->mirrors,
3964               sizeof(struct raid10_info)*conf->prev.raid_disks);
3965        smp_mb();
3966        kfree(conf->mirrors_old); /* FIXME and elsewhere */
3967        conf->mirrors_old = conf->mirrors;
3968        conf->mirrors = conf->mirrors_new;
3969        conf->mirrors_new = NULL;
3970    }
3971    setup_geo(&conf->geo, mddev, geo_start);
3972    smp_mb();
3973    if (mddev->reshape_backwards) {
3974        sector_t size = raid10_size(mddev, 0, 0);
3975        if (size < mddev->array_sectors) {
3976            spin_unlock_irq(&conf->device_lock);
3977            printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3978                   mdname(mddev));
3979            return -EINVAL;
3980        }
3981        mddev->resync_max_sectors = size;
3982        conf->reshape_progress = size;
3983    } else
3984        conf->reshape_progress = 0;
3985    spin_unlock_irq(&conf->device_lock);
3986
3987    if (mddev->delta_disks && mddev->bitmap) {
3988        ret = bitmap_resize(mddev->bitmap,
3989                    raid10_size(mddev, 0,
3990                        conf->geo.raid_disks),
3991                    0, 0);
3992        if (ret)
3993            goto abort;
3994    }
3995    if (mddev->delta_disks > 0) {
3996        rdev_for_each(rdev, mddev)
3997            if (rdev->raid_disk < 0 &&
3998                !test_bit(Faulty, &rdev->flags)) {
3999                if (raid10_add_disk(mddev, rdev) == 0) {
4000                    if (rdev->raid_disk >=
4001                        conf->prev.raid_disks)
4002                        set_bit(In_sync, &rdev->flags);
4003                    else
4004                        rdev->recovery_offset = 0;
4005
4006                    if (sysfs_link_rdev(mddev, rdev))
4007                        /* Failure here is OK */;
4008                }
4009            } else if (rdev->raid_disk >= conf->prev.raid_disks
4010                   && !test_bit(Faulty, &rdev->flags)) {
4011                /* This is a spare that was manually added */
4012                set_bit(In_sync, &rdev->flags);
4013            }
4014    }
4015    /* When a reshape changes the number of devices,
4016     * ->degraded is measured against the larger of the
4017     * pre and post numbers.
4018     */
4019    spin_lock_irq(&conf->device_lock);
4020    mddev->degraded = calc_degraded(conf);
4021    spin_unlock_irq(&conf->device_lock);
4022    mddev->raid_disks = conf->geo.raid_disks;
4023    mddev->reshape_position = conf->reshape_progress;
4024    set_bit(MD_CHANGE_DEVS, &mddev->flags);
4025
4026    clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4027    clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4028    set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4029    set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4030
4031    mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4032                        "reshape");
4033    if (!mddev->sync_thread) {
4034        ret = -EAGAIN;
4035        goto abort;
4036    }
4037    conf->reshape_checkpoint = jiffies;
4038    md_wakeup_thread(mddev->sync_thread);
4039    md_new_event(mddev);
4040    return 0;
4041
4042abort:
4043    mddev->recovery = 0;
4044    spin_lock_irq(&conf->device_lock);
4045    conf->geo = conf->prev;
4046    mddev->raid_disks = conf->geo.raid_disks;
4047    rdev_for_each(rdev, mddev)
4048        rdev->new_data_offset = rdev->data_offset;
4049    smp_wmb();
4050    conf->reshape_progress = MaxSector;
4051    mddev->reshape_position = MaxSector;
4052    spin_unlock_irq(&conf->device_lock);
4053    return ret;
4054}
4055
4056/* Calculate the last device-address that could contain
4057 * any block from the chunk that includes the array-address 's'
4058 * and report the next address.
4059 * i.e. the address returned will be chunk-aligned and after
4060 * any data that is in the chunk containing 's'.
4061 */
4062static sector_t last_dev_address(sector_t s, struct geom *geo)
4063{
4064    s = (s | geo->chunk_mask) + 1;
4065    s >>= geo->chunk_shift;
4066    s *= geo->near_copies;
4067    s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4068    s *= geo->far_copies;
4069    s <<= geo->chunk_shift;
4070    return s;
4071}
4072
4073/* Calculate the first device-address that could contain
4074 * any block from the chunk that includes the array-address 's'.
