Root/
1 | /* |
2 | * raid10.c : Multiple Devices driver for Linux |
3 | * |
4 | * Copyright (C) 2000-2004 Neil Brown |
5 | * |
6 | * RAID-10 support for md. |
7 | * |
8 | * Base on code in raid1.c. See raid1.c for further copyright information. |
9 | * |
10 | * |
11 | * This program is free software; you can redistribute it and/or modify |
12 | * it under the terms of the GNU General Public License as published by |
13 | * the Free Software Foundation; either version 2, or (at your option) |
14 | * any later version. |
15 | * |
16 | * You should have received a copy of the GNU General Public License |
17 | * (for example /usr/src/linux/COPYING); if not, write to the Free |
18 | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
19 | */ |
20 | |
21 | #include <linux/slab.h> |
22 | #include <linux/delay.h> |
23 | #include <linux/blkdev.h> |
24 | #include <linux/module.h> |
25 | #include <linux/seq_file.h> |
26 | #include <linux/ratelimit.h> |
27 | #include <linux/kthread.h> |
28 | #include "md.h" |
29 | #include "raid10.h" |
30 | #include "raid0.h" |
31 | #include "bitmap.h" |
32 | |
33 | /* |
34 | * RAID10 provides a combination of RAID0 and RAID1 functionality. |
35 | * The layout of data is defined by |
36 | * chunk_size |
37 | * raid_disks |
38 | * near_copies (stored in low byte of layout) |
39 | * far_copies (stored in second byte of layout) |
40 | * far_offset (stored in bit 16 of layout ) |
41 | * |
42 | * The data to be stored is divided into chunks using chunksize. |
43 | * Each device is divided into far_copies sections. |
44 | * In each section, chunks are laid out in a style similar to raid0, but |
45 | * near_copies copies of each chunk is stored (each on a different drive). |
46 | * The starting device for each section is offset near_copies from the starting |
47 | * device of the previous section. |
48 | * Thus they are (near_copies*far_copies) of each chunk, and each is on a different |
49 | * drive. |
50 | * near_copies and far_copies must be at least one, and their product is at most |
51 | * raid_disks. |
52 | * |
53 | * If far_offset is true, then the far_copies are handled a bit differently. |
54 | * The copies are still in different stripes, but instead of be very far apart |
55 | * on disk, there are adjacent stripes. |
56 | */ |
57 | |
58 | /* |
59 | * Number of guaranteed r10bios in case of extreme VM load: |
60 | */ |
61 | #define NR_RAID10_BIOS 256 |
62 | |
63 | /* when we get a read error on a read-only array, we redirect to another |
64 | * device without failing the first device, or trying to over-write to |
65 | * correct the read error. To keep track of bad blocks on a per-bio |
66 | * level, we store IO_BLOCKED in the appropriate 'bios' pointer |
67 | */ |
68 | #define IO_BLOCKED ((struct bio *)1) |
69 | /* When we successfully write to a known bad-block, we need to remove the |
70 | * bad-block marking which must be done from process context. So we record |
71 | * the success by setting devs[n].bio to IO_MADE_GOOD |
72 | */ |
73 | #define IO_MADE_GOOD ((struct bio *)2) |
74 | |
75 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) |
76 | |
77 | /* When there are this many requests queued to be written by |
78 | * the raid10 thread, we become 'congested' to provide back-pressure |
79 | * for writeback. |
80 | */ |
81 | static int max_queued_requests = 1024; |
82 | |
83 | static void allow_barrier(struct r10conf *conf); |
84 | static void lower_barrier(struct r10conf *conf); |
85 | static int enough(struct r10conf *conf, int ignore); |
86 | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, |
87 | int *skipped); |
88 | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); |
89 | static void end_reshape_write(struct bio *bio, int error); |
90 | static void end_reshape(struct r10conf *conf); |
91 | |
92 | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) |
93 | { |
94 | struct r10conf *conf = data; |
95 | int size = offsetof(struct r10bio, devs[conf->copies]); |
96 | |
97 | /* allocate a r10bio with room for raid_disks entries in the |
98 | * bios array */ |
99 | return kzalloc(size, gfp_flags); |
100 | } |
101 | |
102 | static void r10bio_pool_free(void *r10_bio, void *data) |
103 | { |
104 | kfree(r10_bio); |
105 | } |
106 | |
107 | /* Maximum size of each resync request */ |
108 | #define RESYNC_BLOCK_SIZE (64*1024) |
109 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) |
110 | /* amount of memory to reserve for resync requests */ |
111 | #define RESYNC_WINDOW (1024*1024) |
112 | /* maximum number of concurrent requests, memory permitting */ |
113 | #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) |
114 | |
115 | /* |
116 | * When performing a resync, we need to read and compare, so |
117 | * we need as many pages are there are copies. |
118 | * When performing a recovery, we need 2 bios, one for read, |
119 | * one for write (we recover only one drive per r10buf) |
120 | * |
121 | */ |
122 | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) |
123 | { |
124 | struct r10conf *conf = data; |
125 | struct page *page; |
126 | struct r10bio *r10_bio; |
127 | struct bio *bio; |
128 | int i, j; |
129 | int nalloc; |
130 | |
131 | r10_bio = r10bio_pool_alloc(gfp_flags, conf); |
132 | if (!r10_bio) |
133 | return NULL; |
134 | |
135 | if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || |
136 | test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) |
137 | nalloc = conf->copies; /* resync */ |
138 | else |
139 | nalloc = 2; /* recovery */ |
140 | |
141 | /* |
142 | * Allocate bios. |
143 | */ |
144 | for (j = nalloc ; j-- ; ) { |
145 | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); |
146 | if (!bio) |
147 | goto out_free_bio; |
148 | r10_bio->devs[j].bio = bio; |
149 | if (!conf->have_replacement) |
150 | continue; |
151 | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); |
152 | if (!bio) |
153 | goto out_free_bio; |
154 | r10_bio->devs[j].repl_bio = bio; |
155 | } |
156 | /* |
157 | * Allocate RESYNC_PAGES data pages and attach them |
158 | * where needed. |
159 | */ |
160 | for (j = 0 ; j < nalloc; j++) { |
161 | struct bio *rbio = r10_bio->devs[j].repl_bio; |
162 | bio = r10_bio->devs[j].bio; |
163 | for (i = 0; i < RESYNC_PAGES; i++) { |
164 | if (j > 0 && !test_bit(MD_RECOVERY_SYNC, |
165 | &conf->mddev->recovery)) { |
166 | /* we can share bv_page's during recovery |
167 | * and reshape */ |
168 | struct bio *rbio = r10_bio->devs[0].bio; |
169 | page = rbio->bi_io_vec[i].bv_page; |
170 | get_page(page); |
171 | } else |
172 | page = alloc_page(gfp_flags); |
173 | if (unlikely(!page)) |
174 | goto out_free_pages; |
175 | |
176 | bio->bi_io_vec[i].bv_page = page; |
177 | if (rbio) |
178 | rbio->bi_io_vec[i].bv_page = page; |
179 | } |
180 | } |
181 | |
182 | return r10_bio; |
183 | |
184 | out_free_pages: |
185 | for ( ; i > 0 ; i--) |
186 | safe_put_page(bio->bi_io_vec[i-1].bv_page); |
187 | while (j--) |
188 | for (i = 0; i < RESYNC_PAGES ; i++) |
189 | safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); |
190 | j = 0; |
191 | out_free_bio: |
192 | for ( ; j < nalloc; j++) { |
193 | if (r10_bio->devs[j].bio) |
194 | bio_put(r10_bio->devs[j].bio); |
195 | if (r10_bio->devs[j].repl_bio) |
196 | bio_put(r10_bio->devs[j].repl_bio); |
197 | } |
198 | r10bio_pool_free(r10_bio, conf); |
199 | return NULL; |
200 | } |
201 | |
202 | static void r10buf_pool_free(void *__r10_bio, void *data) |
203 | { |
204 | int i; |
205 | struct r10conf *conf = data; |
206 | struct r10bio *r10bio = __r10_bio; |
207 | int j; |
208 | |
209 | for (j=0; j < conf->copies; j++) { |
210 | struct bio *bio = r10bio->devs[j].bio; |
211 | if (bio) { |
212 | for (i = 0; i < RESYNC_PAGES; i++) { |
213 | safe_put_page(bio->bi_io_vec[i].bv_page); |
214 | bio->bi_io_vec[i].bv_page = NULL; |
215 | } |
216 | bio_put(bio); |
217 | } |
218 | bio = r10bio->devs[j].repl_bio; |
219 | if (bio) |
220 | bio_put(bio); |
221 | } |
222 | r10bio_pool_free(r10bio, conf); |
223 | } |
224 | |
225 | static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) |
226 | { |
227 | int i; |
228 | |
229 | for (i = 0; i < conf->copies; i++) { |
230 | struct bio **bio = & r10_bio->devs[i].bio; |
231 | if (!BIO_SPECIAL(*bio)) |
232 | bio_put(*bio); |
233 | *bio = NULL; |
234 | bio = &r10_bio->devs[i].repl_bio; |
235 | if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) |
236 | bio_put(*bio); |
237 | *bio = NULL; |
238 | } |
239 | } |
240 | |
241 | static void free_r10bio(struct r10bio *r10_bio) |
242 | { |
243 | struct r10conf *conf = r10_bio->mddev->private; |
244 | |
245 | put_all_bios(conf, r10_bio); |
246 | mempool_free(r10_bio, conf->r10bio_pool); |
247 | } |
248 | |
249 | static void put_buf(struct r10bio *r10_bio) |
250 | { |
251 | struct r10conf *conf = r10_bio->mddev->private; |
252 | |
253 | mempool_free(r10_bio, conf->r10buf_pool); |
254 | |
255 | lower_barrier(conf); |
256 | } |
257 | |
258 | static void reschedule_retry(struct r10bio *r10_bio) |
259 | { |
260 | unsigned long flags; |
261 | struct mddev *mddev = r10_bio->mddev; |
262 | struct r10conf *conf = mddev->private; |
263 | |
264 | spin_lock_irqsave(&conf->device_lock, flags); |
265 | list_add(&r10_bio->retry_list, &conf->retry_list); |
266 | conf->nr_queued ++; |
267 | spin_unlock_irqrestore(&conf->device_lock, flags); |
268 | |
269 | /* wake up frozen array... */ |
270 | wake_up(&conf->wait_barrier); |
271 | |
272 | md_wakeup_thread(mddev->thread); |
273 | } |
274 | |
275 | /* |
276 | * raid_end_bio_io() is called when we have finished servicing a mirrored |
277 | * operation and are ready to return a success/failure code to the buffer |
278 | * cache layer. |
279 | */ |
280 | static void raid_end_bio_io(struct r10bio *r10_bio) |
281 | { |
282 | struct bio *bio = r10_bio->master_bio; |
283 | int done; |
284 | struct r10conf *conf = r10_bio->mddev->private; |
285 | |
286 | if (bio->bi_phys_segments) { |
287 | unsigned long flags; |
288 | spin_lock_irqsave(&conf->device_lock, flags); |
289 | bio->bi_phys_segments--; |
290 | done = (bio->bi_phys_segments == 0); |
291 | spin_unlock_irqrestore(&conf->device_lock, flags); |
292 | } else |
293 | done = 1; |
294 | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) |
295 | clear_bit(BIO_UPTODATE, &bio->bi_flags); |
296 | if (done) { |
297 | bio_endio(bio, 0); |
298 | /* |
299 | * Wake up any possible resync thread that waits for the device |
300 | * to go idle. |
301 | */ |
302 | allow_barrier(conf); |
303 | } |
304 | free_r10bio(r10_bio); |
305 | } |
306 | |
307 | /* |
308 | * Update disk head position estimator based on IRQ completion info. |
309 | */ |
310 | static inline void update_head_pos(int slot, struct r10bio *r10_bio) |
311 | { |
312 | struct r10conf *conf = r10_bio->mddev->private; |
313 | |
314 | conf->mirrors[r10_bio->devs[slot].devnum].head_position = |
315 | r10_bio->devs[slot].addr + (r10_bio->sectors); |
316 | } |
317 | |
318 | /* |
319 | * Find the disk number which triggered given bio |
320 | */ |
321 | static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, |
322 | struct bio *bio, int *slotp, int *replp) |
323 | { |
324 | int slot; |
325 | int repl = 0; |
326 | |
327 | for (slot = 0; slot < conf->copies; slot++) { |
328 | if (r10_bio->devs[slot].bio == bio) |
329 | break; |
330 | if (r10_bio->devs[slot].repl_bio == bio) { |
331 | repl = 1; |
332 | break; |
333 | } |
334 | } |
335 | |
336 | BUG_ON(slot == conf->copies); |
337 | update_head_pos(slot, r10_bio); |
338 | |
339 | if (slotp) |
340 | *slotp = slot; |
341 | if (replp) |
342 | *replp = repl; |
343 | return r10_bio->devs[slot].devnum; |
344 | } |
345 | |
346 | static void raid10_end_read_request(struct bio *bio, int error) |
347 | { |
348 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
349 | struct r10bio *r10_bio = bio->bi_private; |
350 | int slot, dev; |
351 | struct md_rdev *rdev; |
352 | struct r10conf *conf = r10_bio->mddev->private; |
353 | |
354 | |
355 | slot = r10_bio->read_slot; |
356 | dev = r10_bio->devs[slot].devnum; |
357 | rdev = r10_bio->devs[slot].rdev; |
358 | /* |
359 | * this branch is our 'one mirror IO has finished' event handler: |
360 | */ |
361 | update_head_pos(slot, r10_bio); |
362 | |
363 | if (uptodate) { |
364 | /* |
365 | * Set R10BIO_Uptodate in our master bio, so that |
366 | * we will return a good error code to the higher |
367 | * levels even if IO on some other mirrored buffer fails. |
368 | * |
369 | * The 'master' represents the composite IO operation to |
370 | * user-side. So if something waits for IO, then it will |
371 | * wait for the 'master' bio. |
372 | */ |
373 | set_bit(R10BIO_Uptodate, &r10_bio->state); |
374 | } else { |
375 | /* If all other devices that store this block have |
376 | * failed, we want to return the error upwards rather |
377 | * than fail the last device. Here we redefine |
378 | * "uptodate" to mean "Don't want to retry" |
379 | */ |
380 | unsigned long flags; |
381 | spin_lock_irqsave(&conf->device_lock, flags); |
382 | if (!enough(conf, rdev->raid_disk)) |
383 | uptodate = 1; |
384 | spin_unlock_irqrestore(&conf->device_lock, flags); |
385 | } |
386 | if (uptodate) { |
387 | raid_end_bio_io(r10_bio); |
388 | rdev_dec_pending(rdev, conf->mddev); |
389 | } else { |
390 | /* |
391 | * oops, read error - keep the refcount on the rdev |
392 | */ |
393 | char b[BDEVNAME_SIZE]; |
394 | printk_ratelimited(KERN_ERR |
395 | "md/raid10:%s: %s: rescheduling sector %llu\n", |
396 | mdname(conf->mddev), |
397 | bdevname(rdev->bdev, b), |
398 | (unsigned long long)r10_bio->sector); |
399 | set_bit(R10BIO_ReadError, &r10_bio->state); |
400 | reschedule_retry(r10_bio); |
401 | } |
402 | } |
403 | |
404 | static void close_write(struct r10bio *r10_bio) |
405 | { |
406 | /* clear the bitmap if all writes complete successfully */ |
407 | bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, |
408 | r10_bio->sectors, |
409 | !test_bit(R10BIO_Degraded, &r10_bio->state), |
410 | 0); |
411 | md_write_end(r10_bio->mddev); |
412 | } |
413 | |
414 | static void one_write_done(struct r10bio *r10_bio) |
415 | { |
416 | if (atomic_dec_and_test(&r10_bio->remaining)) { |
417 | if (test_bit(R10BIO_WriteError, &r10_bio->state)) |
418 | reschedule_retry(r10_bio); |
419 | else { |
420 | close_write(r10_bio); |
421 | if (test_bit(R10BIO_MadeGood, &r10_bio->state)) |
422 | reschedule_retry(r10_bio); |
423 | else |
424 | raid_end_bio_io(r10_bio); |
425 | } |
426 | } |
427 | } |
428 | |
429 | static void raid10_end_write_request(struct bio *bio, int error) |
430 | { |
431 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
432 | struct r10bio *r10_bio = bio->bi_private; |
433 | int dev; |
434 | int dec_rdev = 1; |
435 | struct r10conf *conf = r10_bio->mddev->private; |
436 | int slot, repl; |
437 | struct md_rdev *rdev = NULL; |
438 | |
439 | dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); |
440 | |
441 | if (repl) |
442 | rdev = conf->mirrors[dev].replacement; |
443 | if (!rdev) { |
444 | smp_rmb(); |
445 | repl = 0; |
446 | rdev = conf->mirrors[dev].rdev; |
447 | } |
448 | /* |
449 | * this branch is our 'one mirror IO has finished' event handler: |
450 | */ |
451 | if (!uptodate) { |
452 | if (repl) |
453 | /* Never record new bad blocks to replacement, |
454 | * just fail it. |
455 | */ |
456 | md_error(rdev->mddev, rdev); |
457 | else { |
458 | set_bit(WriteErrorSeen, &rdev->flags); |
459 | if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
460 | set_bit(MD_RECOVERY_NEEDED, |
461 | &rdev->mddev->recovery); |
462 | set_bit(R10BIO_WriteError, &r10_bio->state); |
463 | dec_rdev = 0; |
464 | } |
465 | } else { |
466 | /* |
467 | * Set R10BIO_Uptodate in our master bio, so that |
468 | * we will return a good error code for to the higher |
469 | * levels even if IO on some other mirrored buffer fails. |
470 | * |
471 | * The 'master' represents the composite IO operation to |
472 | * user-side. So if something waits for IO, then it will |
473 | * wait for the 'master' bio. |
474 | */ |
475 | sector_t first_bad; |
476 | int bad_sectors; |
477 | |
478 | set_bit(R10BIO_Uptodate, &r10_bio->state); |
479 | |
480 | /* Maybe we can clear some bad blocks. */ |
481 | if (is_badblock(rdev, |
482 | r10_bio->devs[slot].addr, |
483 | r10_bio->sectors, |
484 | &first_bad, &bad_sectors)) { |
485 | bio_put(bio); |
486 | if (repl) |
487 | r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; |
488 | else |
489 | r10_bio->devs[slot].bio = IO_MADE_GOOD; |
490 | dec_rdev = 0; |
491 | set_bit(R10BIO_MadeGood, &r10_bio->state); |
492 | } |
493 | } |
494 | |
495 | /* |
496 | * |
497 | * Let's see if all mirrored write operations have finished |
498 | * already. |
499 | */ |
500 | one_write_done(r10_bio); |
501 | if (dec_rdev) |
502 | rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); |
503 | } |
504 | |
505 | /* |
506 | * RAID10 layout manager |
507 | * As well as the chunksize and raid_disks count, there are two |
508 | * parameters: near_copies and far_copies. |
509 | * near_copies * far_copies must be <= raid_disks. |
510 | * Normally one of these will be 1. |
511 | * If both are 1, we get raid0. |
512 | * If near_copies == raid_disks, we get raid1. |
513 | * |
514 | * Chunks are laid out in raid0 style with near_copies copies of the |
515 | * first chunk, followed by near_copies copies of the next chunk and |
516 | * so on. |
517 | * If far_copies > 1, then after 1/far_copies of the array has been assigned |
518 | * as described above, we start again with a device offset of near_copies. |
519 | * So we effectively have another copy of the whole array further down all |
520 | * the drives, but with blocks on different drives. |
521 | * With this layout, and block is never stored twice on the one device. |
522 | * |
523 | * raid10_find_phys finds the sector offset of a given virtual sector |
524 | * on each device that it is on. |
525 | * |
526 | * raid10_find_virt does the reverse mapping, from a device and a |
527 | * sector offset to a virtual address |
528 | */ |
529 | |
530 | static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) |
531 | { |
532 | int n,f; |
533 | sector_t sector; |
534 | sector_t chunk; |
535 | sector_t stripe; |
536 | int dev; |
537 | int slot = 0; |
538 | |
539 | /* now calculate first sector/dev */ |
540 | chunk = r10bio->sector >> geo->chunk_shift; |
541 | sector = r10bio->sector & geo->chunk_mask; |
542 | |
543 | chunk *= geo->near_copies; |
544 | stripe = chunk; |
545 | dev = sector_div(stripe, geo->raid_disks); |
546 | if (geo->far_offset) |
547 | stripe *= geo->far_copies; |
548 | |
549 | sector += stripe << geo->chunk_shift; |
550 | |
551 | /* and calculate all the others */ |
552 | for (n = 0; n < geo->near_copies; n++) { |
553 | int d = dev; |
554 | sector_t s = sector; |
555 | r10bio->devs[slot].addr = sector; |
556 | r10bio->devs[slot].devnum = d; |
557 | slot++; |
558 | |
559 | for (f = 1; f < geo->far_copies; f++) { |
560 | d += geo->near_copies; |
561 | if (d >= geo->raid_disks) |
562 | d -= geo->raid_disks; |
563 | s += geo->stride; |
564 | r10bio->devs[slot].devnum = d; |
565 | r10bio->devs[slot].addr = s; |
566 | slot++; |
567 | } |
568 | dev++; |
569 | if (dev >= geo->raid_disks) { |
570 | dev = 0; |
571 | sector += (geo->chunk_mask + 1); |
572 | } |
573 | } |
574 | } |
575 | |
576 | static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) |
577 | { |
578 | struct geom *geo = &conf->geo; |
579 | |
580 | if (conf->reshape_progress != MaxSector && |
581 | ((r10bio->sector >= conf->reshape_progress) != |
582 | conf->mddev->reshape_backwards)) { |
583 | set_bit(R10BIO_Previous, &r10bio->state); |
584 | geo = &conf->prev; |
585 | } else |
586 | clear_bit(R10BIO_Previous, &r10bio->state); |
587 | |
588 | __raid10_find_phys(geo, r10bio); |
589 | } |
590 | |
591 | static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) |
