Root/drivers/parisc/ccio-dma.c

1/*
2** ccio-dma.c:
3** DMA management routines for first generation cache-coherent machines.
4** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5**
6** (c) Copyright 2000 Grant Grundler
7** (c) Copyright 2000 Ryan Bradetich
8** (c) Copyright 2000 Hewlett-Packard Company
9**
10** This program is free software; you can redistribute it and/or modify
11** it under the terms of the GNU General Public License as published by
12** the Free Software Foundation; either version 2 of the License, or
13** (at your option) any later version.
14**
15**
16** "Real Mode" operation refers to U2/Uturn chip operation.
17** U2/Uturn were designed to perform coherency checks w/o using
18** the I/O MMU - basically what x86 does.
19**
20** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23**
24** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25**
26** Drawbacks of using Real Mode are:
27** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29** o Ability to do scatter/gather in HW is lost.
30** o Doesn't work under PCX-U/U+ machines since they didn't follow
31** the coherency design originally worked out. Only PCX-W does.
32*/
33
34#include <linux/types.h>
35#include <linux/kernel.h>
36#include <linux/init.h>
37#include <linux/mm.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/string.h>
41#include <linux/pci.h>
42#include <linux/reboot.h>
43#include <linux/proc_fs.h>
44#include <linux/seq_file.h>
45#include <linux/scatterlist.h>
46#include <linux/iommu-helper.h>
47#include <linux/export.h>
48
49#include <asm/byteorder.h>
50#include <asm/cache.h> /* for L1_CACHE_BYTES */
51#include <asm/uaccess.h>
52#include <asm/page.h>
53#include <asm/dma.h>
54#include <asm/io.h>
55#include <asm/hardware.h> /* for register_module() */
56#include <asm/parisc-device.h>
57
58/*
59** Choose "ccio" since that's what HP-UX calls it.
60** Make it easier for folks to migrate from one to the other :^)
61*/
62#define MODULE_NAME "ccio"
63
64#undef DEBUG_CCIO_RES
65#undef DEBUG_CCIO_RUN
66#undef DEBUG_CCIO_INIT
67#undef DEBUG_CCIO_RUN_SG
68
69#ifdef CONFIG_PROC_FS
70/* depends on proc fs support. But costs CPU performance. */
71#undef CCIO_COLLECT_STATS
72#endif
73
74#include <asm/runway.h> /* for proc_runway_root */
75
76#ifdef DEBUG_CCIO_INIT
77#define DBG_INIT(x...) printk(x)
78#else
79#define DBG_INIT(x...)
80#endif
81
82#ifdef DEBUG_CCIO_RUN
83#define DBG_RUN(x...) printk(x)
84#else
85#define DBG_RUN(x...)
86#endif
87
88#ifdef DEBUG_CCIO_RES
89#define DBG_RES(x...) printk(x)
90#else
91#define DBG_RES(x...)
92#endif
93
94#ifdef DEBUG_CCIO_RUN_SG
95#define DBG_RUN_SG(x...) printk(x)
96#else
97#define DBG_RUN_SG(x...)
98#endif
99
100#define CCIO_INLINE inline
101#define WRITE_U32(value, addr) __raw_writel(value, addr)
102#define READ_U32(addr) __raw_readl(addr)
103
104#define U2_IOA_RUNWAY 0x580
105#define U2_BC_GSC 0x501
106#define UTURN_IOA_RUNWAY 0x581
107#define UTURN_BC_GSC 0x502
108
109#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
112
113struct ioa_registers {
114        /* Runway Supervisory Set */
115        int32_t unused1[12];
116        uint32_t io_command; /* Offset 12 */
117        uint32_t io_status; /* Offset 13 */
118        uint32_t io_control; /* Offset 14 */
119        int32_t unused2[1];
120
121        /* Runway Auxiliary Register Set */
122        uint32_t io_err_resp; /* Offset 0 */
123        uint32_t io_err_info; /* Offset 1 */
124        uint32_t io_err_req; /* Offset 2 */
125        uint32_t io_err_resp_hi; /* Offset 3 */
126        uint32_t io_tlb_entry_m; /* Offset 4 */
127        uint32_t io_tlb_entry_l; /* Offset 5 */
128        uint32_t unused3[1];
129        uint32_t io_pdir_base; /* Offset 7 */
130        uint32_t io_io_low_hv; /* Offset 8 */
131        uint32_t io_io_high_hv; /* Offset 9 */
132        uint32_t unused4[1];
133        uint32_t io_chain_id_mask; /* Offset 11 */
134        uint32_t unused5[2];
135        uint32_t io_io_low; /* Offset 14 */
136        uint32_t io_io_high; /* Offset 15 */
137};
138
139/*
140** IOA Registers
141** -------------
142**
143** Runway IO_CONTROL Register (+0x38)
144**
145** The Runway IO_CONTROL register controls the forwarding of transactions.
146**
147** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
148** | HV | TLB | reserved | HV | mode | reserved |
149**
150** o mode field indicates the address translation of transactions
151** forwarded from Runway to GSC+:
152** Mode Name Value Definition
153** Off (default) 0 Opaque to matching addresses.
154** Include 1 Transparent for matching addresses.
155** Peek 3 Map matching addresses.
156**
157** + "Off" mode: Runway transactions which match the I/O range
158** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159** + "Include" mode: all addresses within the I/O range specified
160** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161** forwarded. This is the I/O Adapter's normal operating mode.
162** + "Peek" mode: used during system configuration to initialize the
163** GSC+ bus. Runway Write_Shorts in the address range specified by
164** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165** *AND* the GSC+ address is remapped to the Broadcast Physical
166** Address space by setting the 14 high order address bits of the
167** 32 bit GSC+ address to ones.
168**
169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170** "Real" mode is the poweron default.
171**
172** TLB Mode Value Description
173** Real 0 No TLB translation. Address is directly mapped and the
174** virtual address is composed of selected physical bits.
175** Error 1 Software fills the TLB manually.
176** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
177**
178**
179** IO_IO_LOW_HV +0x60 (HV dependent)
180** IO_IO_HIGH_HV +0x64 (HV dependent)
181** IO_IO_LOW +0x78 (Architected register)
182** IO_IO_HIGH +0x7c (Architected register)
183**
184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185** I/O Adapter address space, respectively.
186**
187** 0 ... 7 | 8 ... 15 | 16 ... 31 |
188** 11111111 | 11111111 | address |
189**
190** Each LOW/HIGH pair describes a disjoint address space region.
191** (2 per GSC+ port). Each incoming Runway transaction address is compared
192** with both sets of LOW/HIGH registers. If the address is in the range
193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194** for forwarded to the respective GSC+ bus.
195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196** an address space region.
197**
198** In order for a Runway address to reside within GSC+ extended address space:
199** Runway Address [0:7] must identically compare to 8'b11111111
200** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
201** Runway Address [12:23] must be greater than or equal to
202** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203** Runway Address [24:39] is not used in the comparison.
204**
205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206** as follows:
207** GSC+ Address[0:3] 4'b1111
208** GSC+ Address[4:29] Runway Address[12:37]
209** GSC+ Address[30:31] 2'b00
210**
211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212** is interrogated and address space is defined. The operating system will
213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214** the PDC initialization. However, the hardware version dependent IO_IO_LOW
215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216**
217** Writes to both sets of registers will take effect immediately, bypassing
218** the queues, which ensures that subsequent Runway transactions are checked
219** against the updated bounds values. However reads are queued, introducing
220** the possibility of a read being bypassed by a subsequent write to the same
221** register. This sequence can be avoided by having software wait for read
222** returns before issuing subsequent writes.
223*/
224
225struct ioc {
226    struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
227    u8 *res_map; /* resource map, bit == pdir entry */
228    u64 *pdir_base; /* physical base address */
229    u32 pdir_size; /* bytes, function of IOV Space size */
230    u32 res_hint; /* next available IOVP -
231                       circular search */
232    u32 res_size; /* size of resource map in bytes */
233    spinlock_t res_lock;
234
235#ifdef CCIO_COLLECT_STATS
236#define CCIO_SEARCH_SAMPLE 0x100
237    unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238    unsigned long avg_idx; /* current index into avg_search */
239    unsigned long used_pages;
240    unsigned long msingle_calls;
241    unsigned long msingle_pages;
242    unsigned long msg_calls;
243    unsigned long msg_pages;
244    unsigned long usingle_calls;
245    unsigned long usingle_pages;
246    unsigned long usg_calls;
247    unsigned long usg_pages;
248#endif
249    unsigned short cujo20_bug;
250
251    /* STUFF We don't need in performance path */
252    u32 chainid_shift; /* specify bit location of chain_id */
253    struct ioc *next; /* Linked list of discovered iocs */
254    const char *name; /* device name from firmware */
255    unsigned int hw_path; /* the hardware path this ioc is associatd with */
256    struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
257    struct resource mmio_region[2]; /* The "routed" MMIO regions */
258};
259
260static struct ioc *ioc_list;
261static int ioc_count;
262
263/**************************************************************
264*
265* I/O Pdir Resource Management
266*
267* Bits set in the resource map are in use.
268* Each bit can represent a number of pages.
269* LSbs represent lower addresses (IOVA's).
270*
271* This was was copied from sba_iommu.c. Don't try to unify
272* the two resource managers unless a way to have different
273* allocation policies is also adjusted. We'd like to avoid
274* I/O TLB thrashing by having resource allocation policy
275* match the I/O TLB replacement policy.
276*
277***************************************************************/
278#define IOVP_SIZE PAGE_SIZE
279#define IOVP_SHIFT PAGE_SHIFT
280#define IOVP_MASK PAGE_MASK
281
282/* Convert from IOVP to IOVA and vice versa. */
283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285
286#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
287#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
289
290/*
291** Don't worry about the 150% average search length on a miss.
292** If the search wraps around, and passes the res_hint, it will
293** cause the kernel to panic anyhow.
294*/
295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
296       for(; res_ptr < res_end; ++res_ptr) { \
297        int ret;\
298        unsigned int idx;\
299        idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300        ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301        if ((0 == (*res_ptr & mask)) && !ret) { \
302            *res_ptr |= mask; \
303            res_idx = idx;\
304            ioc->res_hint = res_idx + (size >> 3); \
305            goto resource_found; \
306        } \
307    }
308
309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313       res_ptr = (u##size *)&(ioc)->res_map[0]; \
314       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315
316/*
317** Find available bit in this ioa's resource map.
318** Use a "circular" search:
319** o Most IOVA's are "temporary" - avg search time should be small.
320** o keep a history of what happened for debugging
321** o KISS.
322**
323** Perf optimizations:
324** o search for log2(size) bits at a time.
325** o search for available resource bits using byte/word/whatever.
326** o use different search for "large" (eg > 4 pages) or "very large"
327** (eg > 16 pages) mappings.
328*/
329
330/**
331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
332 * @ioc: The I/O Controller.
333 * @pages_needed: The requested number of pages to be mapped into the
334 * I/O Pdir...
335 *
336 * This function searches the resource map of the ioc to locate a range
337 * of available pages for the requested size.
338 */
339static int
340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
341{
342    unsigned int pages_needed = size >> IOVP_SHIFT;
343    unsigned int res_idx;
344    unsigned long boundary_size;
345#ifdef CCIO_COLLECT_STATS
346    unsigned long cr_start = mfctl(16);
347#endif
348    
349    BUG_ON(pages_needed == 0);
350    BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351     
352    DBG_RES("%s() size: %d pages_needed %d\n",
353        __func__, size, pages_needed);
354
355    /*
356    ** "seek and ye shall find"...praying never hurts either...
357    ** ggg sacrifices another 710 to the computer gods.
358    */
359
360    boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
361                  1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
362
363    if (pages_needed <= 8) {
364        /*
365         * LAN traffic will not thrash the TLB IFF the same NIC
366         * uses 8 adjacent pages to map separate payload data.
