Root/
1 | /* |
2 | * inftlmount.c -- INFTL mount code with extensive checks. |
3 | * |
4 | * Author: Greg Ungerer (gerg@snapgear.com) |
5 | * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) |
6 | * |
7 | * Based heavily on the nftlmount.c code which is: |
8 | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) |
9 | * Copyright © 2000 Netgem S.A. |
10 | * |
11 | * This program is free software; you can redistribute it and/or modify |
12 | * it under the terms of the GNU General Public License as published by |
13 | * the Free Software Foundation; either version 2 of the License, or |
14 | * (at your option) any later version. |
15 | * |
16 | * This program is distributed in the hope that it will be useful, |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
19 | * GNU General Public License for more details. |
20 | * |
21 | * You should have received a copy of the GNU General Public License |
22 | * along with this program; if not, write to the Free Software |
23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
24 | */ |
25 | |
26 | #include <linux/kernel.h> |
27 | #include <linux/module.h> |
28 | #include <asm/errno.h> |
29 | #include <asm/io.h> |
30 | #include <asm/uaccess.h> |
31 | #include <linux/delay.h> |
32 | #include <linux/slab.h> |
33 | #include <linux/init.h> |
34 | #include <linux/mtd/mtd.h> |
35 | #include <linux/mtd/nftl.h> |
36 | #include <linux/mtd/inftl.h> |
37 | |
38 | /* |
39 | * find_boot_record: Find the INFTL Media Header and its Spare copy which |
40 | * contains the various device information of the INFTL partition and |
41 | * Bad Unit Table. Update the PUtable[] table according to the Bad |
42 | * Unit Table. PUtable[] is used for management of Erase Unit in |
43 | * other routines in inftlcore.c and inftlmount.c. |
44 | */ |
45 | static int find_boot_record(struct INFTLrecord *inftl) |
46 | { |
47 | struct inftl_unittail h1; |
48 | //struct inftl_oob oob; |
49 | unsigned int i, block; |
50 | u8 buf[SECTORSIZE]; |
51 | struct INFTLMediaHeader *mh = &inftl->MediaHdr; |
52 | struct mtd_info *mtd = inftl->mbd.mtd; |
53 | struct INFTLPartition *ip; |
54 | size_t retlen; |
55 | |
56 | pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); |
57 | |
58 | /* |
59 | * Assume logical EraseSize == physical erasesize for starting the |
60 | * scan. We'll sort it out later if we find a MediaHeader which says |
61 | * otherwise. |
62 | */ |
63 | inftl->EraseSize = inftl->mbd.mtd->erasesize; |
64 | inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; |
65 | |
66 | inftl->MediaUnit = BLOCK_NIL; |
67 | |
68 | /* Search for a valid boot record */ |
69 | for (block = 0; block < inftl->nb_blocks; block++) { |
70 | int ret; |
71 | |
72 | /* |
73 | * Check for BNAND header first. Then whinge if it's found |
74 | * but later checks fail. |
75 | */ |
76 | ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, |
77 | &retlen, buf); |
78 | /* We ignore ret in case the ECC of the MediaHeader is invalid |
79 | (which is apparently acceptable) */ |
80 | if (retlen != SECTORSIZE) { |
81 | static int warncount = 5; |
82 | |
83 | if (warncount) { |
84 | printk(KERN_WARNING "INFTL: block read at 0x%x " |
85 | "of mtd%d failed: %d\n", |
86 | block * inftl->EraseSize, |
87 | inftl->mbd.mtd->index, ret); |
88 | if (!--warncount) |
89 | printk(KERN_WARNING "INFTL: further " |
