Root/drivers/mtd/mtdpart.c

1/*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/list.h>
29#include <linux/kmod.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
32#include <linux/err.h>
33
34#include "mtdcore.h"
35
36/* Our partition linked list */
37static LIST_HEAD(mtd_partitions);
38static DEFINE_MUTEX(mtd_partitions_mutex);
39
40/* Our partition node structure */
41struct mtd_part {
42    struct mtd_info mtd;
43    struct mtd_info *master;
44    uint64_t offset;
45    struct list_head list;
46};
47
48/*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52#define PART(x) ((struct mtd_part *)(x))
53
54
55/*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61        size_t *retlen, u_char *buf)
62{
63    struct mtd_part *part = PART(mtd);
64    struct mtd_ecc_stats stats;
65    int res;
66
67    stats = part->master->ecc_stats;
68    res = part->master->_read(part->master, from + part->offset, len,
69                  retlen, buf);
70    if (unlikely(mtd_is_eccerr(res)))
71        mtd->ecc_stats.failed +=
72            part->master->ecc_stats.failed - stats.failed;
73    else
74        mtd->ecc_stats.corrected +=
75            part->master->ecc_stats.corrected - stats.corrected;
76    return res;
77}
78
79static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80        size_t *retlen, void **virt, resource_size_t *phys)
81{
82    struct mtd_part *part = PART(mtd);
83
84    return part->master->_point(part->master, from + part->offset, len,
85                    retlen, virt, phys);
86}
87
88static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
89{
90    struct mtd_part *part = PART(mtd);
91
92    return part->master->_unpoint(part->master, from + part->offset, len);
93}
94
95static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96                        unsigned long len,
97                        unsigned long offset,
98                        unsigned long flags)
99{
100    struct mtd_part *part = PART(mtd);
101
102    offset += part->offset;
103    return part->master->_get_unmapped_area(part->master, len, offset,
104                        flags);
105}
106
107static int part_read_oob(struct mtd_info *mtd, loff_t from,
108        struct mtd_oob_ops *ops)
109{
110    struct mtd_part *part = PART(mtd);
111    int res;
112
113    if (from >= mtd->size)
114        return -EINVAL;
115    if (ops->datbuf && from + ops->len > mtd->size)
116        return -EINVAL;
117
118    /*
119     * If OOB is also requested, make sure that we do not read past the end
120     * of this partition.
121     */
122    if (ops->oobbuf) {
123        size_t len, pages;
124
125        if (ops->mode == MTD_OPS_AUTO_OOB)
126            len = mtd->oobavail;
127        else
128            len = mtd->oobsize;
129        pages = mtd_div_by_ws(mtd->size, mtd);
130        pages -= mtd_div_by_ws(from, mtd);
131        if (ops->ooboffs + ops->ooblen > pages * len)
132            return -EINVAL;
133    }
134
135    res = part->master->_read_oob(part->master, from + part->offset, ops);
136    if (unlikely(res)) {
137        if (mtd_is_bitflip(res))
138            mtd->ecc_stats.corrected++;
139        if (mtd_is_eccerr(res))
140            mtd->ecc_stats.failed++;
141    }
142    return res;
143}
144
145static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146        size_t len, size_t *retlen, u_char *buf)
147{
148    struct mtd_part *part = PART(mtd);
149    return part->master->_read_user_prot_reg(part->master, from, len,
150                         retlen, buf);
151}
152
153static int part_get_user_prot_info(struct mtd_info *mtd,
154        struct otp_info *buf, size_t len)
155{
156    struct mtd_part *part = PART(mtd);
157    return part->master->_get_user_prot_info(part->master, buf, len);
158}
159
160static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
161        size_t len, size_t *retlen, u_char *buf)
162{
163    struct mtd_part *part = PART(mtd);
164    return part->master->_read_fact_prot_reg(part->master, from, len,
165                         retlen, buf);
166}
167
168static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
169        size_t len)
170{
171    struct mtd_part *part = PART(mtd);
172    return part->master->_get_fact_prot_info(part->master, buf, len);
173}
174
175static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
176        size_t *retlen, const u_char *buf)
177{
178    struct mtd_part *part = PART(mtd);
179    return part->master->_write(part->master, to + part->offset, len,
180                    retlen, buf);
181}
182
183static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
184        size_t *retlen, const u_char *buf)
185{
186    struct mtd_part *part = PART(mtd);
187    return part->master->_panic_write(part->master, to + part->offset, len,
188                      retlen, buf);
189}
190
191static int part_write_oob(struct mtd_info *mtd, loff_t to,
192        struct mtd_oob_ops *ops)
193{
194    struct mtd_part *part = PART(mtd);
195
196    if (to >= mtd->size)
197        return -EINVAL;
198    if (ops->datbuf && to + ops->len > mtd->size)
199        return -EINVAL;
200    return part->master->_write_oob(part->master, to + part->offset, ops);
201}
202
203static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
204        size_t len, size_t *retlen, u_char *buf)