367         * ie the same byte in the resource bit map.
368         */
369#if 0
370        /* FIXME: bit search should shift it's way through
371         * an unsigned long - not byte at a time. As it is now,
372         * we effectively allocate this byte to this mapping.
373         */
374        unsigned long mask = ~(~0UL >> pages_needed);
375        CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376#else
377        CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378#endif
379    } else if (pages_needed <= 16) {
380        CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381    } else if (pages_needed <= 32) {
382        CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383#ifdef __LP64__
384    } else if (pages_needed <= 64) {
385        CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386#endif
387    } else {
388        panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389               __FILE__, __func__, pages_needed);
390    }
391
392    panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
393          __func__);
394    
395resource_found:
396    
397    DBG_RES("%s() res_idx %d res_hint: %d\n",
398        __func__, res_idx, ioc->res_hint);
399
400#ifdef CCIO_COLLECT_STATS
401    {
402        unsigned long cr_end = mfctl(16);
403        unsigned long tmp = cr_end - cr_start;
404        /* check for roll over */
405        cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
406    }
407    ioc->avg_search[ioc->avg_idx++] = cr_start;
408    ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
409    ioc->used_pages += pages_needed;
410#endif
411    /*
412    ** return the bit address.
413    */
414    return res_idx << 3;
415}
416
417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419        BUG_ON((*res_ptr & mask) != mask); \
420        *res_ptr &= ~(mask);
421
422/**
423 * ccio_free_range - Free pages from the ioc's resource map.
424 * @ioc: The I/O Controller.
425 * @iova: The I/O Virtual Address.
426 * @pages_mapped: The requested number of pages to be freed from the
427 * I/O Pdir.
428 *
429 * This function frees the resouces allocated for the iova.
430 */
431static void
432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433{
434    unsigned long iovp = CCIO_IOVP(iova);
435    unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436
437    BUG_ON(pages_mapped == 0);
438    BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
439    BUG_ON(pages_mapped > BITS_PER_LONG);
440
441    DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
442        __func__, res_idx, pages_mapped);
443
444#ifdef CCIO_COLLECT_STATS
445    ioc->used_pages -= pages_mapped;
446#endif
447
448    if(pages_mapped <= 8) {
449#if 0
450        /* see matching comments in alloc_range */
451        unsigned long mask = ~(~0UL >> pages_mapped);
452        CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453#else
454        CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
455#endif
456    } else if(pages_mapped <= 16) {
457        CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
458    } else if(pages_mapped <= 32) {
459        CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460#ifdef __LP64__
461    } else if(pages_mapped <= 64) {
462        CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
463#endif
464    } else {
465        panic("%s:%s() Too many pages to unmap.\n", __FILE__,
466              __func__);
467    }
468}
469
470/****************************************************************
471**
472** CCIO dma_ops support routines
473**
474*****************************************************************/
475
476typedef unsigned long space_t;
477#define KERNEL_SPACE 0
478
479/*
480** DMA "Page Type" and Hints
481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482** set for subcacheline DMA transfers since we don't want to damage the
483** other part of a cacheline.
484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486** data can avoid this if the mapping covers full cache lines.
487** o STOP_MOST is needed for atomicity across cachelines.
488** Apparently only "some EISA devices" need this.
489** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490** to use this hint iff the EISA devices needs this feature.
491** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492** o PREFETCH should *not* be set for cases like Multiple PCI devices
493** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494** device can be fetched and multiply DMA streams will thrash the
495** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496** and Invalidation of Prefetch Entries".
497**
498** FIXME: the default hints need to be per GSC device - not global.
499**
500** HP-UX dorks: linux device driver programming model is totally different
501** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502** do special things to work on non-coherent platforms...linux has to
503** be much more careful with this.
504*/
505#define IOPDIR_VALID 0x01UL
506#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
507#ifdef CONFIG_EISA
508#define HINT_STOP_MOST 0x04UL /* LSL support */
509#else
510#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
511#endif
512#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
513#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
514
515
516/*
517** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518** ccio_alloc_consistent() depends on this to get SAFE_DMA
519** when it passes in BIDIRECTIONAL flag.
520*/
521static u32 hint_lookup[] = {
522    [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
523    [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
524    [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
525};
526
527/**
528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
529 * @pdir_ptr: A pointer into I/O Pdir.
530 * @sid: The Space Identifier.
531 * @vba: The virtual address.
532 * @hints: The DMA Hint.
533 *
534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
536 * entry consists of 8 bytes as shown below (MSB == bit 0):
537 *
538 *
539 * WORD 0:
540 * +------+----------------+-----------------------------------------------+
541 * | Phys | Virtual Index | Phys |
542 * | 0:3 | 0:11 | 4:19 |
543 * |4 bits| 12 bits | 16 bits |
544 * +------+----------------+-----------------------------------------------+
545 * WORD 1:
546 * +-----------------------+-----------------------------------------------+
547 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
548 * | 20:39 | | Enable |Enable | |Enable|DMA | |
549 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
550 * +-----------------------+-----------------------------------------------+
551 *
552 * The virtual index field is filled with the results of the LCI
553 * (Load Coherence Index) instruction. The 8 bits used for the virtual
554 * index are bits 12:19 of the value returned by LCI.
555 */
556static void CCIO_INLINE
557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
558           unsigned long hints)
559{
560    register unsigned long pa;
561    register unsigned long ci; /* coherent index */
562
563    /* We currently only support kernel addresses */
564    BUG_ON(sid != KERNEL_SPACE);
565
566    mtsp(sid,1);
567
568    /*
569    ** WORD 1 - low order word
570    ** "hints" parm includes the VALID bit!
571    ** "dep" clobbers the physical address offset bits as well.