592 | { |
593 | sector_t offset, chunk, vchunk; |
594 | /* Never use conf->prev as this is only called during resync |
595 | * or recovery, so reshape isn't happening |
596 | */ |
597 | struct geom *geo = &conf->geo; |
598 | |
599 | offset = sector & geo->chunk_mask; |
600 | if (geo->far_offset) { |
601 | int fc; |
602 | chunk = sector >> geo->chunk_shift; |
603 | fc = sector_div(chunk, geo->far_copies); |
604 | dev -= fc * geo->near_copies; |
605 | if (dev < 0) |
606 | dev += geo->raid_disks; |
607 | } else { |
608 | while (sector >= geo->stride) { |
609 | sector -= geo->stride; |
610 | if (dev < geo->near_copies) |
611 | dev += geo->raid_disks - geo->near_copies; |
612 | else |
613 | dev -= geo->near_copies; |
614 | } |
615 | chunk = sector >> geo->chunk_shift; |
616 | } |
617 | vchunk = chunk * geo->raid_disks + dev; |
618 | sector_div(vchunk, geo->near_copies); |
619 | return (vchunk << geo->chunk_shift) + offset; |
620 | } |
621 | |
622 | /** |
623 | * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged |
624 | * @q: request queue |
625 | * @bvm: properties of new bio |
626 | * @biovec: the request that could be merged to it. |
627 | * |
628 | * Return amount of bytes we can accept at this offset |
629 | * This requires checking for end-of-chunk if near_copies != raid_disks, |
630 | * and for subordinate merge_bvec_fns if merge_check_needed. |
631 | */ |
632 | static int raid10_mergeable_bvec(struct request_queue *q, |
633 | struct bvec_merge_data *bvm, |
634 | struct bio_vec *biovec) |
635 | { |
636 | struct mddev *mddev = q->queuedata; |
637 | struct r10conf *conf = mddev->private; |
638 | sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); |
639 | int max; |
640 | unsigned int chunk_sectors; |
641 | unsigned int bio_sectors = bvm->bi_size >> 9; |
642 | struct geom *geo = &conf->geo; |
643 | |
644 | chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; |
645 | if (conf->reshape_progress != MaxSector && |
646 | ((sector >= conf->reshape_progress) != |
647 | conf->mddev->reshape_backwards)) |
648 | geo = &conf->prev; |
649 | |
650 | if (geo->near_copies < geo->raid_disks) { |
651 | max = (chunk_sectors - ((sector & (chunk_sectors - 1)) |
652 | + bio_sectors)) << 9; |
653 | if (max < 0) |
654 | /* bio_add cannot handle a negative return */ |
655 | max = 0; |
656 | if (max <= biovec->bv_len && bio_sectors == 0) |
657 | return biovec->bv_len; |
658 | } else |
659 | max = biovec->bv_len; |
660 | |
661 | if (mddev->merge_check_needed) { |
662 | struct { |
663 | struct r10bio r10_bio; |
664 | struct r10dev devs[conf->copies]; |
665 | } on_stack; |
666 | struct r10bio *r10_bio = &on_stack.r10_bio; |
667 | int s; |
668 | if (conf->reshape_progress != MaxSector) { |
669 | /* Cannot give any guidance during reshape */ |
670 | if (max <= biovec->bv_len && bio_sectors == 0) |
671 | return biovec->bv_len; |
672 | return 0; |
673 | } |
674 | r10_bio->sector = sector; |
675 | raid10_find_phys(conf, r10_bio); |
676 | rcu_read_lock(); |
677 | for (s = 0; s < conf->copies; s++) { |
678 | int disk = r10_bio->devs[s].devnum; |
679 | struct md_rdev *rdev = rcu_dereference( |
680 | conf->mirrors[disk].rdev); |
681 | if (rdev && !test_bit(Faulty, &rdev->flags)) { |
682 | struct request_queue *q = |
683 | bdev_get_queue(rdev->bdev); |
684 | if (q->merge_bvec_fn) { |
685 | bvm->bi_sector = r10_bio->devs[s].addr |
686 | + rdev->data_offset; |
687 | bvm->bi_bdev = rdev->bdev; |
688 | max = min(max, q->merge_bvec_fn( |
689 | q, bvm, biovec)); |
690 | } |
691 | } |
692 | rdev = rcu_dereference(conf->mirrors[disk].replacement); |
693 | if (rdev && !test_bit(Faulty, &rdev->flags)) { |
694 | struct request_queue *q = |
695 | bdev_get_queue(rdev->bdev); |
696 | if (q->merge_bvec_fn) { |
697 | bvm->bi_sector = r10_bio->devs[s].addr |
698 | + rdev->data_offset; |
699 | bvm->bi_bdev = rdev->bdev; |
700 | max = min(max, q->merge_bvec_fn( |
701 | q, bvm, biovec)); |
702 | } |
703 | } |
704 | } |
705 | rcu_read_unlock(); |
706 | } |
707 | return max; |
708 | } |
709 | |
710 | /* |
711 | * This routine returns the disk from which the requested read should |
712 | * be done. There is a per-array 'next expected sequential IO' sector |
713 | * number - if this matches on the next IO then we use the last disk. |
714 | * There is also a per-disk 'last know head position' sector that is |
715 | * maintained from IRQ contexts, both the normal and the resync IO |
716 | * completion handlers update this position correctly. If there is no |
717 | * perfect sequential match then we pick the disk whose head is closest. |
718 | * |
719 | * If there are 2 mirrors in the same 2 devices, performance degrades |
720 | * because position is mirror, not device based. |
721 | * |
722 | * The rdev for the device selected will have nr_pending incremented. |
723 | */ |
724 | |
725 | /* |
726 | * FIXME: possibly should rethink readbalancing and do it differently |
727 | * depending on near_copies / far_copies geometry. |
728 | */ |
729 | static struct md_rdev *read_balance(struct r10conf *conf, |
730 | struct r10bio *r10_bio, |
731 | int *max_sectors) |
732 | { |
733 | const sector_t this_sector = r10_bio->sector; |
734 | int disk, slot; |
735 | int sectors = r10_bio->sectors; |
736 | int best_good_sectors; |
737 | sector_t new_distance, best_dist; |
738 | struct md_rdev *best_rdev, *rdev = NULL; |
739 | int do_balance; |
740 | int best_slot; |
741 | struct geom *geo = &conf->geo; |
742 | |
743 | raid10_find_phys(conf, r10_bio); |
744 | rcu_read_lock(); |
745 | retry: |
746 | sectors = r10_bio->sectors; |
747 | best_slot = -1; |
748 | best_rdev = NULL; |
749 | best_dist = MaxSector; |
750 | best_good_sectors = 0; |
751 | do_balance = 1; |
752 | /* |
753 | * Check if we can balance. We can balance on the whole |
754 | * device if no resync is going on (recovery is ok), or below |
755 | * the resync window. We take the first readable disk when |
756 | * above the resync window. |
757 | */ |
758 | if (conf->mddev->recovery_cp < MaxSector |
759 | && (this_sector + sectors >= conf->next_resync)) |
760 | do_balance = 0; |
761 | |
762 | for (slot = 0; slot < conf->copies ; slot++) { |
763 | sector_t first_bad; |
764 | int bad_sectors; |
765 | sector_t dev_sector; |
766 | |
767 | if (r10_bio->devs[slot].bio == IO_BLOCKED) |
768 | continue; |
769 | disk = r10_bio->devs[slot].devnum; |
770 | rdev = rcu_dereference(conf->mirrors[disk].replacement); |
771 | if (rdev == NULL || test_bit(Faulty, &rdev->flags) || |
772 | test_bit(Unmerged, &rdev->flags) || |
773 | r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) |
774 | rdev = rcu_dereference(conf->mirrors[disk].rdev); |
775 | if (rdev == NULL || |
776 | test_bit(Faulty, &rdev->flags) || |
777 | test_bit(Unmerged, &rdev->flags)) |
778 | continue; |
779 | if (!test_bit(In_sync, &rdev->flags) && |
780 | r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) |
781 | continue; |
782 | |
783 | dev_sector = r10_bio->devs[slot].addr; |
784 | if (is_badblock(rdev, dev_sector, sectors, |
785 | &first_bad, &bad_sectors)) { |
786 | if (best_dist < MaxSector) |
787 | /* Already have a better slot */ |
788 | continue; |
789 | if (first_bad <= dev_sector) { |
790 | /* Cannot read here. If this is the |
791 | * 'primary' device, then we must not read |
792 | * beyond 'bad_sectors' from another device. |
793 | */ |
794 | bad_sectors -= (dev_sector - first_bad); |
795 | if (!do_balance && sectors > bad_sectors) |
796 | sectors = bad_sectors; |
797 | if (best_good_sectors > sectors) |
798 | best_good_sectors = sectors; |
799 | } else { |
800 | sector_t good_sectors = |
801 | first_bad - dev_sector; |
802 | if (good_sectors > best_good_sectors) { |
803 | best_good_sectors = good_sectors; |
804 | best_slot = slot; |
805 | best_rdev = rdev; |
806 | } |
807 | if (!do_balance) |
808 | /* Must read from here */ |
809 | break; |
810 | } |
811 | continue; |
812 | } else |
813 | best_good_sectors = sectors; |
814 | |
815 | if (!do_balance) |
816 | break; |
817 | |
818 | /* This optimisation is debatable, and completely destroys |
819 | * sequential read speed for 'far copies' arrays. So only |
820 | * keep it for 'near' arrays, and review those later. |
821 | */ |
822 | if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) |
823 | break; |
824 | |
825 | /* for far > 1 always use the lowest address */ |
826 | if (geo->far_copies > 1) |
827 | new_distance = r10_bio->devs[slot].addr; |
828 | else |
829 | new_distance = abs(r10_bio->devs[slot].addr - |
830 | conf->mirrors[disk].head_position); |
831 | if (new_distance < best_dist) { |
832 | best_dist = new_distance; |
833 | best_slot = slot; |
834 | best_rdev = rdev; |
835 | } |
836 | } |
837 | if (slot >= conf->copies) { |
838 | slot = best_slot; |
839 | rdev = best_rdev; |
840 | } |
841 | |
842 | if (slot >= 0) { |
843 | atomic_inc(&rdev->nr_pending); |
844 | if (test_bit(Faulty, &rdev->flags)) { |
845 | /* Cannot risk returning a device that failed |
846 | * before we inc'ed nr_pending |
847 | */ |
848 | rdev_dec_pending(rdev, conf->mddev); |
849 | goto retry; |
850 | } |
851 | r10_bio->read_slot = slot; |
852 | } else |
853 | rdev = NULL; |
854 | rcu_read_unlock(); |
855 | *max_sectors = best_good_sectors; |
856 | |
857 | return rdev; |
858 | } |
859 | |
860 | int md_raid10_congested(struct mddev *mddev, int bits) |
861 | { |
862 | struct r10conf *conf = mddev->private; |
863 | int i, ret = 0; |
864 | |
865 | if ((bits & (1 << BDI_async_congested)) && |
866 | conf->pending_count >= max_queued_requests) |
867 | return 1; |
868 | |
869 | rcu_read_lock(); |
870 | for (i = 0; |
871 | (i < conf->geo.raid_disks || i < conf->prev.raid_disks) |
872 | && ret == 0; |
873 | i++) { |
874 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
875 | if (rdev && !test_bit(Faulty, &rdev->flags)) { |
876 | struct request_queue *q = bdev_get_queue(rdev->bdev); |
877 | |
878 | ret |= bdi_congested(&q->backing_dev_info, bits); |
879 | } |
880 | } |
881 | rcu_read_unlock(); |
882 | return ret; |
883 | } |
884 | EXPORT_SYMBOL_GPL(md_raid10_congested); |
885 | |
886 | static int raid10_congested(void *data, int bits) |
887 | { |
888 | struct mddev *mddev = data; |
889 | |
890 | return mddev_congested(mddev, bits) || |
891 | md_raid10_congested(mddev, bits); |
892 | } |
893 | |
894 | static void flush_pending_writes(struct r10conf *conf) |
895 | { |
896 | /* Any writes that have been queued but are awaiting |
897 | * bitmap updates get flushed here. |
898 | */ |
899 | spin_lock_irq(&conf->device_lock); |
900 | |
901 | if (conf->pending_bio_list.head) { |
902 | struct bio *bio; |
903 | bio = bio_list_get(&conf->pending_bio_list); |
904 | conf->pending_count = 0; |
905 | spin_unlock_irq(&conf->device_lock); |
906 | /* flush any pending bitmap writes to disk |
907 | * before proceeding w/ I/O */ |
908 | bitmap_unplug(conf->mddev->bitmap); |
909 | wake_up(&conf->wait_barrier); |
910 | |
911 | while (bio) { /* submit pending writes */ |
912 | struct bio *next = bio->bi_next; |
913 | bio->bi_next = NULL; |
914 | generic_make_request(bio); |
915 | bio = next; |
916 | } |
917 | } else |
918 | spin_unlock_irq(&conf->device_lock); |
919 | } |
920 | |
921 | /* Barriers.... |
922 | * Sometimes we need to suspend IO while we do something else, |
923 | * either some resync/recovery, or reconfigure the array. |
924 | * To do this we raise a 'barrier'. |
925 | * The 'barrier' is a counter that can be raised multiple times |
926 | * to count how many activities are happening which preclude |
927 | * normal IO. |
928 | * We can only raise the barrier if there is no pending IO. |
929 | * i.e. if nr_pending == 0. |
930 | * We choose only to raise the barrier if no-one is waiting for the |
931 | * barrier to go down. This means that as soon as an IO request |
932 | * is ready, no other operations which require a barrier will start |
933 | * until the IO request has had a chance. |
934 | * |
935 | * So: regular IO calls 'wait_barrier'. When that returns there |
936 | * is no backgroup IO happening, It must arrange to call |
937 | * allow_barrier when it has finished its IO. |
938 | * backgroup IO calls must call raise_barrier. Once that returns |
939 | * there is no normal IO happeing. It must arrange to call |
940 | * lower_barrier when the particular background IO completes. |
941 | */ |
942 | |
943 | static void raise_barrier(struct r10conf *conf, int force) |
944 | { |
945 | BUG_ON(force && !conf->barrier); |
946 | spin_lock_irq(&conf->resync_lock); |
947 | |
948 | /* Wait until no block IO is waiting (unless 'force') */ |
949 | wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, |
950 | conf->resync_lock, ); |
951 | |
952 | /* block any new IO from starting */ |
953 | conf->barrier++; |
954 | |
955 | /* Now wait for all pending IO to complete */ |
956 | wait_event_lock_irq(conf->wait_barrier, |
957 | !conf->nr_pending && conf->barrier < RESYNC_DEPTH, |
958 | conf->resync_lock, ); |
959 | |
960 | spin_unlock_irq(&conf->resync_lock); |
961 | } |
962 | |
963 | static void lower_barrier(struct r10conf *conf) |
964 | { |
965 | unsigned long flags; |
966 | spin_lock_irqsave(&conf->resync_lock, flags); |
967 | conf->barrier--; |
968 | spin_unlock_irqrestore(&conf->resync_lock, flags); |
969 | wake_up(&conf->wait_barrier); |
970 | } |
971 | |
972 | static void wait_barrier(struct r10conf *conf) |
973 | { |
974 | spin_lock_irq(&conf->resync_lock); |
975 | if (conf->barrier) { |
976 | conf->nr_waiting++; |
977 | /* Wait for the barrier to drop. |
978 | * However if there are already pending |
979 | * requests (preventing the barrier from |
980 | * rising completely), and the |
981 | * pre-process bio queue isn't empty, |
982 | * then don't wait, as we need to empty |
983 | * that queue to get the nr_pending |
984 | * count down. |
985 | */ |
986 | wait_event_lock_irq(conf->wait_barrier, |
987 | !conf->barrier || |
988 | (conf->nr_pending && |
989 | current->bio_list && |
990 | !bio_list_empty(current->bio_list)), |
991 | conf->resync_lock, |
992 | ); |
993 | conf->nr_waiting--; |
994 | } |
995 | conf->nr_pending++; |
996 | spin_unlock_irq(&conf->resync_lock); |
997 | } |
998 | |
999 | static void allow_barrier(struct r10conf *conf) |
1000 | { |
1001 | unsigned long flags; |
1002 | spin_lock_irqsave(&conf->resync_lock, flags); |
1003 | conf->nr_pending--; |
1004 | spin_unlock_irqrestore(&conf->resync_lock, flags); |
1005 | wake_up(&conf->wait_barrier); |
1006 | } |
1007 | |
1008 | static void freeze_array(struct r10conf *conf) |
1009 | { |
1010 | /* stop syncio and normal IO and wait for everything to |
1011 | * go quiet. |
1012 | * We increment barrier and nr_waiting, and then |
1013 | * wait until nr_pending match nr_queued+1 |
1014 | * This is called in the context of one normal IO request |
1015 | * that has failed. Thus any sync request that might be pending |
1016 | * will be blocked by nr_pending, and we need to wait for |
1017 | * pending IO requests to complete or be queued for re-try. |
1018 | * Thus the number queued (nr_queued) plus this request (1) |
1019 | * must match the number of pending IOs (nr_pending) before |
1020 | * we continue. |
1021 | */ |
1022 | spin_lock_irq(&conf->resync_lock); |
1023 | conf->barrier++; |
1024 | conf->nr_waiting++; |
1025 | wait_event_lock_irq(conf->wait_barrier, |
1026 | conf->nr_pending == conf->nr_queued+1, |
1027 | conf->resync_lock, |
1028 | flush_pending_writes(conf)); |
1029 | |
1030 | spin_unlock_irq(&conf->resync_lock); |
1031 | } |
1032 | |
1033 | static void unfreeze_array(struct r10conf *conf) |
1034 | { |
1035 | /* reverse the effect of the freeze */ |
1036 | spin_lock_irq(&conf->resync_lock); |
1037 | conf->barrier--; |
1038 | conf->nr_waiting--; |
1039 | wake_up(&conf->wait_barrier); |
1040 | spin_unlock_irq(&conf->resync_lock); |
1041 | } |
1042 | |
1043 | static sector_t choose_data_offset(struct r10bio *r10_bio, |
1044 | struct md_rdev *rdev) |
1045 | { |
1046 | if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || |
1047 | test_bit(R10BIO_Previous, &r10_bio->state)) |
1048 | return rdev->data_offset; |
1049 | else |
1050 | return rdev->new_data_offset; |
1051 | } |
1052 | |
1053 | static void make_request(struct mddev *mddev, struct bio * bio) |
1054 | { |
1055 | struct r10conf *conf = mddev->private; |
1056 | struct r10bio *r10_bio; |
1057 | struct bio *read_bio; |
1058 | int i; |
1059 | sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); |
1060 | int chunk_sects = chunk_mask + 1; |
1061 | const int rw = bio_data_dir(bio); |
1062 | const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); |
1063 | const unsigned long do_fua = (bio->bi_rw & REQ_FUA); |
1064 | unsigned long flags; |
1065 | struct md_rdev *blocked_rdev; |
1066 | int sectors_handled; |
1067 | int max_sectors; |
1068 | int sectors; |
1069 | |
1070 | if (unlikely(bio->bi_rw & REQ_FLUSH)) { |
1071 | md_flush_request(mddev, bio); |
1072 | return; |
1073 | } |
1074 | |
1075 | /* If this request crosses a chunk boundary, we need to |
1076 | * split it. This will only happen for 1 PAGE (or less) requests. |
1077 | */ |
1078 | if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) |
1079 | > chunk_sects |
1080 | && (conf->geo.near_copies < conf->geo.raid_disks |
1081 | || conf->prev.near_copies < conf->prev.raid_disks))) { |
1082 | struct bio_pair *bp; |
1083 | /* Sanity check -- queue functions should prevent this happening */ |
1084 | if (bio->bi_vcnt != 1 || |
1085 | bio->bi_idx != 0) |
1086 | goto bad_map; |
1087 | /* This is a one page bio that upper layers |
1088 | * refuse to split for us, so we need to split it. |
1089 | */ |
1090 | bp = bio_split(bio, |
1091 | chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); |
1092 | |
1093 | /* Each of these 'make_request' calls will call 'wait_barrier'. |
1094 | * If the first succeeds but the second blocks due to the resync |
1095 | * thread raising the barrier, we will deadlock because the |
1096 | * IO to the underlying device will be queued in generic_make_request |
1097 | * and will never complete, so will never reduce nr_pending. |
1098 | * So increment nr_waiting here so no new raise_barriers will |
1099 | * succeed, and so the second wait_barrier cannot block. |
1100 | */ |
1101 | spin_lock_irq(&conf->resync_lock); |
1102 | conf->nr_waiting++; |
1103 | spin_unlock_irq(&conf->resync_lock); |
1104 | |
1105 | make_request(mddev, &bp->bio1); |
1106 | make_request(mddev, &bp->bio2); |
1107 | |
1108 | spin_lock_irq(&conf->resync_lock); |
1109 | conf->nr_waiting--; |
1110 | wake_up(&conf->wait_barrier); |
1111 | spin_unlock_irq(&conf->resync_lock); |
1112 | |
1113 | bio_pair_release(bp); |
1114 | return; |
1115 | bad_map: |
1116 | printk("md/raid10:%s: make_request bug: can't convert block across chunks" |
1117 | " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, |
1118 | (unsigned long long)bio->bi_sector, bio->bi_size >> 10); |
1119 | |
1120 | bio_io_error(bio); |
1121 | return; |
1122 | } |
1123 | |
1124 | md_write_start(mddev, bio); |
1125 | |
1126 | /* |
1127 | * Register the new request and wait if the reconstruction |
1128 | * thread has put up a bar for new requests. |
1129 | * Continue immediately if no resync is active currently. |
1130 | */ |
1131 | wait_barrier(conf); |
1132 | |
1133 | sectors = bio->bi_size >> 9; |
1134 | while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && |
1135 | bio->bi_sector < conf->reshape_progress && |
1136 | bio->bi_sector + sectors > conf->reshape_progress) { |
1137 | /* IO spans the reshape position. Need to wait for |
1138 | * reshape to pass |
1139 | */ |
1140 | allow_barrier(conf); |
1141 | wait_event(conf->wait_barrier, |
1142 | conf->reshape_progress <= bio->bi_sector || |
1143 | conf->reshape_progress >= bio->bi_sector + sectors); |
1144 | wait_barrier(conf); |