205{
206    struct mtd_part *part = PART(mtd);
207    return part->master->_write_user_prot_reg(part->master, from, len,
208                          retlen, buf);
209}
210
211static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
212        size_t len)
213{
214    struct mtd_part *part = PART(mtd);
215    return part->master->_lock_user_prot_reg(part->master, from, len);
216}
217
218static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
219        unsigned long count, loff_t to, size_t *retlen)
220{
221    struct mtd_part *part = PART(mtd);
222    return part->master->_writev(part->master, vecs, count,
223                     to + part->offset, retlen);
224}
225
226static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
227{
228    struct mtd_part *part = PART(mtd);
229    int ret;
230
231    instr->addr += part->offset;
232    ret = part->master->_erase(part->master, instr);
233    if (ret) {
234        if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
235            instr->fail_addr -= part->offset;
236        instr->addr -= part->offset;
237    }
238    return ret;
239}
240
241void mtd_erase_callback(struct erase_info *instr)
242{
243    if (instr->mtd->_erase == part_erase) {
244        struct mtd_part *part = PART(instr->mtd);
245
246        if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
247            instr->fail_addr -= part->offset;
248        instr->addr -= part->offset;
249    }
250    if (instr->callback)
251        instr->callback(instr);
252}
253EXPORT_SYMBOL_GPL(mtd_erase_callback);
254
255static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
256{
257    struct mtd_part *part = PART(mtd);
258    return part->master->_lock(part->master, ofs + part->offset, len);
259}
260
261static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262{
263    struct mtd_part *part = PART(mtd);
264    return part->master->_unlock(part->master, ofs + part->offset, len);
265}
266
267static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268{
269    struct mtd_part *part = PART(mtd);
270    return part->master->_is_locked(part->master, ofs + part->offset, len);
271}
272
273static void part_sync(struct mtd_info *mtd)
274{
275    struct mtd_part *part = PART(mtd);
276    part->master->_sync(part->master);
277}
278
279static int part_suspend(struct mtd_info *mtd)
280{
281    struct mtd_part *part = PART(mtd);
282    return part->master->_suspend(part->master);
283}
284
285static void part_resume(struct mtd_info *mtd)
286{
287    struct mtd_part *part = PART(mtd);
288    part->master->_resume(part->master);
289}
290
291static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
292{
293    struct mtd_part *part = PART(mtd);
294    ofs += part->offset;
295    return part->master->_block_isbad(part->master, ofs);
296}
297
298static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
299{
300    struct mtd_part *part = PART(mtd);
301    int res;
302
303    ofs += part->offset;
304    res = part->master->_block_markbad(part->master, ofs);
305    if (!res)
306        mtd->ecc_stats.badblocks++;
307    return res;
308}
309
310static inline void free_partition(struct mtd_part *p)
311{
312    kfree(p->mtd.name);
313    kfree(p);
314}
315
316/*
317 * This function unregisters and destroy all slave MTD objects which are
318 * attached to the given master MTD object.
319 */
320
321int del_mtd_partitions(struct mtd_info *master)
322{
323    struct mtd_part *slave, *next;
324    int ret, err = 0;
325
326    mutex_lock(&mtd_partitions_mutex);
327    list_for_each_entry_safe(slave, next, &mtd_partitions, list)
328        if (slave->master == master) {
329            ret = del_mtd_device(&slave->mtd);
330            if (ret < 0) {
331                err = ret;
332                continue;
333            }
334            list_del(&slave->list);
335            free_partition(slave);
336        }
337    mutex_unlock(&mtd_partitions_mutex);
338
339    return err;
340}
341
342static struct mtd_part *allocate_partition(struct mtd_info *master,
343            const struct mtd_partition *part, int partno,
344            uint64_t cur_offset)
345{
346    struct mtd_part *slave;
347    char *name;
348
349    /* allocate the partition structure */
350    slave = kzalloc(sizeof(*slave), GFP_KERNEL);
351    name = kstrdup(part->name, GFP_KERNEL);
352    if (!name || !slave) {
353        printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
354               master->name);
355        kfree(name);
356        kfree(slave);
357        return ERR_PTR(-ENOMEM);
358    }
359
360    /* set up the MTD object for this partition */
361    slave->mtd.type = master->type;
362    slave->mtd.flags = master->flags & ~part->mask_flags;
363    slave->mtd.size = part->size;
364    slave->mtd.writesize = master->writesize;
365    slave->mtd.writebufsize = master->writebufsize;
366    slave->mtd.oobsize = master->oobsize;
367    slave->mtd.oobavail = master->oobavail;
368    slave->mtd.subpage_sft = master->subpage_sft;
369
370    slave->mtd.name = name;
371    slave->mtd.owner = master->owner;
372    slave->mtd.backing_dev_info = master->backing_dev_info;
373
374    /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
375     * to have the same data be in two different partitions.
