Root/
1 | /* |
2 | * pti.c - PTI driver for cJTAG data extration |
3 | * |
4 | * Copyright (C) Intel 2010 |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License version 2 as |
8 | * published by the Free Software Foundation. |
9 | * |
10 | * This program is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | * GNU General Public License for more details. |
14 | * |
15 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
16 | * |
17 | * The PTI (Parallel Trace Interface) driver directs trace data routed from |
18 | * various parts in the system out through the Intel Penwell PTI port and |
19 | * out of the mobile device for analysis with a debugging tool |
20 | * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7, |
21 | * compact JTAG, standard. |
22 | */ |
23 | |
24 | #include <linux/init.h> |
25 | #include <linux/sched.h> |
26 | #include <linux/interrupt.h> |
27 | #include <linux/console.h> |
28 | #include <linux/kernel.h> |
29 | #include <linux/module.h> |
30 | #include <linux/tty.h> |
31 | #include <linux/tty_driver.h> |
32 | #include <linux/pci.h> |
33 | #include <linux/mutex.h> |
34 | #include <linux/miscdevice.h> |
35 | #include <linux/pti.h> |
36 | #include <linux/slab.h> |
37 | #include <linux/uaccess.h> |
38 | |
39 | #define DRIVERNAME "pti" |
40 | #define PCINAME "pciPTI" |
41 | #define TTYNAME "ttyPTI" |
42 | #define CHARNAME "pti" |
43 | #define PTITTY_MINOR_START 0 |
44 | #define PTITTY_MINOR_NUM 2 |
45 | #define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */ |
46 | #define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */ |
47 | #define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */ |
48 | #define MODEM_BASE_ID 71 /* modem master ID address */ |
49 | #define CONTROL_ID 72 /* control master ID address */ |
50 | #define CONSOLE_ID 73 /* console master ID address */ |
51 | #define OS_BASE_ID 74 /* base OS master ID address */ |
52 | #define APP_BASE_ID 80 /* base App master ID address */ |
53 | #define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */ |
54 | #define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */ |
55 | #define APERTURE_14 0x3800000 /* offset to first OS write addr */ |
56 | #define APERTURE_LEN 0x400000 /* address length */ |
57 | |
58 | struct pti_tty { |
59 | struct pti_masterchannel *mc; |
60 | }; |
61 | |
62 | struct pti_dev { |
63 | struct tty_port port; |
64 | unsigned long pti_addr; |
65 | unsigned long aperture_base; |
66 | void __iomem *pti_ioaddr; |
67 | u8 ia_app[MAX_APP_IDS]; |
68 | u8 ia_os[MAX_OS_IDS]; |
69 | u8 ia_modem[MAX_MODEM_IDS]; |
70 | }; |
71 | |
72 | /* |
73 | * This protects access to ia_app, ia_os, and ia_modem, |
74 | * which keeps track of channels allocated in |
75 | * an aperture write id. |
76 | */ |
77 | static DEFINE_MUTEX(alloclock); |
78 | |
79 | static struct pci_device_id pci_ids[] __devinitconst = { |
80 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)}, |
81 | {0} |
82 | }; |
83 | |
84 | static struct tty_driver *pti_tty_driver; |
85 | static struct pti_dev *drv_data; |
86 | |
87 | static unsigned int pti_console_channel; |
88 | static unsigned int pti_control_channel; |
89 | |
90 | /** |
91 | * pti_write_to_aperture()- The private write function to PTI HW. |
92 | * |
93 | * @mc: The 'aperture'. It's part of a write address that holds |
94 | * a master and channel ID. |
95 | * @buf: Data being written to the HW that will ultimately be seen |
96 | * in a debugging tool (Fido, Lauterbach). |
97 | * @len: Size of buffer. |
98 | * |
99 | * Since each aperture is specified by a unique |
100 | * master/channel ID, no two processes will be writing |
101 | * to the same aperture at the same time so no lock is required. The |
102 | * PTI-Output agent will send these out in the order that they arrived, and |
103 | * thus, it will intermix these messages. The debug tool can then later |
104 | * regroup the appropriate message segments together reconstituting each |
105 | * message. |
106 | */ |
107 | static void pti_write_to_aperture(struct pti_masterchannel *mc, |
108 | u8 *buf, |
109 | int len) |
110 | { |
111 | int dwordcnt; |
112 | int final; |
113 | int i; |
114 | u32 ptiword; |