1145 | } |
1146 | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && |
1147 | bio_data_dir(bio) == WRITE && |
1148 | (mddev->reshape_backwards |
1149 | ? (bio->bi_sector < conf->reshape_safe && |
1150 | bio->bi_sector + sectors > conf->reshape_progress) |
1151 | : (bio->bi_sector + sectors > conf->reshape_safe && |
1152 | bio->bi_sector < conf->reshape_progress))) { |
1153 | /* Need to update reshape_position in metadata */ |
1154 | mddev->reshape_position = conf->reshape_progress; |
1155 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
1156 | set_bit(MD_CHANGE_PENDING, &mddev->flags); |
1157 | md_wakeup_thread(mddev->thread); |
1158 | wait_event(mddev->sb_wait, |
1159 | !test_bit(MD_CHANGE_PENDING, &mddev->flags)); |
1160 | |
1161 | conf->reshape_safe = mddev->reshape_position; |
1162 | } |
1163 | |
1164 | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); |
1165 | |
1166 | r10_bio->master_bio = bio; |
1167 | r10_bio->sectors = sectors; |
1168 | |
1169 | r10_bio->mddev = mddev; |
1170 | r10_bio->sector = bio->bi_sector; |
1171 | r10_bio->state = 0; |
1172 | |
1173 | /* We might need to issue multiple reads to different |
1174 | * devices if there are bad blocks around, so we keep |
1175 | * track of the number of reads in bio->bi_phys_segments. |
1176 | * If this is 0, there is only one r10_bio and no locking |
1177 | * will be needed when the request completes. If it is |
1178 | * non-zero, then it is the number of not-completed requests. |
1179 | */ |
1180 | bio->bi_phys_segments = 0; |
1181 | clear_bit(BIO_SEG_VALID, &bio->bi_flags); |
1182 | |
1183 | if (rw == READ) { |
1184 | /* |
1185 | * read balancing logic: |
1186 | */ |
1187 | struct md_rdev *rdev; |
1188 | int slot; |
1189 | |
1190 | read_again: |
1191 | rdev = read_balance(conf, r10_bio, &max_sectors); |
1192 | if (!rdev) { |
1193 | raid_end_bio_io(r10_bio); |
1194 | return; |
1195 | } |
1196 | slot = r10_bio->read_slot; |
1197 | |
1198 | read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
1199 | md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, |
1200 | max_sectors); |
1201 | |
1202 | r10_bio->devs[slot].bio = read_bio; |
1203 | r10_bio->devs[slot].rdev = rdev; |
1204 | |
1205 | read_bio->bi_sector = r10_bio->devs[slot].addr + |
1206 | choose_data_offset(r10_bio, rdev); |
1207 | read_bio->bi_bdev = rdev->bdev; |
1208 | read_bio->bi_end_io = raid10_end_read_request; |
1209 | read_bio->bi_rw = READ | do_sync; |
1210 | read_bio->bi_private = r10_bio; |
1211 | |
1212 | if (max_sectors < r10_bio->sectors) { |
1213 | /* Could not read all from this device, so we will |
1214 | * need another r10_bio. |
1215 | */ |
1216 | sectors_handled = (r10_bio->sectors + max_sectors |
1217 | - bio->bi_sector); |
1218 | r10_bio->sectors = max_sectors; |
1219 | spin_lock_irq(&conf->device_lock); |
1220 | if (bio->bi_phys_segments == 0) |
1221 | bio->bi_phys_segments = 2; |
1222 | else |
1223 | bio->bi_phys_segments++; |
1224 | spin_unlock(&conf->device_lock); |
1225 | /* Cannot call generic_make_request directly |
1226 | * as that will be queued in __generic_make_request |
1227 | * and subsequent mempool_alloc might block |
1228 | * waiting for it. so hand bio over to raid10d. |
1229 | */ |
1230 | reschedule_retry(r10_bio); |
1231 | |
1232 | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); |
1233 | |
1234 | r10_bio->master_bio = bio; |
1235 | r10_bio->sectors = ((bio->bi_size >> 9) |
1236 | - sectors_handled); |
1237 | r10_bio->state = 0; |
1238 | r10_bio->mddev = mddev; |
1239 | r10_bio->sector = bio->bi_sector + sectors_handled; |
1240 | goto read_again; |
1241 | } else |
1242 | generic_make_request(read_bio); |
1243 | return; |
1244 | } |
1245 | |
1246 | /* |
1247 | * WRITE: |
1248 | */ |
1249 | if (conf->pending_count >= max_queued_requests) { |
1250 | md_wakeup_thread(mddev->thread); |
1251 | wait_event(conf->wait_barrier, |
1252 | conf->pending_count < max_queued_requests); |
1253 | } |
1254 | /* first select target devices under rcu_lock and |
1255 | * inc refcount on their rdev. Record them by setting |
1256 | * bios[x] to bio |
1257 | * If there are known/acknowledged bad blocks on any device |
1258 | * on which we have seen a write error, we want to avoid |
1259 | * writing to those blocks. This potentially requires several |
1260 | * writes to write around the bad blocks. Each set of writes |
1261 | * gets its own r10_bio with a set of bios attached. The number |
1262 | * of r10_bios is recored in bio->bi_phys_segments just as with |
1263 | * the read case. |
1264 | */ |
1265 | |
1266 | r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ |
1267 | raid10_find_phys(conf, r10_bio); |
1268 | retry_write: |
1269 | blocked_rdev = NULL; |
1270 | rcu_read_lock(); |
1271 | max_sectors = r10_bio->sectors; |
1272 | |
1273 | for (i = 0; i < conf->copies; i++) { |
1274 | int d = r10_bio->devs[i].devnum; |
1275 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); |
1276 | struct md_rdev *rrdev = rcu_dereference( |
1277 | conf->mirrors[d].replacement); |
1278 | if (rdev == rrdev) |
1279 | rrdev = NULL; |
1280 | if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { |
1281 | atomic_inc(&rdev->nr_pending); |
1282 | blocked_rdev = rdev; |
1283 | break; |
1284 | } |
1285 | if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { |
1286 | atomic_inc(&rrdev->nr_pending); |
1287 | blocked_rdev = rrdev; |
1288 | break; |
1289 | } |
1290 | if (rrdev && (test_bit(Faulty, &rrdev->flags) |
1291 | || test_bit(Unmerged, &rrdev->flags))) |
1292 | rrdev = NULL; |
1293 | |
1294 | r10_bio->devs[i].bio = NULL; |
1295 | r10_bio->devs[i].repl_bio = NULL; |
1296 | if (!rdev || test_bit(Faulty, &rdev->flags) || |
1297 | test_bit(Unmerged, &rdev->flags)) { |
1298 | set_bit(R10BIO_Degraded, &r10_bio->state); |
1299 | continue; |
1300 | } |
1301 | if (test_bit(WriteErrorSeen, &rdev->flags)) { |
1302 | sector_t first_bad; |
1303 | sector_t dev_sector = r10_bio->devs[i].addr; |
1304 | int bad_sectors; |
1305 | int is_bad; |
1306 | |
1307 | is_bad = is_badblock(rdev, dev_sector, |
1308 | max_sectors, |
1309 | &first_bad, &bad_sectors); |
1310 | if (is_bad < 0) { |
1311 | /* Mustn't write here until the bad block |
1312 | * is acknowledged |
1313 | */ |
1314 | atomic_inc(&rdev->nr_pending); |
1315 | set_bit(BlockedBadBlocks, &rdev->flags); |
1316 | blocked_rdev = rdev; |
1317 | break; |
1318 | } |
1319 | if (is_bad && first_bad <= dev_sector) { |
1320 | /* Cannot write here at all */ |
1321 | bad_sectors -= (dev_sector - first_bad); |
1322 | if (bad_sectors < max_sectors) |
1323 | /* Mustn't write more than bad_sectors |
1324 | * to other devices yet |
1325 | */ |
1326 | max_sectors = bad_sectors; |
1327 | /* We don't set R10BIO_Degraded as that |
1328 | * only applies if the disk is missing, |
1329 | * so it might be re-added, and we want to |
1330 | * know to recover this chunk. |
1331 | * In this case the device is here, and the |
1332 | * fact that this chunk is not in-sync is |
1333 | * recorded in the bad block log. |
1334 | */ |
1335 | continue; |
1336 | } |
1337 | if (is_bad) { |
1338 | int good_sectors = first_bad - dev_sector; |
1339 | if (good_sectors < max_sectors) |
1340 | max_sectors = good_sectors; |
1341 | } |
1342 | } |
1343 | r10_bio->devs[i].bio = bio; |
1344 | atomic_inc(&rdev->nr_pending); |
1345 | if (rrdev) { |
1346 | r10_bio->devs[i].repl_bio = bio; |
1347 | atomic_inc(&rrdev->nr_pending); |
1348 | } |
1349 | } |
1350 | rcu_read_unlock(); |
1351 | |
1352 | if (unlikely(blocked_rdev)) { |
1353 | /* Have to wait for this device to get unblocked, then retry */ |
1354 | int j; |
1355 | int d; |
1356 | |
1357 | for (j = 0; j < i; j++) { |
1358 | if (r10_bio->devs[j].bio) { |
1359 | d = r10_bio->devs[j].devnum; |
1360 | rdev_dec_pending(conf->mirrors[d].rdev, mddev); |
1361 | } |
1362 | if (r10_bio->devs[j].repl_bio) { |
1363 | struct md_rdev *rdev; |
1364 | d = r10_bio->devs[j].devnum; |
1365 | rdev = conf->mirrors[d].replacement; |
1366 | if (!rdev) { |
1367 | /* Race with remove_disk */ |
1368 | smp_mb(); |
1369 | rdev = conf->mirrors[d].rdev; |
1370 | } |
1371 | rdev_dec_pending(rdev, mddev); |
1372 | } |
1373 | } |
1374 | allow_barrier(conf); |
1375 | md_wait_for_blocked_rdev(blocked_rdev, mddev); |
1376 | wait_barrier(conf); |
1377 | goto retry_write; |
1378 | } |
1379 | |
1380 | if (max_sectors < r10_bio->sectors) { |
1381 | /* We are splitting this into multiple parts, so |
1382 | * we need to prepare for allocating another r10_bio. |
1383 | */ |
1384 | r10_bio->sectors = max_sectors; |
1385 | spin_lock_irq(&conf->device_lock); |
1386 | if (bio->bi_phys_segments == 0) |
1387 | bio->bi_phys_segments = 2; |
1388 | else |
1389 | bio->bi_phys_segments++; |
1390 | spin_unlock_irq(&conf->device_lock); |
1391 | } |
1392 | sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; |
1393 | |
1394 | atomic_set(&r10_bio->remaining, 1); |
1395 | bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); |
1396 | |
1397 | for (i = 0; i < conf->copies; i++) { |
1398 | struct bio *mbio; |
1399 | int d = r10_bio->devs[i].devnum; |
1400 | if (!r10_bio->devs[i].bio) |
1401 | continue; |
1402 | |
1403 | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
1404 | md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, |
1405 | max_sectors); |
1406 | r10_bio->devs[i].bio = mbio; |
1407 | |
1408 | mbio->bi_sector = (r10_bio->devs[i].addr+ |
1409 | choose_data_offset(r10_bio, |
1410 | conf->mirrors[d].rdev)); |
1411 | mbio->bi_bdev = conf->mirrors[d].rdev->bdev; |
1412 | mbio->bi_end_io = raid10_end_write_request; |
1413 | mbio->bi_rw = WRITE | do_sync | do_fua; |
1414 | mbio->bi_private = r10_bio; |
1415 | |
1416 | atomic_inc(&r10_bio->remaining); |
1417 | spin_lock_irqsave(&conf->device_lock, flags); |
1418 | bio_list_add(&conf->pending_bio_list, mbio); |
1419 | conf->pending_count++; |
1420 | spin_unlock_irqrestore(&conf->device_lock, flags); |
1421 | if (!mddev_check_plugged(mddev)) |
1422 | md_wakeup_thread(mddev->thread); |
1423 | |
1424 | if (!r10_bio->devs[i].repl_bio) |
1425 | continue; |
1426 | |
1427 | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
1428 | md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, |
1429 | max_sectors); |
1430 | r10_bio->devs[i].repl_bio = mbio; |
1431 | |
1432 | /* We are actively writing to the original device |
1433 | * so it cannot disappear, so the replacement cannot |
1434 | * become NULL here |
1435 | */ |
1436 | mbio->bi_sector = (r10_bio->devs[i].addr + |
1437 | choose_data_offset( |
1438 | r10_bio, |
1439 | conf->mirrors[d].replacement)); |
1440 | mbio->bi_bdev = conf->mirrors[d].replacement->bdev; |
1441 | mbio->bi_end_io = raid10_end_write_request; |
1442 | mbio->bi_rw = WRITE | do_sync | do_fua; |
1443 | mbio->bi_private = r10_bio; |
1444 | |
1445 | atomic_inc(&r10_bio->remaining); |
1446 | spin_lock_irqsave(&conf->device_lock, flags); |
1447 | bio_list_add(&conf->pending_bio_list, mbio); |
1448 | conf->pending_count++; |
1449 | spin_unlock_irqrestore(&conf->device_lock, flags); |
1450 | if (!mddev_check_plugged(mddev)) |
1451 | md_wakeup_thread(mddev->thread); |
1452 | } |
1453 | |
1454 | /* Don't remove the bias on 'remaining' (one_write_done) until |
1455 | * after checking if we need to go around again. |
1456 | */ |
1457 | |
1458 | if (sectors_handled < (bio->bi_size >> 9)) { |
1459 | one_write_done(r10_bio); |
1460 | /* We need another r10_bio. It has already been counted |
1461 | * in bio->bi_phys_segments. |
1462 | */ |
1463 | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); |
1464 | |
1465 | r10_bio->master_bio = bio; |
1466 | r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; |
1467 | |
1468 | r10_bio->mddev = mddev; |
1469 | r10_bio->sector = bio->bi_sector + sectors_handled; |
1470 | r10_bio->state = 0; |
1471 | goto retry_write; |
1472 | } |
1473 | one_write_done(r10_bio); |
1474 | |
1475 | /* In case raid10d snuck in to freeze_array */ |
1476 | wake_up(&conf->wait_barrier); |
1477 | } |
1478 | |
1479 | static void status(struct seq_file *seq, struct mddev *mddev) |
1480 | { |
1481 | struct r10conf *conf = mddev->private; |
1482 | int i; |
1483 | |
1484 | if (conf->geo.near_copies < conf->geo.raid_disks) |
1485 | seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); |
1486 | if (conf->geo.near_copies > 1) |
1487 | seq_printf(seq, " %d near-copies", conf->geo.near_copies); |
1488 | if (conf->geo.far_copies > 1) { |
1489 | if (conf->geo.far_offset) |
1490 | seq_printf(seq, " %d offset-copies", conf->geo.far_copies); |
1491 | else |
1492 | seq_printf(seq, " %d far-copies", conf->geo.far_copies); |
1493 | } |
1494 | seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, |
1495 | conf->geo.raid_disks - mddev->degraded); |
1496 | for (i = 0; i < conf->geo.raid_disks; i++) |
1497 | seq_printf(seq, "%s", |
1498 | conf->mirrors[i].rdev && |
1499 | test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); |
1500 | seq_printf(seq, "]"); |
1501 | } |
1502 | |
1503 | /* check if there are enough drives for |
1504 | * every block to appear on atleast one. |
1505 | * Don't consider the device numbered 'ignore' |
1506 | * as we might be about to remove it. |
1507 | */ |
1508 | static int _enough(struct r10conf *conf, struct geom *geo, int ignore) |
1509 | { |
1510 | int first = 0; |
1511 | |
1512 | do { |
1513 | int n = conf->copies; |
1514 | int cnt = 0; |
1515 | int this = first; |
1516 | while (n--) { |
1517 | if (conf->mirrors[this].rdev && |
1518 | this != ignore) |
1519 | cnt++; |
1520 | this = (this+1) % geo->raid_disks; |
1521 | } |
1522 | if (cnt == 0) |
1523 | return 0; |
1524 | first = (first + geo->near_copies) % geo->raid_disks; |
1525 | } while (first != 0); |
1526 | return 1; |
1527 | } |
1528 | |
1529 | static int enough(struct r10conf *conf, int ignore) |
1530 | { |
1531 | return _enough(conf, &conf->geo, ignore) && |
1532 | _enough(conf, &conf->prev, ignore); |
1533 | } |
1534 | |
1535 | static void error(struct mddev *mddev, struct md_rdev *rdev) |
1536 | { |
1537 | char b[BDEVNAME_SIZE]; |
1538 | struct r10conf *conf = mddev->private; |
1539 | |
1540 | /* |
1541 | * If it is not operational, then we have already marked it as dead |
1542 | * else if it is the last working disks, ignore the error, let the |
1543 | * next level up know. |
1544 | * else mark the drive as failed |
1545 | */ |
1546 | if (test_bit(In_sync, &rdev->flags) |
1547 | && !enough(conf, rdev->raid_disk)) |
1548 | /* |
1549 | * Don't fail the drive, just return an IO error. |
1550 | */ |
1551 | return; |
1552 | if (test_and_clear_bit(In_sync, &rdev->flags)) { |
1553 | unsigned long flags; |
1554 | spin_lock_irqsave(&conf->device_lock, flags); |
1555 | mddev->degraded++; |
1556 | spin_unlock_irqrestore(&conf->device_lock, flags); |
1557 | /* |
1558 | * if recovery is running, make sure it aborts. |
1559 | */ |
1560 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
1561 | } |
1562 | set_bit(Blocked, &rdev->flags); |
1563 | set_bit(Faulty, &rdev->flags); |
1564 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
1565 | printk(KERN_ALERT |
1566 | "md/raid10:%s: Disk failure on %s, disabling device.\n" |
1567 | "md/raid10:%s: Operation continuing on %d devices.\n", |
1568 | mdname(mddev), bdevname(rdev->bdev, b), |
1569 | mdname(mddev), conf->geo.raid_disks - mddev->degraded); |
1570 | } |
1571 | |
1572 | static void print_conf(struct r10conf *conf) |
1573 | { |
1574 | int i; |
1575 | struct raid10_info *tmp; |
1576 | |
1577 | printk(KERN_DEBUG "RAID10 conf printout:\n"); |
1578 | if (!conf) { |
1579 | printk(KERN_DEBUG "(!conf)\n"); |
1580 | return; |
1581 | } |
1582 | printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, |
1583 | conf->geo.raid_disks); |
1584 | |
1585 | for (i = 0; i < conf->geo.raid_disks; i++) { |
1586 | char b[BDEVNAME_SIZE]; |
1587 | tmp = conf->mirrors + i; |
1588 | if (tmp->rdev) |
1589 | printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", |
1590 | i, !test_bit(In_sync, &tmp->rdev->flags), |
1591 | !test_bit(Faulty, &tmp->rdev->flags), |
1592 | bdevname(tmp->rdev->bdev,b)); |
1593 | } |
1594 | } |
1595 | |
1596 | static void close_sync(struct r10conf *conf) |
1597 | { |
1598 | wait_barrier(conf); |
1599 | allow_barrier(conf); |
1600 | |
1601 | mempool_destroy(conf->r10buf_pool); |
1602 | conf->r10buf_pool = NULL; |
1603 | } |
1604 | |
1605 | static int raid10_spare_active(struct mddev *mddev) |
1606 | { |
1607 | int i; |
1608 | struct r10conf *conf = mddev->private; |
1609 | struct raid10_info *tmp; |
1610 | int count = 0; |
1611 | unsigned long flags; |
1612 | |
1613 | /* |
1614 | * Find all non-in_sync disks within the RAID10 configuration |
1615 | * and mark them in_sync |
1616 | */ |
1617 | for (i = 0; i < conf->geo.raid_disks; i++) { |
1618 | tmp = conf->mirrors + i; |
1619 | if (tmp->replacement |
1620 | && tmp->replacement->recovery_offset == MaxSector |
1621 | && !test_bit(Faulty, &tmp->replacement->flags) |
1622 | && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { |
1623 | /* Replacement has just become active */ |
1624 | if (!tmp->rdev |
1625 | || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) |
1626 | count++; |
1627 | if (tmp->rdev) { |
1628 | /* Replaced device not technically faulty, |
1629 | * but we need to be sure it gets removed |
1630 | * and never re-added. |
1631 | */ |
1632 | set_bit(Faulty, &tmp->rdev->flags); |
1633 | sysfs_notify_dirent_safe( |
1634 | tmp->rdev->sysfs_state); |
1635 | } |
1636 | sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); |
1637 | } else if (tmp->rdev |
1638 | && !test_bit(Faulty, &tmp->rdev->flags) |
1639 | && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { |
1640 | count++; |
1641 | sysfs_notify_dirent(tmp->rdev->sysfs_state); |
1642 | } |
1643 | } |
1644 | spin_lock_irqsave(&conf->device_lock, flags); |
1645 | mddev->degraded -= count; |
1646 | spin_unlock_irqrestore(&conf->device_lock, flags); |
1647 | |
1648 | print_conf(conf); |
1649 | return count; |
1650 | } |
1651 | |
1652 | |
1653 | static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) |
1654 | { |
1655 | struct r10conf *conf = mddev->private; |
1656 | int err = -EEXIST; |
1657 | int mirror; |
1658 | int first = 0; |
1659 | int last = conf->geo.raid_disks - 1; |
1660 | struct request_queue *q = bdev_get_queue(rdev->bdev); |
1661 | |
1662 | if (mddev->recovery_cp < MaxSector) |
1663 | /* only hot-add to in-sync arrays, as recovery is |
1664 | * very different from resync |
1665 | */ |
1666 | return -EBUSY; |
1667 | if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) |
1668 | return -EINVAL; |
1669 | |
1670 | if (rdev->raid_disk >= 0) |
1671 | first = last = rdev->raid_disk; |
1672 | |
1673 | if (q->merge_bvec_fn) { |
1674 | set_bit(Unmerged, &rdev->flags); |
1675 | mddev->merge_check_needed = 1; |
1676 | } |
1677 | |
1678 | if (rdev->saved_raid_disk >= first && |
1679 | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) |
1680 | mirror = rdev->saved_raid_disk; |
1681 | else |
1682 | mirror = first; |
1683 | for ( ; mirror <= last ; mirror++) { |
1684 | struct raid10_info *p = &conf->mirrors[mirror]; |
1685 | if (p->recovery_disabled == mddev->recovery_disabled) |
1686 | continue; |
1687 | if (p->rdev) { |
1688 | if (!test_bit(WantReplacement, &p->rdev->flags) || |
1689 | p->replacement != NULL) |
1690 | continue; |
1691 | clear_bit(In_sync, &rdev->flags); |
1692 | set_bit(Replacement, &rdev->flags); |
1693 | rdev->raid_disk = mirror; |
1694 | err = 0; |
1695 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
1696 | rdev->data_offset << 9); |
1697 | conf->fullsync = 1; |
1698 | rcu_assign_pointer(p->replacement, rdev); |
1699 | break; |
1700 | } |
1701 | |
1702 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
1703 | rdev->data_offset << 9); |
1704 | |
1705 | p->head_position = 0; |
