Root/
1 | /* |
2 | * Interfaces to retrieve and set PDC Stable options (firmware) |
3 | * |
4 | * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org> |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License, version 2, as |
8 | * published by the Free Software Foundation. |
9 | * |
10 | * This program is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | * GNU General Public License for more details. |
14 | * |
15 | * You should have received a copy of the GNU General Public License |
16 | * along with this program; if not, write to the Free Software |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
18 | * |
19 | * |
20 | * DEV NOTE: the PDC Procedures reference states that: |
21 | * "A minimum of 96 bytes of Stable Storage is required. Providing more than |
22 | * 96 bytes of Stable Storage is optional [...]. Failure to provide the |
23 | * optional locations from 96 to 192 results in the loss of certain |
24 | * functionality during boot." |
25 | * |
26 | * Since locations between 96 and 192 are the various paths, most (if not |
27 | * all) PA-RISC machines should have them. Anyway, for safety reasons, the |
28 | * following code can deal with just 96 bytes of Stable Storage, and all |
29 | * sizes between 96 and 192 bytes (provided they are multiple of struct |
30 | * device_path size, eg: 128, 160 and 192) to provide full information. |
31 | * One last word: there's one path we can always count on: the primary path. |
32 | * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area. |
33 | * |
34 | * The first OS-dependent area should always be available. Obviously, this is |
35 | * not true for the other one. Also bear in mind that reading/writing from/to |
36 | * osdep2 is much more expensive than from/to osdep1. |
37 | * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first |
38 | * 2 bytes of storage available right after OSID. That's a total of 4 bytes |
39 | * sacrificed: -ETOOLAZY :P |
40 | * |
41 | * The current policy wrt file permissions is: |
42 | * - write: root only |
43 | * - read: (reading triggers PDC calls) ? root only : everyone |
44 | * The rationale is that PDC calls could hog (DoS) the machine. |
45 | * |
46 | * TODO: |
47 | * - timer/fastsize write calls |
48 | */ |
49 | |
50 | #undef PDCS_DEBUG |
51 | #ifdef PDCS_DEBUG |
52 | #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args) |
53 | #else |
54 | #define DPRINTK(fmt, args...) |
55 | #endif |
56 | |
57 | #include <linux/module.h> |
58 | #include <linux/init.h> |
59 | #include <linux/kernel.h> |
60 | #include <linux/string.h> |
61 | #include <linux/capability.h> |
62 | #include <linux/ctype.h> |
63 | #include <linux/sysfs.h> |
64 | #include <linux/kobject.h> |
65 | #include <linux/device.h> |
66 | #include <linux/errno.h> |
67 | #include <linux/spinlock.h> |
68 | |
69 | #include <asm/pdc.h> |
70 | #include <asm/page.h> |
71 | #include <asm/uaccess.h> |
72 | #include <asm/hardware.h> |
73 | |
74 | #define PDCS_VERSION "0.30" |
75 | #define PDCS_PREFIX "PDC Stable Storage" |
76 | |
77 | #define PDCS_ADDR_PPRI 0x00 |
78 | #define PDCS_ADDR_OSID 0x40 |
79 | #define PDCS_ADDR_OSD1 0x48 |
80 | #define PDCS_ADDR_DIAG 0x58 |
81 | #define PDCS_ADDR_FSIZ 0x5C |
82 | #define PDCS_ADDR_PCON 0x60 |
83 | #define PDCS_ADDR_PALT 0x80 |
84 | #define PDCS_ADDR_PKBD 0xA0 |
85 | #define PDCS_ADDR_OSD2 0xE0 |
86 | |
87 | MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>"); |
88 | MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data"); |
89 | MODULE_LICENSE("GPL"); |
90 | MODULE_VERSION(PDCS_VERSION); |
91 | |
92 | /* holds Stable Storage size. Initialized once and for all, no lock needed */ |
93 | static unsigned long pdcs_size __read_mostly; |
94 | |
95 | /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */ |
96 | static u16 pdcs_osid __read_mostly; |
97 | |
98 | /* This struct defines what we need to deal with a parisc pdc path entry */ |