90 | "failures for this block will " |
91 | "not be printed\n"); |
92 | } |
93 | continue; |
94 | } |
95 | |
96 | if (retlen < 6 || memcmp(buf, "BNAND", 6)) { |
97 | /* BNAND\0 not found. Continue */ |
98 | continue; |
99 | } |
100 | |
101 | /* To be safer with BIOS, also use erase mark as discriminant */ |
102 | ret = inftl_read_oob(mtd, |
103 | block * inftl->EraseSize + SECTORSIZE + 8, |
104 | 8, &retlen,(char *)&h1); |
105 | if (ret < 0) { |
106 | printk(KERN_WARNING "INFTL: ANAND header found at " |
107 | "0x%x in mtd%d, but OOB data read failed " |
108 | "(err %d)\n", block * inftl->EraseSize, |
109 | inftl->mbd.mtd->index, ret); |
110 | continue; |
111 | } |
112 | |
113 | |
114 | /* |
115 | * This is the first we've seen. |
116 | * Copy the media header structure into place. |
117 | */ |
118 | memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); |
119 | |
120 | /* Read the spare media header at offset 4096 */ |
121 | mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, |
122 | &retlen, buf); |
123 | if (retlen != SECTORSIZE) { |
124 | printk(KERN_WARNING "INFTL: Unable to read spare " |
125 | "Media Header\n"); |
126 | return -1; |
127 | } |
128 | /* Check if this one is the same as the first one we found. */ |
129 | if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { |
130 | printk(KERN_WARNING "INFTL: Primary and spare Media " |
131 | "Headers disagree.\n"); |
132 | return -1; |
133 | } |
134 | |
135 | mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); |
136 | mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); |
137 | mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); |
138 | mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); |
139 | mh->FormatFlags = le32_to_cpu(mh->FormatFlags); |
140 | mh->PercentUsed = le32_to_cpu(mh->PercentUsed); |
141 | |
142 | pr_debug("INFTL: Media Header ->\n" |
143 | " bootRecordID = %s\n" |
144 | " NoOfBootImageBlocks = %d\n" |
145 | " NoOfBinaryPartitions = %d\n" |
146 | " NoOfBDTLPartitions = %d\n" |
147 | " BlockMultiplerBits = %d\n" |
148 | " FormatFlgs = %d\n" |
149 | " OsakVersion = 0x%x\n" |
150 | " PercentUsed = %d\n", |
151 | mh->bootRecordID, mh->NoOfBootImageBlocks, |
152 | mh->NoOfBinaryPartitions, |
153 | mh->NoOfBDTLPartitions, |
154 | mh->BlockMultiplierBits, mh->FormatFlags, |
155 | mh->OsakVersion, mh->PercentUsed); |
156 | |
157 | if (mh->NoOfBDTLPartitions == 0) { |
158 | printk(KERN_WARNING "INFTL: Media Header sanity check " |
159 | "failed: NoOfBDTLPartitions (%d) == 0, " |
160 | "must be at least 1\n", mh->NoOfBDTLPartitions); |
161 | return -1; |
162 | } |
163 | |
164 | if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { |
165 | printk(KERN_WARNING "INFTL: Media Header sanity check " |
166 | "failed: Total Partitions (%d) > 4, " |
167 | "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + |
168 | mh->NoOfBinaryPartitions, |
169 | mh->NoOfBDTLPartitions, |
170 | mh->NoOfBinaryPartitions); |
171 | return -1; |
172 | } |
173 | |
174 | if (mh->BlockMultiplierBits > 1) { |
175 | printk(KERN_WARNING "INFTL: sorry, we don't support " |
176 | "UnitSizeFactor 0x%02x\n", |
177 | mh->BlockMultiplierBits); |
178 | return -1; |
179 | } else if (mh->BlockMultiplierBits == 1) { |
180 | printk(KERN_WARNING "INFTL: support for INFTL with " |
181 | "UnitSizeFactor 0x%02x is experimental\n", |
