Root/drivers/memory/emif.c

1/*
2 * EMIF driver
3 *
4 * Copyright (C) 2012 Texas Instruments, Inc.
5 *
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/kernel.h>
14#include <linux/reboot.h>
15#include <linux/platform_data/emif_plat.h>
16#include <linux/io.h>
17#include <linux/device.h>
18#include <linux/platform_device.h>
19#include <linux/interrupt.h>
20#include <linux/slab.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/module.h>
24#include <linux/list.h>
25#include <linux/spinlock.h>
26#include <memory/jedec_ddr.h>
27#include "emif.h"
28
29/**
30 * struct emif_data - Per device static data for driver's use
31 * @duplicate: Whether the DDR devices attached to this EMIF
32 * instance are exactly same as that on EMIF1. In
33 * this case we can save some memory and processing
34 * @temperature_level: Maximum temperature of LPDDR2 devices attached
35 * to this EMIF - read from MR4 register. If there
36 * are two devices attached to this EMIF, this
37 * value is the maximum of the two temperature
38 * levels.
39 * @node: node in the device list
40 * @base: base address of memory-mapped IO registers.
41 * @dev: device pointer.
42 * @addressing table with addressing information from the spec
43 * @regs_cache: An array of 'struct emif_regs' that stores
44 * calculated register values for different
45 * frequencies, to avoid re-calculating them on
46 * each DVFS transition.
47 * @curr_regs: The set of register values used in the last
48 * frequency change (i.e. corresponding to the
49 * frequency in effect at the moment)
50 * @plat_data: Pointer to saved platform data.
51 * @debugfs_root: dentry to the root folder for EMIF in debugfs
52 */
53struct emif_data {
54    u8 duplicate;
55    u8 temperature_level;
56    u8 lpmode;
57    struct list_head node;
58    unsigned long irq_state;
59    void __iomem *base;
60    struct device *dev;
61    const struct lpddr2_addressing *addressing;
62    struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
63    struct emif_regs *curr_regs;
64    struct emif_platform_data *plat_data;
65    struct dentry *debugfs_root;
66};
67
68static struct emif_data *emif1;
69static spinlock_t emif_lock;
70static unsigned long irq_state;
71static u32 t_ck; /* DDR clock period in ps */
72static LIST_HEAD(device_list);
73
74static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75    struct emif_regs *regs)
76{
77    u32 type = emif->plat_data->device_info->type;
78    u32 ip_rev = emif->plat_data->ip_rev;
79
80    seq_printf(s, "EMIF register cache dump for %dMHz\n",
81        regs->freq/1000000);
82
83    seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84    seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85    seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86    seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
87
88    if (ip_rev == EMIF_4D) {
89        seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90            regs->read_idle_ctrl_shdw_normal);
91        seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92            regs->read_idle_ctrl_shdw_volt_ramp);
93    } else if (ip_rev == EMIF_4D5) {
94        seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95            regs->dll_calib_ctrl_shdw_normal);
96        seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97            regs->dll_calib_ctrl_shdw_volt_ramp);
98    }
99
100    if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101        seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102            regs->ref_ctrl_shdw_derated);
103        seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104            regs->sdram_tim1_shdw_derated);
105        seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106            regs->sdram_tim3_shdw_derated);
107    }
108}
109
110static int emif_regdump_show(struct seq_file *s, void *unused)
111{
112    struct emif_data *emif = s->private;
113    struct emif_regs **regs_cache;
114    int i;
115
116    if (emif->duplicate)
117        regs_cache = emif1->regs_cache;
118    else
119        regs_cache = emif->regs_cache;
120
121    for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122        do_emif_regdump_show(s, emif, regs_cache[i]);
123        seq_printf(s, "\n");
124    }
125
126    return 0;
127}
128
129static int emif_regdump_open(struct inode *inode, struct file *file)
130{
131    return single_open(file, emif_regdump_show, inode->i_private);
132}
133
134static const struct file_operations emif_regdump_fops = {
135    .open = emif_regdump_open,
136    .read = seq_read,
137    .release = single_release,
138};
139
140static int emif_mr4_show(struct seq_file *s, void *unused)
141{
142    struct emif_data *emif = s->private;
143
144    seq_printf(s, "MR4=%d\n", emif->temperature_level);
145    return 0;
146}
147
148static int emif_mr4_open(struct inode *inode, struct file *file)
149{
150    return single_open(file, emif_mr4_show, inode->i_private);
151}
152
153static const struct file_operations emif_mr4_fops = {
154    .open = emif_mr4_open,
155    .read = seq_read,
156    .release = single_release,
157};
158
159static int __init_or_module emif_debugfs_init(struct emif_data *emif)
160{
161    struct dentry *dentry;
162    int ret;
163
164    dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
165    if (IS_ERR(dentry)) {
166        ret = PTR_ERR(dentry);
167        goto err0;
168    }
169    emif->debugfs_root = dentry;
170
171    dentry = debugfs_create_file("regcache_dump", S_IRUGO,
172            emif->debugfs_root, emif, &emif_regdump_fops);
173    if (IS_ERR(dentry)) {
174        ret = PTR_ERR(dentry);
175        goto err1;
176    }
177
178    dentry = debugfs_create_file("mr4", S_IRUGO,
179            emif->debugfs_root, emif, &emif_mr4_fops);
180    if (IS_ERR(dentry)) {
181        ret = PTR_ERR(dentry);
182        goto err1;
183    }
184
185    return 0;
186err1:
187    debugfs_remove_recursive(emif->debugfs_root);
188err0:
189    return ret;
190}
191
192static void __exit emif_debugfs_exit(struct emif_data *emif)
193{
194    debugfs_remove_recursive(emif->debugfs_root);