1706 | p->recovery_disabled = mddev->recovery_disabled - 1; |
1707 | rdev->raid_disk = mirror; |
1708 | err = 0; |
1709 | if (rdev->saved_raid_disk != mirror) |
1710 | conf->fullsync = 1; |
1711 | rcu_assign_pointer(p->rdev, rdev); |
1712 | break; |
1713 | } |
1714 | if (err == 0 && test_bit(Unmerged, &rdev->flags)) { |
1715 | /* Some requests might not have seen this new |
1716 | * merge_bvec_fn. We must wait for them to complete |
1717 | * before merging the device fully. |
1718 | * First we make sure any code which has tested |
1719 | * our function has submitted the request, then |
1720 | * we wait for all outstanding requests to complete. |
1721 | */ |
1722 | synchronize_sched(); |
1723 | raise_barrier(conf, 0); |
1724 | lower_barrier(conf); |
1725 | clear_bit(Unmerged, &rdev->flags); |
1726 | } |
1727 | md_integrity_add_rdev(rdev, mddev); |
1728 | print_conf(conf); |
1729 | return err; |
1730 | } |
1731 | |
1732 | static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) |
1733 | { |
1734 | struct r10conf *conf = mddev->private; |
1735 | int err = 0; |
1736 | int number = rdev->raid_disk; |
1737 | struct md_rdev **rdevp; |
1738 | struct raid10_info *p = conf->mirrors + number; |
1739 | |
1740 | print_conf(conf); |
1741 | if (rdev == p->rdev) |
1742 | rdevp = &p->rdev; |
1743 | else if (rdev == p->replacement) |
1744 | rdevp = &p->replacement; |
1745 | else |
1746 | return 0; |
1747 | |
1748 | if (test_bit(In_sync, &rdev->flags) || |
1749 | atomic_read(&rdev->nr_pending)) { |
1750 | err = -EBUSY; |
1751 | goto abort; |
1752 | } |
1753 | /* Only remove faulty devices if recovery |
1754 | * is not possible. |
1755 | */ |
1756 | if (!test_bit(Faulty, &rdev->flags) && |
1757 | mddev->recovery_disabled != p->recovery_disabled && |
1758 | (!p->replacement || p->replacement == rdev) && |
1759 | number < conf->geo.raid_disks && |
1760 | enough(conf, -1)) { |
1761 | err = -EBUSY; |
1762 | goto abort; |
1763 | } |
1764 | *rdevp = NULL; |
1765 | synchronize_rcu(); |
1766 | if (atomic_read(&rdev->nr_pending)) { |
1767 | /* lost the race, try later */ |
1768 | err = -EBUSY; |
1769 | *rdevp = rdev; |
1770 | goto abort; |
1771 | } else if (p->replacement) { |
1772 | /* We must have just cleared 'rdev' */ |
1773 | p->rdev = p->replacement; |
1774 | clear_bit(Replacement, &p->replacement->flags); |
1775 | smp_mb(); /* Make sure other CPUs may see both as identical |
1776 | * but will never see neither -- if they are careful. |
1777 | */ |
1778 | p->replacement = NULL; |
1779 | clear_bit(WantReplacement, &rdev->flags); |
1780 | } else |
1781 | /* We might have just remove the Replacement as faulty |
1782 | * Clear the flag just in case |
1783 | */ |
1784 | clear_bit(WantReplacement, &rdev->flags); |
1785 | |
1786 | err = md_integrity_register(mddev); |
1787 | |
1788 | abort: |
1789 | |
1790 | print_conf(conf); |
1791 | return err; |
1792 | } |
1793 | |
1794 | |
1795 | static void end_sync_read(struct bio *bio, int error) |
1796 | { |
1797 | struct r10bio *r10_bio = bio->bi_private; |
1798 | struct r10conf *conf = r10_bio->mddev->private; |
1799 | int d; |
1800 | |
1801 | if (bio == r10_bio->master_bio) { |
1802 | /* this is a reshape read */ |
1803 | d = r10_bio->read_slot; /* really the read dev */ |
1804 | } else |
1805 | d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); |
1806 | |
1807 | if (test_bit(BIO_UPTODATE, &bio->bi_flags)) |
1808 | set_bit(R10BIO_Uptodate, &r10_bio->state); |
1809 | else |
1810 | /* The write handler will notice the lack of |
1811 | * R10BIO_Uptodate and record any errors etc |
1812 | */ |
1813 | atomic_add(r10_bio->sectors, |
1814 | &conf->mirrors[d].rdev->corrected_errors); |
1815 | |
1816 | /* for reconstruct, we always reschedule after a read. |
1817 | * for resync, only after all reads |
1818 | */ |
1819 | rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); |
1820 | if (test_bit(R10BIO_IsRecover, &r10_bio->state) || |
1821 | atomic_dec_and_test(&r10_bio->remaining)) { |
1822 | /* we have read all the blocks, |
1823 | * do the comparison in process context in raid10d |
1824 | */ |
1825 | reschedule_retry(r10_bio); |
1826 | } |
1827 | } |
1828 | |
1829 | static void end_sync_request(struct r10bio *r10_bio) |
1830 | { |
1831 | struct mddev *mddev = r10_bio->mddev; |
1832 | |
1833 | while (atomic_dec_and_test(&r10_bio->remaining)) { |
1834 | if (r10_bio->master_bio == NULL) { |
1835 | /* the primary of several recovery bios */ |
1836 | sector_t s = r10_bio->sectors; |
1837 | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || |
1838 | test_bit(R10BIO_WriteError, &r10_bio->state)) |
1839 | reschedule_retry(r10_bio); |
1840 | else |
1841 | put_buf(r10_bio); |
1842 | md_done_sync(mddev, s, 1); |
1843 | break; |
1844 | } else { |
1845 | struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; |
1846 | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || |
1847 | test_bit(R10BIO_WriteError, &r10_bio->state)) |
1848 | reschedule_retry(r10_bio); |
1849 | else |
1850 | put_buf(r10_bio); |
1851 | r10_bio = r10_bio2; |
1852 | } |
1853 | } |
1854 | } |
1855 | |
1856 | static void end_sync_write(struct bio *bio, int error) |
1857 | { |
1858 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
1859 | struct r10bio *r10_bio = bio->bi_private; |
1860 | struct mddev *mddev = r10_bio->mddev; |
1861 | struct r10conf *conf = mddev->private; |
1862 | int d; |
1863 | sector_t first_bad; |
1864 | int bad_sectors; |
1865 | int slot; |
1866 | int repl; |
1867 | struct md_rdev *rdev = NULL; |
1868 | |
1869 | d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); |
1870 | if (repl) |
1871 | rdev = conf->mirrors[d].replacement; |
1872 | else |
1873 | rdev = conf->mirrors[d].rdev; |
1874 | |
1875 | if (!uptodate) { |
1876 | if (repl) |
1877 | md_error(mddev, rdev); |
1878 | else { |
1879 | set_bit(WriteErrorSeen, &rdev->flags); |
1880 | if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
1881 | set_bit(MD_RECOVERY_NEEDED, |
1882 | &rdev->mddev->recovery); |
1883 | set_bit(R10BIO_WriteError, &r10_bio->state); |
1884 | } |
1885 | } else if (is_badblock(rdev, |
1886 | r10_bio->devs[slot].addr, |
1887 | r10_bio->sectors, |
1888 | &first_bad, &bad_sectors)) |
1889 | set_bit(R10BIO_MadeGood, &r10_bio->state); |
1890 | |
1891 | rdev_dec_pending(rdev, mddev); |
1892 | |
1893 | end_sync_request(r10_bio); |
1894 | } |
1895 | |
1896 | /* |
1897 | * Note: sync and recover and handled very differently for raid10 |
1898 | * This code is for resync. |
1899 | * For resync, we read through virtual addresses and read all blocks. |
1900 | * If there is any error, we schedule a write. The lowest numbered |
1901 | * drive is authoritative. |
1902 | * However requests come for physical address, so we need to map. |
1903 | * For every physical address there are raid_disks/copies virtual addresses, |
1904 | * which is always are least one, but is not necessarly an integer. |
1905 | * This means that a physical address can span multiple chunks, so we may |
1906 | * have to submit multiple io requests for a single sync request. |
1907 | */ |
1908 | /* |
1909 | * We check if all blocks are in-sync and only write to blocks that |
1910 | * aren't in sync |
1911 | */ |
1912 | static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) |
1913 | { |
1914 | struct r10conf *conf = mddev->private; |
1915 | int i, first; |
1916 | struct bio *tbio, *fbio; |
1917 | int vcnt; |
1918 | |
1919 | atomic_set(&r10_bio->remaining, 1); |
1920 | |
1921 | /* find the first device with a block */ |
1922 | for (i=0; i<conf->copies; i++) |
1923 | if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) |
1924 | break; |
1925 | |
1926 | if (i == conf->copies) |
1927 | goto done; |
1928 | |
1929 | first = i; |
1930 | fbio = r10_bio->devs[i].bio; |
1931 | |
1932 | vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); |
1933 | /* now find blocks with errors */ |
1934 | for (i=0 ; i < conf->copies ; i++) { |
1935 | int j, d; |
1936 | |
1937 | tbio = r10_bio->devs[i].bio; |
1938 | |
1939 | if (tbio->bi_end_io != end_sync_read) |
1940 | continue; |
1941 | if (i == first) |
1942 | continue; |
1943 | if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { |
1944 | /* We know that the bi_io_vec layout is the same for |
1945 | * both 'first' and 'i', so we just compare them. |
1946 | * All vec entries are PAGE_SIZE; |
1947 | */ |
1948 | for (j = 0; j < vcnt; j++) |
1949 | if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), |
1950 | page_address(tbio->bi_io_vec[j].bv_page), |
1951 | fbio->bi_io_vec[j].bv_len)) |
1952 | break; |
1953 | if (j == vcnt) |
1954 | continue; |
1955 | mddev->resync_mismatches += r10_bio->sectors; |
1956 | if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) |
1957 | /* Don't fix anything. */ |
1958 | continue; |
1959 | } |
1960 | /* Ok, we need to write this bio, either to correct an |
1961 | * inconsistency or to correct an unreadable block. |
1962 | * First we need to fixup bv_offset, bv_len and |
1963 | * bi_vecs, as the read request might have corrupted these |
1964 | */ |
1965 | tbio->bi_vcnt = vcnt; |
1966 | tbio->bi_size = r10_bio->sectors << 9; |
1967 | tbio->bi_idx = 0; |
1968 | tbio->bi_phys_segments = 0; |
1969 | tbio->bi_flags &= ~(BIO_POOL_MASK - 1); |
1970 | tbio->bi_flags |= 1 << BIO_UPTODATE; |
1971 | tbio->bi_next = NULL; |
1972 | tbio->bi_rw = WRITE; |
1973 | tbio->bi_private = r10_bio; |
1974 | tbio->bi_sector = r10_bio->devs[i].addr; |
1975 | |
1976 | for (j=0; j < vcnt ; j++) { |
1977 | tbio->bi_io_vec[j].bv_offset = 0; |
1978 | tbio->bi_io_vec[j].bv_len = PAGE_SIZE; |
1979 | |
1980 | memcpy(page_address(tbio->bi_io_vec[j].bv_page), |
1981 | page_address(fbio->bi_io_vec[j].bv_page), |
1982 | PAGE_SIZE); |
1983 | } |
1984 | tbio->bi_end_io = end_sync_write; |
1985 | |
1986 | d = r10_bio->devs[i].devnum; |
1987 | atomic_inc(&conf->mirrors[d].rdev->nr_pending); |
1988 | atomic_inc(&r10_bio->remaining); |
1989 | md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); |
1990 | |
1991 | tbio->bi_sector += conf->mirrors[d].rdev->data_offset; |
1992 | tbio->bi_bdev = conf->mirrors[d].rdev->bdev; |
1993 | generic_make_request(tbio); |
1994 | } |
1995 | |
1996 | /* Now write out to any replacement devices |
1997 | * that are active |
1998 | */ |
1999 | for (i = 0; i < conf->copies; i++) { |
2000 | int j, d; |
2001 | |
2002 | tbio = r10_bio->devs[i].repl_bio; |
2003 | if (!tbio || !tbio->bi_end_io) |
2004 | continue; |
2005 | if (r10_bio->devs[i].bio->bi_end_io != end_sync_write |
2006 | && r10_bio->devs[i].bio != fbio) |
2007 | for (j = 0; j < vcnt; j++) |
2008 | memcpy(page_address(tbio->bi_io_vec[j].bv_page), |
2009 | page_address(fbio->bi_io_vec[j].bv_page), |
2010 | PAGE_SIZE); |
2011 | d = r10_bio->devs[i].devnum; |
2012 | atomic_inc(&r10_bio->remaining); |
2013 | md_sync_acct(conf->mirrors[d].replacement->bdev, |
2014 | tbio->bi_size >> 9); |
2015 | generic_make_request(tbio); |
2016 | } |
2017 | |
2018 | done: |
2019 | if (atomic_dec_and_test(&r10_bio->remaining)) { |
2020 | md_done_sync(mddev, r10_bio->sectors, 1); |
2021 | put_buf(r10_bio); |
2022 | } |
2023 | } |
2024 | |
2025 | /* |
2026 | * Now for the recovery code. |
2027 | * Recovery happens across physical sectors. |
2028 | * We recover all non-is_sync drives by finding the virtual address of |
2029 | * each, and then choose a working drive that also has that virt address. |
2030 | * There is a separate r10_bio for each non-in_sync drive. |
2031 | * Only the first two slots are in use. The first for reading, |
2032 | * The second for writing. |
2033 | * |
2034 | */ |
2035 | static void fix_recovery_read_error(struct r10bio *r10_bio) |
2036 | { |
2037 | /* We got a read error during recovery. |
2038 | * We repeat the read in smaller page-sized sections. |
2039 | * If a read succeeds, write it to the new device or record |
2040 | * a bad block if we cannot. |
2041 | * If a read fails, record a bad block on both old and |
2042 | * new devices. |
2043 | */ |
2044 | struct mddev *mddev = r10_bio->mddev; |
2045 | struct r10conf *conf = mddev->private; |
2046 | struct bio *bio = r10_bio->devs[0].bio; |
2047 | sector_t sect = 0; |
2048 | int sectors = r10_bio->sectors; |
2049 | int idx = 0; |
2050 | int dr = r10_bio->devs[0].devnum; |
2051 | int dw = r10_bio->devs[1].devnum; |
2052 | |
2053 | while (sectors) { |
2054 | int s = sectors; |
2055 | struct md_rdev *rdev; |
2056 | sector_t addr; |
2057 | int ok; |
2058 | |
2059 | if (s > (PAGE_SIZE>>9)) |
2060 | s = PAGE_SIZE >> 9; |
2061 | |
2062 | rdev = conf->mirrors[dr].rdev; |
2063 | addr = r10_bio->devs[0].addr + sect, |
2064 | ok = sync_page_io(rdev, |
2065 | addr, |
2066 | s << 9, |
2067 | bio->bi_io_vec[idx].bv_page, |
2068 | READ, false); |
2069 | if (ok) { |
2070 | rdev = conf->mirrors[dw].rdev; |
2071 | addr = r10_bio->devs[1].addr + sect; |
2072 | ok = sync_page_io(rdev, |
2073 | addr, |
2074 | s << 9, |
2075 | bio->bi_io_vec[idx].bv_page, |
2076 | WRITE, false); |
2077 | if (!ok) { |
2078 | set_bit(WriteErrorSeen, &rdev->flags); |
2079 | if (!test_and_set_bit(WantReplacement, |
2080 | &rdev->flags)) |
2081 | set_bit(MD_RECOVERY_NEEDED, |
2082 | &rdev->mddev->recovery); |
2083 | } |
2084 | } |
2085 | if (!ok) { |
2086 | /* We don't worry if we cannot set a bad block - |
2087 | * it really is bad so there is no loss in not |
2088 | * recording it yet |
2089 | */ |
2090 | rdev_set_badblocks(rdev, addr, s, 0); |
2091 | |
2092 | if (rdev != conf->mirrors[dw].rdev) { |
2093 | /* need bad block on destination too */ |
2094 | struct md_rdev *rdev2 = conf->mirrors[dw].rdev; |
2095 | addr = r10_bio->devs[1].addr + sect; |
2096 | ok = rdev_set_badblocks(rdev2, addr, s, 0); |
2097 | if (!ok) { |
2098 | /* just abort the recovery */ |
2099 | printk(KERN_NOTICE |
2100 | "md/raid10:%s: recovery aborted" |
2101 | " due to read error\n", |
2102 | mdname(mddev)); |
2103 | |
2104 | conf->mirrors[dw].recovery_disabled |
2105 | = mddev->recovery_disabled; |
2106 | set_bit(MD_RECOVERY_INTR, |
2107 | &mddev->recovery); |
2108 | break; |
2109 | } |
2110 | } |
2111 | } |
2112 | |
2113 | sectors -= s; |
2114 | sect += s; |
2115 | idx++; |
2116 | } |
2117 | } |
2118 | |
2119 | static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) |
2120 | { |
2121 | struct r10conf *conf = mddev->private; |
2122 | int d; |
2123 | struct bio *wbio, *wbio2; |
2124 | |
2125 | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { |
2126 | fix_recovery_read_error(r10_bio); |
2127 | end_sync_request(r10_bio); |
2128 | return; |
2129 | } |
2130 | |
2131 | /* |
2132 | * share the pages with the first bio |
2133 | * and submit the write request |
2134 | */ |
2135 | d = r10_bio->devs[1].devnum; |
2136 | wbio = r10_bio->devs[1].bio; |
2137 | wbio2 = r10_bio->devs[1].repl_bio; |
2138 | if (wbio->bi_end_io) { |
2139 | atomic_inc(&conf->mirrors[d].rdev->nr_pending); |
2140 | md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); |
2141 | generic_make_request(wbio); |
2142 | } |
2143 | if (wbio2 && wbio2->bi_end_io) { |
2144 | atomic_inc(&conf->mirrors[d].replacement->nr_pending); |
2145 | md_sync_acct(conf->mirrors[d].replacement->bdev, |
2146 | wbio2->bi_size >> 9); |
2147 | generic_make_request(wbio2); |
2148 | } |
2149 | } |
2150 | |
2151 | |
2152 | /* |
2153 | * Used by fix_read_error() to decay the per rdev read_errors. |
2154 | * We halve the read error count for every hour that has elapsed |
2155 | * since the last recorded read error. |
2156 | * |
2157 | */ |
2158 | static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) |
2159 | { |
2160 | struct timespec cur_time_mon; |
2161 | unsigned long hours_since_last; |
2162 | unsigned int read_errors = atomic_read(&rdev->read_errors); |
2163 | |
2164 | ktime_get_ts(&cur_time_mon); |
2165 | |
2166 | if (rdev->last_read_error.tv_sec == 0 && |
2167 | rdev->last_read_error.tv_nsec == 0) { |
2168 | /* first time we've seen a read error */ |
2169 | rdev->last_read_error = cur_time_mon; |
2170 | return; |
2171 | } |
2172 | |
2173 | hours_since_last = (cur_time_mon.tv_sec - |
2174 | rdev->last_read_error.tv_sec) / 3600; |
2175 | |
2176 | rdev->last_read_error = cur_time_mon; |
2177 | |
2178 | /* |
2179 | * if hours_since_last is > the number of bits in read_errors |
2180 | * just set read errors to 0. We do this to avoid |
2181 | * overflowing the shift of read_errors by hours_since_last. |
2182 | */ |
2183 | if (hours_since_last >= 8 * sizeof(read_errors)) |
2184 | atomic_set(&rdev->read_errors, 0); |
2185 | else |
2186 | atomic_set(&rdev->read_errors, read_errors >> hours_since_last); |
2187 | } |
2188 | |
2189 | static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, |
2190 | int sectors, struct page *page, int rw) |
2191 | { |
2192 | sector_t first_bad; |
2193 | int bad_sectors; |
2194 | |
2195 | if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) |
2196 | && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) |
2197 | return -1; |
2198 | if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) |
2199 | /* success */ |
2200 | return 1; |
2201 | if (rw == WRITE) { |
2202 | set_bit(WriteErrorSeen, &rdev->flags); |
2203 | if (!test_and_set_bit(WantReplacement, &rdev->flags)) |
2204 | set_bit(MD_RECOVERY_NEEDED, |
2205 | &rdev->mddev->recovery); |
2206 | } |
2207 | /* need to record an error - either for the block or the device */ |
2208 | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) |
2209 | md_error(rdev->mddev, rdev); |
2210 | return 0; |
2211 | } |
2212 | |
2213 | /* |
2214 | * This is a kernel thread which: |
2215 | * |
2216 | * 1. Retries failed read operations on working mirrors. |
2217 | * 2. Updates the raid superblock when problems encounter. |
2218 | * 3. Performs writes following reads for array synchronising. |
2219 | */ |
2220 | |
2221 | static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) |
2222 | { |
2223 | int sect = 0; /* Offset from r10_bio->sector */ |
2224 | int sectors = r10_bio->sectors; |
2225 | struct md_rdev*rdev; |
2226 | int max_read_errors = atomic_read(&mddev->max_corr_read_errors); |
2227 | int d = r10_bio->devs[r10_bio->read_slot].devnum; |
2228 | |
2229 | /* still own a reference to this rdev, so it cannot |
2230 | * have been cleared recently. |
2231 | */ |
2232 | rdev = conf->mirrors[d].rdev; |
2233 | |
2234 | if (test_bit(Faulty, &rdev->flags)) |
2235 | /* drive has already been failed, just ignore any |
2236 | more fix_read_error() attempts */ |
2237 | return; |
2238 | |
2239 | check_decay_read_errors(mddev, rdev); |
2240 | atomic_inc(&rdev->read_errors); |
2241 | if (atomic_read(&rdev->read_errors) > max_read_errors) { |
2242 | char b[BDEVNAME_SIZE]; |
2243 | bdevname(rdev->bdev, b); |
2244 | |
2245 | printk(KERN_NOTICE |
2246 | "md/raid10:%s: %s: Raid device exceeded " |
2247 | "read_error threshold [cur %d:max %d]\n", |
2248 | mdname(mddev), b, |
2249 | atomic_read(&rdev->read_errors), max_read_errors); |
2250 | printk(KERN_NOTICE |
2251 | "md/raid10:%s: %s: Failing raid device\n", |
2252 | mdname(mddev), b); |
2253 | md_error(mddev, conf->mirrors[d].rdev); |
2254 | r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; |
2255 | return; |
2256 | } |
2257 | |
2258 | while(sectors) { |
2259 | int s = sectors; |
2260 | int sl = r10_bio->read_slot; |
2261 | int success = 0; |
2262 | int start; |
2263 | |
2264 | if (s > (PAGE_SIZE>>9)) |
2265 | s = PAGE_SIZE >> 9; |
2266 | |
2267 | rcu_read_lock(); |
2268 | do { |
2269 | sector_t first_bad; |
2270 | int bad_sectors; |
2271 | |
2272 | d = r10_bio->devs[sl].devnum; |
2273 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
2274 | if (rdev && |
2275 | !test_bit(Unmerged, &rdev->flags) && |
2276 | test_bit(In_sync, &rdev->flags) && |
2277 | is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, |
2278 | &first_bad, &bad_sectors) == 0) { |
2279 | atomic_inc(&rdev->nr_pending); |