572    */
573    pa = virt_to_phys(vba);
574    asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
575    ((u32 *)pdir_ptr)[1] = (u32) pa;
576
577    /*
578    ** WORD 0 - high order word
579    */
580
581#ifdef __LP64__
582    /*
583    ** get bits 12:15 of physical address
584    ** shift bits 16:31 of physical address
585    ** and deposit them
586    */
587    asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588    asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589    asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
590#else
591    pa = 0;
592#endif
593    /*
594    ** get CPU coherency index bits
595    ** Grab virtual index [0:11]
596    ** Deposit virt_idx bits into I/O PDIR word
597    */
598    asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
599    asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600    asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
601
602    ((u32 *)pdir_ptr)[0] = (u32) pa;
603
604
605    /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606    ** PCX-U/U+ do. (eg C200/C240)
607    ** PCX-T'? Don't know. (eg C110 or similar K-class)
608    **
609    ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610    ** Hopefully we can patch (NOP) these out at boot time somehow.
611    **
612    ** "Since PCX-U employs an offset hash that is incompatible with
613    ** the real mode coherence index generation of U2, the PDIR entry
614    ** must be flushed to memory to retain coherence."
615    */
616    asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
617    asm volatile("sync");
618}
619
620/**
621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
622 * @ioc: The I/O Controller.
623 * @iovp: The I/O Virtual Page.
624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
625 *
626 * Purge invalid I/O PDIR entries from the I/O TLB.
627 *
628 * FIXME: Can we change the byte_cnt to pages_mapped?
629 */
630static CCIO_INLINE void
631ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
632{
633    u32 chain_size = 1 << ioc->chainid_shift;
634
635    iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
636    byte_cnt += chain_size;
637
638    while(byte_cnt > chain_size) {
639        WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
640        iovp += chain_size;
641        byte_cnt -= chain_size;
642    }
643}
644
645/**
646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
647 * @ioc: The I/O Controller.
648 * @iova: The I/O Virtual Address.
649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
650 *
651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
652 * TLB entries.
653 *
654 * FIXME: at some threshold it might be "cheaper" to just blow
655 * away the entire I/O TLB instead of individual entries.
656 *
657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
658 * PDIR entry - just once for each possible TLB entry.
659 * (We do need to maker I/O PDIR entries invalid regardless).
660 *
661 * FIXME: Can we change byte_cnt to pages_mapped?
662 */
663static CCIO_INLINE void
664ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
665{
666    u32 iovp = (u32)CCIO_IOVP(iova);
667    size_t saved_byte_cnt;
668
669    /* round up to nearest page size */
670    saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
671
672    while(byte_cnt > 0) {
673        /* invalidate one page at a time */
674        unsigned int idx = PDIR_INDEX(iovp);
675        char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
676
677        BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
678        pdir_ptr[7] = 0; /* clear only VALID bit */
679        /*
680        ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681        ** PCX-U/U+ do. (eg C200/C240)
682        ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
683        **
684        ** Hopefully someone figures out how to patch (NOP) the
685        ** FDC/SYNC out at boot time.
686        */
687        asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
688
689        iovp += IOVP_SIZE;
690        byte_cnt -= IOVP_SIZE;
691    }
692
693    asm volatile("sync");
694    ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
695}
696
697/****************************************************************
698**
699** CCIO dma_ops
700**
701*****************************************************************/
702
703/**
704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
705 * @dev: The PCI device.
706 * @mask: A bit mask describing the DMA address range of the device.
707 *
708 * This function implements the pci_dma_supported function.
709 */
710static int
711ccio_dma_supported(struct device *dev, u64 mask)
712{
713    if(dev == NULL) {
714        printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
715        BUG();
716        return 0;
717    }
718
719    /* only support 32-bit devices (ie PCI/GSC) */
720    return (int)(mask == 0xffffffffUL);
721}
722
723/**
724 * ccio_map_single - Map an address range into the IOMMU.
725 * @dev: The PCI device.
726 * @addr: The start address of the DMA region.
727 * @size: The length of the DMA region.
728 * @direction: The direction of the DMA transaction (to/from device).
729 *
730 * This function implements the pci_map_single function.
731 */
732static dma_addr_t
733ccio_map_single(struct device *dev, void *addr, size_t size,
734        enum dma_data_direction direction)
735{
736    int idx;
737    struct ioc *ioc;
738    unsigned long flags;
739    dma_addr_t iovp;
740    dma_addr_t offset;
741    u64 *pdir_start;
742    unsigned long hint = hint_lookup[(int)direction];
743
744    BUG_ON(!dev);
745    ioc = GET_IOC(dev);
746
747    BUG_ON(size <= 0);
748
749    /* save offset bits */
750    offset = ((unsigned long) addr) & ~IOVP_MASK;
751
752    /* round up to nearest IOVP_SIZE */
753    size = ALIGN(size + offset, IOVP_SIZE);
754    spin_lock_irqsave(&ioc->res_lock, flags);
755
756#ifdef CCIO_COLLECT_STATS
757    ioc->msingle_calls++;
758    ioc->msingle_pages += size >> IOVP_SHIFT;
759#endif
760
761    idx = ccio_alloc_range(ioc, dev, size);
762    iovp = (dma_addr_t)MKIOVP(idx);
763
764    pdir_start = &(ioc->pdir_base[idx]);
765
766    DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
767        __func__, addr, (long)iovp | offset, size);
768
769    /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770    if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
771        hint |= HINT_SAFE_DMA;
772
773    while(size > 0) {
774        ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
775
776        DBG_RUN(" pdir %p %08x%08x\n",
777            pdir_start,
778            (u32) (((u32 *) pdir_start)[0]),
779            (u32) (((u32 *) pdir_start)[1]));
780        ++pdir_start;
781        addr += IOVP_SIZE;
782        size -= IOVP_SIZE;
783    }
784
785    spin_unlock_irqrestore(&ioc->res_lock, flags);
786
787    /* form complete address */
788    return CCIO_IOVA(iovp, offset);
789}
790
791/**
792 * ccio_unmap_single - Unmap an address range from the IOMMU.
793 * @dev: The PCI device.
794 * @addr: The start address of the DMA region.
795 * @size: The length of the DMA region.
796 * @direction: The direction of the DMA transaction (to/from device).