195    emif->debugfs_root = NULL;
196}
197
198/*
199 * Calculate the period of DDR clock from frequency value
200 */
201static void set_ddr_clk_period(u32 freq)
202{
203    /* Divide 10^12 by frequency to get period in ps */
204    t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
205}
206
207/*
208 * Get bus width used by EMIF. Note that this may be different from the
209 * bus width of the DDR devices used. For instance two 16-bit DDR devices
210 * may be connected to a given CS of EMIF. In this case bus width as far
211 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
212 */
213static u32 get_emif_bus_width(struct emif_data *emif)
214{
215    u32 width;
216    void __iomem *base = emif->base;
217
218    width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
219            >> NARROW_MODE_SHIFT;
220    width = width == 0 ? 32 : 16;
221
222    return width;
223}
224
225/*
226 * Get the CL from SDRAM_CONFIG register
227 */
228static u32 get_cl(struct emif_data *emif)
229{
230    u32 cl;
231    void __iomem *base = emif->base;
232
233    cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
234
235    return cl;
236}
237
238static void set_lpmode(struct emif_data *emif, u8 lpmode)
239{
240    u32 temp;
241    void __iomem *base = emif->base;
242
243    temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
244    temp &= ~LP_MODE_MASK;
245    temp |= (lpmode << LP_MODE_SHIFT);
246    writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
247}
248
249static void do_freq_update(void)
250{
251    struct emif_data *emif;
252
253    /*
254     * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
255     *
256     * i728 DESCRIPTION:
257     * The EMIF automatically puts the SDRAM into self-refresh mode
258     * after the EMIF has not performed accesses during
259     * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
260     * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
261     * to 0x2. If during a small window the following three events
262     * occur:
263     * - The SR_TIMING counter expires
264     * - And frequency change is requested
265     * - And OCP access is requested
266     * Then it causes instable clock on the DDR interface.
267     *
268     * WORKAROUND
269     * To avoid the occurrence of the three events, the workaround
270     * is to disable the self-refresh when requesting a frequency
271     * change. Before requesting a frequency change the software must
272     * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
273     * frequency change has been done, the software can reprogram
274     * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
275     */
276    list_for_each_entry(emif, &device_list, node) {
277        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
278            set_lpmode(emif, EMIF_LP_MODE_DISABLE);
279    }
280
281    /*
282     * TODO: Do FREQ_UPDATE here when an API
283     * is available for this as part of the new
284     * clock framework
285     */
286
287    list_for_each_entry(emif, &device_list, node) {
288        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
289            set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
290    }
291}
292
293/* Find addressing table entry based on the device's type and density */
294static const struct lpddr2_addressing *get_addressing_table(
295    const struct ddr_device_info *device_info)
296{
297    u32 index, type, density;
298
299    type = device_info->type;
300    density = device_info->density;
301
302    switch (type) {
303    case DDR_TYPE_LPDDR2_S4:
304        index = density - 1;
305        break;
306    case DDR_TYPE_LPDDR2_S2:
307        switch (density) {
308        case DDR_DENSITY_1Gb:
309        case DDR_DENSITY_2Gb:
310            index = density + 3;
311            break;
312        default:
313            index = density - 1;
314        }
315        break;
316    default:
317        return NULL;
318    }
319
320    return &lpddr2_jedec_addressing_table[index];
321}
322
323/*
324 * Find the the right timing table from the array of timing
325 * tables of the device using DDR clock frequency
326 */
327static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
328        u32 freq)
329{
330    u32 i, min, max, freq_nearest;
331    const struct lpddr2_timings *timings = NULL;
332    const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
333    struct device *dev = emif->dev;
334
335    /* Start with a very high frequency - 1GHz */
336    freq_nearest = 1000000000;
337
338    /*
339     * Find the timings table such that:
340     * 1. the frequency range covers the required frequency(safe) AND
341     * 2. the max_freq is closest to the required frequency(optimal)
342     */
343    for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
344        max = timings_arr[i].max_freq;
345        min = timings_arr[i].min_freq;
346        if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
347            freq_nearest = max;
348            timings = &timings_arr[i];
349        }
350    }
351
352    if (!timings)
353        dev_err(dev, "%s: couldn't find timings for - %dHz\n",
354            __func__, freq);
355
356    dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
357        __func__, freq, freq_nearest);
358
359    return timings;
360}
361
362static u32 get_sdram_ref_ctrl_shdw(u32 freq,
363        const struct lpddr2_addressing *addressing)
364{
365    u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
366
367    /* Scale down frequency and t_refi to avoid overflow */
368    freq_khz = freq / 1000;
369    t_refi = addressing->tREFI_ns / 100;
370
371    /*
372     * refresh rate to be set is 'tREFI(in us) * freq in MHz
373     * division by 10000 to account for change in units
374     */
375    val = t_refi * freq_khz / 10000;
376    ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
377
378    return ref_ctrl_shdw;
379}
380
381static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
382        const struct lpddr2_min_tck *min_tck,
383        const struct lpddr2_addressing *addressing)
384{
385    u32 tim1 = 0, val = 0;