182 | mh->BlockMultiplierBits); |
183 | inftl->EraseSize = inftl->mbd.mtd->erasesize << |
184 | mh->BlockMultiplierBits; |
185 | inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; |
186 | block >>= mh->BlockMultiplierBits; |
187 | } |
188 | |
189 | /* Scan the partitions */ |
190 | for (i = 0; (i < 4); i++) { |
191 | ip = &mh->Partitions[i]; |
192 | ip->virtualUnits = le32_to_cpu(ip->virtualUnits); |
193 | ip->firstUnit = le32_to_cpu(ip->firstUnit); |
194 | ip->lastUnit = le32_to_cpu(ip->lastUnit); |
195 | ip->flags = le32_to_cpu(ip->flags); |
196 | ip->spareUnits = le32_to_cpu(ip->spareUnits); |
197 | ip->Reserved0 = le32_to_cpu(ip->Reserved0); |
198 | |
199 | pr_debug(" PARTITION[%d] ->\n" |
200 | " virtualUnits = %d\n" |
201 | " firstUnit = %d\n" |
202 | " lastUnit = %d\n" |
203 | " flags = 0x%x\n" |
204 | " spareUnits = %d\n", |
205 | i, ip->virtualUnits, ip->firstUnit, |
206 | ip->lastUnit, ip->flags, |
207 | ip->spareUnits); |
208 | |
209 | if (ip->Reserved0 != ip->firstUnit) { |
210 | struct erase_info *instr = &inftl->instr; |
211 | |
212 | instr->mtd = inftl->mbd.mtd; |
213 | |
214 | /* |
215 | * Most likely this is using the |
216 | * undocumented qiuck mount feature. |
217 | * We don't support that, we will need |
218 | * to erase the hidden block for full |
219 | * compatibility. |
220 | */ |
221 | instr->addr = ip->Reserved0 * inftl->EraseSize; |
222 | instr->len = inftl->EraseSize; |
223 | mtd_erase(mtd, instr); |
224 | } |
225 | if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { |
226 | printk(KERN_WARNING "INFTL: Media Header " |
227 | "Partition %d sanity check failed\n" |
228 | " firstUnit %d : lastUnit %d > " |
229 | "virtualUnits %d\n", i, ip->lastUnit, |
230 | ip->firstUnit, ip->Reserved0); |
231 | return -1; |
232 | } |
233 | if (ip->Reserved1 != 0) { |
234 | printk(KERN_WARNING "INFTL: Media Header " |
235 | "Partition %d sanity check failed: " |
236 | "Reserved1 %d != 0\n", |
237 | i, ip->Reserved1); |
238 | return -1; |
239 | } |
240 | |
241 | if (ip->flags & INFTL_BDTL) |
242 | break; |
243 | } |
244 | |
245 | if (i >= 4) { |
246 | printk(KERN_WARNING "INFTL: Media Header Partition " |
247 | "sanity check failed:\n No partition " |
248 | "marked as Disk Partition\n"); |
249 | return -1; |
250 | } |
251 | |
252 | inftl->nb_boot_blocks = ip->firstUnit; |
253 | inftl->numvunits = ip->virtualUnits; |
254 | if (inftl->numvunits > (inftl->nb_blocks - |
255 | inftl->nb_boot_blocks - 2)) { |
256 | printk(KERN_WARNING "INFTL: Media Header sanity check " |
257 | "failed:\n numvunits (%d) > nb_blocks " |
258 | "(%d) - nb_boot_blocks(%d) - 2\n", |
259 | inftl->numvunits, inftl->nb_blocks, |
260 | inftl->nb_boot_blocks); |
261 | return -1; |
262 | } |
263 | |
264 | inftl->mbd.size = inftl->numvunits * |
265 | (inftl->EraseSize / SECTORSIZE); |
266 | |
267 | /* |
268 | * Block count is set to last used EUN (we won't need to keep |
269 | * any meta-data past that point). |
270 | */ |
271 | inftl->firstEUN = ip->firstUnit; |
272 | inftl->lastEUN = ip->lastUnit; |
273 | inftl->nb_blocks = ip->lastUnit + 1; |
274 | |
275 | /* Memory alloc */ |
276 | inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
277 | if (!inftl->PUtable) { |
278 | printk(KERN_WARNING "INFTL: allocation of PUtable " |
279 | "failed (%zd bytes)\n", |
280 | inftl->nb_blocks * sizeof(u16)); |
281 | return -ENOMEM; |