115 | u32 __iomem *aperture; |
116 | u8 *p = buf; |
117 | |
118 | /* |
119 | * calculate the aperture offset from the base using the master and |
120 | * channel id's. |
121 | */ |
122 | aperture = drv_data->pti_ioaddr + (mc->master << 15) |
123 | + (mc->channel << 8); |
124 | |
125 | dwordcnt = len >> 2; |
126 | final = len - (dwordcnt << 2); /* final = trailing bytes */ |
127 | if (final == 0 && dwordcnt != 0) { /* always need a final dword */ |
128 | final += 4; |
129 | dwordcnt--; |
130 | } |
131 | |
132 | for (i = 0; i < dwordcnt; i++) { |
133 | ptiword = be32_to_cpu(*(u32 *)p); |
134 | p += 4; |
135 | iowrite32(ptiword, aperture); |
136 | } |
137 | |
138 | aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */ |
139 | |
140 | ptiword = 0; |
141 | for (i = 0; i < final; i++) |
142 | ptiword |= *p++ << (24-(8*i)); |
143 | |
144 | iowrite32(ptiword, aperture); |
145 | return; |
146 | } |
147 | |
148 | /** |
149 | * pti_control_frame_built_and_sent()- control frame build and send function. |
150 | * |
151 | * @mc: The master / channel structure on which the function |
152 | * built a control frame. |
153 | * @thread_name: The thread name associated with the master / channel or |
154 | * 'NULL' if using the 'current' global variable. |
155 | * |
156 | * To be able to post process the PTI contents on host side, a control frame |
157 | * is added before sending any PTI content. So the host side knows on |
158 | * each PTI frame the name of the thread using a dedicated master / channel. |
159 | * The thread name is retrieved from 'current' global variable if 'thread_name' |
160 | * is 'NULL', else it is retrieved from 'thread_name' parameter. |
161 | * This function builds this frame and sends it to a master ID CONTROL_ID. |
162 | * The overhead is only 32 bytes since the driver only writes to HW |
163 | * in 32 byte chunks. |
164 | */ |
165 | static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc, |
166 | const char *thread_name) |
167 | { |
168 | /* |
169 | * Since we access the comm member in current's task_struct, we only |
170 | * need to be as large as what 'comm' in that structure is. |
171 | */ |
172 | char comm[TASK_COMM_LEN]; |
173 | struct pti_masterchannel mccontrol = {.master = CONTROL_ID, |
174 | .channel = 0}; |
175 | const char *thread_name_p; |
176 | const char *control_format = "%3d %3d %s"; |
177 | u8 control_frame[CONTROL_FRAME_LEN]; |
178 | |
179 | if (!thread_name) { |
180 | if (!in_interrupt()) |
181 | get_task_comm(comm, current); |
182 | else |
183 | strncpy(comm, "Interrupt", TASK_COMM_LEN); |
184 | |
185 | /* Absolutely ensure our buffer is zero terminated. */ |
186 | comm[TASK_COMM_LEN-1] = 0; |
187 | thread_name_p = comm; |
188 | } else { |
189 | thread_name_p = thread_name; |
190 | } |
191 | |
192 | mccontrol.channel = pti_control_channel; |
193 | pti_control_channel = (pti_control_channel + 1) & 0x7f; |
194 | |
195 | snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master, |
196 | mc->channel, thread_name_p); |
197 | pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame)); |
198 | } |
199 | |
200 | /** |
201 | * pti_write_full_frame_to_aperture()- high level function to |
202 | * write to PTI. |
203 | * |
204 | * @mc: The 'aperture'. It's part of a write address that holds |
205 | * a master and channel ID. |
206 | * @buf: Data being written to the HW that will ultimately be seen |
207 | * in a debugging tool (Fido, Lauterbach). |
208 | * @len: Size of buffer. |
209 | * |
210 | * All threads sending data (either console, user space application, ...) |
211 | * are calling the high level function to write to PTI meaning that it is |
212 | * possible to add a control frame before sending the content. |
213 | */ |
214 | static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc, |
215 | const unsigned char *buf, |
216 | int len) |
217 | { |
218 | pti_control_frame_built_and_sent(mc, NULL); |
219 | pti_write_to_aperture(mc, (u8 *)buf, len); |
220 | } |
221 | |
222 | /** |
223 | * get_id()- Allocate a master and channel ID. |
224 | * |
225 | * @id_array: an array of bits representing what channel |
226 | * id's are allocated for writing. |