386
387    val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
388    tim1 |= val << T_WTR_SHIFT;
389
390    if (addressing->num_banks == B8)
391        val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
392    else
393        val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
394    tim1 |= (val - 1) << T_RRD_SHIFT;
395
396    val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
397    tim1 |= val << T_RC_SHIFT;
398
399    val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
400    tim1 |= (val - 1) << T_RAS_SHIFT;
401
402    val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
403    tim1 |= val << T_WR_SHIFT;
404
405    val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
406    tim1 |= val << T_RCD_SHIFT;
407
408    val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
409    tim1 |= val << T_RP_SHIFT;
410
411    return tim1;
412}
413
414static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
415        const struct lpddr2_min_tck *min_tck,
416        const struct lpddr2_addressing *addressing)
417{
418    u32 tim1 = 0, val = 0;
419
420    val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
421    tim1 = val << T_WTR_SHIFT;
422
423    /*
424     * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
425     * to tFAW for de-rating
426     */
427    if (addressing->num_banks == B8) {
428        val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
429    } else {
430        val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
431        val = max(min_tck->tRRD, val) - 1;
432    }
433    tim1 |= val << T_RRD_SHIFT;
434
435    val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
436    tim1 |= (val - 1) << T_RC_SHIFT;
437
438    val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
439    val = max(min_tck->tRASmin, val) - 1;
440    tim1 |= val << T_RAS_SHIFT;
441
442    val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
443    tim1 |= val << T_WR_SHIFT;
444
445    val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
446    tim1 |= (val - 1) << T_RCD_SHIFT;
447
448    val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
449    tim1 |= (val - 1) << T_RP_SHIFT;
450
451    return tim1;
452}
453
454static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
455        const struct lpddr2_min_tck *min_tck,
456        const struct lpddr2_addressing *addressing,
457        u32 type)
458{
459    u32 tim2 = 0, val = 0;
460
461    val = min_tck->tCKE - 1;
462    tim2 |= val << T_CKE_SHIFT;
463
464    val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
465    tim2 |= val << T_RTP_SHIFT;
466
467    /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
468    val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
469    tim2 |= val << T_XSNR_SHIFT;
470
471    /* XSRD same as XSNR for LPDDR2 */
472    tim2 |= val << T_XSRD_SHIFT;
473
474    val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
475    tim2 |= val << T_XP_SHIFT;
476
477    return tim2;
478}
479
480static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
481        const struct lpddr2_min_tck *min_tck,
482        const struct lpddr2_addressing *addressing,
483        u32 type, u32 ip_rev, u32 derated)
484{
485    u32 tim3 = 0, val = 0, t_dqsck;
486
487    val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
488    val = val > 0xF ? 0xF : val;
489    tim3 |= val << T_RAS_MAX_SHIFT;
490
491    val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
492    tim3 |= val << T_RFC_SHIFT;
493
494    t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
495        timings->tDQSCK_max_derated : timings->tDQSCK_max;
496    if (ip_rev == EMIF_4D5)
497        val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
498    else
499        val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
500
501    tim3 |= val << T_TDQSCKMAX_SHIFT;
502
503    val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
504    tim3 |= val << ZQ_ZQCS_SHIFT;
505
506    val = DIV_ROUND_UP(timings->tCKESR, t_ck);
507    val = max(min_tck->tCKESR, val) - 1;
508    tim3 |= val << T_CKESR_SHIFT;
509
510    if (ip_rev == EMIF_4D5) {
511        tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
512
513        val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
514        tim3 |= val << T_PDLL_UL_SHIFT;
515    }
516
517    return tim3;
518}
519
520static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
521        bool cs1_used, bool cal_resistors_per_cs)
522{
523    u32 zq = 0, val = 0;
524
525    val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
526    zq |= val << ZQ_REFINTERVAL_SHIFT;
527
528    val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
529    zq |= val << ZQ_ZQCL_MULT_SHIFT;
530
531    val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
532    zq |= val << ZQ_ZQINIT_MULT_SHIFT;
533
534    zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
535
536    if (cal_resistors_per_cs)
537        zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
538    else
539        zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
540
541    zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
542
543    val = cs1_used ? 1 : 0;
544    zq |= val << ZQ_CS1EN_SHIFT;
545
546    return zq;
547}
548
549static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
550        const struct emif_custom_configs *custom_configs, bool cs1_used,
551        u32 sdram_io_width, u32 emif_bus_width)
552{
553    u32 alert = 0, interval, devcnt;
554
555    if (custom_configs && (custom_configs->mask &
556                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
557        interval = custom_configs->temp_alert_poll_interval_ms;
558    else
559        interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
560
561    interval *= 1000000; /* Convert to ns */
562    interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
563    alert |= (interval << TA_REFINTERVAL_SHIFT);
564
565    /*
566     * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
567     * also to this form and subtract to get TA_DEVCNT, which is
568     * in log2(x) form.