282 | } |
283 | |
284 | inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
285 | if (!inftl->VUtable) { |
286 | kfree(inftl->PUtable); |
287 | printk(KERN_WARNING "INFTL: allocation of VUtable " |
288 | "failed (%zd bytes)\n", |
289 | inftl->nb_blocks * sizeof(u16)); |
290 | return -ENOMEM; |
291 | } |
292 | |
293 | /* Mark the blocks before INFTL MediaHeader as reserved */ |
294 | for (i = 0; i < inftl->nb_boot_blocks; i++) |
295 | inftl->PUtable[i] = BLOCK_RESERVED; |
296 | /* Mark all remaining blocks as potentially containing data */ |
297 | for (; i < inftl->nb_blocks; i++) |
298 | inftl->PUtable[i] = BLOCK_NOTEXPLORED; |
299 | |
300 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ |
301 | inftl->PUtable[block] = BLOCK_RESERVED; |
302 | |
303 | /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ |
304 | for (i = 0; i < inftl->nb_blocks; i++) { |
305 | int physblock; |
306 | /* If any of the physical eraseblocks are bad, don't |
307 | use the unit. */ |
308 | for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { |
309 | if (mtd_block_isbad(inftl->mbd.mtd, |
310 | i * inftl->EraseSize + physblock)) |
311 | inftl->PUtable[i] = BLOCK_RESERVED; |
312 | } |
313 | } |
314 | |
315 | inftl->MediaUnit = block; |
316 | return 0; |
317 | } |
318 | |
319 | /* Not found. */ |
320 | return -1; |
321 | } |
322 | |
323 | static int memcmpb(void *a, int c, int n) |
324 | { |
325 | int i; |
326 | for (i = 0; i < n; i++) { |
327 | if (c != ((unsigned char *)a)[i]) |
328 | return 1; |
329 | } |
330 | return 0; |
331 | } |
332 | |
333 | /* |
334 | * check_free_sector: check if a free sector is actually FREE, |
335 | * i.e. All 0xff in data and oob area. |
336 | */ |
337 | static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, |
338 | int len, int check_oob) |
339 | { |
340 | u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize]; |
341 | struct mtd_info *mtd = inftl->mbd.mtd; |
342 | size_t retlen; |
343 | int i; |
344 | |
345 | for (i = 0; i < len; i += SECTORSIZE) { |
346 | if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) |
347 | return -1; |
348 | if (memcmpb(buf, 0xff, SECTORSIZE) != 0) |
349 | return -1; |
350 | |
351 | if (check_oob) { |
352 | if(inftl_read_oob(mtd, address, mtd->oobsize, |
353 | &retlen, &buf[SECTORSIZE]) < 0) |
354 | return -1; |
355 | if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) |
356 | return -1; |
357 | } |
358 | address += SECTORSIZE; |
359 | } |
360 | |
361 | return 0; |
362 | } |
363 | |
364 | /* |
365 | * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase |
366 | * Unit and Update INFTL metadata. Each erase operation is |
367 | * checked with check_free_sectors. |
368 | * |
369 | * Return: 0 when succeed, -1 on error. |
370 | * |
371 | * ToDo: 1. Is it necessary to check_free_sector after erasing ?? |
372 | */ |
373 | int INFTL_formatblock(struct INFTLrecord *inftl, int block) |
374 | { |
375 | size_t retlen; |
376 | struct inftl_unittail uci; |
377 | struct erase_info *instr = &inftl->instr; |
378 | struct mtd_info *mtd = inftl->mbd.mtd; |
379 | int physblock; |
380 | |
381 | pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); |
382 | |
383 | memset(instr, 0, sizeof(struct erase_info)); |
384 | |
385 | /* FIXME: Shouldn't we be setting the 'discarded' flag to zero |
386 | _first_? */ |
387 | |