227 | * @max_ids: The max amount of available write IDs to use. |
228 | * @base_id: The starting SW channel ID, based on the Intel |
229 | * PTI arch. |
230 | * @thread_name: The thread name associated with the master / channel or |
231 | * 'NULL' if using the 'current' global variable. |
232 | * |
233 | * Returns: |
234 | * pti_masterchannel struct with master, channel ID address |
235 | * 0 for error |
236 | * |
237 | * Each bit in the arrays ia_app and ia_os correspond to a master and |
238 | * channel id. The bit is one if the id is taken and 0 if free. For |
239 | * every master there are 128 channel id's. |
240 | */ |
241 | static struct pti_masterchannel *get_id(u8 *id_array, |
242 | int max_ids, |
243 | int base_id, |
244 | const char *thread_name) |
245 | { |
246 | struct pti_masterchannel *mc; |
247 | int i, j, mask; |
248 | |
249 | mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL); |
250 | if (mc == NULL) |
251 | return NULL; |
252 | |
253 | /* look for a byte with a free bit */ |
254 | for (i = 0; i < max_ids; i++) |
255 | if (id_array[i] != 0xff) |
256 | break; |
257 | if (i == max_ids) { |
258 | kfree(mc); |
259 | return NULL; |
260 | } |
261 | /* find the bit in the 128 possible channel opportunities */ |
262 | mask = 0x80; |
263 | for (j = 0; j < 8; j++) { |
264 | if ((id_array[i] & mask) == 0) |
265 | break; |
266 | mask >>= 1; |
267 | } |
268 | |
269 | /* grab it */ |
270 | id_array[i] |= mask; |
271 | mc->master = base_id; |
272 | mc->channel = ((i & 0xf)<<3) + j; |
273 | /* write new master Id / channel Id allocation to channel control */ |
274 | pti_control_frame_built_and_sent(mc, thread_name); |
275 | return mc; |
276 | } |
277 | |
278 | /* |
279 | * The following three functions: |
280 | * pti_request_mastercahannel(), mipi_release_masterchannel() |
281 | * and pti_writedata() are an API for other kernel drivers to |
282 | * access PTI. |
283 | */ |
284 | |
285 | /** |
286 | * pti_request_masterchannel()- Kernel API function used to allocate |
287 | * a master, channel ID address |
288 | * to write to PTI HW. |
289 | * |
290 | * @type: 0- request Application master, channel aperture ID |
291 | * write address. |
292 | * 1- request OS master, channel aperture ID write |
293 | * address. |
294 | * 2- request Modem master, channel aperture ID |
295 | * write address. |
296 | * Other values, error. |
297 | * @thread_name: The thread name associated with the master / channel or |
298 | * 'NULL' if using the 'current' global variable. |
299 | * |
300 | * Returns: |
301 | * pti_masterchannel struct |
302 | * 0 for error |
303 | */ |
304 | struct pti_masterchannel *pti_request_masterchannel(u8 type, |
305 | const char *thread_name) |
306 | { |
307 | struct pti_masterchannel *mc; |
308 | |
309 | mutex_lock(&alloclock); |
310 | |
311 | switch (type) { |
312 | |
313 | case 0: |
314 | mc = get_id(drv_data->ia_app, MAX_APP_IDS, |
315 | APP_BASE_ID, thread_name); |
316 | break; |
317 | |
318 | case 1: |
319 | mc = get_id(drv_data->ia_os, MAX_OS_IDS, |
320 | OS_BASE_ID, thread_name); |
321 | break; |
322 | |
323 | case 2: |
324 | mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, |
325 | MODEM_BASE_ID, thread_name); |
326 | break; |
327 | default: |
328 | mc = NULL; |
329 | } |
330 | |
331 | mutex_unlock(&alloclock); |
332 | return mc; |
333 | } |
334 | EXPORT_SYMBOL_GPL(pti_request_masterchannel); |
335 | |
336 | /** |
337 | * pti_release_masterchannel()- Kernel API function used to release |
338 | * a master, channel ID address |
339 | * used to write to PTI HW. |
340 | * |
341 | * @mc: master, channel apeture ID address to be released. This |
342 | * will de-allocate the structure via kfree(). |
343 | */ |
344 | void pti_release_masterchannel(struct pti_masterchannel *mc) |
345 | { |
346 | u8 master, channel, i; |
347 | |
348 | mutex_lock(&alloclock); |
349 | |
350 | if (mc) { |
351 | master = mc->master; |
352 | channel = mc->channel; |
353 | |
354 | if (master == APP_BASE_ID) { |
355 | i = channel >> 3; |
356 | drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7)); |
357 | } else if (master == OS_BASE_ID) { |
358 | i = channel >> 3; |