2280 | rcu_read_unlock(); |
2281 | success = sync_page_io(rdev, |
2282 | r10_bio->devs[sl].addr + |
2283 | sect, |
2284 | s<<9, |
2285 | conf->tmppage, READ, false); |
2286 | rdev_dec_pending(rdev, mddev); |
2287 | rcu_read_lock(); |
2288 | if (success) |
2289 | break; |
2290 | } |
2291 | sl++; |
2292 | if (sl == conf->copies) |
2293 | sl = 0; |
2294 | } while (!success && sl != r10_bio->read_slot); |
2295 | rcu_read_unlock(); |
2296 | |
2297 | if (!success) { |
2298 | /* Cannot read from anywhere, just mark the block |
2299 | * as bad on the first device to discourage future |
2300 | * reads. |
2301 | */ |
2302 | int dn = r10_bio->devs[r10_bio->read_slot].devnum; |
2303 | rdev = conf->mirrors[dn].rdev; |
2304 | |
2305 | if (!rdev_set_badblocks( |
2306 | rdev, |
2307 | r10_bio->devs[r10_bio->read_slot].addr |
2308 | + sect, |
2309 | s, 0)) { |
2310 | md_error(mddev, rdev); |
2311 | r10_bio->devs[r10_bio->read_slot].bio |
2312 | = IO_BLOCKED; |
2313 | } |
2314 | break; |
2315 | } |
2316 | |
2317 | start = sl; |
2318 | /* write it back and re-read */ |
2319 | rcu_read_lock(); |
2320 | while (sl != r10_bio->read_slot) { |
2321 | char b[BDEVNAME_SIZE]; |
2322 | |
2323 | if (sl==0) |
2324 | sl = conf->copies; |
2325 | sl--; |
2326 | d = r10_bio->devs[sl].devnum; |
2327 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
2328 | if (!rdev || |
2329 | test_bit(Unmerged, &rdev->flags) || |
2330 | !test_bit(In_sync, &rdev->flags)) |
2331 | continue; |
2332 | |
2333 | atomic_inc(&rdev->nr_pending); |
2334 | rcu_read_unlock(); |
2335 | if (r10_sync_page_io(rdev, |
2336 | r10_bio->devs[sl].addr + |
2337 | sect, |
2338 | s, conf->tmppage, WRITE) |
2339 | == 0) { |
2340 | /* Well, this device is dead */ |
2341 | printk(KERN_NOTICE |
2342 | "md/raid10:%s: read correction " |
2343 | "write failed" |
2344 | " (%d sectors at %llu on %s)\n", |
2345 | mdname(mddev), s, |
2346 | (unsigned long long)( |
2347 | sect + |
2348 | choose_data_offset(r10_bio, |
2349 | rdev)), |
2350 | bdevname(rdev->bdev, b)); |
2351 | printk(KERN_NOTICE "md/raid10:%s: %s: failing " |
2352 | "drive\n", |
2353 | mdname(mddev), |
2354 | bdevname(rdev->bdev, b)); |
2355 | } |
2356 | rdev_dec_pending(rdev, mddev); |
2357 | rcu_read_lock(); |
2358 | } |
2359 | sl = start; |
2360 | while (sl != r10_bio->read_slot) { |
2361 | char b[BDEVNAME_SIZE]; |
2362 | |
2363 | if (sl==0) |
2364 | sl = conf->copies; |
2365 | sl--; |
2366 | d = r10_bio->devs[sl].devnum; |
2367 | rdev = rcu_dereference(conf->mirrors[d].rdev); |
2368 | if (!rdev || |
2369 | !test_bit(In_sync, &rdev->flags)) |
2370 | continue; |
2371 | |
2372 | atomic_inc(&rdev->nr_pending); |
2373 | rcu_read_unlock(); |
2374 | switch (r10_sync_page_io(rdev, |
2375 | r10_bio->devs[sl].addr + |
2376 | sect, |
2377 | s, conf->tmppage, |
2378 | READ)) { |
2379 | case 0: |
2380 | /* Well, this device is dead */ |
2381 | printk(KERN_NOTICE |
2382 | "md/raid10:%s: unable to read back " |
2383 | "corrected sectors" |
2384 | " (%d sectors at %llu on %s)\n", |
2385 | mdname(mddev), s, |
2386 | (unsigned long long)( |
2387 | sect + |
2388 | choose_data_offset(r10_bio, rdev)), |
2389 | bdevname(rdev->bdev, b)); |
2390 | printk(KERN_NOTICE "md/raid10:%s: %s: failing " |
2391 | "drive\n", |
2392 | mdname(mddev), |
2393 | bdevname(rdev->bdev, b)); |
2394 | break; |
2395 | case 1: |
2396 | printk(KERN_INFO |
2397 | "md/raid10:%s: read error corrected" |
2398 | " (%d sectors at %llu on %s)\n", |
2399 | mdname(mddev), s, |
2400 | (unsigned long long)( |
2401 | sect + |
2402 | choose_data_offset(r10_bio, rdev)), |
2403 | bdevname(rdev->bdev, b)); |
2404 | atomic_add(s, &rdev->corrected_errors); |
2405 | } |
2406 | |
2407 | rdev_dec_pending(rdev, mddev); |
2408 | rcu_read_lock(); |
2409 | } |
2410 | rcu_read_unlock(); |
2411 | |
2412 | sectors -= s; |
2413 | sect += s; |
2414 | } |
2415 | } |
2416 | |
2417 | static void bi_complete(struct bio *bio, int error) |
2418 | { |
2419 | complete((struct completion *)bio->bi_private); |
2420 | } |
2421 | |
2422 | static int submit_bio_wait(int rw, struct bio *bio) |
2423 | { |
2424 | struct completion event; |
2425 | rw |= REQ_SYNC; |
2426 | |
2427 | init_completion(&event); |
2428 | bio->bi_private = &event; |
2429 | bio->bi_end_io = bi_complete; |
2430 | submit_bio(rw, bio); |
2431 | wait_for_completion(&event); |
2432 | |
2433 | return test_bit(BIO_UPTODATE, &bio->bi_flags); |
2434 | } |
2435 | |
2436 | static int narrow_write_error(struct r10bio *r10_bio, int i) |
2437 | { |
2438 | struct bio *bio = r10_bio->master_bio; |
2439 | struct mddev *mddev = r10_bio->mddev; |
2440 | struct r10conf *conf = mddev->private; |
2441 | struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; |
2442 | /* bio has the data to be written to slot 'i' where |
2443 | * we just recently had a write error. |
2444 | * We repeatedly clone the bio and trim down to one block, |
2445 | * then try the write. Where the write fails we record |
2446 | * a bad block. |
2447 | * It is conceivable that the bio doesn't exactly align with |
2448 | * blocks. We must handle this. |
2449 | * |
2450 | * We currently own a reference to the rdev. |
2451 | */ |
2452 | |
2453 | int block_sectors; |
2454 | sector_t sector; |
2455 | int sectors; |
2456 | int sect_to_write = r10_bio->sectors; |
2457 | int ok = 1; |
2458 | |
2459 | if (rdev->badblocks.shift < 0) |
2460 | return 0; |
2461 | |
2462 | block_sectors = 1 << rdev->badblocks.shift; |
2463 | sector = r10_bio->sector; |
2464 | sectors = ((r10_bio->sector + block_sectors) |
2465 | & ~(sector_t)(block_sectors - 1)) |
2466 | - sector; |
2467 | |
2468 | while (sect_to_write) { |
2469 | struct bio *wbio; |
2470 | if (sectors > sect_to_write) |
2471 | sectors = sect_to_write; |
2472 | /* Write at 'sector' for 'sectors' */ |
2473 | wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); |
2474 | md_trim_bio(wbio, sector - bio->bi_sector, sectors); |
2475 | wbio->bi_sector = (r10_bio->devs[i].addr+ |
2476 | choose_data_offset(r10_bio, rdev) + |
2477 | (sector - r10_bio->sector)); |
2478 | wbio->bi_bdev = rdev->bdev; |
2479 | if (submit_bio_wait(WRITE, wbio) == 0) |
2480 | /* Failure! */ |
2481 | ok = rdev_set_badblocks(rdev, sector, |
2482 | sectors, 0) |
2483 | && ok; |
2484 | |
2485 | bio_put(wbio); |
2486 | sect_to_write -= sectors; |
2487 | sector += sectors; |
2488 | sectors = block_sectors; |
2489 | } |
2490 | return ok; |
2491 | } |
2492 | |
2493 | static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) |
2494 | { |
2495 | int slot = r10_bio->read_slot; |
2496 | struct bio *bio; |
2497 | struct r10conf *conf = mddev->private; |
2498 | struct md_rdev *rdev = r10_bio->devs[slot].rdev; |
2499 | char b[BDEVNAME_SIZE]; |
2500 | unsigned long do_sync; |
2501 | int max_sectors; |
2502 | |
2503 | /* we got a read error. Maybe the drive is bad. Maybe just |
2504 | * the block and we can fix it. |
2505 | * We freeze all other IO, and try reading the block from |
2506 | * other devices. When we find one, we re-write |
2507 | * and check it that fixes the read error. |
2508 | * This is all done synchronously while the array is |
2509 | * frozen. |
2510 | */ |
2511 | bio = r10_bio->devs[slot].bio; |
2512 | bdevname(bio->bi_bdev, b); |
2513 | bio_put(bio); |
2514 | r10_bio->devs[slot].bio = NULL; |
2515 | |
2516 | if (mddev->ro == 0) { |
2517 | freeze_array(conf); |
2518 | fix_read_error(conf, mddev, r10_bio); |
2519 | unfreeze_array(conf); |
2520 | } else |
2521 | r10_bio->devs[slot].bio = IO_BLOCKED; |
2522 | |
2523 | rdev_dec_pending(rdev, mddev); |
2524 | |
2525 | read_more: |
2526 | rdev = read_balance(conf, r10_bio, &max_sectors); |
2527 | if (rdev == NULL) { |
2528 | printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" |
2529 | " read error for block %llu\n", |
2530 | mdname(mddev), b, |
2531 | (unsigned long long)r10_bio->sector); |
2532 | raid_end_bio_io(r10_bio); |
2533 | return; |
2534 | } |
2535 | |
2536 | do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); |
2537 | slot = r10_bio->read_slot; |
2538 | printk_ratelimited( |
2539 | KERN_ERR |
2540 | "md/raid10:%s: %s: redirecting " |
2541 | "sector %llu to another mirror\n", |
2542 | mdname(mddev), |
2543 | bdevname(rdev->bdev, b), |
2544 | (unsigned long long)r10_bio->sector); |
2545 | bio = bio_clone_mddev(r10_bio->master_bio, |
2546 | GFP_NOIO, mddev); |
2547 | md_trim_bio(bio, |
2548 | r10_bio->sector - bio->bi_sector, |
2549 | max_sectors); |
2550 | r10_bio->devs[slot].bio = bio; |
2551 | r10_bio->devs[slot].rdev = rdev; |
2552 | bio->bi_sector = r10_bio->devs[slot].addr |
2553 | + choose_data_offset(r10_bio, rdev); |
2554 | bio->bi_bdev = rdev->bdev; |
2555 | bio->bi_rw = READ | do_sync; |
2556 | bio->bi_private = r10_bio; |
2557 | bio->bi_end_io = raid10_end_read_request; |
2558 | if (max_sectors < r10_bio->sectors) { |
2559 | /* Drat - have to split this up more */ |
2560 | struct bio *mbio = r10_bio->master_bio; |
2561 | int sectors_handled = |
2562 | r10_bio->sector + max_sectors |
2563 | - mbio->bi_sector; |
2564 | r10_bio->sectors = max_sectors; |
2565 | spin_lock_irq(&conf->device_lock); |
2566 | if (mbio->bi_phys_segments == 0) |
2567 | mbio->bi_phys_segments = 2; |
2568 | else |
2569 | mbio->bi_phys_segments++; |
2570 | spin_unlock_irq(&conf->device_lock); |
2571 | generic_make_request(bio); |
2572 | |
2573 | r10_bio = mempool_alloc(conf->r10bio_pool, |
2574 | GFP_NOIO); |
2575 | r10_bio->master_bio = mbio; |
2576 | r10_bio->sectors = (mbio->bi_size >> 9) |
2577 | - sectors_handled; |
2578 | r10_bio->state = 0; |
2579 | set_bit(R10BIO_ReadError, |
2580 | &r10_bio->state); |
2581 | r10_bio->mddev = mddev; |
2582 | r10_bio->sector = mbio->bi_sector |
2583 | + sectors_handled; |
2584 | |
2585 | goto read_more; |
2586 | } else |
2587 | generic_make_request(bio); |
2588 | } |
2589 | |
2590 | static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) |
2591 | { |
2592 | /* Some sort of write request has finished and it |
2593 | * succeeded in writing where we thought there was a |
2594 | * bad block. So forget the bad block. |
2595 | * Or possibly if failed and we need to record |
2596 | * a bad block. |
2597 | */ |
2598 | int m; |
2599 | struct md_rdev *rdev; |
2600 | |
2601 | if (test_bit(R10BIO_IsSync, &r10_bio->state) || |
2602 | test_bit(R10BIO_IsRecover, &r10_bio->state)) { |
2603 | for (m = 0; m < conf->copies; m++) { |
2604 | int dev = r10_bio->devs[m].devnum; |
2605 | rdev = conf->mirrors[dev].rdev; |
2606 | if (r10_bio->devs[m].bio == NULL) |
2607 | continue; |
2608 | if (test_bit(BIO_UPTODATE, |
2609 | &r10_bio->devs[m].bio->bi_flags)) { |
2610 | rdev_clear_badblocks( |
2611 | rdev, |
2612 | r10_bio->devs[m].addr, |
2613 | r10_bio->sectors, 0); |
2614 | } else { |
2615 | if (!rdev_set_badblocks( |
2616 | rdev, |
2617 | r10_bio->devs[m].addr, |
2618 | r10_bio->sectors, 0)) |
2619 | md_error(conf->mddev, rdev); |
2620 | } |
2621 | rdev = conf->mirrors[dev].replacement; |
2622 | if (r10_bio->devs[m].repl_bio == NULL) |
2623 | continue; |
2624 | if (test_bit(BIO_UPTODATE, |
2625 | &r10_bio->devs[m].repl_bio->bi_flags)) { |
2626 | rdev_clear_badblocks( |
2627 | rdev, |
2628 | r10_bio->devs[m].addr, |
2629 | r10_bio->sectors, 0); |
2630 | } else { |
2631 | if (!rdev_set_badblocks( |
2632 | rdev, |
2633 | r10_bio->devs[m].addr, |
2634 | r10_bio->sectors, 0)) |
2635 | md_error(conf->mddev, rdev); |
2636 | } |
2637 | } |
2638 | put_buf(r10_bio); |
2639 | } else { |
2640 | for (m = 0; m < conf->copies; m++) { |
2641 | int dev = r10_bio->devs[m].devnum; |
2642 | struct bio *bio = r10_bio->devs[m].bio; |
2643 | rdev = conf->mirrors[dev].rdev; |
2644 | if (bio == IO_MADE_GOOD) { |
2645 | rdev_clear_badblocks( |
2646 | rdev, |
2647 | r10_bio->devs[m].addr, |
2648 | r10_bio->sectors, 0); |
2649 | rdev_dec_pending(rdev, conf->mddev); |
2650 | } else if (bio != NULL && |
2651 | !test_bit(BIO_UPTODATE, &bio->bi_flags)) { |
2652 | if (!narrow_write_error(r10_bio, m)) { |
2653 | md_error(conf->mddev, rdev); |
2654 | set_bit(R10BIO_Degraded, |
2655 | &r10_bio->state); |
2656 | } |
2657 | rdev_dec_pending(rdev, conf->mddev); |
2658 | } |
2659 | bio = r10_bio->devs[m].repl_bio; |
2660 | rdev = conf->mirrors[dev].replacement; |
2661 | if (rdev && bio == IO_MADE_GOOD) { |
2662 | rdev_clear_badblocks( |
2663 | rdev, |
2664 | r10_bio->devs[m].addr, |
2665 | r10_bio->sectors, 0); |
2666 | rdev_dec_pending(rdev, conf->mddev); |
2667 | } |
2668 | } |
2669 | if (test_bit(R10BIO_WriteError, |
2670 | &r10_bio->state)) |
2671 | close_write(r10_bio); |
2672 | raid_end_bio_io(r10_bio); |
2673 | } |
2674 | } |
2675 | |
2676 | static void raid10d(struct mddev *mddev) |
2677 | { |
2678 | struct r10bio *r10_bio; |
2679 | unsigned long flags; |
2680 | struct r10conf *conf = mddev->private; |
2681 | struct list_head *head = &conf->retry_list; |
2682 | struct blk_plug plug; |
2683 | |
2684 | md_check_recovery(mddev); |
2685 | |
2686 | blk_start_plug(&plug); |
2687 | for (;;) { |
2688 | |
2689 | flush_pending_writes(conf); |
2690 | |
2691 | spin_lock_irqsave(&conf->device_lock, flags); |
2692 | if (list_empty(head)) { |
2693 | spin_unlock_irqrestore(&conf->device_lock, flags); |
2694 | break; |
2695 | } |
2696 | r10_bio = list_entry(head->prev, struct r10bio, retry_list); |
2697 | list_del(head->prev); |
2698 | conf->nr_queued--; |
2699 | spin_unlock_irqrestore(&conf->device_lock, flags); |
2700 | |
2701 | mddev = r10_bio->mddev; |
2702 | conf = mddev->private; |
2703 | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || |
2704 | test_bit(R10BIO_WriteError, &r10_bio->state)) |
2705 | handle_write_completed(conf, r10_bio); |
2706 | else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) |
2707 | reshape_request_write(mddev, r10_bio); |
2708 | else if (test_bit(R10BIO_IsSync, &r10_bio->state)) |
2709 | sync_request_write(mddev, r10_bio); |
2710 | else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) |
2711 | recovery_request_write(mddev, r10_bio); |
2712 | else if (test_bit(R10BIO_ReadError, &r10_bio->state)) |
2713 | handle_read_error(mddev, r10_bio); |
2714 | else { |
2715 | /* just a partial read to be scheduled from a |
2716 | * separate context |
2717 | */ |
2718 | int slot = r10_bio->read_slot; |
2719 | generic_make_request(r10_bio->devs[slot].bio); |
2720 | } |
2721 | |
2722 | cond_resched(); |
2723 | if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) |
2724 | md_check_recovery(mddev); |
2725 | } |
2726 | blk_finish_plug(&plug); |
2727 | } |
2728 | |
2729 | |
2730 | static int init_resync(struct r10conf *conf) |
2731 | { |
2732 | int buffs; |
2733 | int i; |
2734 | |
2735 | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; |
2736 | BUG_ON(conf->r10buf_pool); |
2737 | conf->have_replacement = 0; |
2738 | for (i = 0; i < conf->geo.raid_disks; i++) |
2739 | if (conf->mirrors[i].replacement) |
2740 | conf->have_replacement = 1; |
2741 | conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); |
2742 | if (!conf->r10buf_pool) |
2743 | return -ENOMEM; |
2744 | conf->next_resync = 0; |
2745 | return 0; |
2746 | } |
2747 | |
2748 | /* |
2749 | * perform a "sync" on one "block" |
2750 | * |
2751 | * We need to make sure that no normal I/O request - particularly write |
2752 | * requests - conflict with active sync requests. |
2753 | * |
2754 | * This is achieved by tracking pending requests and a 'barrier' concept |
2755 | * that can be installed to exclude normal IO requests. |
2756 | * |
2757 | * Resync and recovery are handled very differently. |
2758 | * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. |
2759 | * |
2760 | * For resync, we iterate over virtual addresses, read all copies, |
2761 | * and update if there are differences. If only one copy is live, |
2762 | * skip it. |
2763 | * For recovery, we iterate over physical addresses, read a good |
2764 | * value for each non-in_sync drive, and over-write. |
2765 | * |
2766 | * So, for recovery we may have several outstanding complex requests for a |
2767 | * given address, one for each out-of-sync device. We model this by allocating |
2768 | * a number of r10_bio structures, one for each out-of-sync device. |
2769 | * As we setup these structures, we collect all bio's together into a list |
2770 | * which we then process collectively to add pages, and then process again |
2771 | * to pass to generic_make_request. |
2772 | * |
2773 | * The r10_bio structures are linked using a borrowed master_bio pointer. |
2774 | * This link is counted in ->remaining. When the r10_bio that points to NULL |
2775 | * has its remaining count decremented to 0, the whole complex operation |
2776 | * is complete. |
2777 | * |
2778 | */ |
2779 | |
2780 | static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, |
2781 | int *skipped, int go_faster) |
2782 | { |
2783 | struct r10conf *conf = mddev->private; |
2784 | struct r10bio *r10_bio; |
2785 | struct bio *biolist = NULL, *bio; |
2786 | sector_t max_sector, nr_sectors; |
2787 | int i; |
2788 | int max_sync; |
2789 | sector_t sync_blocks; |
2790 | sector_t sectors_skipped = 0; |
2791 | int chunks_skipped = 0; |
2792 | sector_t chunk_mask = conf->geo.chunk_mask; |
2793 | |
2794 | if (!conf->r10buf_pool) |
2795 | if (init_resync(conf)) |
2796 | return 0; |
2797 | |
2798 | skipped: |
2799 | max_sector = mddev->dev_sectors; |
2800 | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || |
2801 | test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) |
2802 | max_sector = mddev->resync_max_sectors; |
2803 | if (sector_nr >= max_sector) { |
2804 | /* If we aborted, we need to abort the |
2805 | * sync on the 'current' bitmap chucks (there can |
2806 | * be several when recovering multiple devices). |
2807 | * as we may have started syncing it but not finished. |
2808 | * We can find the current address in |
2809 | * mddev->curr_resync, but for recovery, |
2810 | * we need to convert that to several |
2811 | * virtual addresses. |
2812 | */ |
2813 | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { |
2814 | end_reshape(conf); |
2815 | return 0; |
2816 | } |
2817 | |
2818 | if (mddev->curr_resync < max_sector) { /* aborted */ |
2819 | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) |
2820 | bitmap_end_sync(mddev->bitmap, mddev->curr_resync, |
2821 | &sync_blocks, 1); |
2822 | else for (i = 0; i < conf->geo.raid_disks; i++) { |
2823 | sector_t sect = |
2824 | raid10_find_virt(conf, mddev->curr_resync, i); |
2825 | bitmap_end_sync(mddev->bitmap, sect, |
2826 | &sync_blocks, 1); |
2827 | } |
2828 | } else { |
2829 | /* completed sync */ |
2830 | if ((!mddev->bitmap || conf->fullsync) |
2831 | && conf->have_replacement |
2832 | && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { |
2833 | /* Completed a full sync so the replacements |
2834 | * are now fully recovered. |
2835 | */ |
2836 | for (i = 0; i < conf->geo.raid_disks; i++) |
2837 | if (conf->mirrors[i].replacement) |
2838 | conf->mirrors[i].replacement |
2839 | ->recovery_offset |
2840 | = MaxSector; |
2841 | } |
2842 | conf->fullsync = 0; |
2843 | } |
2844 | bitmap_close_sync(mddev->bitmap); |
2845 | close_sync(conf); |
2846 | *skipped = 1; |
2847 | return sectors_skipped; |
2848 | } |
2849 | |
2850 | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) |
2851 | return reshape_request(mddev, sector_nr, skipped); |
2852 | |
2853 | if (chunks_skipped >= conf->geo.raid_disks) { |
2854 | /* if there has been nothing to do on any drive, |
2855 | * then there is nothing to do at all.. |
2856 | */ |
2857 | *skipped = 1; |
2858 | return (max_sector - sector_nr) + sectors_skipped; |
2859 | } |
2860 | |
2861 | if (max_sector > mddev->resync_max) |
2862 | max_sector = mddev->resync_max; /* Don't do IO beyond here */ |
2863 | |
2864 | /* make sure whole request will fit in a chunk - if chunks |
2865 | * are meaningful |
2866 | */ |