99 | struct pdcspath_entry { |
100 | rwlock_t rw_lock; /* to protect path entry access */ |
101 | short ready; /* entry record is valid if != 0 */ |
102 | unsigned long addr; /* entry address in stable storage */ |
103 | char *name; /* entry name */ |
104 | struct device_path devpath; /* device path in parisc representation */ |
105 | struct device *dev; /* corresponding device */ |
106 | struct kobject kobj; |
107 | }; |
108 | |
109 | struct pdcspath_attribute { |
110 | struct attribute attr; |
111 | ssize_t (*show)(struct pdcspath_entry *entry, char *buf); |
112 | ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count); |
113 | }; |
114 | |
115 | #define PDCSPATH_ENTRY(_addr, _name) \ |
116 | struct pdcspath_entry pdcspath_entry_##_name = { \ |
117 | .ready = 0, \ |
118 | .addr = _addr, \ |
119 | .name = __stringify(_name), \ |
120 | }; |
121 | |
122 | #define PDCS_ATTR(_name, _mode, _show, _store) \ |
123 | struct kobj_attribute pdcs_attr_##_name = { \ |
124 | .attr = {.name = __stringify(_name), .mode = _mode}, \ |
125 | .show = _show, \ |
126 | .store = _store, \ |
127 | }; |
128 | |
129 | #define PATHS_ATTR(_name, _mode, _show, _store) \ |
130 | struct pdcspath_attribute paths_attr_##_name = { \ |
131 | .attr = {.name = __stringify(_name), .mode = _mode}, \ |
132 | .show = _show, \ |
133 | .store = _store, \ |
134 | }; |
135 | |
136 | #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr) |
137 | #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj) |
138 | |
139 | /** |
140 | * pdcspath_fetch - This function populates the path entry structs. |
141 | * @entry: A pointer to an allocated pdcspath_entry. |
142 | * |
143 | * The general idea is that you don't read from the Stable Storage every time |
144 | * you access the files provided by the facilities. We store a copy of the |
145 | * content of the stable storage WRT various paths in these structs. We read |
146 | * these structs when reading the files, and we will write to these structs when |
147 | * writing to the files, and only then write them back to the Stable Storage. |
148 | * |
149 | * This function expects to be called with @entry->rw_lock write-hold. |
150 | */ |
151 | static int |
152 | pdcspath_fetch(struct pdcspath_entry *entry) |
153 | { |
154 | struct device_path *devpath; |
155 | |
156 | if (!entry) |
157 | return -EINVAL; |
158 | |
159 | devpath = &entry->devpath; |
160 | |
161 | DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__, |
162 | entry, devpath, entry->addr); |
163 | |
164 | /* addr, devpath and count must be word aligned */ |
165 | if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) |
166 | return -EIO; |
167 | |
168 | /* Find the matching device. |
169 | NOTE: hardware_path overlays with device_path, so the nice cast can |
170 | be used */ |
171 | entry->dev = hwpath_to_device((struct hardware_path *)devpath); |
172 | |
173 | entry->ready = 1; |
174 | |
175 | DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); |
176 | |
177 | return 0; |
178 | } |
179 | |
180 | /** |
181 | * pdcspath_store - This function writes a path to stable storage. |
182 | * @entry: A pointer to an allocated pdcspath_entry. |
183 | * |
184 | * It can be used in two ways: either by passing it a preset devpath struct |
185 | * containing an already computed hardware path, or by passing it a device |
186 | * pointer, from which it'll find out the corresponding hardware path. |
187 | * For now we do not handle the case where there's an error in writing to the |
188 | * Stable Storage area, so you'd better not mess up the data :P |
189 | * |
190 | * This function expects to be called with @entry->rw_lock write-hold. |
191 | */ |
192 | static void |
193 | pdcspath_store(struct pdcspath_entry *entry) |
194 | { |
195 | struct device_path *devpath; |
196 | |
197 | BUG_ON(!entry); |
198 | |