359 | drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7)); |
360 | } else { |
361 | i = channel >> 3; |
362 | drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7)); |
363 | } |
364 | |
365 | kfree(mc); |
366 | } |
367 | |
368 | mutex_unlock(&alloclock); |
369 | } |
370 | EXPORT_SYMBOL_GPL(pti_release_masterchannel); |
371 | |
372 | /** |
373 | * pti_writedata()- Kernel API function used to write trace |
374 | * debugging data to PTI HW. |
375 | * |
376 | * @mc: Master, channel aperture ID address to write to. |
377 | * Null value will return with no write occurring. |
378 | * @buf: Trace debuging data to write to the PTI HW. |
379 | * Null value will return with no write occurring. |
380 | * @count: Size of buf. Value of 0 or a negative number will |
381 | * return with no write occuring. |
382 | */ |
383 | void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count) |
384 | { |
385 | /* |
386 | * since this function is exported, this is treated like an |
387 | * API function, thus, all parameters should |
388 | * be checked for validity. |
389 | */ |
390 | if ((mc != NULL) && (buf != NULL) && (count > 0)) |
391 | pti_write_to_aperture(mc, buf, count); |
392 | return; |
393 | } |
394 | EXPORT_SYMBOL_GPL(pti_writedata); |
395 | |
396 | /** |
397 | * pti_pci_remove()- Driver exit method to remove PTI from |
398 | * PCI bus. |
399 | * @pdev: variable containing pci info of PTI. |
400 | */ |
401 | static void __devexit pti_pci_remove(struct pci_dev *pdev) |
402 | { |
403 | struct pti_dev *drv_data; |
404 | |
405 | drv_data = pci_get_drvdata(pdev); |
406 | if (drv_data != NULL) { |
407 | pci_iounmap(pdev, drv_data->pti_ioaddr); |
408 | pci_set_drvdata(pdev, NULL); |
409 | kfree(drv_data); |
410 | pci_release_region(pdev, 1); |
411 | pci_disable_device(pdev); |
412 | } |
413 | } |
414 | |
415 | /* |
416 | * for the tty_driver_*() basic function descriptions, see tty_driver.h. |
417 | * Specific header comments made for PTI-related specifics. |
418 | */ |
419 | |
420 | /** |
421 | * pti_tty_driver_open()- Open an Application master, channel aperture |
422 | * ID to the PTI device via tty device. |
423 | * |
424 | * @tty: tty interface. |
425 | * @filp: filp interface pased to tty_port_open() call. |
426 | * |
427 | * Returns: |
428 | * int, 0 for success |
429 | * otherwise, fail value |
430 | * |
431 | * The main purpose of using the tty device interface is for |
432 | * each tty port to have a unique PTI write aperture. In an |
433 | * example use case, ttyPTI0 gets syslogd and an APP aperture |
434 | * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route |
435 | * modem messages into PTI. Modem trace data does not have to |
436 | * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct |
437 | * master IDs. These messages go through the PTI HW and out of |
438 | * the handheld platform and to the Fido/Lauterbach device. |
439 | */ |
440 | static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp) |
441 | { |
442 | /* |
443 | * we actually want to allocate a new channel per open, per |
444 | * system arch. HW gives more than plenty channels for a single |
445 | * system task to have its own channel to write trace data. This |
446 | * also removes a locking requirement for the actual write |
447 | * procedure. |
448 | */ |
449 | return tty_port_open(&drv_data->port, tty, filp); |
450 | } |
451 | |
452 | /** |
453 | * pti_tty_driver_close()- close tty device and release Application |
454 | * master, channel aperture ID to the PTI device via tty device. |
455 | * |
456 | * @tty: tty interface. |
457 | * @filp: filp interface pased to tty_port_close() call. |
458 | * |
459 | * The main purpose of using the tty device interface is to route |
460 | * syslog daemon messages to the PTI HW and out of the handheld platform |
461 | * and to the Fido/Lauterbach device. |
462 | */ |
463 | static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp) |
464 | { |
465 | tty_port_close(&drv_data->port, tty, filp); |
466 | } |
467 | |
468 | /** |
469 | * pti_tty_install()- Used to set up specific master-channels |
470 | * to tty ports for organizational purposes when |
471 | * tracing viewed from debuging tools. |