2867 | if (conf->geo.near_copies < conf->geo.raid_disks && |
2868 | max_sector > (sector_nr | chunk_mask)) |
2869 | max_sector = (sector_nr | chunk_mask) + 1; |
2870 | /* |
2871 | * If there is non-resync activity waiting for us then |
2872 | * put in a delay to throttle resync. |
2873 | */ |
2874 | if (!go_faster && conf->nr_waiting) |
2875 | msleep_interruptible(1000); |
2876 | |
2877 | /* Again, very different code for resync and recovery. |
2878 | * Both must result in an r10bio with a list of bios that |
2879 | * have bi_end_io, bi_sector, bi_bdev set, |
2880 | * and bi_private set to the r10bio. |
2881 | * For recovery, we may actually create several r10bios |
2882 | * with 2 bios in each, that correspond to the bios in the main one. |
2883 | * In this case, the subordinate r10bios link back through a |
2884 | * borrowed master_bio pointer, and the counter in the master |
2885 | * includes a ref from each subordinate. |
2886 | */ |
2887 | /* First, we decide what to do and set ->bi_end_io |
2888 | * To end_sync_read if we want to read, and |
2889 | * end_sync_write if we will want to write. |
2890 | */ |
2891 | |
2892 | max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); |
2893 | if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { |
2894 | /* recovery... the complicated one */ |
2895 | int j; |
2896 | r10_bio = NULL; |
2897 | |
2898 | for (i = 0 ; i < conf->geo.raid_disks; i++) { |
2899 | int still_degraded; |
2900 | struct r10bio *rb2; |
2901 | sector_t sect; |
2902 | int must_sync; |
2903 | int any_working; |
2904 | struct raid10_info *mirror = &conf->mirrors[i]; |
2905 | |
2906 | if ((mirror->rdev == NULL || |
2907 | test_bit(In_sync, &mirror->rdev->flags)) |
2908 | && |
2909 | (mirror->replacement == NULL || |
2910 | test_bit(Faulty, |
2911 | &mirror->replacement->flags))) |
2912 | continue; |
2913 | |
2914 | still_degraded = 0; |
2915 | /* want to reconstruct this device */ |
2916 | rb2 = r10_bio; |
2917 | sect = raid10_find_virt(conf, sector_nr, i); |
2918 | if (sect >= mddev->resync_max_sectors) { |
2919 | /* last stripe is not complete - don't |
2920 | * try to recover this sector. |
2921 | */ |
2922 | continue; |
2923 | } |
2924 | /* Unless we are doing a full sync, or a replacement |
2925 | * we only need to recover the block if it is set in |
2926 | * the bitmap |
2927 | */ |
2928 | must_sync = bitmap_start_sync(mddev->bitmap, sect, |
2929 | &sync_blocks, 1); |
2930 | if (sync_blocks < max_sync) |
2931 | max_sync = sync_blocks; |
2932 | if (!must_sync && |
2933 | mirror->replacement == NULL && |
2934 | !conf->fullsync) { |
2935 | /* yep, skip the sync_blocks here, but don't assume |
2936 | * that there will never be anything to do here |
2937 | */ |
2938 | chunks_skipped = -1; |
2939 | continue; |
2940 | } |
2941 | |
2942 | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); |
2943 | raise_barrier(conf, rb2 != NULL); |
2944 | atomic_set(&r10_bio->remaining, 0); |
2945 | |
2946 | r10_bio->master_bio = (struct bio*)rb2; |
2947 | if (rb2) |
2948 | atomic_inc(&rb2->remaining); |
2949 | r10_bio->mddev = mddev; |
2950 | set_bit(R10BIO_IsRecover, &r10_bio->state); |
2951 | r10_bio->sector = sect; |
2952 | |
2953 | raid10_find_phys(conf, r10_bio); |
2954 | |
2955 | /* Need to check if the array will still be |
2956 | * degraded |
2957 | */ |
2958 | for (j = 0; j < conf->geo.raid_disks; j++) |
2959 | if (conf->mirrors[j].rdev == NULL || |
2960 | test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { |
2961 | still_degraded = 1; |
2962 | break; |
2963 | } |
2964 | |
2965 | must_sync = bitmap_start_sync(mddev->bitmap, sect, |
2966 | &sync_blocks, still_degraded); |
2967 | |
2968 | any_working = 0; |
2969 | for (j=0; j<conf->copies;j++) { |
2970 | int k; |
2971 | int d = r10_bio->devs[j].devnum; |
2972 | sector_t from_addr, to_addr; |
2973 | struct md_rdev *rdev; |
2974 | sector_t sector, first_bad; |
2975 | int bad_sectors; |
2976 | if (!conf->mirrors[d].rdev || |
2977 | !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) |
2978 | continue; |
2979 | /* This is where we read from */ |
2980 | any_working = 1; |
2981 | rdev = conf->mirrors[d].rdev; |
2982 | sector = r10_bio->devs[j].addr; |
2983 | |
2984 | if (is_badblock(rdev, sector, max_sync, |
2985 | &first_bad, &bad_sectors)) { |
2986 | if (first_bad > sector) |
2987 | max_sync = first_bad - sector; |
2988 | else { |
2989 | bad_sectors -= (sector |
2990 | - first_bad); |
2991 | if (max_sync > bad_sectors) |
2992 | max_sync = bad_sectors; |
2993 | continue; |
2994 | } |
2995 | } |
2996 | bio = r10_bio->devs[0].bio; |
2997 | bio->bi_next = biolist; |
2998 | biolist = bio; |
2999 | bio->bi_private = r10_bio; |
3000 | bio->bi_end_io = end_sync_read; |
3001 | bio->bi_rw = READ; |
3002 | from_addr = r10_bio->devs[j].addr; |
3003 | bio->bi_sector = from_addr + rdev->data_offset; |
3004 | bio->bi_bdev = rdev->bdev; |
3005 | atomic_inc(&rdev->nr_pending); |
3006 | /* and we write to 'i' (if not in_sync) */ |
3007 | |
3008 | for (k=0; k<conf->copies; k++) |
3009 | if (r10_bio->devs[k].devnum == i) |
3010 | break; |
3011 | BUG_ON(k == conf->copies); |
3012 | to_addr = r10_bio->devs[k].addr; |
3013 | r10_bio->devs[0].devnum = d; |
3014 | r10_bio->devs[0].addr = from_addr; |
3015 | r10_bio->devs[1].devnum = i; |
3016 | r10_bio->devs[1].addr = to_addr; |
3017 | |
3018 | rdev = mirror->rdev; |
3019 | if (!test_bit(In_sync, &rdev->flags)) { |
3020 | bio = r10_bio->devs[1].bio; |
3021 | bio->bi_next = biolist; |
3022 | biolist = bio; |
3023 | bio->bi_private = r10_bio; |
3024 | bio->bi_end_io = end_sync_write; |
3025 | bio->bi_rw = WRITE; |
3026 | bio->bi_sector = to_addr |
3027 | + rdev->data_offset; |
3028 | bio->bi_bdev = rdev->bdev; |
3029 | atomic_inc(&r10_bio->remaining); |
3030 | } else |
3031 | r10_bio->devs[1].bio->bi_end_io = NULL; |
3032 | |
3033 | /* and maybe write to replacement */ |
3034 | bio = r10_bio->devs[1].repl_bio; |
3035 | if (bio) |
3036 | bio->bi_end_io = NULL; |
3037 | rdev = mirror->replacement; |
3038 | /* Note: if rdev != NULL, then bio |
3039 | * cannot be NULL as r10buf_pool_alloc will |
3040 | * have allocated it. |
3041 | * So the second test here is pointless. |
3042 | * But it keeps semantic-checkers happy, and |
3043 | * this comment keeps human reviewers |
3044 | * happy. |
3045 | */ |
3046 | if (rdev == NULL || bio == NULL || |
3047 | test_bit(Faulty, &rdev->flags)) |
3048 | break; |
3049 | bio->bi_next = biolist; |
3050 | biolist = bio; |
3051 | bio->bi_private = r10_bio; |
3052 | bio->bi_end_io = end_sync_write; |
3053 | bio->bi_rw = WRITE; |
3054 | bio->bi_sector = to_addr + rdev->data_offset; |
3055 | bio->bi_bdev = rdev->bdev; |
3056 | atomic_inc(&r10_bio->remaining); |
3057 | break; |
3058 | } |
3059 | if (j == conf->copies) { |
3060 | /* Cannot recover, so abort the recovery or |
3061 | * record a bad block */ |
3062 | put_buf(r10_bio); |
3063 | if (rb2) |
3064 | atomic_dec(&rb2->remaining); |
3065 | r10_bio = rb2; |
3066 | if (any_working) { |
3067 | /* problem is that there are bad blocks |
3068 | * on other device(s) |
3069 | */ |
3070 | int k; |
3071 | for (k = 0; k < conf->copies; k++) |
3072 | if (r10_bio->devs[k].devnum == i) |
3073 | break; |
3074 | if (!test_bit(In_sync, |
3075 | &mirror->rdev->flags) |
3076 | && !rdev_set_badblocks( |
3077 | mirror->rdev, |
3078 | r10_bio->devs[k].addr, |
3079 | max_sync, 0)) |
3080 | any_working = 0; |
3081 | if (mirror->replacement && |
3082 | !rdev_set_badblocks( |
3083 | mirror->replacement, |
3084 | r10_bio->devs[k].addr, |
3085 | max_sync, 0)) |
3086 | any_working = 0; |
3087 | } |
3088 | if (!any_working) { |
3089 | if (!test_and_set_bit(MD_RECOVERY_INTR, |
3090 | &mddev->recovery)) |
3091 | printk(KERN_INFO "md/raid10:%s: insufficient " |
3092 | "working devices for recovery.\n", |
3093 | mdname(mddev)); |
3094 | mirror->recovery_disabled |
3095 | = mddev->recovery_disabled; |
3096 | } |
3097 | break; |
3098 | } |
3099 | } |
3100 | if (biolist == NULL) { |
3101 | while (r10_bio) { |
3102 | struct r10bio *rb2 = r10_bio; |
3103 | r10_bio = (struct r10bio*) rb2->master_bio; |
3104 | rb2->master_bio = NULL; |
3105 | put_buf(rb2); |
3106 | } |
3107 | goto giveup; |
3108 | } |
3109 | } else { |
3110 | /* resync. Schedule a read for every block at this virt offset */ |
3111 | int count = 0; |
3112 | |
3113 | bitmap_cond_end_sync(mddev->bitmap, sector_nr); |
3114 | |
3115 | if (!bitmap_start_sync(mddev->bitmap, sector_nr, |
3116 | &sync_blocks, mddev->degraded) && |
3117 | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, |
3118 | &mddev->recovery)) { |
3119 | /* We can skip this block */ |
3120 | *skipped = 1; |
3121 | return sync_blocks + sectors_skipped; |
3122 | } |
3123 | if (sync_blocks < max_sync) |
3124 | max_sync = sync_blocks; |
3125 | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); |
3126 | |
3127 | r10_bio->mddev = mddev; |
3128 | atomic_set(&r10_bio->remaining, 0); |
3129 | raise_barrier(conf, 0); |
3130 | conf->next_resync = sector_nr; |
3131 | |
3132 | r10_bio->master_bio = NULL; |
3133 | r10_bio->sector = sector_nr; |
3134 | set_bit(R10BIO_IsSync, &r10_bio->state); |
3135 | raid10_find_phys(conf, r10_bio); |
3136 | r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; |
3137 | |
3138 | for (i = 0; i < conf->copies; i++) { |
3139 | int d = r10_bio->devs[i].devnum; |
3140 | sector_t first_bad, sector; |
3141 | int bad_sectors; |
3142 | |
3143 | if (r10_bio->devs[i].repl_bio) |
3144 | r10_bio->devs[i].repl_bio->bi_end_io = NULL; |
3145 | |
3146 | bio = r10_bio->devs[i].bio; |
3147 | bio->bi_end_io = NULL; |
3148 | clear_bit(BIO_UPTODATE, &bio->bi_flags); |
3149 | if (conf->mirrors[d].rdev == NULL || |
3150 | test_bit(Faulty, &conf->mirrors[d].rdev->flags)) |
3151 | continue; |
3152 | sector = r10_bio->devs[i].addr; |
3153 | if (is_badblock(conf->mirrors[d].rdev, |
3154 | sector, max_sync, |
3155 | &first_bad, &bad_sectors)) { |
3156 | if (first_bad > sector) |
3157 | max_sync = first_bad - sector; |
3158 | else { |
3159 | bad_sectors -= (sector - first_bad); |
3160 | if (max_sync > bad_sectors) |
3161 | max_sync = max_sync; |
3162 | continue; |
3163 | } |
3164 | } |
3165 | atomic_inc(&conf->mirrors[d].rdev->nr_pending); |
3166 | atomic_inc(&r10_bio->remaining); |
3167 | bio->bi_next = biolist; |
3168 | biolist = bio; |
3169 | bio->bi_private = r10_bio; |
3170 | bio->bi_end_io = end_sync_read; |
3171 | bio->bi_rw = READ; |
3172 | bio->bi_sector = sector + |
3173 | conf->mirrors[d].rdev->data_offset; |
3174 | bio->bi_bdev = conf->mirrors[d].rdev->bdev; |
3175 | count++; |
3176 | |
3177 | if (conf->mirrors[d].replacement == NULL || |
3178 | test_bit(Faulty, |
3179 | &conf->mirrors[d].replacement->flags)) |
3180 | continue; |
3181 | |
3182 | /* Need to set up for writing to the replacement */ |
3183 | bio = r10_bio->devs[i].repl_bio; |
3184 | clear_bit(BIO_UPTODATE, &bio->bi_flags); |
3185 | |
3186 | sector = r10_bio->devs[i].addr; |
3187 | atomic_inc(&conf->mirrors[d].rdev->nr_pending); |
3188 | bio->bi_next = biolist; |
3189 | biolist = bio; |
3190 | bio->bi_private = r10_bio; |
3191 | bio->bi_end_io = end_sync_write; |
3192 | bio->bi_rw = WRITE; |
3193 | bio->bi_sector = sector + |
3194 | conf->mirrors[d].replacement->data_offset; |
3195 | bio->bi_bdev = conf->mirrors[d].replacement->bdev; |
3196 | count++; |
3197 | } |
3198 | |
3199 | if (count < 2) { |
3200 | for (i=0; i<conf->copies; i++) { |
3201 | int d = r10_bio->devs[i].devnum; |
3202 | if (r10_bio->devs[i].bio->bi_end_io) |
3203 | rdev_dec_pending(conf->mirrors[d].rdev, |
3204 | mddev); |
3205 | if (r10_bio->devs[i].repl_bio && |
3206 | r10_bio->devs[i].repl_bio->bi_end_io) |
3207 | rdev_dec_pending( |
3208 | conf->mirrors[d].replacement, |
3209 | mddev); |
3210 | } |
3211 | put_buf(r10_bio); |
3212 | biolist = NULL; |
3213 | goto giveup; |
3214 | } |
3215 | } |
3216 | |
3217 | for (bio = biolist; bio ; bio=bio->bi_next) { |
3218 | |
3219 | bio->bi_flags &= ~(BIO_POOL_MASK - 1); |
3220 | if (bio->bi_end_io) |
3221 | bio->bi_flags |= 1 << BIO_UPTODATE; |
3222 | bio->bi_vcnt = 0; |
3223 | bio->bi_idx = 0; |
3224 | bio->bi_phys_segments = 0; |
3225 | bio->bi_size = 0; |
3226 | } |
3227 | |
3228 | nr_sectors = 0; |
3229 | if (sector_nr + max_sync < max_sector) |
3230 | max_sector = sector_nr + max_sync; |
3231 | do { |
3232 | struct page *page; |
3233 | int len = PAGE_SIZE; |
3234 | if (sector_nr + (len>>9) > max_sector) |
3235 | len = (max_sector - sector_nr) << 9; |
3236 | if (len == 0) |
3237 | break; |
3238 | for (bio= biolist ; bio ; bio=bio->bi_next) { |
3239 | struct bio *bio2; |
3240 | page = bio->bi_io_vec[bio->bi_vcnt].bv_page; |
3241 | if (bio_add_page(bio, page, len, 0)) |
3242 | continue; |
3243 | |
3244 | /* stop here */ |
3245 | bio->bi_io_vec[bio->bi_vcnt].bv_page = page; |
3246 | for (bio2 = biolist; |
3247 | bio2 && bio2 != bio; |
3248 | bio2 = bio2->bi_next) { |
3249 | /* remove last page from this bio */ |
3250 | bio2->bi_vcnt--; |
3251 | bio2->bi_size -= len; |
3252 | bio2->bi_flags &= ~(1<< BIO_SEG_VALID); |
3253 | } |
3254 | goto bio_full; |
3255 | } |
3256 | nr_sectors += len>>9; |
3257 | sector_nr += len>>9; |
3258 | } while (biolist->bi_vcnt < RESYNC_PAGES); |
3259 | bio_full: |
3260 | r10_bio->sectors = nr_sectors; |
3261 | |
3262 | while (biolist) { |
3263 | bio = biolist; |
3264 | biolist = biolist->bi_next; |
3265 | |
3266 | bio->bi_next = NULL; |
3267 | r10_bio = bio->bi_private; |
3268 | r10_bio->sectors = nr_sectors; |
3269 | |
3270 | if (bio->bi_end_io == end_sync_read) { |
3271 | md_sync_acct(bio->bi_bdev, nr_sectors); |
3272 | generic_make_request(bio); |
3273 | } |
3274 | } |
3275 | |
3276 | if (sectors_skipped) |
3277 | /* pretend they weren't skipped, it makes |
3278 | * no important difference in this case |
3279 | */ |
3280 | md_done_sync(mddev, sectors_skipped, 1); |
3281 | |
3282 | return sectors_skipped + nr_sectors; |
3283 | giveup: |
3284 | /* There is nowhere to write, so all non-sync |
3285 | * drives must be failed or in resync, all drives |
3286 | * have a bad block, so try the next chunk... |
3287 | */ |
3288 | if (sector_nr + max_sync < max_sector) |
3289 | max_sector = sector_nr + max_sync; |
3290 | |
3291 | sectors_skipped += (max_sector - sector_nr); |
3292 | chunks_skipped ++; |
3293 | sector_nr = max_sector; |
3294 | goto skipped; |
3295 | } |
3296 | |
3297 | static sector_t |
3298 | raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) |
3299 | { |
3300 | sector_t size; |
3301 | struct r10conf *conf = mddev->private; |
3302 | |
3303 | if (!raid_disks) |
3304 | raid_disks = min(conf->geo.raid_disks, |
3305 | conf->prev.raid_disks); |
3306 | if (!sectors) |
3307 | sectors = conf->dev_sectors; |
3308 | |
3309 | size = sectors >> conf->geo.chunk_shift; |
3310 | sector_div(size, conf->geo.far_copies); |
3311 | size = size * raid_disks; |
3312 | sector_div(size, conf->geo.near_copies); |
3313 | |
3314 | return size << conf->geo.chunk_shift; |
3315 | } |
3316 | |
3317 | static void calc_sectors(struct r10conf *conf, sector_t size) |
3318 | { |
3319 | /* Calculate the number of sectors-per-device that will |
3320 | * actually be used, and set conf->dev_sectors and |
3321 | * conf->stride |
3322 | */ |
3323 | |
3324 | size = size >> conf->geo.chunk_shift; |
3325 | sector_div(size, conf->geo.far_copies); |
3326 | size = size * conf->geo.raid_disks; |
3327 | sector_div(size, conf->geo.near_copies); |
3328 | /* 'size' is now the number of chunks in the array */ |
3329 | /* calculate "used chunks per device" */ |
3330 | size = size * conf->copies; |
3331 | |
3332 | /* We need to round up when dividing by raid_disks to |
3333 | * get the stride size. |
3334 | */ |
3335 | size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); |
3336 | |
3337 | conf->dev_sectors = size << conf->geo.chunk_shift; |
3338 | |
3339 | if (conf->geo.far_offset) |
3340 | conf->geo.stride = 1 << conf->geo.chunk_shift; |
3341 | else { |
3342 | sector_div(size, conf->geo.far_copies); |
3343 | conf->geo.stride = size << conf->geo.chunk_shift; |
3344 | } |
3345 | } |
3346 | |
3347 | enum geo_type {geo_new, geo_old, geo_start}; |
3348 | static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) |
3349 | { |
3350 | int nc, fc, fo; |
3351 | int layout, chunk, disks; |
3352 | switch (new) { |
3353 | case geo_old: |
3354 | layout = mddev->layout; |
3355 | chunk = mddev->chunk_sectors; |
3356 | disks = mddev->raid_disks - mddev->delta_disks; |
3357 | break; |
3358 | case geo_new: |
3359 | layout = mddev->new_layout; |
3360 | chunk = mddev->new_chunk_sectors; |
3361 | disks = mddev->raid_disks; |
3362 | break; |
3363 | default: /* avoid 'may be unused' warnings */ |
3364 | case geo_start: /* new when starting reshape - raid_disks not |
3365 | * updated yet. */ |
3366 | layout = mddev->new_layout; |
3367 | chunk = mddev->new_chunk_sectors; |
3368 | disks = mddev->raid_disks + mddev->delta_disks; |
3369 | break; |
3370 | } |
3371 | if (layout >> 17) |
3372 | return -1; |
3373 | if (chunk < (PAGE_SIZE >> 9) || |
3374 | !is_power_of_2(chunk)) |
3375 | return -2; |
3376 | nc = layout & 255; |
3377 | fc = (layout >> 8) & 255; |
3378 | fo = layout & (1<<16); |
3379 | geo->raid_disks = disks; |
3380 | geo->near_copies = nc; |
3381 | geo->far_copies = fc; |
3382 | geo->far_offset = fo; |
3383 | geo->chunk_mask = chunk - 1; |
3384 | geo->chunk_shift = ffz(~chunk); |
3385 | return nc*fc; |
3386 | } |
3387 | |
3388 | static struct r10conf *setup_conf(struct mddev *mddev) |
3389 | { |
3390 | struct r10conf *conf = NULL; |
3391 | int err = -EINVAL; |
3392 | struct geom geo; |
3393 | int copies; |
3394 | |
3395 | copies = setup_geo(&geo, mddev, geo_new); |
3396 | |
3397 | if (copies == -2) { |
3398 | printk(KERN_ERR "md/raid10:%s: chunk size must be " |
3399 | "at least PAGE_SIZE(%ld) and be a power of 2.\n", |
3400 | mdname(mddev), PAGE_SIZE); |
3401 | goto out; |
3402 | } |
3403 | |
3404 | if (copies < 2 || copies > mddev->raid_disks) { |
3405 | printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", |
3406 | mdname(mddev), mddev->new_layout); |
3407 | goto out; |
3408 | } |
3409 | |
3410 | err = -ENOMEM; |
3411 | conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); |
3412 | if (!conf) |
3413 | goto out; |
3414 | |
3415 | /* FIXME calc properly */ |
3416 | conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + |
3417 | max(0,mddev->delta_disks)), |
3418 | GFP_KERNEL); |
3419 | if (!conf->mirrors) |
3420 | goto out; |
3421 | |
3422 | conf->tmppage = alloc_page(GFP_KERNEL); |
3423 | if (!conf->tmppage) |
3424 | goto out; |
3425 | |
3426 | conf->geo = geo; |
3427 | conf->copies = copies; |
3428 | conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, |
3429 | r10bio_pool_free, conf); |
3430 | if (!conf->r10bio_pool) |
3431 | goto out; |
3432 | |
3433 | calc_sectors(conf, mddev->dev_sectors); |
3434 | if (mddev->reshape_position == MaxSector) { |
3435 | conf->prev = conf->geo; |
3436 | conf->reshape_progress = MaxSector; |
3437 | } else { |
3438 | if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { |
3439 | err = -EINVAL; |
3440 | goto out; |
3441 | } |
3442 | conf->reshape_progress = mddev->reshape_position; |
3443 | if (conf->prev.far_offset) |
3444 | conf->prev.stride = 1 << conf->prev.chunk_shift; |
3445 | else |
3446 | /* far_copies must be 1 */ |
3447 | conf->prev.stride = conf->dev_sectors; |
3448 | } |
3449 | spin_lock_init(&conf->device_lock); |
3450 | INIT_LIST_HEAD(&conf->retry_list); |
3451 | |
3452 | spin_lock_init(&conf->resync_lock); |
3453 | init_waitqueue_head(&conf->wait_barrier); |
3454 | |
3455 | conf->thread = md_register_thread(raid10d, mddev, "raid10"); |
3456 | if (!conf->thread) |
3457 | goto out; |
3458 | |
3459 | conf->mddev = mddev; |
3460 | return conf; |
3461 | |
3462 | out: |
3463 | if (err == -ENOMEM) |
3464 | printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", |