569     */
570    emif_bus_width = __fls(emif_bus_width) - 1;
571    devcnt = emif_bus_width - sdram_io_width;
572    alert |= devcnt << TA_DEVCNT_SHIFT;
573
574    /* DEVWDT is in 'log2(x) - 3' form */
575    alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
576
577    alert |= 1 << TA_SFEXITEN_SHIFT;
578    alert |= 1 << TA_CS0EN_SHIFT;
579    alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
580
581    return alert;
582}
583
584static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
585{
586    u32 idle = 0, val = 0;
587
588    /*
589     * Maximum value in normal conditions and increased frequency
590     * when voltage is ramping
591     */
592    if (volt_ramp)
593        val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
594    else
595        val = 0x1FF;
596
597    /*
598     * READ_IDLE_CTRL register in EMIF4D has same offset and fields
599     * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
600     */
601    idle |= val << DLL_CALIB_INTERVAL_SHIFT;
602    idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
603
604    return idle;
605}
606
607static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
608{
609    u32 calib = 0, val = 0;
610
611    if (volt_ramp == DDR_VOLTAGE_RAMPING)
612        val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
613    else
614        val = 0; /* Disabled when voltage is stable */
615
616    calib |= val << DLL_CALIB_INTERVAL_SHIFT;
617    calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
618
619    return calib;
620}
621
622static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
623    u32 freq, u8 RL)
624{
625    u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
626
627    val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
628    phy |= val << READ_LATENCY_SHIFT_4D;
629
630    if (freq <= 100000000)
631        val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
632    else if (freq <= 200000000)
633        val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
634    else
635        val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
636
637    phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
638
639    return phy;
640}
641
642static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
643{
644    u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
645
646    /*
647     * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
648     * half-delay is not needed else set half-delay
649     */
650    if (freq >= 265000000 && freq < 267000000)
651        half_delay = 0;
652    else
653        half_delay = 1;
654
655    phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
656    phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
657            t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
658
659    return phy;
660}
661
662static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
663{
664    u32 fifo_we_slave_ratio;
665
666    fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
667        EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
668
669    return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
670        fifo_we_slave_ratio << 22;
671}
672
673static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
674{
675    u32 fifo_we_slave_ratio;
676
677    fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
678        EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
679
680    return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
681        fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
682}
683
684static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
685{
686    u32 fifo_we_slave_ratio;
687
688    fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
689        EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
690
691    return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
692        fifo_we_slave_ratio << 13;
693}
694
695static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
696{
697    u32 pwr_mgmt_ctrl = 0, timeout;
698    u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
699    u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
700    u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
701    u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
702
703    struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
704
705    if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
706        lpmode = cust_cfgs->lpmode;
707        timeout_perf = cust_cfgs->lpmode_timeout_performance;
708        timeout_pwr = cust_cfgs->lpmode_timeout_power;
709        freq_threshold = cust_cfgs->lpmode_freq_threshold;
710    }
711
712    /* Timeout based on DDR frequency */
713    timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
714
715    /* The value to be set in register is "log2(timeout) - 3" */
716    if (timeout < 16) {
717        timeout = 0;
718    } else {
719        timeout = __fls(timeout) - 3;
720        if (timeout & (timeout - 1))
721            timeout++;
722    }
723
724    switch (lpmode) {
725    case EMIF_LP_MODE_CLOCK_STOP:
726        pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
727                    SR_TIM_MASK | PD_TIM_MASK;
728        break;
729    case EMIF_LP_MODE_SELF_REFRESH:
730        /* Workaround for errata i735 */
731        if (timeout < 6)
732            timeout = 6;
733
734        pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
735                    CS_TIM_MASK | PD_TIM_MASK;
736        break;
737    case EMIF_LP_MODE_PWR_DN:
738        pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
739                    CS_TIM_MASK | SR_TIM_MASK;
740        break;
741    case EMIF_LP_MODE_DISABLE:
742    default:
743        pwr_mgmt_ctrl = CS_TIM_MASK |
744                    PD_TIM_MASK | SR_TIM_MASK;
745    }
746
747    /* No CS_TIM in EMIF_4D5 */
748    if (ip_rev == EMIF_4D5)
749        pwr_mgmt_ctrl &= ~CS_TIM_MASK;
750
751    pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
752
753    return pwr_mgmt_ctrl;
754}
755
756/*
757 * Get the temperature level of the EMIF instance:
758 * Reads the MR4 register of attached SDRAM parts to find out the temperature
759 * level. If there are two parts attached(one on each CS), then the temperature
760 * level for the EMIF instance is the higher of the two temperatures.
761 */
762static void get_temperature_level(struct emif_data *emif)
763{
764    u32 temp, temperature_level;
765    void __iomem *base;
766
767    base = emif->base;
768
769    /* Read mode register 4 */
770    writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
771    temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
772    temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
773                MR4_SDRAM_REF_RATE_SHIFT;
774
775    if (emif->plat_data->device_info->cs1_used) {
776        writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
777        temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
778        temp = (temp & MR4_SDRAM_REF_RATE_MASK)
779                >> MR4_SDRAM_REF_RATE_SHIFT;
780        temperature_level = max(temp, temperature_level);
781    }
782
783    /* treat everything less than nominal(3) in MR4 as nominal */
784    if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
785        temperature_level = SDRAM_TEMP_NOMINAL;
786
787    /* if we get reserved value in MR4 persist with the existing value */
788    if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
789        emif->temperature_level = temperature_level;
790}
791
792/*
793 * Program EMIF shadow registers that are not dependent on temperature
794 * or voltage
795 */
796static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
797{
798    void __iomem *base = emif->base;
799
800    writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
801    writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
802
803    /* Settings specific for EMIF4D5 */
804    if (emif->plat_data->ip_rev != EMIF_4D5)
805        return;
806    writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
807    writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
808    writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
809}
810
811/*
812 * When voltage ramps dll calibration and forced read idle should
813 * happen more often
814 */
815static void setup_volt_sensitive_regs(struct emif_data *emif,
816        struct emif_regs *regs, u32 volt_state)
817{
818    u32 calib_ctrl;
819    void __iomem *base = emif->base;
820
821    /*
822     * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
823     * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
824     * is an alias of the respective read_idle_ctrl_shdw_* (members of
825     * a union). So, the below code takes care of both cases
826     */
827    if (volt_state == DDR_VOLTAGE_RAMPING)
828        calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
829    else
830        calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
831
832    writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
833}
834
835/*
836 * setup_temperature_sensitive_regs() - set the timings for temperature
837 * sensitive registers. This happens once at initialisation time based
838 * on the temperature at boot time and subsequently based on the temperature
839 * alert interrupt. Temperature alert can happen when the temperature
840 * increases or drops. So this function can have the effect of either
841 * derating the timings or going back to nominal values.