472 | * |
473 | * @driver: tty driver information. |
474 | * @tty: tty struct containing pti information. |
475 | * |
476 | * Returns: |
477 | * 0 for success |
478 | * otherwise, error |
479 | */ |
480 | static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty) |
481 | { |
482 | int idx = tty->index; |
483 | struct pti_tty *pti_tty_data; |
484 | int ret = tty_standard_install(driver, tty); |
485 | |
486 | if (ret == 0) { |
487 | pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL); |
488 | if (pti_tty_data == NULL) |
489 | return -ENOMEM; |
490 | |
491 | if (idx == PTITTY_MINOR_START) |
492 | pti_tty_data->mc = pti_request_masterchannel(0, NULL); |
493 | else |
494 | pti_tty_data->mc = pti_request_masterchannel(2, NULL); |
495 | |
496 | if (pti_tty_data->mc == NULL) { |
497 | kfree(pti_tty_data); |
498 | return -ENXIO; |
499 | } |
500 | tty->driver_data = pti_tty_data; |
501 | } |
502 | |
503 | return ret; |
504 | } |
505 | |
506 | /** |
507 | * pti_tty_cleanup()- Used to de-allocate master-channel resources |
508 | * tied to tty's of this driver. |
509 | * |
510 | * @tty: tty struct containing pti information. |
511 | */ |
512 | static void pti_tty_cleanup(struct tty_struct *tty) |
513 | { |
514 | struct pti_tty *pti_tty_data = tty->driver_data; |
515 | if (pti_tty_data == NULL) |
516 | return; |
517 | pti_release_masterchannel(pti_tty_data->mc); |
518 | kfree(pti_tty_data); |
519 | tty->driver_data = NULL; |
520 | } |
521 | |
522 | /** |
523 | * pti_tty_driver_write()- Write trace debugging data through the char |
524 | * interface to the PTI HW. Part of the misc device implementation. |
525 | * |
526 | * @filp: Contains private data which is used to obtain |
527 | * master, channel write ID. |
528 | * @data: trace data to be written. |
529 | * @len: # of byte to write. |
530 | * |
531 | * Returns: |
532 | * int, # of bytes written |
533 | * otherwise, error |
534 | */ |
535 | static int pti_tty_driver_write(struct tty_struct *tty, |
536 | const unsigned char *buf, int len) |
537 | { |
538 | struct pti_tty *pti_tty_data = tty->driver_data; |
539 | if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) { |
540 | pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len); |
541 | return len; |
542 | } |
543 | /* |
544 | * we can't write to the pti hardware if the private driver_data |
545 | * and the mc address is not there. |
546 | */ |
547 | else |
548 | return -EFAULT; |
549 | } |
550 | |
551 | /** |
552 | * pti_tty_write_room()- Always returns 2048. |
553 | * |
554 | * @tty: contains tty info of the pti driver. |
555 | */ |
556 | static int pti_tty_write_room(struct tty_struct *tty) |
557 | { |
558 | return 2048; |
559 | } |
560 | |
561 | /** |
562 | * pti_char_open()- Open an Application master, channel aperture |
563 | * ID to the PTI device. Part of the misc device implementation. |
564 | * |
565 | * @inode: not used. |
566 | * @filp: Output- will have a masterchannel struct set containing |
567 | * the allocated application PTI aperture write address. |
568 | * |
569 | * Returns: |
570 | * int, 0 for success |
571 | * otherwise, a fail value |
572 | */ |
573 | static int pti_char_open(struct inode *inode, struct file *filp) |
574 | { |
575 | struct pti_masterchannel *mc; |
576 | |
577 | /* |
578 | * We really do want to fail immediately if |
579 | * pti_request_masterchannel() fails, |
580 | * before assigning the value to filp->private_data. |
581 | * Slightly easier to debug if this driver needs debugging. |
582 | */ |
583 | mc = pti_request_masterchannel(0, NULL); |
584 | if (mc == NULL) |
585 | return -ENOMEM; |
586 | filp->private_data = mc; |
587 | return 0; |
588 | } |
589 | |
590 | /** |
591 | * pti_char_release()- Close a char channel to the PTI device. Part |
592 | * of the misc device implementation. |
593 | * |
594 | * @inode: Not used in this implementaiton. |
595 | * @filp: Contains private_data that contains the master, channel |
596 | * ID to be released by the PTI device. |
597 | * |
598 | * Returns: |
599 | * always 0 |
600 | */ |
601 | static int pti_char_release(struct inode *inode, struct file *filp) |
602 | { |