3465 | mdname(mddev)); |
3466 | if (conf) { |
3467 | if (conf->r10bio_pool) |
3468 | mempool_destroy(conf->r10bio_pool); |
3469 | kfree(conf->mirrors); |
3470 | safe_put_page(conf->tmppage); |
3471 | kfree(conf); |
3472 | } |
3473 | return ERR_PTR(err); |
3474 | } |
3475 | |
3476 | static int run(struct mddev *mddev) |
3477 | { |
3478 | struct r10conf *conf; |
3479 | int i, disk_idx, chunk_size; |
3480 | struct raid10_info *disk; |
3481 | struct md_rdev *rdev; |
3482 | sector_t size; |
3483 | sector_t min_offset_diff = 0; |
3484 | int first = 1; |
3485 | |
3486 | if (mddev->private == NULL) { |
3487 | conf = setup_conf(mddev); |
3488 | if (IS_ERR(conf)) |
3489 | return PTR_ERR(conf); |
3490 | mddev->private = conf; |
3491 | } |
3492 | conf = mddev->private; |
3493 | if (!conf) |
3494 | goto out; |
3495 | |
3496 | mddev->thread = conf->thread; |
3497 | conf->thread = NULL; |
3498 | |
3499 | chunk_size = mddev->chunk_sectors << 9; |
3500 | if (mddev->queue) { |
3501 | blk_queue_io_min(mddev->queue, chunk_size); |
3502 | if (conf->geo.raid_disks % conf->geo.near_copies) |
3503 | blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); |
3504 | else |
3505 | blk_queue_io_opt(mddev->queue, chunk_size * |
3506 | (conf->geo.raid_disks / conf->geo.near_copies)); |
3507 | } |
3508 | |
3509 | rdev_for_each(rdev, mddev) { |
3510 | long long diff; |
3511 | struct request_queue *q; |
3512 | |
3513 | disk_idx = rdev->raid_disk; |
3514 | if (disk_idx < 0) |
3515 | continue; |
3516 | if (disk_idx >= conf->geo.raid_disks && |
3517 | disk_idx >= conf->prev.raid_disks) |
3518 | continue; |
3519 | disk = conf->mirrors + disk_idx; |
3520 | |
3521 | if (test_bit(Replacement, &rdev->flags)) { |
3522 | if (disk->replacement) |
3523 | goto out_free_conf; |
3524 | disk->replacement = rdev; |
3525 | } else { |
3526 | if (disk->rdev) |
3527 | goto out_free_conf; |
3528 | disk->rdev = rdev; |
3529 | } |
3530 | q = bdev_get_queue(rdev->bdev); |
3531 | if (q->merge_bvec_fn) |
3532 | mddev->merge_check_needed = 1; |
3533 | diff = (rdev->new_data_offset - rdev->data_offset); |
3534 | if (!mddev->reshape_backwards) |
3535 | diff = -diff; |
3536 | if (diff < 0) |
3537 | diff = 0; |
3538 | if (first || diff < min_offset_diff) |
3539 | min_offset_diff = diff; |
3540 | |
3541 | if (mddev->gendisk) |
3542 | disk_stack_limits(mddev->gendisk, rdev->bdev, |
3543 | rdev->data_offset << 9); |
3544 | |
3545 | disk->head_position = 0; |
3546 | } |
3547 | |
3548 | /* need to check that every block has at least one working mirror */ |
3549 | if (!enough(conf, -1)) { |
3550 | printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", |
3551 | mdname(mddev)); |
3552 | goto out_free_conf; |
3553 | } |
3554 | |
3555 | if (conf->reshape_progress != MaxSector) { |
3556 | /* must ensure that shape change is supported */ |
3557 | if (conf->geo.far_copies != 1 && |
3558 | conf->geo.far_offset == 0) |
3559 | goto out_free_conf; |
3560 | if (conf->prev.far_copies != 1 && |
3561 | conf->geo.far_offset == 0) |
3562 | goto out_free_conf; |
3563 | } |
3564 | |
3565 | mddev->degraded = 0; |
3566 | for (i = 0; |
3567 | i < conf->geo.raid_disks |
3568 | || i < conf->prev.raid_disks; |
3569 | i++) { |
3570 | |
3571 | disk = conf->mirrors + i; |
3572 | |
3573 | if (!disk->rdev && disk->replacement) { |
3574 | /* The replacement is all we have - use it */ |
3575 | disk->rdev = disk->replacement; |
3576 | disk->replacement = NULL; |
3577 | clear_bit(Replacement, &disk->rdev->flags); |
3578 | } |
3579 | |
3580 | if (!disk->rdev || |
3581 | !test_bit(In_sync, &disk->rdev->flags)) { |
3582 | disk->head_position = 0; |
3583 | mddev->degraded++; |
3584 | if (disk->rdev) |
3585 | conf->fullsync = 1; |
3586 | } |
3587 | disk->recovery_disabled = mddev->recovery_disabled - 1; |
3588 | } |
3589 | |
3590 | if (mddev->recovery_cp != MaxSector) |
3591 | printk(KERN_NOTICE "md/raid10:%s: not clean" |
3592 | " -- starting background reconstruction\n", |
3593 | mdname(mddev)); |
3594 | printk(KERN_INFO |
3595 | "md/raid10:%s: active with %d out of %d devices\n", |
3596 | mdname(mddev), conf->geo.raid_disks - mddev->degraded, |
3597 | conf->geo.raid_disks); |
3598 | /* |
3599 | * Ok, everything is just fine now |
3600 | */ |
3601 | mddev->dev_sectors = conf->dev_sectors; |
3602 | size = raid10_size(mddev, 0, 0); |
3603 | md_set_array_sectors(mddev, size); |
3604 | mddev->resync_max_sectors = size; |
3605 | |
3606 | if (mddev->queue) { |
3607 | int stripe = conf->geo.raid_disks * |
3608 | ((mddev->chunk_sectors << 9) / PAGE_SIZE); |
3609 | mddev->queue->backing_dev_info.congested_fn = raid10_congested; |
3610 | mddev->queue->backing_dev_info.congested_data = mddev; |
3611 | |
3612 | /* Calculate max read-ahead size. |
3613 | * We need to readahead at least twice a whole stripe.... |
3614 | * maybe... |
3615 | */ |
3616 | stripe /= conf->geo.near_copies; |
3617 | if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) |
3618 | mddev->queue->backing_dev_info.ra_pages = 2 * stripe; |
3619 | blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); |
3620 | } |
3621 | |
3622 | |
3623 | if (md_integrity_register(mddev)) |
3624 | goto out_free_conf; |
3625 | |
3626 | if (conf->reshape_progress != MaxSector) { |
3627 | unsigned long before_length, after_length; |
3628 | |
3629 | before_length = ((1 << conf->prev.chunk_shift) * |
3630 | conf->prev.far_copies); |
3631 | after_length = ((1 << conf->geo.chunk_shift) * |
3632 | conf->geo.far_copies); |
3633 | |
3634 | if (max(before_length, after_length) > min_offset_diff) { |
3635 | /* This cannot work */ |
3636 | printk("md/raid10: offset difference not enough to continue reshape\n"); |
3637 | goto out_free_conf; |
3638 | } |
3639 | conf->offset_diff = min_offset_diff; |
3640 | |
3641 | conf->reshape_safe = conf->reshape_progress; |
3642 | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
3643 | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
3644 | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
3645 | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
3646 | mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
3647 | "reshape"); |
3648 | } |
3649 | |
3650 | return 0; |
3651 | |
3652 | out_free_conf: |
3653 | md_unregister_thread(&mddev->thread); |
3654 | if (conf->r10bio_pool) |
3655 | mempool_destroy(conf->r10bio_pool); |
3656 | safe_put_page(conf->tmppage); |
3657 | kfree(conf->mirrors); |
3658 | kfree(conf); |
3659 | mddev->private = NULL; |
3660 | out: |
3661 | return -EIO; |
3662 | } |
3663 | |
3664 | static int stop(struct mddev *mddev) |
3665 | { |
3666 | struct r10conf *conf = mddev->private; |
3667 | |
3668 | raise_barrier(conf, 0); |
3669 | lower_barrier(conf); |
3670 | |
3671 | md_unregister_thread(&mddev->thread); |
3672 | if (mddev->queue) |
3673 | /* the unplug fn references 'conf'*/ |
3674 | blk_sync_queue(mddev->queue); |
3675 | |
3676 | if (conf->r10bio_pool) |
3677 | mempool_destroy(conf->r10bio_pool); |
3678 | kfree(conf->mirrors); |
3679 | kfree(conf); |
3680 | mddev->private = NULL; |
3681 | return 0; |
3682 | } |
3683 | |
3684 | static void raid10_quiesce(struct mddev *mddev, int state) |
3685 | { |
3686 | struct r10conf *conf = mddev->private; |
3687 | |
3688 | switch(state) { |
3689 | case 1: |
3690 | raise_barrier(conf, 0); |
3691 | break; |
3692 | case 0: |
3693 | lower_barrier(conf); |
3694 | break; |
3695 | } |
3696 | } |
3697 | |
3698 | static int raid10_resize(struct mddev *mddev, sector_t sectors) |
3699 | { |
3700 | /* Resize of 'far' arrays is not supported. |
3701 | * For 'near' and 'offset' arrays we can set the |
3702 | * number of sectors used to be an appropriate multiple |
3703 | * of the chunk size. |
3704 | * For 'offset', this is far_copies*chunksize. |
3705 | * For 'near' the multiplier is the LCM of |
3706 | * near_copies and raid_disks. |
3707 | * So if far_copies > 1 && !far_offset, fail. |
3708 | * Else find LCM(raid_disks, near_copy)*far_copies and |
3709 | * multiply by chunk_size. Then round to this number. |
3710 | * This is mostly done by raid10_size() |
3711 | */ |
3712 | struct r10conf *conf = mddev->private; |
3713 | sector_t oldsize, size; |
3714 | |
3715 | if (mddev->reshape_position != MaxSector) |
3716 | return -EBUSY; |
3717 | |
3718 | if (conf->geo.far_copies > 1 && !conf->geo.far_offset) |
3719 | return -EINVAL; |
3720 | |
3721 | oldsize = raid10_size(mddev, 0, 0); |
3722 | size = raid10_size(mddev, sectors, 0); |
3723 | if (mddev->external_size && |
3724 | mddev->array_sectors > size) |
3725 | return -EINVAL; |
3726 | if (mddev->bitmap) { |
3727 | int ret = bitmap_resize(mddev->bitmap, size, 0, 0); |
3728 | if (ret) |
3729 | return ret; |
3730 | } |
3731 | md_set_array_sectors(mddev, size); |
3732 | set_capacity(mddev->gendisk, mddev->array_sectors); |
3733 | revalidate_disk(mddev->gendisk); |
3734 | if (sectors > mddev->dev_sectors && |
3735 | mddev->recovery_cp > oldsize) { |
3736 | mddev->recovery_cp = oldsize; |
3737 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
3738 | } |
3739 | calc_sectors(conf, sectors); |
3740 | mddev->dev_sectors = conf->dev_sectors; |
3741 | mddev->resync_max_sectors = size; |
3742 | return 0; |
3743 | } |
3744 | |
3745 | static void *raid10_takeover_raid0(struct mddev *mddev) |
3746 | { |
3747 | struct md_rdev *rdev; |
3748 | struct r10conf *conf; |
3749 | |
3750 | if (mddev->degraded > 0) { |
3751 | printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", |
3752 | mdname(mddev)); |
3753 | return ERR_PTR(-EINVAL); |
3754 | } |
3755 | |
3756 | /* Set new parameters */ |
3757 | mddev->new_level = 10; |
3758 | /* new layout: far_copies = 1, near_copies = 2 */ |
3759 | mddev->new_layout = (1<<8) + 2; |
3760 | mddev->new_chunk_sectors = mddev->chunk_sectors; |
3761 | mddev->delta_disks = mddev->raid_disks; |
3762 | mddev->raid_disks *= 2; |
3763 | /* make sure it will be not marked as dirty */ |
3764 | mddev->recovery_cp = MaxSector; |
3765 | |
3766 | conf = setup_conf(mddev); |
3767 | if (!IS_ERR(conf)) { |
3768 | rdev_for_each(rdev, mddev) |
3769 | if (rdev->raid_disk >= 0) |
3770 | rdev->new_raid_disk = rdev->raid_disk * 2; |
3771 | conf->barrier = 1; |
3772 | } |
3773 | |
3774 | return conf; |
3775 | } |
3776 | |
3777 | static void *raid10_takeover(struct mddev *mddev) |
3778 | { |
3779 | struct r0conf *raid0_conf; |
3780 | |
3781 | /* raid10 can take over: |
3782 | * raid0 - providing it has only two drives |
3783 | */ |
3784 | if (mddev->level == 0) { |
3785 | /* for raid0 takeover only one zone is supported */ |
3786 | raid0_conf = mddev->private; |
3787 | if (raid0_conf->nr_strip_zones > 1) { |
3788 | printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" |
3789 | " with more than one zone.\n", |
3790 | mdname(mddev)); |
3791 | return ERR_PTR(-EINVAL); |
3792 | } |
3793 | return raid10_takeover_raid0(mddev); |
3794 | } |
3795 | return ERR_PTR(-EINVAL); |
3796 | } |
3797 | |
3798 | static int raid10_check_reshape(struct mddev *mddev) |
3799 | { |
3800 | /* Called when there is a request to change |
3801 | * - layout (to ->new_layout) |
3802 | * - chunk size (to ->new_chunk_sectors) |
3803 | * - raid_disks (by delta_disks) |
3804 | * or when trying to restart a reshape that was ongoing. |
3805 | * |
3806 | * We need to validate the request and possibly allocate |
3807 | * space if that might be an issue later. |
3808 | * |
3809 | * Currently we reject any reshape of a 'far' mode array, |
3810 | * allow chunk size to change if new is generally acceptable, |
3811 | * allow raid_disks to increase, and allow |
3812 | * a switch between 'near' mode and 'offset' mode. |
3813 | */ |
3814 | struct r10conf *conf = mddev->private; |
3815 | struct geom geo; |
3816 | |
3817 | if (conf->geo.far_copies != 1 && !conf->geo.far_offset) |
3818 | return -EINVAL; |
3819 | |
3820 | if (setup_geo(&geo, mddev, geo_start) != conf->copies) |
3821 | /* mustn't change number of copies */ |
3822 | return -EINVAL; |
3823 | if (geo.far_copies > 1 && !geo.far_offset) |
3824 | /* Cannot switch to 'far' mode */ |
3825 | return -EINVAL; |
3826 | |
3827 | if (mddev->array_sectors & geo.chunk_mask) |
3828 | /* not factor of array size */ |
3829 | return -EINVAL; |
3830 | |
3831 | if (!enough(conf, -1)) |
3832 | return -EINVAL; |
3833 | |
3834 | kfree(conf->mirrors_new); |
3835 | conf->mirrors_new = NULL; |
3836 | if (mddev->delta_disks > 0) { |
3837 | /* allocate new 'mirrors' list */ |
3838 | conf->mirrors_new = kzalloc( |
3839 | sizeof(struct raid10_info) |
3840 | *(mddev->raid_disks + |
3841 | mddev->delta_disks), |
3842 | GFP_KERNEL); |
3843 | if (!conf->mirrors_new) |
3844 | return -ENOMEM; |
3845 | } |
3846 | return 0; |
3847 | } |
3848 | |
3849 | /* |
3850 | * Need to check if array has failed when deciding whether to: |
3851 | * - start an array |
3852 | * - remove non-faulty devices |
3853 | * - add a spare |
3854 | * - allow a reshape |
3855 | * This determination is simple when no reshape is happening. |
3856 | * However if there is a reshape, we need to carefully check |
3857 | * both the before and after sections. |
3858 | * This is because some failed devices may only affect one |
3859 | * of the two sections, and some non-in_sync devices may |
3860 | * be insync in the section most affected by failed devices. |
3861 | */ |
3862 | static int calc_degraded(struct r10conf *conf) |
3863 | { |
3864 | int degraded, degraded2; |
3865 | int i; |
3866 | |
3867 | rcu_read_lock(); |
3868 | degraded = 0; |
3869 | /* 'prev' section first */ |
3870 | for (i = 0; i < conf->prev.raid_disks; i++) { |
3871 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
3872 | if (!rdev || test_bit(Faulty, &rdev->flags)) |
3873 | degraded++; |
3874 | else if (!test_bit(In_sync, &rdev->flags)) |
3875 | /* When we can reduce the number of devices in |
3876 | * an array, this might not contribute to |
3877 | * 'degraded'. It does now. |
3878 | */ |
3879 | degraded++; |
3880 | } |
3881 | rcu_read_unlock(); |
3882 | if (conf->geo.raid_disks == conf->prev.raid_disks) |
3883 | return degraded; |
3884 | rcu_read_lock(); |
3885 | degraded2 = 0; |
3886 | for (i = 0; i < conf->geo.raid_disks; i++) { |
3887 | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); |
3888 | if (!rdev || test_bit(Faulty, &rdev->flags)) |
3889 | degraded2++; |
3890 | else if (!test_bit(In_sync, &rdev->flags)) { |
3891 | /* If reshape is increasing the number of devices, |
3892 | * this section has already been recovered, so |
3893 | * it doesn't contribute to degraded. |
3894 | * else it does. |
3895 | */ |
3896 | if (conf->geo.raid_disks <= conf->prev.raid_disks) |
3897 | degraded2++; |
3898 | } |
3899 | } |
3900 | rcu_read_unlock(); |
3901 | if (degraded2 > degraded) |
3902 | return degraded2; |
3903 | return degraded; |
3904 | } |
3905 | |
3906 | static int raid10_start_reshape(struct mddev *mddev) |
3907 | { |
3908 | /* A 'reshape' has been requested. This commits |
3909 | * the various 'new' fields and sets MD_RECOVER_RESHAPE |
3910 | * This also checks if there are enough spares and adds them |
3911 | * to the array. |
3912 | * We currently require enough spares to make the final |
3913 | * array non-degraded. We also require that the difference |
3914 | * between old and new data_offset - on each device - is |
3915 | * enough that we never risk over-writing. |
3916 | */ |
3917 | |
3918 | unsigned long before_length, after_length; |
3919 | sector_t min_offset_diff = 0; |
3920 | int first = 1; |
3921 | struct geom new; |
3922 | struct r10conf *conf = mddev->private; |
3923 | struct md_rdev *rdev; |
3924 | int spares = 0; |
3925 | int ret; |
3926 | |
3927 | if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) |
3928 | return -EBUSY; |
3929 | |
3930 | if (setup_geo(&new, mddev, geo_start) != conf->copies) |
3931 | return -EINVAL; |
3932 | |
3933 | before_length = ((1 << conf->prev.chunk_shift) * |
3934 | conf->prev.far_copies); |
3935 | after_length = ((1 << conf->geo.chunk_shift) * |
3936 | conf->geo.far_copies); |
3937 | |
3938 | rdev_for_each(rdev, mddev) { |
3939 | if (!test_bit(In_sync, &rdev->flags) |
3940 | && !test_bit(Faulty, &rdev->flags)) |
3941 | spares++; |
3942 | if (rdev->raid_disk >= 0) { |
3943 | long long diff = (rdev->new_data_offset |
3944 | - rdev->data_offset); |
3945 | if (!mddev->reshape_backwards) |
3946 | diff = -diff; |
3947 | if (diff < 0) |
3948 | diff = 0; |
3949 | if (first || diff < min_offset_diff) |
3950 | min_offset_diff = diff; |
3951 | } |
3952 | } |
3953 | |
3954 | if (max(before_length, after_length) > min_offset_diff) |
3955 | return -EINVAL; |
3956 | |
3957 | if (spares < mddev->delta_disks) |
3958 | return -EINVAL; |
3959 | |
3960 | conf->offset_diff = min_offset_diff; |
3961 | spin_lock_irq(&conf->device_lock); |
3962 | if (conf->mirrors_new) { |
3963 | memcpy(conf->mirrors_new, conf->mirrors, |
3964 | sizeof(struct raid10_info)*conf->prev.raid_disks); |
3965 | smp_mb(); |
3966 | kfree(conf->mirrors_old); /* FIXME and elsewhere */ |
3967 | conf->mirrors_old = conf->mirrors; |
3968 | conf->mirrors = conf->mirrors_new; |
3969 | conf->mirrors_new = NULL; |
3970 | } |
3971 | setup_geo(&conf->geo, mddev, geo_start); |
3972 | smp_mb(); |
3973 | if (mddev->reshape_backwards) { |
3974 | sector_t size = raid10_size(mddev, 0, 0); |
3975 | if (size < mddev->array_sectors) { |
3976 | spin_unlock_irq(&conf->device_lock); |
3977 | printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", |
3978 | mdname(mddev)); |
3979 | return -EINVAL; |
3980 | } |
3981 | mddev->resync_max_sectors = size; |
3982 | conf->reshape_progress = size; |
3983 | } else |
3984 | conf->reshape_progress = 0; |
3985 | spin_unlock_irq(&conf->device_lock); |
3986 | |
3987 | if (mddev->delta_disks && mddev->bitmap) { |
3988 | ret = bitmap_resize(mddev->bitmap, |
3989 | raid10_size(mddev, 0, |
3990 | conf->geo.raid_disks), |
3991 | 0, 0); |
3992 | if (ret) |
3993 | goto abort; |
3994 | } |
3995 | if (mddev->delta_disks > 0) { |
3996 | rdev_for_each(rdev, mddev) |
3997 | if (rdev->raid_disk < 0 && |
3998 | !test_bit(Faulty, &rdev->flags)) { |
3999 | if (raid10_add_disk(mddev, rdev) == 0) { |
4000 | if (rdev->raid_disk >= |
4001 | conf->prev.raid_disks) |
4002 | set_bit(In_sync, &rdev->flags); |
4003 | else |
4004 | rdev->recovery_offset = 0; |
4005 | |
4006 | if (sysfs_link_rdev(mddev, rdev)) |
4007 | /* Failure here is OK */; |
4008 | } |
4009 | } else if (rdev->raid_disk >= conf->prev.raid_disks |
4010 | && !test_bit(Faulty, &rdev->flags)) { |
4011 | /* This is a spare that was manually added */ |
4012 | set_bit(In_sync, &rdev->flags); |
4013 | } |
4014 | } |
4015 | /* When a reshape changes the number of devices, |
4016 | * ->degraded is measured against the larger of the |
4017 | * pre and post numbers. |
4018 | */ |
4019 | spin_lock_irq(&conf->device_lock); |
4020 | mddev->degraded = calc_degraded(conf); |
4021 | spin_unlock_irq(&conf->device_lock); |
4022 | mddev->raid_disks = conf->geo.raid_disks; |
4023 | mddev->reshape_position = conf->reshape_progress; |
4024 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
4025 | |
4026 | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
4027 | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
4028 | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); |
4029 | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); |
4030 | |
4031 | mddev->sync_thread = md_register_thread(md_do_sync, mddev, |
4032 | "reshape"); |
4033 | if (!mddev->sync_thread) { |
4034 | ret = -EAGAIN; |
4035 | goto abort; |
4036 | } |
4037 | conf->reshape_checkpoint = jiffies; |
4038 | md_wakeup_thread(mddev->sync_thread); |
4039 | md_new_event(mddev); |
4040 | return 0; |
4041 | |
4042 | abort: |
4043 | mddev->recovery = 0; |
4044 | spin_lock_irq(&conf->device_lock); |
4045 | conf->geo = conf->prev; |
4046 | mddev->raid_disks = conf->geo.raid_disks; |