376     */
377    slave->mtd.dev.parent = master->dev.parent;
378
379    slave->mtd._read = part_read;
380    slave->mtd._write = part_write;
381
382    if (master->_panic_write)
383        slave->mtd._panic_write = part_panic_write;
384
385    if (master->_point && master->_unpoint) {
386        slave->mtd._point = part_point;
387        slave->mtd._unpoint = part_unpoint;
388    }
389
390    if (master->_get_unmapped_area)
391        slave->mtd._get_unmapped_area = part_get_unmapped_area;
392    if (master->_read_oob)
393        slave->mtd._read_oob = part_read_oob;
394    if (master->_write_oob)
395        slave->mtd._write_oob = part_write_oob;
396    if (master->_read_user_prot_reg)
397        slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398    if (master->_read_fact_prot_reg)
399        slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400    if (master->_write_user_prot_reg)
401        slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402    if (master->_lock_user_prot_reg)
403        slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404    if (master->_get_user_prot_info)
405        slave->mtd._get_user_prot_info = part_get_user_prot_info;
406    if (master->_get_fact_prot_info)
407        slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
408    if (master->_sync)
409        slave->mtd._sync = part_sync;
410    if (!partno && !master->dev.class && master->_suspend &&
411        master->_resume) {
412            slave->mtd._suspend = part_suspend;
413            slave->mtd._resume = part_resume;
414    }
415    if (master->_writev)
416        slave->mtd._writev = part_writev;
417    if (master->_lock)
418        slave->mtd._lock = part_lock;
419    if (master->_unlock)
420        slave->mtd._unlock = part_unlock;
421    if (master->_is_locked)
422        slave->mtd._is_locked = part_is_locked;
423    if (master->_block_isbad)
424        slave->mtd._block_isbad = part_block_isbad;
425    if (master->_block_markbad)
426        slave->mtd._block_markbad = part_block_markbad;
427    slave->mtd._erase = part_erase;
428    slave->master = master;
429    slave->offset = part->offset;
430
431    if (slave->offset == MTDPART_OFS_APPEND)
432        slave->offset = cur_offset;
433    if (slave->offset == MTDPART_OFS_NXTBLK) {
434        slave->offset = cur_offset;
435        if (mtd_mod_by_eb(cur_offset, master) != 0) {
436            /* Round up to next erasesize */
437            slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438            printk(KERN_NOTICE "Moving partition %d: "
439                   "0x%012llx -> 0x%012llx\n", partno,
440                   (unsigned long long)cur_offset, (unsigned long long)slave->offset);
441        }
442    }
443    if (slave->offset == MTDPART_OFS_RETAIN) {
444        slave->offset = cur_offset;
445        if (master->size - slave->offset >= slave->mtd.size) {
446            slave->mtd.size = master->size - slave->offset
447                            - slave->mtd.size;
448        } else {
449            printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
450                part->name, master->size - slave->offset,
451                slave->mtd.size);
452            /* register to preserve ordering */
453            goto out_register;
454        }
455    }
456    if (slave->mtd.size == MTDPART_SIZ_FULL)
457        slave->mtd.size = master->size - slave->offset;
458
459    printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460        (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
461
462    /* let's do some sanity checks */
463    if (slave->offset >= master->size) {
464        /* let's register it anyway to preserve ordering */
465        slave->offset = 0;
466        slave->mtd.size = 0;
467        printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
468            part->name);
469        goto out_register;
470    }
471    if (slave->offset + slave->mtd.size > master->size) {
472        slave->mtd.size = master->size - slave->offset;
473        printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
474            part->name, master->name, (unsigned long long)slave->mtd.size);
475    }
476    if (master->numeraseregions > 1) {
477        /* Deal with variable erase size stuff */
478        int i, max = master->numeraseregions;
479        u64 end = slave->offset + slave->mtd.size;
480        struct mtd_erase_region_info *regions = master->eraseregions;