199 | devpath = &entry->devpath; |
200 | |
201 | /* We expect the caller to set the ready flag to 0 if the hardware |
202 | path struct provided is invalid, so that we know we have to fill it. |
203 | First case, we don't have a preset hwpath... */ |
204 | if (!entry->ready) { |
205 | /* ...but we have a device, map it */ |
206 | BUG_ON(!entry->dev); |
207 | device_to_hwpath(entry->dev, (struct hardware_path *)devpath); |
208 | } |
209 | /* else, we expect the provided hwpath to be valid. */ |
210 | |
211 | DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__, |
212 | entry, devpath, entry->addr); |
213 | |
214 | /* addr, devpath and count must be word aligned */ |
215 | if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) { |
216 | printk(KERN_ERR "%s: an error occurred when writing to PDC.\n" |
217 | "It is likely that the Stable Storage data has been corrupted.\n" |
218 | "Please check it carefully upon next reboot.\n", __func__); |
219 | WARN_ON(1); |
220 | } |
221 | |
222 | /* kobject is already registered */ |
223 | entry->ready = 2; |
224 | |
225 | DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); |
226 | } |
227 | |
228 | /** |
229 | * pdcspath_hwpath_read - This function handles hardware path pretty printing. |
230 | * @entry: An allocated and populated pdscpath_entry struct. |
231 | * @buf: The output buffer to write to. |
232 | * |
233 | * We will call this function to format the output of the hwpath attribute file. |
234 | */ |
235 | static ssize_t |
236 | pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf) |
237 | { |
238 | char *out = buf; |
239 | struct device_path *devpath; |
240 | short i; |
241 | |
242 | if (!entry || !buf) |
243 | return -EINVAL; |
244 | |
245 | read_lock(&entry->rw_lock); |
246 | devpath = &entry->devpath; |
247 | i = entry->ready; |
248 | read_unlock(&entry->rw_lock); |
249 | |
250 | if (!i) /* entry is not ready */ |
251 | return -ENODATA; |
252 | |
253 | for (i = 0; i < 6; i++) { |
254 | if (devpath->bc[i] >= 128) |
255 | continue; |
256 | out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]); |
257 | } |
258 | out += sprintf(out, "%u\n", (unsigned char)devpath->mod); |
259 | |
260 | return out - buf; |
261 | } |
262 | |
263 | /** |
264 | * pdcspath_hwpath_write - This function handles hardware path modifying. |
265 | * @entry: An allocated and populated pdscpath_entry struct. |
266 | * @buf: The input buffer to read from. |
267 | * @count: The number of bytes to be read. |
268 | * |
269 | * We will call this function to change the current hardware path. |
270 | * Hardware paths are to be given '/'-delimited, without brackets. |
271 | * We make sure that the provided path actually maps to an existing |
272 | * device, BUT nothing would prevent some foolish user to set the path to some |
273 | * PCI bridge or even a CPU... |
274 | * A better work around would be to make sure we are at the end of a device tree |
275 | * for instance, but it would be IMHO beyond the simple scope of that driver. |
276 | * The aim is to provide a facility. Data correctness is left to userland. |
277 | */ |
278 | static ssize_t |
279 | pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count) |
280 | { |
281 | struct hardware_path hwpath; |
282 | unsigned short i; |
283 | char in[count+1], *temp; |
284 | struct device *dev; |
285 | int ret; |
286 | |
287 | if (!entry || !buf || !count) |
288 | return -EINVAL; |
289 | |
290 | /* We'll use a local copy of buf */ |
291 | memset(in, 0, count+1); |
292 | strncpy(in, buf, count); |
293 | |
294 | /* Let's clean up the target. 0xff is a blank pattern */ |
295 | memset(&hwpath, 0xff, sizeof(hwpath)); |
296 | |
297 | /* First, pick the mod field (the last one of the input string) */ |
298 | if (!(temp = strrchr(in, '/'))) |
299 | return -EINVAL; |
300 | |
301 | hwpath.mod = simple_strtoul(temp+1, NULL, 10); |