388 | /* Use async erase interface, test return code */ |
389 | instr->mtd = inftl->mbd.mtd; |
390 | instr->addr = block * inftl->EraseSize; |
391 | instr->len = inftl->mbd.mtd->erasesize; |
392 | /* Erase one physical eraseblock at a time, even though the NAND api |
393 | allows us to group them. This way we if we have a failure, we can |
394 | mark only the failed block in the bbt. */ |
395 | for (physblock = 0; physblock < inftl->EraseSize; |
396 | physblock += instr->len, instr->addr += instr->len) { |
397 | mtd_erase(inftl->mbd.mtd, instr); |
398 | |
399 | if (instr->state == MTD_ERASE_FAILED) { |
400 | printk(KERN_WARNING "INFTL: error while formatting block %d\n", |
401 | block); |
402 | goto fail; |
403 | } |
404 | |
405 | /* |
406 | * Check the "freeness" of Erase Unit before updating metadata. |
407 | * FixMe: is this check really necessary? Since we have check |
408 | * the return code after the erase operation. |
409 | */ |
410 | if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) |
411 | goto fail; |
412 | } |
413 | |
414 | uci.EraseMark = cpu_to_le16(ERASE_MARK); |
415 | uci.EraseMark1 = cpu_to_le16(ERASE_MARK); |
416 | uci.Reserved[0] = 0; |
417 | uci.Reserved[1] = 0; |
418 | uci.Reserved[2] = 0; |
419 | uci.Reserved[3] = 0; |
420 | instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; |
421 | if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) |
422 | goto fail; |
423 | return 0; |
424 | fail: |
425 | /* could not format, update the bad block table (caller is responsible |
426 | for setting the PUtable to BLOCK_RESERVED on failure) */ |
427 | mtd_block_markbad(inftl->mbd.mtd, instr->addr); |
428 | return -1; |
429 | } |
430 | |
431 | /* |
432 | * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase |
433 | * Units in a Virtual Unit Chain, i.e. all the units are disconnected. |
434 | * |
435 | * Since the chain is invalid then we will have to erase it from its |
436 | * head (normally for INFTL we go from the oldest). But if it has a |
437 | * loop then there is no oldest... |
438 | */ |
439 | static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) |
440 | { |
441 | unsigned int block = first_block, block1; |
442 | |
443 | printk(KERN_WARNING "INFTL: formatting chain at block %d\n", |
444 | first_block); |
445 | |
446 | for (;;) { |
447 | block1 = inftl->PUtable[block]; |
448 | |
449 | printk(KERN_WARNING "INFTL: formatting block %d\n", block); |
450 | if (INFTL_formatblock(inftl, block) < 0) { |
451 | /* |
452 | * Cannot format !!!! Mark it as Bad Unit, |
453 | */ |
454 | inftl->PUtable[block] = BLOCK_RESERVED; |
455 | } else { |
456 | inftl->PUtable[block] = BLOCK_FREE; |
457 | } |
458 | |
459 | /* Goto next block on the chain */ |
460 | block = block1; |
461 | |
462 | if (block == BLOCK_NIL || block >= inftl->lastEUN) |
463 | break; |
464 | } |
465 | } |
466 | |
467 | void INFTL_dumptables(struct INFTLrecord *s) |
468 | { |
469 | int i; |
470 | |
471 | pr_debug("-------------------------------------------" |
472 | "----------------------------------\n"); |
473 | |
474 | pr_debug("VUtable[%d] ->", s->nb_blocks); |
475 | for (i = 0; i < s->nb_blocks; i++) { |
476 | if ((i % 8) == 0) |
477 | pr_debug("\n%04x: ", i); |
478 | pr_debug("%04x ", s->VUtable[i]); |
479 | } |
480 | |
481 | pr_debug("\n-------------------------------------------" |
482 | "----------------------------------\n"); |