603 | pti_release_masterchannel(filp->private_data); |
604 | filp->private_data = NULL; |
605 | return 0; |
606 | } |
607 | |
608 | /** |
609 | * pti_char_write()- Write trace debugging data through the char |
610 | * interface to the PTI HW. Part of the misc device implementation. |
611 | * |
612 | * @filp: Contains private data which is used to obtain |
613 | * master, channel write ID. |
614 | * @data: trace data to be written. |
615 | * @len: # of byte to write. |
616 | * @ppose: Not used in this function implementation. |
617 | * |
618 | * Returns: |
619 | * int, # of bytes written |
620 | * otherwise, error value |
621 | * |
622 | * Notes: From side discussions with Alan Cox and experimenting |
623 | * with PTI debug HW like Nokia's Fido box and Lauterbach |
624 | * devices, 8192 byte write buffer used by USER_COPY_SIZE was |
625 | * deemed an appropriate size for this type of usage with |
626 | * debugging HW. |
627 | */ |
628 | static ssize_t pti_char_write(struct file *filp, const char __user *data, |
629 | size_t len, loff_t *ppose) |
630 | { |
631 | struct pti_masterchannel *mc; |
632 | void *kbuf; |
633 | const char __user *tmp; |
634 | size_t size = USER_COPY_SIZE; |
635 | size_t n = 0; |
636 | |
637 | tmp = data; |
638 | mc = filp->private_data; |
639 | |
640 | kbuf = kmalloc(size, GFP_KERNEL); |
641 | if (kbuf == NULL) { |
642 | pr_err("%s(%d): buf allocation failed\n", |
643 | __func__, __LINE__); |
644 | return -ENOMEM; |
645 | } |
646 | |
647 | do { |
648 | if (len - n > USER_COPY_SIZE) |
649 | size = USER_COPY_SIZE; |
650 | else |
651 | size = len - n; |
652 | |
653 | if (copy_from_user(kbuf, tmp, size)) { |
654 | kfree(kbuf); |
655 | return n ? n : -EFAULT; |
656 | } |
657 | |
658 | pti_write_to_aperture(mc, kbuf, size); |
659 | n += size; |
660 | tmp += size; |
661 | |
662 | } while (len > n); |
663 | |
664 | kfree(kbuf); |
665 | return len; |
666 | } |
667 | |
668 | static const struct tty_operations pti_tty_driver_ops = { |
669 | .open = pti_tty_driver_open, |
670 | .close = pti_tty_driver_close, |
671 | .write = pti_tty_driver_write, |
672 | .write_room = pti_tty_write_room, |
673 | .install = pti_tty_install, |
674 | .cleanup = pti_tty_cleanup |
675 | }; |
676 | |
677 | static const struct file_operations pti_char_driver_ops = { |
678 | .owner = THIS_MODULE, |
679 | .write = pti_char_write, |
680 | .open = pti_char_open, |
681 | .release = pti_char_release, |
682 | }; |
683 | |
684 | static struct miscdevice pti_char_driver = { |
685 | .minor = MISC_DYNAMIC_MINOR, |
686 | .name = CHARNAME, |
687 | .fops = &pti_char_driver_ops |
688 | }; |
689 | |
690 | /** |
691 | * pti_console_write()- Write to the console that has been acquired. |
692 | * |
693 | * @c: Not used in this implementaiton. |
694 | * @buf: Data to be written. |
695 | * @len: Length of buf. |
696 | */ |
697 | static void pti_console_write(struct console *c, const char *buf, unsigned len) |
698 | { |
699 | static struct pti_masterchannel mc = {.master = CONSOLE_ID, |
700 | .channel = 0}; |
701 | |
702 | mc.channel = pti_console_channel; |
703 | pti_console_channel = (pti_console_channel + 1) & 0x7f; |
704 | |
705 | pti_write_full_frame_to_aperture(&mc, buf, len); |
706 | } |
707 | |
708 | /** |
709 | * pti_console_device()- Return the driver tty structure and set the |
710 | * associated index implementation. |
711 | * |
712 | * @c: Console device of the driver. |
713 | * @index: index associated with c. |
714 | * |
715 | * Returns: |
716 | * always value of pti_tty_driver structure when this function |
717 | * is called. |
718 | */ |
719 | static struct tty_driver *pti_console_device(struct console *c, int *index) |
720 | { |
721 | *index = c->index; |
722 | return pti_tty_driver; |
723 | } |
724 | |
725 | /** |
726 | * pti_console_setup()- Initialize console variables used by the driver. |
727 | * |
728 | * @c: Not used. |
729 | * @opts: Not used. |
730 | * |
731 | * Returns: |
732 | * always 0. |
733 | */ |
734 | static int pti_console_setup(struct console *c, char *opts) |
735 | { |
736 | pti_console_channel = 0; |
737 | pti_control_channel = 0; |
738 | return 0; |
739 | } |
740 | |
741 | /* |