4047 | rdev_for_each(rdev, mddev) |
4048 | rdev->new_data_offset = rdev->data_offset; |
4049 | smp_wmb(); |
4050 | conf->reshape_progress = MaxSector; |
4051 | mddev->reshape_position = MaxSector; |
4052 | spin_unlock_irq(&conf->device_lock); |
4053 | return ret; |
4054 | } |
4055 | |
4056 | /* Calculate the last device-address that could contain |
4057 | * any block from the chunk that includes the array-address 's' |
4058 | * and report the next address. |
4059 | * i.e. the address returned will be chunk-aligned and after |
4060 | * any data that is in the chunk containing 's'. |
4061 | */ |
4062 | static sector_t last_dev_address(sector_t s, struct geom *geo) |
4063 | { |
4064 | s = (s | geo->chunk_mask) + 1; |
4065 | s >>= geo->chunk_shift; |
4066 | s *= geo->near_copies; |
4067 | s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); |
4068 | s *= geo->far_copies; |
4069 | s <<= geo->chunk_shift; |
4070 | return s; |
4071 | } |
4072 | |
4073 | /* Calculate the first device-address that could contain |
4074 | * any block from the chunk that includes the array-address 's'. |
4075 | * This too will be the start of a chunk |
4076 | */ |
4077 | static sector_t first_dev_address(sector_t s, struct geom *geo) |
4078 | { |
4079 | s >>= geo->chunk_shift; |
4080 | s *= geo->near_copies; |
4081 | sector_div(s, geo->raid_disks); |
4082 | s *= geo->far_copies; |
4083 | s <<= geo->chunk_shift; |
4084 | return s; |
4085 | } |
4086 | |
4087 | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, |
4088 | int *skipped) |
4089 | { |
4090 | /* We simply copy at most one chunk (smallest of old and new) |
4091 | * at a time, possibly less if that exceeds RESYNC_PAGES, |
4092 | * or we hit a bad block or something. |
4093 | * This might mean we pause for normal IO in the middle of |
4094 | * a chunk, but that is not a problem was mddev->reshape_position |
4095 | * can record any location. |
4096 | * |
4097 | * If we will want to write to a location that isn't |
4098 | * yet recorded as 'safe' (i.e. in metadata on disk) then |
4099 | * we need to flush all reshape requests and update the metadata. |
4100 | * |
4101 | * When reshaping forwards (e.g. to more devices), we interpret |
4102 | * 'safe' as the earliest block which might not have been copied |
4103 | * down yet. We divide this by previous stripe size and multiply |
4104 | * by previous stripe length to get lowest device offset that we |
4105 | * cannot write to yet. |
4106 | * We interpret 'sector_nr' as an address that we want to write to. |
4107 | * From this we use last_device_address() to find where we might |
4108 | * write to, and first_device_address on the 'safe' position. |
4109 | * If this 'next' write position is after the 'safe' position, |
4110 | * we must update the metadata to increase the 'safe' position. |
4111 | * |
4112 | * When reshaping backwards, we round in the opposite direction |
4113 | * and perform the reverse test: next write position must not be |
4114 | * less than current safe position. |
4115 | * |
4116 | * In all this the minimum difference in data offsets |
4117 | * (conf->offset_diff - always positive) allows a bit of slack, |
4118 | * so next can be after 'safe', but not by more than offset_disk |
4119 | * |
4120 | * We need to prepare all the bios here before we start any IO |
4121 | * to ensure the size we choose is acceptable to all devices. |
4122 | * The means one for each copy for write-out and an extra one for |
4123 | * read-in. |
4124 | * We store the read-in bio in ->master_bio and the others in |
4125 | * ->devs[x].bio and ->devs[x].repl_bio. |
4126 | */ |
4127 | struct r10conf *conf = mddev->private; |
4128 | struct r10bio *r10_bio; |
4129 | sector_t next, safe, last; |
4130 | int max_sectors; |
4131 | int nr_sectors; |
4132 | int s; |
4133 | struct md_rdev *rdev; |
4134 | int need_flush = 0; |
4135 | struct bio *blist; |
4136 | struct bio *bio, *read_bio; |
4137 | int sectors_done = 0; |
4138 | |
4139 | if (sector_nr == 0) { |
4140 | /* If restarting in the middle, skip the initial sectors */ |
4141 | if (mddev->reshape_backwards && |
4142 | conf->reshape_progress < raid10_size(mddev, 0, 0)) { |
4143 | sector_nr = (raid10_size(mddev, 0, 0) |
4144 | - conf->reshape_progress); |
4145 | } else if (!mddev->reshape_backwards && |
4146 | conf->reshape_progress > 0) |
4147 | sector_nr = conf->reshape_progress; |
4148 | if (sector_nr) { |
4149 | mddev->curr_resync_completed = sector_nr; |
4150 | sysfs_notify(&mddev->kobj, NULL, "sync_completed"); |
4151 | *skipped = 1; |
4152 | return sector_nr; |
4153 | } |
4154 | } |
4155 | |
4156 | /* We don't use sector_nr to track where we are up to |
4157 | * as that doesn't work well for ->reshape_backwards. |
4158 | * So just use ->reshape_progress. |
4159 | */ |
4160 | if (mddev->reshape_backwards) { |
4161 | /* 'next' is the earliest device address that we might |
4162 | * write to for this chunk in the new layout |
4163 | */ |
4164 | next = first_dev_address(conf->reshape_progress - 1, |
4165 | &conf->geo); |
4166 | |
4167 | /* 'safe' is the last device address that we might read from |
4168 | * in the old layout after a restart |
4169 | */ |
4170 | safe = last_dev_address(conf->reshape_safe - 1, |
4171 | &conf->prev); |
4172 | |
4173 | if (next + conf->offset_diff < safe) |
4174 | need_flush = 1; |
4175 | |
4176 | last = conf->reshape_progress - 1; |
4177 | sector_nr = last & ~(sector_t)(conf->geo.chunk_mask |
4178 | & conf->prev.chunk_mask); |
4179 | if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) |
4180 | sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; |
4181 | } else { |
4182 | /* 'next' is after the last device address that we |
4183 | * might write to for this chunk in the new layout |
4184 | */ |
4185 | next = last_dev_address(conf->reshape_progress, &conf->geo); |
4186 | |
4187 | /* 'safe' is the earliest device address that we might |
4188 | * read from in the old layout after a restart |
4189 | */ |
4190 | safe = first_dev_address(conf->reshape_safe, &conf->prev); |
4191 | |
4192 | /* Need to update metadata if 'next' might be beyond 'safe' |
4193 | * as that would possibly corrupt data |
4194 | */ |
4195 | if (next > safe + conf->offset_diff) |
4196 | need_flush = 1; |
4197 | |
4198 | sector_nr = conf->reshape_progress; |
4199 | last = sector_nr | (conf->geo.chunk_mask |
4200 | & conf->prev.chunk_mask); |
4201 | |
4202 | if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) |
4203 | last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; |
4204 | } |
4205 | |
4206 | if (need_flush || |
4207 | time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { |
4208 | /* Need to update reshape_position in metadata */ |
4209 | wait_barrier(conf); |
4210 | mddev->reshape_position = conf->reshape_progress; |
4211 | if (mddev->reshape_backwards) |
4212 | mddev->curr_resync_completed = raid10_size(mddev, 0, 0) |
4213 | - conf->reshape_progress; |
4214 | else |
4215 | mddev->curr_resync_completed = conf->reshape_progress; |
4216 | conf->reshape_checkpoint = jiffies; |
4217 | set_bit(MD_CHANGE_DEVS, &mddev->flags); |
4218 | md_wakeup_thread(mddev->thread); |
4219 | wait_event(mddev->sb_wait, mddev->flags == 0 || |
4220 | kthread_should_stop()); |
4221 | conf->reshape_safe = mddev->reshape_position; |
4222 | allow_barrier(conf); |
4223 | } |
4224 | |
4225 | read_more: |
4226 | /* Now schedule reads for blocks from sector_nr to last */ |
4227 | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); |
4228 | raise_barrier(conf, sectors_done != 0); |
4229 | atomic_set(&r10_bio->remaining, 0); |
4230 | r10_bio->mddev = mddev; |
4231 | r10_bio->sector = sector_nr; |
4232 | set_bit(R10BIO_IsReshape, &r10_bio->state); |
4233 | r10_bio->sectors = last - sector_nr + 1; |
4234 | rdev = read_balance(conf, r10_bio, &max_sectors); |
4235 | BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); |
4236 | |
4237 | if (!rdev) { |
4238 | /* Cannot read from here, so need to record bad blocks |
4239 | * on all the target devices. |
4240 | */ |
4241 | // FIXME |
4242 | set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
4243 | return sectors_done; |
4244 | } |
4245 | |
4246 | read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); |
4247 | |
4248 | read_bio->bi_bdev = rdev->bdev; |
4249 | read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr |
4250 | + rdev->data_offset); |
4251 | read_bio->bi_private = r10_bio; |
4252 | read_bio->bi_end_io = end_sync_read; |
4253 | read_bio->bi_rw = READ; |
4254 | read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); |
4255 | read_bio->bi_flags |= 1 << BIO_UPTODATE; |
4256 | read_bio->bi_vcnt = 0; |
4257 | read_bio->bi_idx = 0; |
4258 | read_bio->bi_size = 0; |
4259 | r10_bio->master_bio = read_bio; |
4260 | r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; |
4261 | |
4262 | /* Now find the locations in the new layout */ |
4263 | __raid10_find_phys(&conf->geo, r10_bio); |
4264 | |
4265 | blist = read_bio; |
4266 | read_bio->bi_next = NULL; |
4267 | |
4268 | for (s = 0; s < conf->copies*2; s++) { |
4269 | struct bio *b; |
4270 | int d = r10_bio->devs[s/2].devnum; |
4271 | struct md_rdev *rdev2; |
4272 | if (s&1) { |
4273 | rdev2 = conf->mirrors[d].replacement; |
4274 | b = r10_bio->devs[s/2].repl_bio; |
4275 | } else { |
4276 | rdev2 = conf->mirrors[d].rdev; |
4277 | b = r10_bio->devs[s/2].bio; |
4278 | } |
4279 | if (!rdev2 || test_bit(Faulty, &rdev2->flags)) |
4280 | continue; |
4281 | b->bi_bdev = rdev2->bdev; |
4282 | b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; |
4283 | b->bi_private = r10_bio; |
4284 | b->bi_end_io = end_reshape_write; |
4285 | b->bi_rw = WRITE; |
4286 | b->bi_flags &= ~(BIO_POOL_MASK - 1); |
4287 | b->bi_flags |= 1 << BIO_UPTODATE; |
4288 | b->bi_next = blist; |
4289 | b->bi_vcnt = 0; |
4290 | b->bi_idx = 0; |
4291 | b->bi_size = 0; |
4292 | blist = b; |
4293 | } |
4294 | |
4295 | /* Now add as many pages as possible to all of these bios. */ |
4296 | |
4297 | nr_sectors = 0; |
4298 | for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { |
4299 | struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; |
4300 | int len = (max_sectors - s) << 9; |
4301 | if (len > PAGE_SIZE) |
4302 | len = PAGE_SIZE; |
4303 | for (bio = blist; bio ; bio = bio->bi_next) { |
4304 | struct bio *bio2; |
4305 | if (bio_add_page(bio, page, len, 0)) |
4306 | continue; |
4307 | |
4308 | /* Didn't fit, must stop */ |
4309 | for (bio2 = blist; |
4310 | bio2 && bio2 != bio; |
4311 | bio2 = bio2->bi_next) { |
4312 | /* Remove last page from this bio */ |
4313 | bio2->bi_vcnt--; |
4314 | bio2->bi_size -= len; |
4315 | bio2->bi_flags &= ~(1<<BIO_SEG_VALID); |
4316 | } |
4317 | goto bio_full; |
4318 | } |
4319 | sector_nr += len >> 9; |
4320 | nr_sectors += len >> 9; |
4321 | } |
4322 | bio_full: |
4323 | r10_bio->sectors = nr_sectors; |
4324 | |
4325 | /* Now submit the read */ |
4326 | md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); |
4327 | atomic_inc(&r10_bio->remaining); |
4328 | read_bio->bi_next = NULL; |
4329 | generic_make_request(read_bio); |
4330 | sector_nr += nr_sectors; |
4331 | sectors_done += nr_sectors; |
4332 | if (sector_nr <= last) |
4333 | goto read_more; |
4334 | |
4335 | /* Now that we have done the whole section we can |
4336 | * update reshape_progress |
4337 | */ |
4338 | if (mddev->reshape_backwards) |
4339 | conf->reshape_progress -= sectors_done; |
4340 | else |
4341 | conf->reshape_progress += sectors_done; |
4342 | |
4343 | return sectors_done; |
4344 | } |
4345 | |
4346 | static void end_reshape_request(struct r10bio *r10_bio); |
4347 | static int handle_reshape_read_error(struct mddev *mddev, |
4348 | struct r10bio *r10_bio); |
4349 | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) |
4350 | { |
4351 | /* Reshape read completed. Hopefully we have a block |
4352 | * to write out. |
4353 | * If we got a read error then we do sync 1-page reads from |
4354 | * elsewhere until we find the data - or give up. |
4355 | */ |
4356 | struct r10conf *conf = mddev->private; |
4357 | int s; |
4358 | |
4359 | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) |
4360 | if (handle_reshape_read_error(mddev, r10_bio) < 0) { |
4361 | /* Reshape has been aborted */ |
4362 | md_done_sync(mddev, r10_bio->sectors, 0); |
4363 | return; |
4364 | } |
4365 | |
4366 | /* We definitely have the data in the pages, schedule the |
4367 | * writes. |
4368 | */ |
4369 | atomic_set(&r10_bio->remaining, 1); |
4370 | for (s = 0; s < conf->copies*2; s++) { |
4371 | struct bio *b; |
4372 | int d = r10_bio->devs[s/2].devnum; |
4373 | struct md_rdev *rdev; |
4374 | if (s&1) { |
4375 | rdev = conf->mirrors[d].replacement; |
4376 | b = r10_bio->devs[s/2].repl_bio; |
4377 | } else { |
4378 | rdev = conf->mirrors[d].rdev; |
4379 | b = r10_bio->devs[s/2].bio; |
4380 | } |
4381 | if (!rdev || test_bit(Faulty, &rdev->flags)) |
4382 | continue; |
4383 | atomic_inc(&rdev->nr_pending); |
4384 | md_sync_acct(b->bi_bdev, r10_bio->sectors); |
4385 | atomic_inc(&r10_bio->remaining); |
4386 | b->bi_next = NULL; |
4387 | generic_make_request(b); |
4388 | } |
4389 | end_reshape_request(r10_bio); |
4390 | } |
4391 | |
4392 | static void end_reshape(struct r10conf *conf) |
4393 | { |
4394 | if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) |
4395 | return; |
4396 | |
4397 | spin_lock_irq(&conf->device_lock); |
4398 | conf->prev = conf->geo; |
4399 | md_finish_reshape(conf->mddev); |
4400 | smp_wmb(); |
4401 | conf->reshape_progress = MaxSector; |
4402 | spin_unlock_irq(&conf->device_lock); |
4403 | |
4404 | /* read-ahead size must cover two whole stripes, which is |
4405 | * 2 * (datadisks) * chunksize where 'n' is the number of raid devices |
4406 | */ |
4407 | if (conf->mddev->queue) { |
4408 | int stripe = conf->geo.raid_disks * |
4409 | ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); |
4410 | stripe /= conf->geo.near_copies; |
4411 | if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) |
4412 | conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; |
4413 | } |
4414 | conf->fullsync = 0; |
4415 | } |
4416 | |
4417 | |
4418 | static int handle_reshape_read_error(struct mddev *mddev, |
4419 | struct r10bio *r10_bio) |
4420 | { |
4421 | /* Use sync reads to get the blocks from somewhere else */ |
4422 | int sectors = r10_bio->sectors; |
4423 | struct r10conf *conf = mddev->private; |
4424 | struct { |
4425 | struct r10bio r10_bio; |
4426 | struct r10dev devs[conf->copies]; |
4427 | } on_stack; |
4428 | struct r10bio *r10b = &on_stack.r10_bio; |
4429 | int slot = 0; |
4430 | int idx = 0; |
4431 | struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; |
4432 | |
4433 | r10b->sector = r10_bio->sector; |
4434 | __raid10_find_phys(&conf->prev, r10b); |
4435 | |
4436 | while (sectors) { |
4437 | int s = sectors; |
4438 | int success = 0; |
4439 | int first_slot = slot; |
4440 | |
4441 | if (s > (PAGE_SIZE >> 9)) |
4442 | s = PAGE_SIZE >> 9; |
4443 | |
4444 | while (!success) { |
4445 | int d = r10b->devs[slot].devnum; |
4446 | struct md_rdev *rdev = conf->mirrors[d].rdev; |
4447 | sector_t addr; |
4448 | if (rdev == NULL || |
4449 | test_bit(Faulty, &rdev->flags) || |
4450 | !test_bit(In_sync, &rdev->flags)) |
4451 | goto failed; |
4452 | |
4453 | addr = r10b->devs[slot].addr + idx * PAGE_SIZE; |
4454 | success = sync_page_io(rdev, |
4455 | addr, |
4456 | s << 9, |
4457 | bvec[idx].bv_page, |
4458 | READ, false); |
4459 | if (success) |
4460 | break; |
4461 | failed: |
4462 | slot++; |
4463 | if (slot >= conf->copies) |
4464 | slot = 0; |
4465 | if (slot == first_slot) |
4466 | break; |
4467 | } |
4468 | if (!success) { |
4469 | /* couldn't read this block, must give up */ |
4470 | set_bit(MD_RECOVERY_INTR, |
4471 | &mddev->recovery); |
4472 | return -EIO; |
4473 | } |
4474 | sectors -= s; |
4475 | idx++; |
4476 | } |
4477 | return 0; |
4478 | } |
4479 | |
4480 | static void end_reshape_write(struct bio *bio, int error) |
4481 | { |
4482 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
4483 | struct r10bio *r10_bio = bio->bi_private; |
4484 | struct mddev *mddev = r10_bio->mddev; |
4485 | struct r10conf *conf = mddev->private; |
4486 | int d; |
4487 | int slot; |
4488 | int repl; |
4489 | struct md_rdev *rdev = NULL; |
4490 | |
4491 | d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); |
4492 | if (repl) |
4493 | rdev = conf->mirrors[d].replacement; |
4494 | if (!rdev) { |
4495 | smp_mb(); |
4496 | rdev = conf->mirrors[d].rdev; |
4497 | } |
4498 | |
4499 | if (!uptodate) { |
4500 | /* FIXME should record badblock */ |
4501 | md_error(mddev, rdev); |
4502 | } |
4503 | |
4504 | rdev_dec_pending(rdev, mddev); |
4505 | end_reshape_request(r10_bio); |
4506 | } |
4507 | |
4508 | static void end_reshape_request(struct r10bio *r10_bio) |
4509 | { |
4510 | if (!atomic_dec_and_test(&r10_bio->remaining)) |
4511 | return; |
4512 | md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); |
4513 | bio_put(r10_bio->master_bio); |
4514 | put_buf(r10_bio); |
4515 | } |
4516 | |
4517 | static void raid10_finish_reshape(struct mddev *mddev) |
4518 | { |
4519 | struct r10conf *conf = mddev->private; |
4520 | |
4521 | if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) |
4522 | return; |
4523 | |
4524 | if (mddev->delta_disks > 0) { |
4525 | sector_t size = raid10_size(mddev, 0, 0); |
4526 | md_set_array_sectors(mddev, size); |
4527 | if (mddev->recovery_cp > mddev->resync_max_sectors) { |
4528 | mddev->recovery_cp = mddev->resync_max_sectors; |
4529 | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
4530 | } |
4531 | mddev->resync_max_sectors = size; |
4532 | set_capacity(mddev->gendisk, mddev->array_sectors); |
4533 | revalidate_disk(mddev->gendisk); |
4534 | } else { |
4535 | int d; |
4536 | for (d = conf->geo.raid_disks ; |
4537 | d < conf->geo.raid_disks - mddev->delta_disks; |
4538 | d++) { |
4539 | struct md_rdev *rdev = conf->mirrors[d].rdev; |
4540 | if (rdev) |
4541 | clear_bit(In_sync, &rdev->flags); |
4542 | rdev = conf->mirrors[d].replacement; |
4543 | if (rdev) |
4544 | clear_bit(In_sync, &rdev->flags); |
4545 | } |
4546 | } |
4547 | mddev->layout = mddev->new_layout; |
4548 | mddev->chunk_sectors = 1 << conf->geo.chunk_shift; |
4549 | mddev->reshape_position = MaxSector; |
4550 | mddev->delta_disks = 0; |
4551 | mddev->reshape_backwards = 0; |
4552 | } |
4553 | |
4554 | static struct md_personality raid10_personality = |
4555 | { |
4556 | .name = "raid10", |
4557 | .level = 10, |
4558 | .owner = THIS_MODULE, |
4559 | .make_request = make_request, |
4560 | .run = run, |
4561 | .stop = stop, |
4562 | .status = status, |
4563 | .error_handler = error, |
4564 | .hot_add_disk = raid10_add_disk, |
4565 | .hot_remove_disk= raid10_remove_disk, |
4566 | .spare_active = raid10_spare_active, |
4567 | .sync_request = sync_request, |
4568 | .quiesce = raid10_quiesce, |
4569 | .size = raid10_size, |
4570 | .resize = raid10_resize, |
4571 | .takeover = raid10_takeover, |
4572 | .check_reshape = raid10_check_reshape, |
4573 | .start_reshape = raid10_start_reshape, |
4574 | .finish_reshape = raid10_finish_reshape, |
4575 | }; |
4576 | |
4577 | static int __init raid_init(void) |
4578 | { |
4579 | return register_md_personality(&raid10_personality); |
4580 | } |
4581 | |
4582 | static void raid_exit(void) |
4583 | { |
4584 | unregister_md_personality(&raid10_personality); |
4585 | } |
4586 | |
4587 | module_init(raid_init); |
4588 | module_exit(raid_exit); |
4589 | MODULE_LICENSE("GPL"); |
4590 | MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); |
4591 | MODULE_ALIAS("md-personality-9"); /* RAID10 */ |
4592 | MODULE_ALIAS("md-raid10"); |
4593 | MODULE_ALIAS("md-level-10"); |
4594 | |
4595 | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |
4596 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9