797 *
798 * This function implements the pci_unmap_single function.
799 */
800static void
801ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
802          enum dma_data_direction direction)
803{
804    struct ioc *ioc;
805    unsigned long flags;
806    dma_addr_t offset = iova & ~IOVP_MASK;
807    
808    BUG_ON(!dev);
809    ioc = GET_IOC(dev);
810
811    DBG_RUN("%s() iovp 0x%lx/%x\n",
812        __func__, (long)iova, size);
813
814    iova ^= offset; /* clear offset bits */
815    size += offset;
816    size = ALIGN(size, IOVP_SIZE);
817
818    spin_lock_irqsave(&ioc->res_lock, flags);
819
820#ifdef CCIO_COLLECT_STATS
821    ioc->usingle_calls++;
822    ioc->usingle_pages += size >> IOVP_SHIFT;
823#endif
824
825    ccio_mark_invalid(ioc, iova, size);
826    ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
827    spin_unlock_irqrestore(&ioc->res_lock, flags);
828}
829
830/**
831 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
832 * @dev: The PCI device.
833 * @size: The length of the DMA region.
834 * @dma_handle: The DMA address handed back to the device (not the cpu).
835 *
836 * This function implements the pci_alloc_consistent function.
837 */
838static void *
839ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
840{
841      void *ret;
842#if 0
843/* GRANT Need to establish hierarchy for non-PCI devs as well
844** and then provide matching gsc_map_xxx() functions for them as well.
845*/
846    if(!hwdev) {
847        /* only support PCI */
848        *dma_handle = 0;
849        return 0;
850    }
851#endif
852        ret = (void *) __get_free_pages(flag, get_order(size));
853
854    if (ret) {
855        memset(ret, 0, size);
856        *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
857    }
858
859    return ret;
860}
861
862/**
863 * ccio_free_consistent - Free a consistent DMA mapping.
864 * @dev: The PCI device.
865 * @size: The length of the DMA region.
866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
868 *
869 * This function implements the pci_free_consistent function.
870 */
871static void
872ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
873             dma_addr_t dma_handle)
874{
875    ccio_unmap_single(dev, dma_handle, size, 0);
876    free_pages((unsigned long)cpu_addr, get_order(size));
877}
878
879/*
880** Since 0 is a valid pdir_base index value, can't use that
881** to determine if a value is valid or not. Use a flag to indicate
882** the SG list entry contains a valid pdir index.
883*/
884#define PIDE_FLAG 0x80000000UL
885
886#ifdef CCIO_COLLECT_STATS
887#define IOMMU_MAP_STATS
888#endif
889#include "iommu-helpers.h"
890
891/**
892 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
893 * @dev: The PCI device.
894 * @sglist: The scatter/gather list to be mapped in the IOMMU.
895 * @nents: The number of entries in the scatter/gather list.
896 * @direction: The direction of the DMA transaction (to/from device).
897 *
898 * This function implements the pci_map_sg function.
899 */
900static int
901ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
902        enum dma_data_direction direction)
903{
904    struct ioc *ioc;
905    int coalesced, filled = 0;
906    unsigned long flags;
907    unsigned long hint = hint_lookup[(int)direction];
908    unsigned long prev_len = 0, current_len = 0;
909    int i;
910    
911    BUG_ON(!dev);
912    ioc = GET_IOC(dev);
913    
914    DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
915
916    /* Fast path single entry scatterlists. */
917    if (nents == 1) {
918        sg_dma_address(sglist) = ccio_map_single(dev,
919                (void *)sg_virt_addr(sglist), sglist->length,
920                direction);
921        sg_dma_len(sglist) = sglist->length;
922        return 1;
923    }
924
925    for(i = 0; i < nents; i++)
926        prev_len += sglist[i].length;
927    
928    spin_lock_irqsave(&ioc->res_lock, flags);
929
930#ifdef CCIO_COLLECT_STATS
931    ioc->msg_calls++;
932#endif
933
934    /*
935    ** First coalesce the chunks and allocate I/O pdir space
936    **
937    ** If this is one DMA stream, we can properly map using the
938    ** correct virtual address associated with each DMA page.
939    ** w/o this association, we wouldn't have coherent DMA!
940    ** Access to the virtual address is what forces a two pass algorithm.
941    */
942    coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
943
944    /*
945    ** Program the I/O Pdir
946    **
947    ** map the virtual addresses to the I/O Pdir
948    ** o dma_address will contain the pdir index
949    ** o dma_len will contain the number of bytes to map
950    ** o page/offset contain the virtual address.
951    */
952    filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
953
954    spin_unlock_irqrestore(&ioc->res_lock, flags);
955
956    BUG_ON(coalesced != filled);
957
958    DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
959
960    for (i = 0; i < filled; i++)
961        current_len += sg_dma_len(sglist + i);
962
963    BUG_ON(current_len != prev_len);
964
965    return filled;
966}
967
968/**
969 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
970 * @dev: The PCI device.
971 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
972 * @nents: The number of entries in the scatter/gather list.
973 * @direction: The direction of the DMA transaction (to/from device).
974 *
975 * This function implements the pci_unmap_sg function.