483 | |
484 | pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); |
485 | for (i = 0; i <= s->lastEUN; i++) { |
486 | if ((i % 8) == 0) |
487 | pr_debug("\n%04x: ", i); |
488 | pr_debug("%04x ", s->PUtable[i]); |
489 | } |
490 | |
491 | pr_debug("\n-------------------------------------------" |
492 | "----------------------------------\n"); |
493 | |
494 | pr_debug("INFTL ->\n" |
495 | " EraseSize = %d\n" |
496 | " h/s/c = %d/%d/%d\n" |
497 | " numvunits = %d\n" |
498 | " firstEUN = %d\n" |
499 | " lastEUN = %d\n" |
500 | " numfreeEUNs = %d\n" |
501 | " LastFreeEUN = %d\n" |
502 | " nb_blocks = %d\n" |
503 | " nb_boot_blocks = %d", |
504 | s->EraseSize, s->heads, s->sectors, s->cylinders, |
505 | s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, |
506 | s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); |
507 | |
508 | pr_debug("\n-------------------------------------------" |
509 | "----------------------------------\n"); |
510 | } |
511 | |
512 | void INFTL_dumpVUchains(struct INFTLrecord *s) |
513 | { |
514 | int logical, block, i; |
515 | |
516 | pr_debug("-------------------------------------------" |
517 | "----------------------------------\n"); |
518 | |
519 | pr_debug("INFTL Virtual Unit Chains:\n"); |
520 | for (logical = 0; logical < s->nb_blocks; logical++) { |
521 | block = s->VUtable[logical]; |
522 | if (block > s->nb_blocks) |
523 | continue; |
524 | pr_debug(" LOGICAL %d --> %d ", logical, block); |
525 | for (i = 0; i < s->nb_blocks; i++) { |
526 | if (s->PUtable[block] == BLOCK_NIL) |
527 | break; |
528 | block = s->PUtable[block]; |
529 | pr_debug("%d ", block); |
530 | } |
531 | pr_debug("\n"); |
532 | } |
533 | |
534 | pr_debug("-------------------------------------------" |
535 | "----------------------------------\n"); |
536 | } |
537 | |
538 | int INFTL_mount(struct INFTLrecord *s) |
539 | { |
540 | struct mtd_info *mtd = s->mbd.mtd; |
541 | unsigned int block, first_block, prev_block, last_block; |
542 | unsigned int first_logical_block, logical_block, erase_mark; |
543 | int chain_length, do_format_chain; |
544 | struct inftl_unithead1 h0; |
545 | struct inftl_unittail h1; |
546 | size_t retlen; |
547 | int i; |
548 | u8 *ANACtable, ANAC; |
549 | |
550 | pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); |
551 | |
552 | /* Search for INFTL MediaHeader and Spare INFTL Media Header */ |
553 | if (find_boot_record(s) < 0) { |
554 | printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); |
555 | return -ENXIO; |
556 | } |
557 | |
558 | /* Init the logical to physical table */ |
559 | for (i = 0; i < s->nb_blocks; i++) |
560 | s->VUtable[i] = BLOCK_NIL; |
561 | |
562 | logical_block = block = BLOCK_NIL; |
563 | |
564 | /* Temporary buffer to store ANAC numbers. */ |
565 | ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); |
566 | if (!ANACtable) { |
567 | printk(KERN_WARNING "INFTL: allocation of ANACtable " |
568 | "failed (%zd bytes)\n", |
569 | s->nb_blocks * sizeof(u8)); |
570 | return -ENOMEM; |
571 | } |
572 | |
573 | /* |
574 | * First pass is to explore each physical unit, and construct the |
575 | * virtual chains that exist (newest physical unit goes into VUtable). |
576 | * Any block that is in any way invalid will be left in the |
577 | * NOTEXPLORED state. Then at the end we will try to format it and |