481
482        /* Find the first erase regions which is part of this
483         * partition. */
484        for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
485            ;
486        /* The loop searched for the region _behind_ the first one */
487        if (i > 0)
488            i--;
489
490        /* Pick biggest erasesize */
491        for (; i < max && regions[i].offset < end; i++) {
492            if (slave->mtd.erasesize < regions[i].erasesize) {
493                slave->mtd.erasesize = regions[i].erasesize;
494            }
495        }
496        BUG_ON(slave->mtd.erasesize == 0);
497    } else {
498        /* Single erase size */
499        slave->mtd.erasesize = master->erasesize;
500    }
501
502    if ((slave->mtd.flags & MTD_WRITEABLE) &&
503        mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504        /* Doesn't start on a boundary of major erase size */
505        /* FIXME: Let it be writable if it is on a boundary of
506         * _minor_ erase size though */
507        slave->mtd.flags &= ~MTD_WRITEABLE;
508        printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
509            part->name);
510    }
511    if ((slave->mtd.flags & MTD_WRITEABLE) &&
512        mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513        slave->mtd.flags &= ~MTD_WRITEABLE;
514        printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
515            part->name);
516    }
517
518    slave->mtd.ecclayout = master->ecclayout;
519    slave->mtd.ecc_strength = master->ecc_strength;
520    slave->mtd.bitflip_threshold = master->bitflip_threshold;
521
522    if (master->_block_isbad) {
523        uint64_t offs = 0;
524
525        while (offs < slave->mtd.size) {
526            if (mtd_block_isbad(master, offs + slave->offset))
527                slave->mtd.ecc_stats.badblocks++;
528            offs += slave->mtd.erasesize;
529        }
530    }
531
532out_register:
533    return slave;
534}
535
536int mtd_add_partition(struct mtd_info *master, char *name,
537              long long offset, long long length)
538{
539    struct mtd_partition part;
540    struct mtd_part *p, *new;
541    uint64_t start, end;
542    int ret = 0;
543
544    /* the direct offset is expected */
545    if (offset == MTDPART_OFS_APPEND ||
546        offset == MTDPART_OFS_NXTBLK)
547        return -EINVAL;
548
549    if (length == MTDPART_SIZ_FULL)
550        length = master->size - offset;
551
552    if (length <= 0)
553        return -EINVAL;
554
555    part.name = name;
556    part.size = length;
557    part.offset = offset;
558    part.mask_flags = 0;
559    part.ecclayout = NULL;
560
561    new = allocate_partition(master, &part, -1, offset);
562    if (IS_ERR(new))
563        return PTR_ERR(new);
564
565    start = offset;
566    end = offset + length;
567
568    mutex_lock(&mtd_partitions_mutex);
569    list_for_each_entry(p, &mtd_partitions, list)
570        if (p->master == master) {
571            if ((start >= p->offset) &&
572                (start < (p->offset + p->mtd.size)))
573                goto err_inv;
574
575            if ((end >= p->offset) &&
576                (end < (p->offset + p->mtd.size)))
577                goto err_inv;
578        }
579
580    list_add(&new->list, &mtd_partitions);
581    mutex_unlock(&mtd_partitions_mutex);
582
583    add_mtd_device(&new->mtd);
584
585    return ret;
586err_inv:
587    mutex_unlock(&mtd_partitions_mutex);
588    free_partition(new);
589    return -EINVAL;
590}
591EXPORT_SYMBOL_GPL(mtd_add_partition);
592
593int mtd_del_partition(struct mtd_info *master, int partno)
594{
595    struct mtd_part *slave, *next;
596    int ret = -EINVAL;
597
598    mutex_lock(&mtd_partitions_mutex);
599    list_for_each_entry_safe(slave, next, &mtd_partitions, list)
600        if ((slave->master == master) &&
601            (slave->mtd.index == partno)) {
602            ret = del_mtd_device(&slave->mtd);
603            if (ret < 0)
604                break;
605
606            list_del(&slave->list);
607            free_partition(slave);
608            break;
609        }
610    mutex_unlock(&mtd_partitions_mutex);
611
612    return ret;
613}
614EXPORT_SYMBOL_GPL(mtd_del_partition);
615
616/*
617 * This function, given a master MTD object and a partition table, creates
618 * and registers slave MTD objects which are bound to the master according to
619 * the partition definitions.