4075 * This too will be the start of a chunk
4076 */
4077static sector_t first_dev_address(sector_t s, struct geom *geo)
4078{
4079    s >>= geo->chunk_shift;
4080    s *= geo->near_copies;
4081    sector_div(s, geo->raid_disks);
4082    s *= geo->far_copies;
4083    s <<= geo->chunk_shift;
4084    return s;
4085}
4086
4087static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4088                int *skipped)
4089{
4090    /* We simply copy at most one chunk (smallest of old and new)
4091     * at a time, possibly less if that exceeds RESYNC_PAGES,
4092     * or we hit a bad block or something.
4093     * This might mean we pause for normal IO in the middle of
4094     * a chunk, but that is not a problem was mddev->reshape_position
4095     * can record any location.
4096     *
4097     * If we will want to write to a location that isn't
4098     * yet recorded as 'safe' (i.e. in metadata on disk) then
4099     * we need to flush all reshape requests and update the metadata.
4100     *
4101     * When reshaping forwards (e.g. to more devices), we interpret
4102     * 'safe' as the earliest block which might not have been copied
4103     * down yet. We divide this by previous stripe size and multiply
4104     * by previous stripe length to get lowest device offset that we
4105     * cannot write to yet.
4106     * We interpret 'sector_nr' as an address that we want to write to.
4107     * From this we use last_device_address() to find where we might
4108     * write to, and first_device_address on the 'safe' position.
4109     * If this 'next' write position is after the 'safe' position,
4110     * we must update the metadata to increase the 'safe' position.
4111     *
4112     * When reshaping backwards, we round in the opposite direction
4113     * and perform the reverse test: next write position must not be
4114     * less than current safe position.
4115     *
4116     * In all this the minimum difference in data offsets
4117     * (conf->offset_diff - always positive) allows a bit of slack,
4118     * so next can be after 'safe', but not by more than offset_disk
4119     *
4120     * We need to prepare all the bios here before we start any IO
4121     * to ensure the size we choose is acceptable to all devices.
4122     * The means one for each copy for write-out and an extra one for
4123     * read-in.
4124     * We store the read-in bio in ->master_bio and the others in
4125     * ->devs[x].bio and ->devs[x].repl_bio.
4126     */
4127    struct r10conf *conf = mddev->private;
4128    struct r10bio *r10_bio;
4129    sector_t next, safe, last;
4130    int max_sectors;
4131    int nr_sectors;
4132    int s;
4133    struct md_rdev *rdev;
4134    int need_flush = 0;
4135    struct bio *blist;
4136    struct bio *bio, *read_bio;
4137    int sectors_done = 0;
4138
4139    if (sector_nr == 0) {
4140        /* If restarting in the middle, skip the initial sectors */
4141        if (mddev->reshape_backwards &&
4142            conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4143            sector_nr = (raid10_size(mddev, 0, 0)
4144                     - conf->reshape_progress);
4145        } else if (!mddev->reshape_backwards &&
4146               conf->reshape_progress > 0)
4147            sector_nr = conf->reshape_progress;
4148        if (sector_nr) {
4149            mddev->curr_resync_completed = sector_nr;
4150            sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4151            *skipped = 1;
4152            return sector_nr;
4153        }
4154    }
4155
4156    /* We don't use sector_nr to track where we are up to
4157     * as that doesn't work well for ->reshape_backwards.
4158     * So just use ->reshape_progress.