578 | * mark it as free. |
579 | */ |
580 | pr_debug("INFTL: pass 1, explore each unit\n"); |
581 | for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { |
582 | if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) |
583 | continue; |
584 | |
585 | do_format_chain = 0; |
586 | first_logical_block = BLOCK_NIL; |
587 | last_block = BLOCK_NIL; |
588 | block = first_block; |
589 | |
590 | for (chain_length = 0; ; chain_length++) { |
591 | |
592 | if ((chain_length == 0) && |
593 | (s->PUtable[block] != BLOCK_NOTEXPLORED)) { |
594 | /* Nothing to do here, onto next block */ |
595 | break; |
596 | } |
597 | |
598 | if (inftl_read_oob(mtd, block * s->EraseSize + 8, |
599 | 8, &retlen, (char *)&h0) < 0 || |
600 | inftl_read_oob(mtd, block * s->EraseSize + |
601 | 2 * SECTORSIZE + 8, 8, &retlen, |
602 | (char *)&h1) < 0) { |
603 | /* Should never happen? */ |
604 | do_format_chain++; |
605 | break; |
606 | } |
607 | |
608 | logical_block = le16_to_cpu(h0.virtualUnitNo); |
609 | prev_block = le16_to_cpu(h0.prevUnitNo); |
610 | erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); |
611 | ANACtable[block] = h0.ANAC; |
612 | |
613 | /* Previous block is relative to start of Partition */ |
614 | if (prev_block < s->nb_blocks) |
615 | prev_block += s->firstEUN; |
616 | |
617 | /* Already explored partial chain? */ |
618 | if (s->PUtable[block] != BLOCK_NOTEXPLORED) { |
619 | /* Check if chain for this logical */ |
620 | if (logical_block == first_logical_block) { |
621 | if (last_block != BLOCK_NIL) |
622 | s->PUtable[last_block] = block; |
623 | } |
624 | break; |
625 | } |
626 | |
627 | /* Check for invalid block */ |
628 | if (erase_mark != ERASE_MARK) { |
629 | printk(KERN_WARNING "INFTL: corrupt block %d " |
630 | "in chain %d, chain length %d, erase " |
631 | "mark 0x%x?\n", block, first_block, |
632 | chain_length, erase_mark); |
633 | /* |
634 | * Assume end of chain, probably incomplete |
635 | * fold/erase... |
636 | */ |
637 | if (chain_length == 0) |
638 | do_format_chain++; |
639 | break; |
640 | } |
641 | |
642 | /* Check for it being free already then... */ |
643 | if ((logical_block == BLOCK_FREE) || |
644 | (logical_block == BLOCK_NIL)) { |
645 | s->PUtable[block] = BLOCK_FREE; |
646 | break; |
647 | } |
648 | |
649 | /* Sanity checks on block numbers */ |
650 | if ((logical_block >= s->nb_blocks) || |
651 | ((prev_block >= s->nb_blocks) && |
652 | (prev_block != BLOCK_NIL))) { |
653 | if (chain_length > 0) { |
654 | printk(KERN_WARNING "INFTL: corrupt " |
655 | "block %d in chain %d?\n", |
656 | block, first_block); |
657 | do_format_chain++; |
658 | } |
659 | break; |
660 | } |
661 | |
662 | if (first_logical_block == BLOCK_NIL) { |
663 | first_logical_block = logical_block; |
664 | } else { |
665 | if (first_logical_block != logical_block) { |
666 | /* Normal for folded chain... */ |
667 | break; |
668 | } |
669 | } |
670 | |
671 | /* |
672 | * Current block is valid, so if we followed a virtual |
673 | * chain to get here then we can set the previous |
674 | * block pointer in our PUtable now. Then move onto |
675 | * the previous block in the chain. |
676 | */ |
677 | s->PUtable[block] = BLOCK_NIL; |
678 | if (last_block != BLOCK_NIL) |
679 | s->PUtable[last_block] = block; |
680 | last_block = block; |
681 | block = prev_block; |
682 | |
683 | /* Check for end of chain */ |