302 | in[temp-in] = '\0'; /* truncate the remaining string. just precaution */ |
303 | DPRINTK("%s: mod: %d\n", __func__, hwpath.mod); |
304 | |
305 | /* Then, loop for each delimiter, making sure we don't have too many. |
306 | we write the bc fields in a down-top way. No matter what, we stop |
307 | before writing the last field. If there are too many fields anyway, |
308 | then the user is a moron and it'll be caught up later when we'll |
309 | check the consistency of the given hwpath. */ |
310 | for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) { |
311 | hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10); |
312 | in[temp-in] = '\0'; |
313 | DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); |
314 | } |
315 | |
316 | /* Store the final field */ |
317 | hwpath.bc[i] = simple_strtoul(in, NULL, 10); |
318 | DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); |
319 | |
320 | /* Now we check that the user isn't trying to lure us */ |
321 | if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) { |
322 | printk(KERN_WARNING "%s: attempt to set invalid \"%s\" " |
323 | "hardware path: %s\n", __func__, entry->name, buf); |
324 | return -EINVAL; |
325 | } |
326 | |
327 | /* So far so good, let's get in deep */ |
328 | write_lock(&entry->rw_lock); |
329 | entry->ready = 0; |
330 | entry->dev = dev; |
331 | |
332 | /* Now, dive in. Write back to the hardware */ |
333 | pdcspath_store(entry); |
334 | |
335 | /* Update the symlink to the real device */ |
336 | sysfs_remove_link(&entry->kobj, "device"); |
337 | ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); |
338 | WARN_ON(ret); |
339 | |
340 | write_unlock(&entry->rw_lock); |
341 | |
342 | printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n", |
343 | entry->name, buf); |
344 | |
345 | return count; |
346 | } |
347 | |
348 | /** |
349 | * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing. |
350 | * @entry: An allocated and populated pdscpath_entry struct. |
351 | * @buf: The output buffer to write to. |
352 | * |
353 | * We will call this function to format the output of the layer attribute file. |
354 | */ |
355 | static ssize_t |
356 | pdcspath_layer_read(struct pdcspath_entry *entry, char *buf) |
357 | { |
358 | char *out = buf; |
359 | struct device_path *devpath; |
360 | short i; |
361 | |
362 | if (!entry || !buf) |
363 | return -EINVAL; |
364 | |
365 | read_lock(&entry->rw_lock); |
366 | devpath = &entry->devpath; |
367 | i = entry->ready; |
368 | read_unlock(&entry->rw_lock); |
369 | |
370 | if (!i) /* entry is not ready */ |
371 | return -ENODATA; |
372 | |
373 | for (i = 0; i < 6 && devpath->layers[i]; i++) |
374 | out += sprintf(out, "%u ", devpath->layers[i]); |
375 | |
376 | out += sprintf(out, "\n"); |
377 | |
378 | return out - buf; |
379 | } |
380 | |
381 | /** |
382 | * pdcspath_layer_write - This function handles extended layer modifying. |
383 | * @entry: An allocated and populated pdscpath_entry struct. |
384 | * @buf: The input buffer to read from. |
385 | * @count: The number of bytes to be read. |
386 | * |
387 | * We will call this function to change the current layer value. |
388 | * Layers are to be given '.'-delimited, without brackets. |
389 | * XXX beware we are far less checky WRT input data provided than for hwpath. |
390 | * Potential harm can be done, since there's no way to check the validity of |
391 | * the layer fields. |
392 | */ |
393 | static ssize_t |
394 | pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count) |
395 | { |
396 | unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */ |
397 | unsigned short i; |
398 | char in[count+1], *temp; |
399 | |
400 | if (!entry || !buf || !count) |
401 | return -EINVAL; |
402 | |
403 | /* We'll use a local copy of buf */ |
404 | memset(in, 0, count+1); |
405 | strncpy(in, buf, count); |
406 | |
407 | /* Let's clean up the target. 0 is a blank pattern */ |