4159     */
4160    if (mddev->reshape_backwards) {
4161        /* 'next' is the earliest device address that we might
4162         * write to for this chunk in the new layout
4163         */
4164        next = first_dev_address(conf->reshape_progress - 1,
4165                     &conf->geo);
4166
4167        /* 'safe' is the last device address that we might read from
4168         * in the old layout after a restart
4169         */
4170        safe = last_dev_address(conf->reshape_safe - 1,
4171                    &conf->prev);
4172
4173        if (next + conf->offset_diff < safe)
4174            need_flush = 1;
4175
4176        last = conf->reshape_progress - 1;
4177        sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4178                           & conf->prev.chunk_mask);
4179        if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4180            sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4181    } else {
4182        /* 'next' is after the last device address that we
4183         * might write to for this chunk in the new layout
4184         */
4185        next = last_dev_address(conf->reshape_progress, &conf->geo);
4186
4187        /* 'safe' is the earliest device address that we might
4188         * read from in the old layout after a restart
4189         */
4190        safe = first_dev_address(conf->reshape_safe, &conf->prev);
4191
4192        /* Need to update metadata if 'next' might be beyond 'safe'
4193         * as that would possibly corrupt data
4194         */
4195        if (next > safe + conf->offset_diff)
4196            need_flush = 1;
4197
4198        sector_nr = conf->reshape_progress;
4199        last = sector_nr | (conf->geo.chunk_mask
4200                     & conf->prev.chunk_mask);
4201
4202        if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4203            last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4204    }
4205
4206    if (need_flush ||
4207        time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4208        /* Need to update reshape_position in metadata */
4209        wait_barrier(conf);
4210        mddev->reshape_position = conf->reshape_progress;
4211        if (mddev->reshape_backwards)
4212            mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4213                - conf->reshape_progress;
4214        else
4215            mddev->curr_resync_completed = conf->reshape_progress;
4216        conf->reshape_checkpoint = jiffies;
4217        set_bit(MD_CHANGE_DEVS, &mddev->flags);
4218        md_wakeup_thread(mddev->thread);
4219        wait_event(mddev->sb_wait, mddev->flags == 0 ||
4220               kthread_should_stop());
4221        conf->reshape_safe = mddev->reshape_position;
4222        allow_barrier(conf);
4223    }
4224
4225read_more:
4226    /* Now schedule reads for blocks from sector_nr to last */
4227    r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4228    raise_barrier(conf, sectors_done != 0);
4229    atomic_set(&r10_bio->remaining, 0);
4230    r10_bio->mddev = mddev;
4231    r10_bio->sector = sector_nr;
4232    set_bit(R10BIO_IsReshape, &r10_bio->state);
4233    r10_bio->sectors = last - sector_nr + 1;
4234    rdev = read_balance(conf, r10_bio, &max_sectors);
4235    BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4236
4237    if (!rdev) {
4238        /* Cannot read from here, so need to record bad blocks
4239         * on all the target devices.
4240         */
4241        // FIXME
4242        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4243        return sectors_done;
4244    }
4245
4246    read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4247
4248    read_bio->bi_bdev = rdev->bdev;
4249    read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4250                   + rdev->data_offset);
4251    read_bio->bi_private = r10_bio;
4252    read_bio->bi_end_io = end_sync_read;
4253    read_bio->bi_rw = READ;
4254    read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4255    read_bio->bi_flags |= 1 << BIO_UPTODATE;
4256    read_bio->bi_vcnt = 0;
4257    read_bio->bi_idx = 0;
4258    read_bio->bi_size = 0;
4259    r10_bio->master_bio = read_bio;
4260    r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4261
4262    /* Now find the locations in the new layout */
4263    __raid10_find_phys(&conf->geo, r10_bio);
4264
4265    blist = read_bio;
4266    read_bio->bi_next = NULL;
4267
4268    for (s = 0; s < conf->copies*2; s++) {
4269        struct bio *b;
4270        int d = r10_bio->devs[s/2].devnum;
4271        struct md_rdev *rdev2;
4272        if (s&1) {
4273            rdev2 = conf->mirrors[d].replacement;
4274            b = r10_bio->devs[s/2].repl_bio;
4275        } else {
4276            rdev2 = conf->mirrors[d].rdev;
4277            b = r10_bio->devs[s/2].bio;
4278        }
4279        if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4280            continue;
4281        b->bi_bdev = rdev2->bdev;
4282        b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4283        b->bi_private = r10_bio;
4284        b->bi_end_io = end_reshape_write;
4285        b->bi_rw = WRITE;
4286        b->bi_flags &= ~(BIO_POOL_MASK - 1);
4287        b->bi_flags |= 1 << BIO_UPTODATE;
4288        b->bi_next = blist;
4289        b->bi_vcnt = 0;
4290        b->bi_idx = 0;
4291        b->bi_size = 0;
4292        blist = b;
4293    }
4294
4295    /* Now add as many pages as possible to all of these bios. */
4296
4297    nr_sectors = 0;
4298    for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4299        struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4300        int len = (max_sectors - s) << 9;
4301        if (len > PAGE_SIZE)
4302            len = PAGE_SIZE;
4303        for (bio = blist; bio ; bio = bio->bi_next) {
4304            struct bio *bio2;
4305            if (bio_add_page(bio, page, len, 0))
4306                continue;
4307
4308            /* Didn't fit, must stop */
4309            for (bio2 = blist;
4310                 bio2 && bio2 != bio;
4311                 bio2 = bio2->bi_next) {
4312                /* Remove last page from this bio */
4313                bio2->bi_vcnt--;
4314                bio2->bi_size -= len;
4315                bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4316            }
4317            goto bio_full;
4318        }
4319        sector_nr += len >> 9;
4320        nr_sectors += len >> 9;
4321    }
4322bio_full:
4323    r10_bio->sectors = nr_sectors;
4324
4325    /* Now submit the read */
4326    md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4327    atomic_inc(&r10_bio->remaining);
4328    read_bio->bi_next = NULL;
4329    generic_make_request(read_bio);
4330    sector_nr += nr_sectors;
4331    sectors_done += nr_sectors;
4332    if (sector_nr <= last)
4333        goto read_more;
4334
4335    /* Now that we have done the whole section we can
4336     * update reshape_progress
4337     */
4338    if (mddev->reshape_backwards)
4339        conf->reshape_progress -= sectors_done;
4340    else
4341        conf->reshape_progress += sectors_done;
4342
4343    return sectors_done;
4344}
4345
4346static void end_reshape_request(struct r10bio *r10_bio);
4347static int handle_reshape_read_error(struct mddev *mddev,
4348                     struct r10bio *r10_bio);
4349static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4350{
4351    /* Reshape read completed. Hopefully we have a block
4352     * to write out.