842 */
843static void setup_temperature_sensitive_regs(struct emif_data *emif,
844        struct emif_regs *regs)
845{
846    u32 tim1, tim3, ref_ctrl, type;
847    void __iomem *base = emif->base;
848    u32 temperature;
849
850    type = emif->plat_data->device_info->type;
851
852    tim1 = regs->sdram_tim1_shdw;
853    tim3 = regs->sdram_tim3_shdw;
854    ref_ctrl = regs->ref_ctrl_shdw;
855
856    /* No de-rating for non-lpddr2 devices */
857    if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
858        goto out;
859
860    temperature = emif->temperature_level;
861    if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
862        ref_ctrl = regs->ref_ctrl_shdw_derated;
863    } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
864        tim1 = regs->sdram_tim1_shdw_derated;
865        tim3 = regs->sdram_tim3_shdw_derated;
866        ref_ctrl = regs->ref_ctrl_shdw_derated;
867    }
868
869out:
870    writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
871    writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
872    writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
873}
874
875static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
876{
877    u32 old_temp_level;
878    irqreturn_t ret = IRQ_HANDLED;
879
880    spin_lock_irqsave(&emif_lock, irq_state);
881    old_temp_level = emif->temperature_level;
882    get_temperature_level(emif);
883
884    if (unlikely(emif->temperature_level == old_temp_level)) {
885        goto out;
886    } else if (!emif->curr_regs) {
887        dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
888        goto out;
889    }
890
891    if (emif->temperature_level < old_temp_level ||
892        emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
893        /*
894         * Temperature coming down - defer handling to thread OR
895         * Temperature far too high - do kernel_power_off() from
896         * thread context
897         */
898        ret = IRQ_WAKE_THREAD;
899    } else {
900        /* Temperature is going up - handle immediately */
901        setup_temperature_sensitive_regs(emif, emif->curr_regs);
902        do_freq_update();
903    }
904
905out:
906    spin_unlock_irqrestore(&emif_lock, irq_state);
907    return ret;
908}
909
910static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
911{
912    u32 interrupts;
913    struct emif_data *emif = dev_id;
914    void __iomem *base = emif->base;
915    struct device *dev = emif->dev;
916    irqreturn_t ret = IRQ_HANDLED;
917
918    /* Save the status and clear it */
919    interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
920    writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
921
922    /*
923     * Handle temperature alert
924     * Temperature alert should be same for all ports
925     * So, it's enough to process it only for one of the ports
926     */
927    if (interrupts & TA_SYS_MASK)
928        ret = handle_temp_alert(base, emif);
929
930    if (interrupts & ERR_SYS_MASK)
931        dev_err(dev, "Access error from SYS port - %x\n", interrupts);
932
933    if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
934        /* Save the status and clear it */
935        interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
936        writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
937
938        if (interrupts & ERR_LL_MASK)
939            dev_err(dev, "Access error from LL port - %x\n",
940                interrupts);
941    }
942
943    return ret;
944}
945
946static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
947{
948    struct emif_data *emif = dev_id;
949
950    if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
951        dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
952        kernel_power_off();
953        return IRQ_HANDLED;
954    }
955
956    spin_lock_irqsave(&emif_lock, irq_state);
957
958    if (emif->curr_regs) {
959        setup_temperature_sensitive_regs(emif, emif->curr_regs);
960        do_freq_update();
961    } else {
962        dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
963    }
964
965    spin_unlock_irqrestore(&emif_lock, irq_state);
966
967    return IRQ_HANDLED;
968}
969
970static void clear_all_interrupts(struct emif_data *emif)
971{
972    void __iomem *base = emif->base;
973
974    writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
975        base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
976    if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
977        writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
978            base + EMIF_LL_OCP_INTERRUPT_STATUS);
979}
980
981static void disable_and_clear_all_interrupts(struct emif_data *emif)
982{
983    void __iomem *base = emif->base;
984
985    /* Disable all interrupts */
986    writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
987        base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
988    if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
989        writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
990            base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
991
992    /* Clear all interrupts */
993    clear_all_interrupts(emif);
994}
995
996static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
997{
998    u32 interrupts, type;
999    void __iomem *base = emif->base;
1000
1001    type = emif->plat_data->device_info->type;
1002
1003    clear_all_interrupts(emif);
1004
1005    /* Enable interrupts for SYS interface */
1006    interrupts = EN_ERR_SYS_MASK;
1007    if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1008        interrupts |= EN_TA_SYS_MASK;
1009    writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1010
1011    /* Enable interrupts for LL interface */
1012    if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1013        /* TA need not be enabled for LL */
1014        interrupts = EN_ERR_LL_MASK;
1015        writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1016    }
1017
1018    /* setup IRQ handlers */
1019    return devm_request_threaded_irq(emif->dev, irq,
1020                    emif_interrupt_handler,
1021                    emif_threaded_isr,
1022                    0, dev_name(emif->dev),
1023                    emif);
1024
1025}
1026
1027static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1028{
1029    u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1030    void __iomem *base = emif->base;
1031    const struct lpddr2_addressing *addressing;
1032    const struct ddr_device_info *device_info;
1033
1034    device_info = emif->plat_data->device_info;
1035    addressing = get_addressing_table(device_info);
1036
1037    /*
1038     * Init power management settings
1039     * We don't know the frequency yet. Use a high frequency
1040     * value for a conservative timeout setting
1041     */
1042    pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1043            emif->plat_data->ip_rev);
1044    emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1045    writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1046
1047    /* Init ZQ calibration settings */
1048    zq = get_zq_config_reg(addressing, device_info->cs1_used,
1049        device_info->cal_resistors_per_cs);
1050    writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1051