976 */
977static void
978ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
979          enum dma_data_direction direction)
980{
981    struct ioc *ioc;
982
983    BUG_ON(!dev);
984    ioc = GET_IOC(dev);
985
986    DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
987        __func__, nents, sg_virt_addr(sglist), sglist->length);
988
989#ifdef CCIO_COLLECT_STATS
990    ioc->usg_calls++;
991#endif
992
993    while(sg_dma_len(sglist) && nents--) {
994
995#ifdef CCIO_COLLECT_STATS
996        ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
997#endif
998        ccio_unmap_single(dev, sg_dma_address(sglist),
999                  sg_dma_len(sglist), direction);
1000        ++sglist;
1001    }
1002
1003    DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1004}
1005
1006static struct hppa_dma_ops ccio_ops = {
1007    .dma_supported = ccio_dma_supported,
1008    .alloc_consistent = ccio_alloc_consistent,
1009    .alloc_noncoherent = ccio_alloc_consistent,
1010    .free_consistent = ccio_free_consistent,
1011    .map_single = ccio_map_single,
1012    .unmap_single = ccio_unmap_single,
1013    .map_sg = ccio_map_sg,
1014    .unmap_sg = ccio_unmap_sg,
1015    .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1016    .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1017    .dma_sync_sg_for_cpu = NULL, /* ditto */
1018    .dma_sync_sg_for_device = NULL, /* ditto */
1019};
1020
1021#ifdef CONFIG_PROC_FS
1022static int ccio_proc_info(struct seq_file *m, void *p)
1023{
1024    int len = 0;
1025    struct ioc *ioc = ioc_list;
1026
1027    while (ioc != NULL) {
1028        unsigned int total_pages = ioc->res_size << 3;
1029#ifdef CCIO_COLLECT_STATS
1030        unsigned long avg = 0, min, max;
1031        int j;
1032#endif
1033
1034        len += seq_printf(m, "%s\n", ioc->name);
1035        
1036        len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1037                  (ioc->cujo20_bug ? "yes" : "no"));
1038        
1039        len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1040                   total_pages * 8, total_pages);
1041
1042#ifdef CCIO_COLLECT_STATS
1043        len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1044                  total_pages - ioc->used_pages, ioc->used_pages,
1045                  (int)(ioc->used_pages * 100 / total_pages));
1046#endif
1047
1048        len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1049                  ioc->res_size, total_pages);
1050
1051#ifdef CCIO_COLLECT_STATS
1052        min = max = ioc->avg_search[0];
1053        for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1054            avg += ioc->avg_search[j];
1055            if(ioc->avg_search[j] > max)
1056                max = ioc->avg_search[j];
1057            if(ioc->avg_search[j] < min)
1058                min = ioc->avg_search[j];
1059        }
1060        avg /= CCIO_SEARCH_SAMPLE;
1061        len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1062                  min, avg, max);
1063
1064        len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1065                  ioc->msingle_calls, ioc->msingle_pages,
1066                  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1067
1068        /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069        min = ioc->usingle_calls - ioc->usg_calls;
1070        max = ioc->usingle_pages - ioc->usg_pages;
1071        len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1072                  min, max, (int)((max * 1000)/min));
1073 
1074        len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1075                  ioc->msg_calls, ioc->msg_pages,
1076                  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1077
1078        len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1079                  ioc->usg_calls, ioc->usg_pages,
1080                  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081#endif /* CCIO_COLLECT_STATS */
1082
1083        ioc = ioc->next;
1084    }
1085
1086    return 0;
1087}
1088
1089static int ccio_proc_info_open(struct inode *inode, struct file *file)
1090{
1091    return single_open(file, &ccio_proc_info, NULL);
1092}
1093
1094static const struct file_operations ccio_proc_info_fops = {
1095    .owner = THIS_MODULE,
1096    .open = ccio_proc_info_open,
1097    .read = seq_read,
1098    .llseek = seq_lseek,
1099    .release = single_release,
1100};
1101
1102static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1103{
1104    int len = 0;
1105    struct ioc *ioc = ioc_list;
1106
1107    while (ioc != NULL) {
1108        u32 *res_ptr = (u32 *)ioc->res_map;
1109        int j;
1110
1111        for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112            if ((j & 7) == 0)
1113                len += seq_puts(m, "\n ");
1114            len += seq_printf(m, "%08x", *res_ptr);
1115            res_ptr++;
1116        }
1117        len += seq_puts(m, "\n\n");
1118        ioc = ioc->next;
1119        break; /* XXX - remove me */
1120    }
1121
1122    return 0;
1123}
1124
1125static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1126{
1127    return single_open(file, &ccio_proc_bitmap_info, NULL);
1128}
1129
1130static const struct file_operations ccio_proc_bitmap_fops = {
1131    .owner = THIS_MODULE,
1132    .open = ccio_proc_bitmap_open,
1133    .read = seq_read,
1134    .llseek = seq_lseek,
1135    .release = single_release,
1136};
1137#endif /* CONFIG_PROC_FS */
1138
1139/**
1140 * ccio_find_ioc - Find the ioc in the ioc_list
1141 * @hw_path: The hardware path of the ioc.
1142 *
1143 * This function searches the ioc_list for an ioc that matches
1144 * the provide hardware path.
1145 */
1146static struct ioc * ccio_find_ioc(int hw_path)
1147{
1148    int i;
1149    struct ioc *ioc;
1150
1151    ioc = ioc_list;
1152    for (i = 0; i < ioc_count; i++) {
1153        if (ioc->hw_path == hw_path)
1154            return ioc;
1155
1156        ioc = ioc->next;
1157    }
1158
1159    return NULL;
1160}
1161
1162/**
1163 * ccio_get_iommu - Find the iommu which controls this device
1164 * @dev: The parisc device.
1165 *
1166 * This function searches through the registered IOMMU's and returns
1167 * the appropriate IOMMU for the device based on its hardware path.
1168 */
1169void * ccio_get_iommu(const struct parisc_device *dev)
1170{
1171    dev = find_pa_parent_type(dev, HPHW_IOA);
1172    if (!dev)
1173        return NULL;
1174
1175    return ccio_find_ioc(dev->hw_path);
1176}
1177
1178#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1179
1180/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181 * to/from certain pages. To avoid this happening, we mark these pages
1182 * as `used', and ensure that nothing will try to allocate from them.
1183 */
1184void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1185{
1186    unsigned int idx;
1187    struct parisc_device *dev = parisc_parent(cujo);
1188    struct ioc *ioc = ccio_get_iommu(dev);
1189    u8 *res_ptr;
1190
1191    ioc->cujo20_bug = 1;
1192    res_ptr = ioc->res_map;
1193    idx = PDIR_INDEX(iovp) >> 3;
1194
1195    while (idx < ioc->res_size) {
1196         res_ptr[idx] |= 0xff;
1197        idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1198    }
1199}
1200
1201#if 0
1202/* GRANT - is this needed for U2 or not? */
1203
1204/*
1205** Get the size of the I/O TLB for this I/O MMU.