742 | * pti_console struct, used to capture OS printk()'s and shift |
743 | * out to the PTI device for debugging. This cannot be |
744 | * enabled upon boot because of the possibility of eating |
745 | * any serial console printk's (race condition discovered). |
746 | * The console should be enabled upon when the tty port is |
747 | * used for the first time. Since the primary purpose for |
748 | * the tty port is to hook up syslog to it, the tty port |
749 | * will be open for a really long time. |
750 | */ |
751 | static struct console pti_console = { |
752 | .name = TTYNAME, |
753 | .write = pti_console_write, |
754 | .device = pti_console_device, |
755 | .setup = pti_console_setup, |
756 | .flags = CON_PRINTBUFFER, |
757 | .index = 0, |
758 | }; |
759 | |
760 | /** |
761 | * pti_port_activate()- Used to start/initialize any items upon |
762 | * first opening of tty_port(). |
763 | * |
764 | * @port- The tty port number of the PTI device. |
765 | * @tty- The tty struct associated with this device. |
766 | * |
767 | * Returns: |
768 | * always returns 0 |
769 | * |
770 | * Notes: The primary purpose of the PTI tty port 0 is to hook |
771 | * the syslog daemon to it; thus this port will be open for a |
772 | * very long time. |
773 | */ |
774 | static int pti_port_activate(struct tty_port *port, struct tty_struct *tty) |
775 | { |
776 | if (port->tty->index == PTITTY_MINOR_START) |
777 | console_start(&pti_console); |
778 | return 0; |
779 | } |
780 | |
781 | /** |
782 | * pti_port_shutdown()- Used to stop/shutdown any items upon the |
783 | * last tty port close. |
784 | * |
785 | * @port- The tty port number of the PTI device. |
786 | * |
787 | * Notes: The primary purpose of the PTI tty port 0 is to hook |
788 | * the syslog daemon to it; thus this port will be open for a |
789 | * very long time. |
790 | */ |
791 | static void pti_port_shutdown(struct tty_port *port) |
792 | { |
793 | if (port->tty->index == PTITTY_MINOR_START) |
794 | console_stop(&pti_console); |
795 | } |
796 | |
797 | static const struct tty_port_operations tty_port_ops = { |
798 | .activate = pti_port_activate, |
799 | .shutdown = pti_port_shutdown, |
800 | }; |
801 | |
802 | /* |
803 | * Note the _probe() call sets everything up and ties the char and tty |
804 | * to successfully detecting the PTI device on the pci bus. |
805 | */ |
806 | |
807 | /** |
808 | * pti_pci_probe()- Used to detect pti on the pci bus and set |
809 | * things up in the driver. |
810 | * |
811 | * @pdev- pci_dev struct values for pti. |
812 | * @ent- pci_device_id struct for pti driver. |
813 | * |
814 | * Returns: |
815 | * 0 for success |
816 | * otherwise, error |
817 | */ |
818 | static int __devinit pti_pci_probe(struct pci_dev *pdev, |
819 | const struct pci_device_id *ent) |
820 | { |
821 | int retval = -EINVAL; |
822 | int pci_bar = 1; |
823 | |
824 | dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__, |
825 | __func__, __LINE__, pdev->vendor, pdev->device); |
826 | |
827 | retval = misc_register(&pti_char_driver); |
828 | if (retval) { |
829 | pr_err("%s(%d): CHAR registration failed of pti driver\n", |
830 | __func__, __LINE__); |
831 | pr_err("%s(%d): Error value returned: %d\n", |
832 | __func__, __LINE__, retval); |
833 | return retval; |
834 | } |
835 | |
836 | retval = pci_enable_device(pdev); |
837 | if (retval != 0) { |
838 | dev_err(&pdev->dev, |
839 | "%s: pci_enable_device() returned error %d\n", |
840 | __func__, retval); |
841 | return retval; |
842 | } |
843 | |
844 | drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL); |
845 | |
846 | if (drv_data == NULL) { |
847 | retval = -ENOMEM; |
848 | dev_err(&pdev->dev, |
849 | "%s(%d): kmalloc() returned NULL memory.\n", |
850 | __func__, __LINE__); |
851 | return retval; |
852 | } |
853 | drv_data->pti_addr = pci_resource_start(pdev, pci_bar); |
854 | |
855 | retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev)); |
856 | if (retval != 0) { |
857 | dev_err(&pdev->dev, |
858 | "%s(%d): pci_request_region() returned error %d\n", |
859 | __func__, __LINE__, retval); |
860 | kfree(drv_data); |
861 | return retval; |
862 | } |
863 | drv_data->aperture_base = drv_data->pti_addr+APERTURE_14; |