4353     * If we got a read error then we do sync 1-page reads from
4354     * elsewhere until we find the data - or give up.
4355     */
4356    struct r10conf *conf = mddev->private;
4357    int s;
4358
4359    if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4360        if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4361            /* Reshape has been aborted */
4362            md_done_sync(mddev, r10_bio->sectors, 0);
4363            return;
4364        }
4365
4366    /* We definitely have the data in the pages, schedule the
4367     * writes.
4368     */
4369    atomic_set(&r10_bio->remaining, 1);
4370    for (s = 0; s < conf->copies*2; s++) {
4371        struct bio *b;
4372        int d = r10_bio->devs[s/2].devnum;
4373        struct md_rdev *rdev;
4374        if (s&1) {
4375            rdev = conf->mirrors[d].replacement;
4376            b = r10_bio->devs[s/2].repl_bio;
4377        } else {
4378            rdev = conf->mirrors[d].rdev;
4379            b = r10_bio->devs[s/2].bio;
4380        }
4381        if (!rdev || test_bit(Faulty, &rdev->flags))
4382            continue;
4383        atomic_inc(&rdev->nr_pending);
4384        md_sync_acct(b->bi_bdev, r10_bio->sectors);
4385        atomic_inc(&r10_bio->remaining);
4386        b->bi_next = NULL;
4387        generic_make_request(b);
4388    }
4389    end_reshape_request(r10_bio);
4390}
4391
4392static void end_reshape(struct r10conf *conf)
4393{
4394    if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4395        return;
4396
4397    spin_lock_irq(&conf->device_lock);
4398    conf->prev = conf->geo;
4399    md_finish_reshape(conf->mddev);
4400    smp_wmb();
4401    conf->reshape_progress = MaxSector;
4402    spin_unlock_irq(&conf->device_lock);
4403
4404    /* read-ahead size must cover two whole stripes, which is
4405     * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4406     */
4407    if (conf->mddev->queue) {
4408        int stripe = conf->geo.raid_disks *
4409            ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4410        stripe /= conf->geo.near_copies;
4411        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4412            conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4413    }
4414    conf->fullsync = 0;
4415}
4416
4417
4418static int handle_reshape_read_error(struct mddev *mddev,
4419                     struct r10bio *r10_bio)
4420{
4421    /* Use sync reads to get the blocks from somewhere else */
4422    int sectors = r10_bio->sectors;
4423    struct r10conf *conf = mddev->private;
4424    struct {
4425        struct r10bio r10_bio;
4426        struct r10dev devs[conf->copies];
4427    } on_stack;
4428    struct r10bio *r10b = &on_stack.r10_bio;
4429    int slot = 0;
4430    int idx = 0;
4431    struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4432
4433    r10b->sector = r10_bio->sector;
4434    __raid10_find_phys(&conf->prev, r10b);
4435
4436    while (sectors) {
4437        int s = sectors;
4438        int success = 0;
4439        int first_slot = slot;
4440
4441        if (s > (PAGE_SIZE >> 9))
4442            s = PAGE_SIZE >> 9;
4443
4444        while (!success) {
4445            int d = r10b->devs[slot].devnum;
4446            struct md_rdev *rdev = conf->mirrors[d].rdev;
4447            sector_t addr;
4448            if (rdev == NULL ||
4449                test_bit(Faulty, &rdev->flags) ||
4450                !test_bit(In_sync, &rdev->flags))
4451                goto failed;
4452
4453            addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4454            success = sync_page_io(rdev,
4455                           addr,
4456                           s << 9,
4457                           bvec[idx].bv_page,
4458                           READ, false);
4459            if (success)
4460                break;
4461        failed:
4462            slot++;
4463            if (slot >= conf->copies)
4464                slot = 0;
4465            if (slot == first_slot)
4466                break;
4467        }
4468        if (!success) {