1052    /* Check temperature level temperature level*/
1053    get_temperature_level(emif);
1054    if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1055        dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1056
1057    /* Init temperature polling */
1058    temp_alert_cfg = get_temp_alert_config(addressing,
1059        emif->plat_data->custom_configs, device_info->cs1_used,
1060        device_info->io_width, get_emif_bus_width(emif));
1061    writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1062
1063    /*
1064     * Program external PHY control registers that are not frequency
1065     * dependent
1066     */
1067    if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1068        return;
1069    writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1070    writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1071    writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1072    writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1073    writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1074    writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1075    writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1076    writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1077    writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1078    writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1079    writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1080    writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1081    writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1082    writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1083    writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1084    writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1085    writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1086    writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1087    writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1088    writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1089    writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1090}
1091
1092static void get_default_timings(struct emif_data *emif)
1093{
1094    struct emif_platform_data *pd = emif->plat_data;
1095
1096    pd->timings = lpddr2_jedec_timings;
1097    pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1098
1099    dev_warn(emif->dev, "%s: using default timings\n", __func__);
1100}
1101
1102static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1103        u32 ip_rev, struct device *dev)
1104{
1105    int valid;
1106
1107    valid = (type == DDR_TYPE_LPDDR2_S4 ||
1108            type == DDR_TYPE_LPDDR2_S2)
1109        && (density >= DDR_DENSITY_64Mb
1110            && density <= DDR_DENSITY_8Gb)
1111        && (io_width >= DDR_IO_WIDTH_8
1112            && io_width <= DDR_IO_WIDTH_32);
1113
1114    /* Combinations of EMIF and PHY revisions that we support today */
1115    switch (ip_rev) {
1116    case EMIF_4D:
1117        valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1118        break;
1119    case EMIF_4D5:
1120        valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1121        break;
1122    default:
1123        valid = 0;
1124    }
1125
1126    if (!valid)
1127        dev_err(dev, "%s: invalid DDR details\n", __func__);
1128    return valid;
1129}
1130
1131static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1132        struct device *dev)
1133{
1134    int valid = 1;
1135
1136    if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1137        (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1138        valid = cust_cfgs->lpmode_freq_threshold &&
1139            cust_cfgs->lpmode_timeout_performance &&
1140            cust_cfgs->lpmode_timeout_power;
1141
1142    if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1143        valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1144
1145    if (!valid)
1146        dev_warn(dev, "%s: invalid custom configs\n", __func__);
1147
1148    return valid;
1149}
1150
1151static struct emif_data *__init_or_module get_device_details(
1152        struct platform_device *pdev)
1153{
1154    u32 size;
1155    struct emif_data *emif = NULL;
1156    struct ddr_device_info *dev_info;
1157    struct emif_custom_configs *cust_cfgs;
1158    struct emif_platform_data *pd;
1159    struct device *dev;
1160    void *temp;
1161
1162    pd = pdev->dev.platform_data;
1163    dev = &pdev->dev;
1164
1165    if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1166            pd->device_info->density, pd->device_info->io_width,
1167            pd->phy_type, pd->ip_rev, dev))) {
1168        dev_err(dev, "%s: invalid device data\n", __func__);
1169        goto error;
1170    }
1171
1172    emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1173    temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1174    dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1175
1176    if (!emif || !pd || !dev_info) {
1177        dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1178        goto error;
1179    }
1180
1181    memcpy(temp, pd, sizeof(*pd));
1182    pd = temp;
1183    memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1184
1185    pd->device_info = dev_info;
1186    emif->plat_data = pd;
1187    emif->dev = dev;
1188    emif->temperature_level = SDRAM_TEMP_NOMINAL;
1189
1190    /*
1191     * For EMIF instances other than EMIF1 see if the devices connected
1192     * are exactly same as on EMIF1(which is typically the case). If so,
1193     * mark it as a duplicate of EMIF1 and skip copying timings data.
1194     * This will save some memory and some computation later.
1195     */
1196    emif->duplicate = emif1 && (memcmp(dev_info,
1197        emif1->plat_data->device_info,
1198        sizeof(struct ddr_device_info)) == 0);
1199
1200    if (emif->duplicate) {
1201        pd->timings = NULL;
1202        pd->min_tck = NULL;
1203        goto out;
1204    } else if (emif1) {
1205        dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1206            __func__);
1207    }
1208
1209    /*
1210     * Copy custom configs - ignore allocation error, if any, as
1211     * custom_configs is not very critical
1212     */
1213    cust_cfgs = pd->custom_configs;
1214    if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1215        temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1216        if (temp)
1217            memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1218        else
1219            dev_warn(dev, "%s:%d: allocation error\n", __func__,
1220                __LINE__);
1221        pd->custom_configs = temp;
1222    }
1223
1224    /*
1225     * Copy timings and min-tck values from platform data. If it is not
1226     * available or if memory allocation fails, use JEDEC defaults
1227     */
1228    size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1229    if (pd->timings) {
1230        temp = devm_kzalloc(dev, size, GFP_KERNEL);
1231        if (temp) {
1232            memcpy(temp, pd->timings, sizeof(*pd->timings));
1233            pd->timings = temp;
1234        } else {
1235            dev_warn(dev, "%s:%d: allocation error\n", __func__,
1236                __LINE__);
1237            get_default_timings(emif);
1238        }
1239    } else {