864 | drv_data->pti_ioaddr = |
865 | ioremap_nocache((u32)drv_data->aperture_base, |
866 | APERTURE_LEN); |
867 | if (!drv_data->pti_ioaddr) { |
868 | pci_release_region(pdev, pci_bar); |
869 | retval = -ENOMEM; |
870 | kfree(drv_data); |
871 | return retval; |
872 | } |
873 | |
874 | pci_set_drvdata(pdev, drv_data); |
875 | |
876 | tty_port_init(&drv_data->port); |
877 | drv_data->port.ops = &tty_port_ops; |
878 | |
879 | tty_register_device(pti_tty_driver, 0, &pdev->dev); |
880 | tty_register_device(pti_tty_driver, 1, &pdev->dev); |
881 | |
882 | register_console(&pti_console); |
883 | |
884 | return retval; |
885 | } |
886 | |
887 | static struct pci_driver pti_pci_driver = { |
888 | .name = PCINAME, |
889 | .id_table = pci_ids, |
890 | .probe = pti_pci_probe, |
891 | .remove = __devexit_p(pti_pci_remove), |
892 | }; |
893 | |
894 | /** |
895 | * |
896 | * pti_init()- Overall entry/init call to the pti driver. |
897 | * It starts the registration process with the kernel. |
898 | * |
899 | * Returns: |
900 | * int __init, 0 for success |
901 | * otherwise value is an error |
902 | * |
903 | */ |
904 | static int __init pti_init(void) |
905 | { |
906 | int retval = -EINVAL; |
907 | |
908 | /* First register module as tty device */ |
909 | |
910 | pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM); |
911 | if (pti_tty_driver == NULL) { |
912 | pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n", |
913 | __func__, __LINE__); |
914 | return -ENOMEM; |
915 | } |
916 | |
917 | pti_tty_driver->driver_name = DRIVERNAME; |
918 | pti_tty_driver->name = TTYNAME; |
919 | pti_tty_driver->major = 0; |
920 | pti_tty_driver->minor_start = PTITTY_MINOR_START; |
921 | pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM; |
922 | pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS; |
923 | pti_tty_driver->flags = TTY_DRIVER_REAL_RAW | |
924 | TTY_DRIVER_DYNAMIC_DEV; |
925 | pti_tty_driver->init_termios = tty_std_termios; |
926 | |
927 | tty_set_operations(pti_tty_driver, &pti_tty_driver_ops); |
928 | |
929 | retval = tty_register_driver(pti_tty_driver); |
930 | if (retval) { |
931 | pr_err("%s(%d): TTY registration failed of pti driver\n", |
932 | __func__, __LINE__); |
933 | pr_err("%s(%d): Error value returned: %d\n", |
934 | __func__, __LINE__, retval); |
935 | |
936 | pti_tty_driver = NULL; |
937 | return retval; |
938 | } |
939 | |
940 | retval = pci_register_driver(&pti_pci_driver); |
941 | |
942 | if (retval) { |
943 | pr_err("%s(%d): PCI registration failed of pti driver\n", |
944 | __func__, __LINE__); |
945 | pr_err("%s(%d): Error value returned: %d\n", |
946 | __func__, __LINE__, retval); |
947 | |
948 | tty_unregister_driver(pti_tty_driver); |
949 | pr_err("%s(%d): Unregistering TTY part of pti driver\n", |
950 | __func__, __LINE__); |
951 | pti_tty_driver = NULL; |
952 | return retval; |
953 | } |
954 | |
955 | return retval; |
956 | } |
957 | |
958 | /** |
959 | * pti_exit()- Unregisters this module as a tty and pci driver. |
960 | */ |
961 | static void __exit pti_exit(void) |
962 | { |
963 | int retval; |
964 | |
965 | tty_unregister_device(pti_tty_driver, 0); |
966 | tty_unregister_device(pti_tty_driver, 1); |
967 | |
968 | retval = tty_unregister_driver(pti_tty_driver); |
969 | if (retval) { |
970 | pr_err("%s(%d): TTY unregistration failed of pti driver\n", |
971 | __func__, __LINE__); |
972 | pr_err("%s(%d): Error value returned: %d\n", |
973 | __func__, __LINE__, retval); |
974 | } |
975 | |
976 | pci_unregister_driver(&pti_pci_driver); |
977 | |
978 | retval = misc_deregister(&pti_char_driver); |
979 | if (retval) { |
980 | pr_err("%s(%d): CHAR unregistration failed of pti driver\n", |
981 | __func__, __LINE__); |
982 | pr_err("%s(%d): Error value returned: %d\n", |
983 | __func__, __LINE__, retval); |
984 | } |
985 | |
986 | unregister_console(&pti_console); |
987 | return; |
988 | } |
989 | |
990 | module_init(pti_init); |
991 | module_exit(pti_exit); |
992 | |
993 | MODULE_LICENSE("GPL"); |
994 | MODULE_AUTHOR("Ken Mills, Jay Freyensee"); |
995 | MODULE_DESCRIPTION("PTI Driver"); |
996 | |
997 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9