4469            /* couldn't read this block, must give up */
4470            set_bit(MD_RECOVERY_INTR,
4471                &mddev->recovery);
4472            return -EIO;
4473        }
4474        sectors -= s;
4475        idx++;
4476    }
4477    return 0;
4478}
4479
4480static void end_reshape_write(struct bio *bio, int error)
4481{
4482    int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4483    struct r10bio *r10_bio = bio->bi_private;
4484    struct mddev *mddev = r10_bio->mddev;
4485    struct r10conf *conf = mddev->private;
4486    int d;
4487    int slot;
4488    int repl;
4489    struct md_rdev *rdev = NULL;
4490
4491    d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4492    if (repl)
4493        rdev = conf->mirrors[d].replacement;
4494    if (!rdev) {
4495        smp_mb();
4496        rdev = conf->mirrors[d].rdev;
4497    }
4498
4499    if (!uptodate) {
4500        /* FIXME should record badblock */
4501        md_error(mddev, rdev);
4502    }
4503
4504    rdev_dec_pending(rdev, mddev);
4505    end_reshape_request(r10_bio);
4506}
4507
4508static void end_reshape_request(struct r10bio *r10_bio)
4509{
4510    if (!atomic_dec_and_test(&r10_bio->remaining))
4511        return;
4512    md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4513    bio_put(r10_bio->master_bio);
4514    put_buf(r10_bio);
4515}
4516
4517static void raid10_finish_reshape(struct mddev *mddev)
4518{
4519    struct r10conf *conf = mddev->private;
4520
4521    if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4522        return;
4523
4524    if (mddev->delta_disks > 0) {
4525        sector_t size = raid10_size(mddev, 0, 0);
4526        md_set_array_sectors(mddev, size);
4527        if (mddev->recovery_cp > mddev->resync_max_sectors) {
4528            mddev->recovery_cp = mddev->resync_max_sectors;
4529            set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4530        }
4531        mddev->resync_max_sectors = size;
4532        set_capacity(mddev->gendisk, mddev->array_sectors);
4533        revalidate_disk(mddev->gendisk);
4534    } else {
4535        int d;
4536        for (d = conf->geo.raid_disks ;
4537             d < conf->geo.raid_disks - mddev->delta_disks;
4538             d++) {
4539            struct md_rdev *rdev = conf->mirrors[d].rdev;
4540            if (rdev)
4541                clear_bit(In_sync, &rdev->flags);
4542            rdev = conf->mirrors[d].replacement;
4543            if (rdev)
4544                clear_bit(In_sync, &rdev->flags);
4545        }
4546    }
4547    mddev->layout = mddev->new_layout;
4548    mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4549    mddev->reshape_position = MaxSector;
4550    mddev->delta_disks = 0;
4551    mddev->reshape_backwards = 0;
4552}
4553
4554static struct md_personality raid10_personality =
4555{
4556    .name = "raid10",
4557    .level = 10,
4558    .owner = THIS_MODULE,
4559    .make_request = make_request,
4560    .run = run,
4561    .stop = stop,
4562    .status = status,
4563    .error_handler = error,
4564    .hot_add_disk = raid10_add_disk,
4565    .hot_remove_disk= raid10_remove_disk,
4566    .spare_active = raid10_spare_active,
4567    .sync_request = sync_request,
4568    .quiesce = raid10_quiesce,
4569    .size = raid10_size,
4570    .resize = raid10_resize,
4571    .takeover = raid10_takeover,
4572    .check_reshape = raid10_check_reshape,
4573    .start_reshape = raid10_start_reshape,
4574    .finish_reshape = raid10_finish_reshape,
4575};
4576
4577static int __init raid_init(void)
4578{
4579    return register_md_personality(&raid10_personality);
4580}
4581
4582static void raid_exit(void)
4583{
4584    unregister_md_personality(&raid10_personality);
4585}
4586
4587module_init(raid_init);
4588module_exit(raid_exit);
4589MODULE_LICENSE("GPL");
4590MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4591MODULE_ALIAS("md-personality-9"); /* RAID10 */
4592MODULE_ALIAS("md-raid10");
4593MODULE_ALIAS("md-level-10");
4594
4595module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4596

Archive Download this file



interactive