1240        get_default_timings(emif);
1241    }
1242
1243    if (pd->min_tck) {
1244        temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1245        if (temp) {
1246            memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1247            pd->min_tck = temp;
1248        } else {
1249            dev_warn(dev, "%s:%d: allocation error\n", __func__,
1250                __LINE__);
1251            pd->min_tck = &lpddr2_jedec_min_tck;
1252        }
1253    } else {
1254        pd->min_tck = &lpddr2_jedec_min_tck;
1255    }
1256
1257out:
1258    return emif;
1259
1260error:
1261    return NULL;
1262}
1263
1264static int __init_or_module emif_probe(struct platform_device *pdev)
1265{
1266    struct emif_data *emif;
1267    struct resource *res;
1268    int irq;
1269
1270    emif = get_device_details(pdev);
1271    if (!emif) {
1272        pr_err("%s: error getting device data\n", __func__);
1273        goto error;
1274    }
1275
1276    list_add(&emif->node, &device_list);
1277    emif->addressing = get_addressing_table(emif->plat_data->device_info);
1278
1279    /* Save pointers to each other in emif and device structures */
1280    emif->dev = &pdev->dev;
1281    platform_set_drvdata(pdev, emif);
1282
1283    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1284    if (!res) {
1285        dev_err(emif->dev, "%s: error getting memory resource\n",
1286            __func__);
1287        goto error;
1288    }
1289
1290    emif->base = devm_request_and_ioremap(emif->dev, res);
1291    if (!emif->base) {
1292        dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1293            __func__);
1294        goto error;
1295    }
1296
1297    irq = platform_get_irq(pdev, 0);
1298    if (irq < 0) {
1299        dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1300            __func__, irq);
1301        goto error;
1302    }
1303
1304    emif_onetime_settings(emif);
1305    emif_debugfs_init(emif);
1306    disable_and_clear_all_interrupts(emif);
1307    setup_interrupts(emif, irq);
1308
1309    /* One-time actions taken on probing the first device */
1310    if (!emif1) {
1311        emif1 = emif;
1312        spin_lock_init(&emif_lock);
1313
1314        /*
1315         * TODO: register notifiers for frequency and voltage
1316         * change here once the respective frameworks are
1317         * available
1318         */
1319    }
1320
1321    dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1322        __func__, emif->base, irq);
1323
1324    return 0;
1325error:
1326    return -ENODEV;
1327}
1328
1329static int __exit emif_remove(struct platform_device *pdev)
1330{
1331    struct emif_data *emif = platform_get_drvdata(pdev);
1332
1333    emif_debugfs_exit(emif);
1334
1335    return 0;
1336}
1337
1338static void emif_shutdown(struct platform_device *pdev)
1339{
1340    struct emif_data *emif = platform_get_drvdata(pdev);
1341
1342    disable_and_clear_all_interrupts(emif);
1343}
1344
1345static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1346        struct emif_regs *regs)
1347{
1348    u32 cs1_used, ip_rev, phy_type;
1349    u32 cl, type;
1350    const struct lpddr2_timings *timings;
1351    const struct lpddr2_min_tck *min_tck;
1352    const struct ddr_device_info *device_info;
1353    const struct lpddr2_addressing *addressing;
1354    struct emif_data *emif_for_calc;
1355    struct device *dev;
1356    const struct emif_custom_configs *custom_configs;
1357
1358    dev = emif->dev;
1359    /*
1360     * If the devices on this EMIF instance is duplicate of EMIF1,
1361     * use EMIF1 details for the calculation
1362     */
1363    emif_for_calc = emif->duplicate ? emif1 : emif;
1364    timings = get_timings_table(emif_for_calc, freq);
1365    addressing = emif_for_calc->addressing;
1366    if (!timings || !addressing) {
1367        dev_err(dev, "%s: not enough data available for %dHz",
1368            __func__, freq);
1369        return -1;
1370    }
1371
1372    device_info = emif_for_calc->plat_data->device_info;
1373    type = device_info->type;
1374    cs1_used = device_info->cs1_used;
1375    ip_rev = emif_for_calc->plat_data->ip_rev;
1376    phy_type = emif_for_calc->plat_data->phy_type;
1377
1378    min_tck = emif_for_calc->plat_data->min_tck;
1379    custom_configs = emif_for_calc->plat_data->custom_configs;
1380
1381    set_ddr_clk_period(freq);
1382
1383    regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1384    regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1385            addressing);
1386    regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1387            addressing, type);
1388    regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1389        addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1390
1391    cl = get_cl(emif);
1392
1393    if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1394        regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1395            timings, freq, cl);
1396    } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1397        regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1398        regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1399        regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1400        regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1401    } else {
1402        return -1;
1403    }
1404
1405    /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1406    regs->pwr_mgmt_ctrl_shdw =
1407        get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1408        (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1409
1410    if (ip_rev & EMIF_4D) {
1411        regs->read_idle_ctrl_shdw_normal =
1412            get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1413
1414        regs->read_idle_ctrl_shdw_volt_ramp =
1415            get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1416    } else if (ip_rev & EMIF_4D5) {
1417        regs->dll_calib_ctrl_shdw_normal =
1418            get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1419
1420        regs->dll_calib_ctrl_shdw_volt_ramp =
1421            get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1422    }
1423
1424    if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1425        regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1426            addressing);
1427
1428        regs->sdram_tim1_shdw_derated =
1429            get_sdram_tim_1_shdw_derated(timings, min_tck,
1430                addressing);
1431
1432        regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1433            min_tck, addressing, type, ip_rev,
1434            EMIF_DERATED_TIMINGS);
1435    }
1436
1437    regs->freq = freq;
1438
1439    return 0;
1440}
1441
1442/*
1443 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1444 * given frequency(freq):
1445 *
1446 * As an optimisation, every EMIF instance other than EMIF1 shares the
1447 * register cache with EMIF1 if the devices connected on this instance
1448 * are same as that on EMIF1(indicated by the duplicate flag)
1449 *
1450 * If we do not have an entry corresponding to the frequency given, we
1451 * allocate a new entry and calculate the values
1452 *
1453 * Upon finding the right reg dump, save it in curr_regs. It can be
1454 * directly used for thermal de-rating and voltage ramping changes.