684 | if (block == BLOCK_NIL) |
685 | break; |
686 | |
687 | /* Validate next block before following it... */ |
688 | if (block > s->lastEUN) { |
689 | printk(KERN_WARNING "INFTL: invalid previous " |
690 | "block %d in chain %d?\n", block, |
691 | first_block); |
692 | do_format_chain++; |
693 | break; |
694 | } |
695 | } |
696 | |
697 | if (do_format_chain) { |
698 | format_chain(s, first_block); |
699 | continue; |
700 | } |
701 | |
702 | /* |
703 | * Looks like a valid chain then. It may not really be the |
704 | * newest block in the chain, but it is the newest we have |
705 | * found so far. We might update it in later iterations of |
706 | * this loop if we find something newer. |
707 | */ |
708 | s->VUtable[first_logical_block] = first_block; |
709 | logical_block = BLOCK_NIL; |
710 | } |
711 | |
712 | INFTL_dumptables(s); |
713 | |
714 | /* |
715 | * Second pass, check for infinite loops in chains. These are |
716 | * possible because we don't update the previous pointers when |
717 | * we fold chains. No big deal, just fix them up in PUtable. |
718 | */ |
719 | pr_debug("INFTL: pass 2, validate virtual chains\n"); |
720 | for (logical_block = 0; logical_block < s->numvunits; logical_block++) { |
721 | block = s->VUtable[logical_block]; |
722 | last_block = BLOCK_NIL; |
723 | |
724 | /* Check for free/reserved/nil */ |
725 | if (block >= BLOCK_RESERVED) |
726 | continue; |
727 | |
728 | ANAC = ANACtable[block]; |
729 | for (i = 0; i < s->numvunits; i++) { |
730 | if (s->PUtable[block] == BLOCK_NIL) |
731 | break; |
732 | if (s->PUtable[block] > s->lastEUN) { |
733 | printk(KERN_WARNING "INFTL: invalid prev %d, " |
734 | "in virtual chain %d\n", |
735 | s->PUtable[block], logical_block); |
736 | s->PUtable[block] = BLOCK_NIL; |
737 | |
738 | } |
739 | if (ANACtable[block] != ANAC) { |
740 | /* |
741 | * Chain must point back to itself. This is ok, |
742 | * but we will need adjust the tables with this |
743 | * newest block and oldest block. |
744 | */ |
745 | s->VUtable[logical_block] = block; |
746 | s->PUtable[last_block] = BLOCK_NIL; |
747 | break; |
748 | } |
749 | |
750 | ANAC--; |
751 | last_block = block; |
752 | block = s->PUtable[block]; |
753 | } |
754 | |
755 | if (i >= s->nb_blocks) { |
756 | /* |
757 | * Uhoo, infinite chain with valid ANACS! |
758 | * Format whole chain... |
759 | */ |
760 | format_chain(s, first_block); |
761 | } |
762 | } |
763 | |
764 | INFTL_dumptables(s); |
765 | INFTL_dumpVUchains(s); |
766 | |
767 | /* |
768 | * Third pass, format unreferenced blocks and init free block count. |
769 | */ |
770 | s->numfreeEUNs = 0; |
771 | s->LastFreeEUN = BLOCK_NIL; |
772 | |
773 | pr_debug("INFTL: pass 3, format unused blocks\n"); |
774 | for (block = s->firstEUN; block <= s->lastEUN; block++) { |
775 | if (s->PUtable[block] == BLOCK_NOTEXPLORED) { |
776 | printk("INFTL: unreferenced block %d, formatting it\n", |
777 | block); |
778 | if (INFTL_formatblock(s, block) < 0) |
779 | s->PUtable[block] = BLOCK_RESERVED; |
780 | else |
781 | s->PUtable[block] = BLOCK_FREE; |
782 | } |
783 | if (s->PUtable[block] == BLOCK_FREE) { |
784 | s->numfreeEUNs++; |
785 | if (s->LastFreeEUN == BLOCK_NIL) |
786 | s->LastFreeEUN = block; |
787 | } |
788 | } |
789 | |
790 | kfree(ANACtable); |
791 | return 0; |
792 | } |
793 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9