620 *
621 * We don't register the master, or expect the caller to have done so,
622 * for reasons of data integrity.
623 */
624
625int add_mtd_partitions(struct mtd_info *master,
626               const struct mtd_partition *parts,
627               int nbparts)
628{
629    struct mtd_part *slave;
630    uint64_t cur_offset = 0;
631    int i;
632
633    printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
634
635    for (i = 0; i < nbparts; i++) {
636        slave = allocate_partition(master, parts + i, i, cur_offset);
637        if (IS_ERR(slave))
638            return PTR_ERR(slave);
639
640        mutex_lock(&mtd_partitions_mutex);
641        list_add(&slave->list, &mtd_partitions);
642        mutex_unlock(&mtd_partitions_mutex);
643
644        add_mtd_device(&slave->mtd);
645
646        cur_offset = slave->offset + slave->mtd.size;
647    }
648
649    return 0;
650}
651
652static DEFINE_SPINLOCK(part_parser_lock);
653static LIST_HEAD(part_parsers);
654
655static struct mtd_part_parser *get_partition_parser(const char *name)
656{
657    struct mtd_part_parser *p, *ret = NULL;
658
659    spin_lock(&part_parser_lock);
660
661    list_for_each_entry(p, &part_parsers, list)
662        if (!strcmp(p->name, name) && try_module_get(p->owner)) {
663            ret = p;
664            break;
665        }
666
667    spin_unlock(&part_parser_lock);
668
669    return ret;
670}
671
672#define put_partition_parser(p) do { module_put((p)->owner); } while (0)
673
674int register_mtd_parser(struct mtd_part_parser *p)
675{
676    spin_lock(&part_parser_lock);
677    list_add(&p->list, &part_parsers);
678    spin_unlock(&part_parser_lock);
679
680    return 0;
681}
682EXPORT_SYMBOL_GPL(register_mtd_parser);
683
684int deregister_mtd_parser(struct mtd_part_parser *p)
685{
686    spin_lock(&part_parser_lock);
687    list_del(&p->list);
688    spin_unlock(&part_parser_lock);
689    return 0;
690}
691EXPORT_SYMBOL_GPL(deregister_mtd_parser);
692
693/*
694 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
695 * are changing this array!
696 */
697static const char *default_mtd_part_types[] = {
698    "cmdlinepart",
699    "ofpart",
700    NULL
701};
702
703/**
704 * parse_mtd_partitions - parse MTD partitions
705 * @master: the master partition (describes whole MTD device)
706 * @types: names of partition parsers to try or %NULL
707 * @pparts: array of partitions found is returned here
708 * @data: MTD partition parser-specific data
709 *
710 * This function tries to find partition on MTD device @master. It uses MTD
711 * partition parsers, specified in @types. However, if @types is %NULL, then
712 * the default list of parsers is used. The default list contains only the
713 * "cmdlinepart" and "ofpart" parsers ATM.
714 *
715 * This function may return:
716 * o a negative error code in case of failure
717 * o zero if no partitions were found
718 * o a positive number of found partitions, in which case on exit @pparts will
719 * point to an array containing this number of &struct mtd_info objects.
720 */
721int parse_mtd_partitions(struct mtd_info *master, const char **types,
722             struct mtd_partition **pparts,
723             struct mtd_part_parser_data *data)
724{
725    struct mtd_part_parser *parser;
726    int ret = 0;
727
728    if (!types)
729        types = default_mtd_part_types;
730
731    for ( ; ret <= 0 && *types; types++) {
732        parser = get_partition_parser(*types);
733        if (!parser && !request_module("%s", *types))
734            parser = get_partition_parser(*types);
735        if (!parser)
736            continue;
737        ret = (*parser->parse_fn)(master, pparts, data);
738        if (ret > 0) {
739            printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
740                   ret, parser->name, master->name);
741        }
742        put_partition_parser(parser);
743    }
744    return ret;
745}
746
747int mtd_is_partition(struct mtd_info *mtd)
748{
749    struct mtd_part *part;
750    int ispart = 0;
751
752    mutex_lock(&mtd_partitions_mutex);
753    list_for_each_entry(part, &mtd_partitions, list)
754        if (&part->mtd == mtd) {
755            ispart = 1;
756            break;
757        }
758    mutex_unlock(&mtd_partitions_mutex);
759
760    return ispart;
761}
762EXPORT_SYMBOL_GPL(mtd_is_partition);
763

Archive Download this file



interactive