1455 */
1456static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1457{
1458    int i;
1459    struct emif_regs **regs_cache;
1460    struct emif_regs *regs = NULL;
1461    struct device *dev;
1462
1463    dev = emif->dev;
1464    if (emif->curr_regs && emif->curr_regs->freq == freq) {
1465        dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1466        return emif->curr_regs;
1467    }
1468
1469    if (emif->duplicate)
1470        regs_cache = emif1->regs_cache;
1471    else
1472        regs_cache = emif->regs_cache;
1473
1474    for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1475        if (regs_cache[i]->freq == freq) {
1476            regs = regs_cache[i];
1477            dev_dbg(dev,
1478                "%s: reg dump found in reg cache for %u Hz\n",
1479                __func__, freq);
1480            break;
1481        }
1482    }
1483
1484    /*
1485     * If we don't have an entry for this frequency in the cache create one
1486     * and calculate the values
1487     */
1488    if (!regs) {
1489        regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1490        if (!regs)
1491            return NULL;
1492
1493        if (get_emif_reg_values(emif, freq, regs)) {
1494            devm_kfree(emif->dev, regs);
1495            return NULL;
1496        }
1497
1498        /*
1499         * Now look for an un-used entry in the cache and save the
1500         * newly created struct. If there are no free entries
1501         * over-write the last entry
1502         */
1503        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1504            ;
1505
1506        if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1507            dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1508                __func__);
1509            i = EMIF_MAX_NUM_FREQUENCIES - 1;
1510            devm_kfree(emif->dev, regs_cache[i]);
1511        }
1512        regs_cache[i] = regs;
1513    }
1514
1515    return regs;
1516}
1517
1518static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1519{
1520    dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1521        volt_state);
1522
1523    if (!emif->curr_regs) {
1524        dev_err(emif->dev,
1525            "%s: volt-notify before registers are ready: %d\n",
1526            __func__, volt_state);
1527        return;
1528    }
1529
1530    setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1531}
1532
1533/*
1534 * TODO: voltage notify handling should be hooked up to
1535 * regulator framework as soon as the necessary support
1536 * is available in mainline kernel. This function is un-used
1537 * right now.
1538 */
1539static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1540{
1541    struct emif_data *emif;
1542
1543    spin_lock_irqsave(&emif_lock, irq_state);
1544
1545    list_for_each_entry(emif, &device_list, node)
1546        do_volt_notify_handling(emif, volt_state);
1547    do_freq_update();
1548
1549    spin_unlock_irqrestore(&emif_lock, irq_state);
1550}
1551
1552static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1553{
1554    struct emif_regs *regs;
1555
1556    regs = get_regs(emif, new_freq);
1557    if (!regs)
1558        return;
1559
1560    emif->curr_regs = regs;
1561
1562    /*
1563     * Update the shadow registers:
1564     * Temperature and voltage-ramp sensitive settings are also configured
1565     * in terms of DDR cycles. So, we need to update them too when there
1566     * is a freq change
1567     */
1568    dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1569        __func__, new_freq);
1570    setup_registers(emif, regs);
1571    setup_temperature_sensitive_regs(emif, regs);
1572    setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1573
1574    /*
1575     * Part of workaround for errata i728. See do_freq_update()
1576     * for more details
1577     */
1578    if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1579        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1580}
1581
1582/*
1583 * TODO: frequency notify handling should be hooked up to
1584 * clock framework as soon as the necessary support is
1585 * available in mainline kernel. This function is un-used
1586 * right now.
1587 */
1588static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1589{
1590    struct emif_data *emif;
1591
1592    /*
1593     * NOTE: we are taking the spin-lock here and releases it
1594     * only in post-notifier. This doesn't look good and
1595     * Sparse complains about it, but this seems to be
1596     * un-avoidable. We need to lock a sequence of events
1597     * that is split between EMIF and clock framework.
1598     *
1599     * 1. EMIF driver updates EMIF timings in shadow registers in the
1600     * frequency pre-notify callback from clock framework
1601     * 2. clock framework sets up the registers for the new frequency
1602     * 3. clock framework initiates a hw-sequence that updates
1603     * the frequency EMIF timings synchronously.
1604     *
1605     * All these 3 steps should be performed as an atomic operation
1606     * vis-a-vis similar sequence in the EMIF interrupt handler
1607     * for temperature events. Otherwise, there could be race
1608     * conditions that could result in incorrect EMIF timings for
1609     * a given frequency
1610     */
1611    spin_lock_irqsave(&emif_lock, irq_state);
1612
1613    list_for_each_entry(emif, &device_list, node)
1614        do_freq_pre_notify_handling(emif, new_freq);
1615}
1616
1617static void do_freq_post_notify_handling(struct emif_data *emif)
1618{
1619    /*
1620     * Part of workaround for errata i728. See do_freq_update()
1621     * for more details
1622     */
1623    if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1624        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1625}
1626
1627/*
1628 * TODO: frequency notify handling should be hooked up to
1629 * clock framework as soon as the necessary support is
1630 * available in mainline kernel. This function is un-used
1631 * right now.
1632 */
1633static void __attribute__((unused)) freq_post_notify_handling(void)
1634{
1635    struct emif_data *emif;
1636
1637    list_for_each_entry(emif, &device_list, node)
1638        do_freq_post_notify_handling(emif);
1639
1640    /*
1641     * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1642     * for more details
1643     */
1644    spin_unlock_irqrestore(&emif_lock, irq_state);
1645}
1646
1647static struct platform_driver emif_driver = {
1648    .remove = __exit_p(emif_remove),
1649    .shutdown = emif_shutdown,
1650    .driver = {
1651        .name = "emif",
1652    },
1653};
1654
1655static int __init_or_module emif_register(void)
1656{
1657    return platform_driver_probe(&emif_driver, emif_probe);
1658}
1659
1660static void __exit emif_unregister(void)
1661{
1662    platform_driver_unregister(&emif_driver);
1663}
1664
1665module_init(emif_register);
1666module_exit(emif_unregister);
1667MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1668MODULE_LICENSE("GPL");
1669MODULE_ALIAS("platform:emif");
1670MODULE_AUTHOR("Texas Instruments Inc");
1671

Archive Download this file



interactive