1206**
1207** If spa_shift is non-zero (ie probably U2),
1208** then calculate the I/O TLB size using spa_shift.
1209**
1210** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212** I think only Java (K/D/R-class too?) systems don't do this.
1213*/
1214static int
1215ccio_get_iotlb_size(struct parisc_device *dev)
1216{
1217    if (dev->spa_shift == 0) {
1218        panic("%s() : Can't determine I/O TLB size.\n", __func__);
1219    }
1220    return (1 << dev->spa_shift);
1221}
1222#else
1223
1224/* Uturn supports 256 TLB entries */
1225#define CCIO_CHAINID_SHIFT 8
1226#define CCIO_CHAINID_MASK 0xff
1227#endif /* 0 */
1228
1229/* We *can't* support JAVA (T600). Venture there at your own risk. */
1230static const struct parisc_device_id ccio_tbl[] = {
1231    { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232    { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233    { 0, }
1234};
1235
1236static int ccio_probe(struct parisc_device *dev);
1237
1238static struct parisc_driver ccio_driver = {
1239    .name = "ccio",
1240    .id_table = ccio_tbl,
1241    .probe = ccio_probe,
1242};
1243
1244/**
1245 * ccio_ioc_init - Initialize the I/O Controller
1246 * @ioc: The I/O Controller.
1247 *
1248 * Initialize the I/O Controller which includes setting up the
1249 * I/O Page Directory, the resource map, and initalizing the
1250 * U2/Uturn chip into virtual mode.
1251 */
1252static void
1253ccio_ioc_init(struct ioc *ioc)
1254{
1255    int i;
1256    unsigned int iov_order;
1257    u32 iova_space_size;
1258
1259    /*
1260    ** Determine IOVA Space size from memory size.
1261    **
1262    ** Ideally, PCI drivers would register the maximum number
1263    ** of DMA they can have outstanding for each device they
1264    ** own. Next best thing would be to guess how much DMA
1265    ** can be outstanding based on PCI Class/sub-class. Both
1266    ** methods still require some "extra" to support PCI
1267    ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268    */
1269
1270    iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1271
1272    /* limit IOVA space size to 1MB-1GB */
1273
1274    if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275        iova_space_size = 1 << (20 - PAGE_SHIFT);
1276#ifdef __LP64__
1277    } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278        iova_space_size = 1 << (30 - PAGE_SHIFT);
1279#endif
1280    }
1281
1282    /*
1283    ** iova space must be log2() in size.
1284    ** thus, pdir/res_map will also be log2().
1285    */
1286
1287    /* We could use larger page sizes in order to *decrease* the number
1288    ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1289    **
1290    ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291    ** since the pages must also be physically contiguous - typically
1292    ** this is the case under linux."
1293    */
1294
1295    iov_order = get_order(iova_space_size << PAGE_SHIFT);
1296
1297    /* iova_space_size is now bytes, not pages */
1298    iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1299
1300    ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1301
1302    BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1303
1304    /* Verify it's a power of two */
1305    BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1306
1307    DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308            __func__, ioc->ioc_regs,
1309            (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1310            iova_space_size>>20,
1311            iov_order + PAGE_SHIFT);
1312
1313    ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1314                         get_order(ioc->pdir_size));
1315    if(NULL == ioc->pdir_base) {
1316        panic("%s() could not allocate I/O Page Table\n", __func__);
1317    }
1318    memset(ioc->pdir_base, 0, ioc->pdir_size);
1319
1320    BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321    DBG_INIT(" base %p\n", ioc->pdir_base);
1322
1323    /* resource map size dictated by pdir_size */
1324     ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325    DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1326    
1327    ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1328                          get_order(ioc->res_size));
1329    if(NULL == ioc->res_map) {
1330        panic("%s() could not allocate resource map\n", __func__);
1331    }
1332    memset(ioc->res_map, 0, ioc->res_size);
1333
1334    /* Initialize the res_hint to 16 */
1335    ioc->res_hint = 16;
1336
1337    /* Initialize the spinlock */
1338    spin_lock_init(&ioc->res_lock);
1339
1340    /*
1341    ** Chainid is the upper most bits of an IOVP used to determine
1342    ** which TLB entry an IOVP will use.
1343    */
1344    ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345    DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1346
1347    /*
1348    ** Initialize IOA hardware
1349    */
1350    WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1351          &ioc->ioc_regs->io_chain_id_mask);
1352
1353    WRITE_U32(virt_to_phys(ioc->pdir_base),
1354          &ioc->ioc_regs->io_pdir_base);
1355
1356    /*
1357    ** Go to "Virtual Mode"
1358    */
1359    WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1360
1361    /*
1362    ** Initialize all I/O TLB entries to 0 (Valid bit off).
1363    */
1364    WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365    WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1366
1367    for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1368        WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1369              &ioc->ioc_regs->io_command);
1370    }
1371}
1372
1373static void __init
1374ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1375{
1376    int result;
1377
1378    res->parent = NULL;
1379    res->flags = IORESOURCE_MEM;
1380    /*
1381     * bracing ((signed) ...) are required for 64bit kernel because
1382     * we only want to sign extend the lower 16 bits of the register.
1383     * The upper 16-bits of range registers are hardcoded to 0xffff.
1384     */
1385    res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386    res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387    res->name = name;
1388    /*
1389     * Check if this MMIO range is disable
1390     */
1391    if (res->end + 1 == res->start)
1392        return;
1393
1394    /* On some platforms (e.g. K-Class), we have already registered
1395     * resources for devices reported by firmware. Some are children
1396     * of ccio.
1397     * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1398     */
1399    result = insert_resource(&iomem_resource, res);
1400    if (result < 0) {
1401        printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1402            __func__, (unsigned long)res->start, (unsigned long)res->end);
1403    }
1404}
1405
1406static void __init ccio_init_resources(struct ioc *ioc)
1407{
1408    struct resource *res = ioc->mmio_region;
1409    char *name = kmalloc(14, GFP_KERNEL);
1410
1411    snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1412
1413    ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414    ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1415}
1416
1417static int new_ioc_area(struct resource *res, unsigned long size,
1418        unsigned long min, unsigned long max, unsigned long align)
1419{
1420    if (max <= min)
1421        return -EBUSY;
1422
1423    res->start = (max - size + 1) &~ (align - 1);
1424    res->end = res->start + size;
1425    
1426    /* We might be trying to expand the MMIO range to include
1427     * a child device that has already registered it's MMIO space.
1428     * Use "insert" instead of request_resource().
1429     */
1430    if (!insert_resource(&iomem_resource, res))
1431        return 0;
1432
1433    return new_ioc_area(res, size, min, max - size, align);
1434}
1435
1436static int expand_ioc_area(struct resource *res, unsigned long size,
1437        unsigned long min, unsigned long max, unsigned long align)
1438{
1439    unsigned long start, len;
1440
1441    if (!res->parent)
1442        return new_ioc_area(res, size, min, max, align);
1443
1444    start = (res->start - size) &~ (align - 1);
1445    len = res->end - start + 1;
1446    if (start >= min) {
1447        if (!adjust_resource(res, start, len))
1448            return 0;
1449    }
1450
1451    start = res->start;
1452    len = ((size + res->end + align) &~ (align - 1)) - start;
1453    if (start + len <= max) {
1454        if (!adjust_resource(res, start, len))
1455            return 0;
1456    }
1457
1458    return -EBUSY;
1459}
1460
1461/*
1462 * Dino calls this function. Beware that we may get called on systems
1463 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464 * So it's legal to find no parent IOC.
1465 *
1466 * Some other issues: one of the resources in the ioc may be unassigned.
1467 */
1468int ccio_allocate_resource(const struct parisc_device *dev,
1469        struct resource *res, unsigned long size,
1470        unsigned long min, unsigned long max, unsigned long align)
1471{
1472    struct resource *parent = &iomem_resource;
1473    struct ioc *ioc = ccio_get_iommu(dev);
1474    if (!ioc)
1475        goto out;
1476
1477    parent = ioc->mmio_region;
1478    if (parent->parent &&
1479        !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480        return 0;
1481
1482    if ((parent + 1)->parent &&
1483        !allocate_resource(parent + 1, res, size, min, max, align,
1484                NULL, NULL))
1485        return 0;
1486
1487    if (!expand_ioc_area(parent, size, min, max, align)) {
1488        __raw_writel(((parent->start)>>16) | 0xffff0000,
1489                 &ioc->ioc_regs->io_io_low);
1490        __raw_writel(((parent->end)>>16) | 0xffff0000,
1491                 &ioc->ioc_regs->io_io_high);
1492    } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493        parent++;
1494        __raw_writel(((parent->start)>>16) | 0xffff0000,
1495                 &ioc->ioc_regs->io_io_low_hv);
1496        __raw_writel(((parent->end)>>16) | 0xffff0000,
1497                 &ioc->ioc_regs->io_io_high_hv);
1498    } else {
1499        return -EBUSY;
1500    }
1501
1502 out:
1503    return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1504}
1505
1506int ccio_request_resource(const struct parisc_device *dev,
1507        struct resource *res)
1508{
1509    struct resource *parent;
1510    struct ioc *ioc = ccio_get_iommu(dev);
1511
1512    if (!ioc) {
1513        parent = &iomem_resource;
1514    } else if ((ioc->mmio_region->start <= res->start) &&
1515            (res->end <= ioc->mmio_region->end)) {
1516        parent = ioc->mmio_region;
1517    } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518            (res->end <= (ioc->mmio_region + 1)->end)) {
1519        parent = ioc->mmio_region + 1;
1520    } else {
1521        return -EBUSY;
1522    }
1523
1524    /* "transparent" bus bridges need to register MMIO resources
1525     * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526     * registered their resources in the PDC "bus walk" (See
1527     * arch/parisc/kernel/inventory.c).
1528     */
1529    return insert_resource(parent, res);
1530}
1531
1532/**
1533 * ccio_probe - Determine if ccio should claim this device.
1534 * @dev: The device which has been found
1535 *
1536 * Determine if ccio should claim this chip (return 0) or not (return 1).
1537 * If so, initialize the chip and tell other partners in crime they
1538 * have work to do.
1539 */
1540static int __init ccio_probe(struct parisc_device *dev)
1541{
1542    int i;
1543    struct ioc *ioc, **ioc_p = &ioc_list;
1544
1545    ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1546    if (ioc == NULL) {
1547        printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1548        return 1;
1549    }
1550
1551    ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1552
1553    printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1554        (unsigned long)dev->hpa.start);
1555
1556    for (i = 0; i < ioc_count; i++) {
1557        ioc_p = &(*ioc_p)->next;
1558    }
1559    *ioc_p = ioc;
1560
1561    ioc->hw_path = dev->hw_path;
1562    ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563    ccio_ioc_init(ioc);
1564    ccio_init_resources(ioc);
1565    hppa_dma_ops = &ccio_ops;
1566    dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1567
1568    /* if this fails, no I/O cards will work, so may as well bug */
1569    BUG_ON(dev->dev.platform_data == NULL);
1570    HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1571
1572#ifdef CONFIG_PROC_FS
1573    if (ioc_count == 0) {
1574        proc_create(MODULE_NAME, 0, proc_runway_root,
1575                &ccio_proc_info_fops);
1576        proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1577                &ccio_proc_bitmap_fops);
1578    }
1579#endif
1580    ioc_count++;
1581
1582    parisc_has_iommu();
1583    return 0;
1584}
1585
1586/**
1587 * ccio_init - ccio initialization procedure.
1588 *
1589 * Register this driver.
1590 */
1591void __init ccio_init(void)
1592{
1593    register_parisc_driver(&ccio_driver);
1594}
1595
1596

Archive Download this file



interactive