408 | memset(&layers, 0, sizeof(layers)); |
409 | |
410 | /* First, pick the first layer */ |
411 | if (unlikely(!isdigit(*in))) |
412 | return -EINVAL; |
413 | layers[0] = simple_strtoul(in, NULL, 10); |
414 | DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]); |
415 | |
416 | temp = in; |
417 | for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) { |
418 | if (unlikely(!isdigit(*(++temp)))) |
419 | return -EINVAL; |
420 | layers[i] = simple_strtoul(temp, NULL, 10); |
421 | DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]); |
422 | } |
423 | |
424 | /* So far so good, let's get in deep */ |
425 | write_lock(&entry->rw_lock); |
426 | |
427 | /* First, overwrite the current layers with the new ones, not touching |
428 | the hardware path. */ |
429 | memcpy(&entry->devpath.layers, &layers, sizeof(layers)); |
430 | |
431 | /* Now, dive in. Write back to the hardware */ |
432 | pdcspath_store(entry); |
433 | write_unlock(&entry->rw_lock); |
434 | |
435 | printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n", |
436 | entry->name, buf); |
437 | |
438 | return count; |
439 | } |
440 | |
441 | /** |
442 | * pdcspath_attr_show - Generic read function call wrapper. |
443 | * @kobj: The kobject to get info from. |
444 | * @attr: The attribute looked upon. |
445 | * @buf: The output buffer. |
446 | */ |
447 | static ssize_t |
448 | pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) |
449 | { |
450 | struct pdcspath_entry *entry = to_pdcspath_entry(kobj); |
451 | struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); |
452 | ssize_t ret = 0; |
453 | |
454 | if (pdcs_attr->show) |
455 | ret = pdcs_attr->show(entry, buf); |
456 | |
457 | return ret; |
458 | } |
459 | |
460 | /** |
461 | * pdcspath_attr_store - Generic write function call wrapper. |
462 | * @kobj: The kobject to write info to. |
463 | * @attr: The attribute to be modified. |
464 | * @buf: The input buffer. |
465 | * @count: The size of the buffer. |
466 | */ |
467 | static ssize_t |
468 | pdcspath_attr_store(struct kobject *kobj, struct attribute *attr, |
469 | const char *buf, size_t count) |
470 | { |
471 | struct pdcspath_entry *entry = to_pdcspath_entry(kobj); |
472 | struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); |
473 | ssize_t ret = 0; |
474 | |
475 | if (!capable(CAP_SYS_ADMIN)) |
476 | return -EACCES; |
477 | |
478 | if (pdcs_attr->store) |
479 | ret = pdcs_attr->store(entry, buf, count); |
480 | |
481 | return ret; |
482 | } |
483 | |
484 | static const struct sysfs_ops pdcspath_attr_ops = { |
485 | .show = pdcspath_attr_show, |
486 | .store = pdcspath_attr_store, |
487 | }; |
488 | |
489 | /* These are the two attributes of any PDC path. */ |
490 | static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write); |
491 | static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write); |
492 | |
493 | static struct attribute *paths_subsys_attrs[] = { |
494 | &paths_attr_hwpath.attr, |
495 | &paths_attr_layer.attr, |
496 | NULL, |
497 | }; |
498 | |
499 | /* Specific kobject type for our PDC paths */ |
500 | static struct kobj_type ktype_pdcspath = { |
501 | .sysfs_ops = &pdcspath_attr_ops, |
502 | .default_attrs = paths_subsys_attrs, |
503 | }; |
504 | |
505 | /* We hard define the 4 types of path we expect to find */ |
506 | static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary); |
507 | static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console); |
508 | static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative); |
509 | static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard); |
510 | |
511 | /* An array containing all PDC paths we will deal with */ |
512 | static struct pdcspath_entry *pdcspath_entries[] = { |
513 | &pdcspath_entry_primary, |
514 | &pdcspath_entry_alternative, |
515 | &pdcspath_entry_console, |
516 | &pdcspath_entry_keyboard, |
517 | NULL, |
518 | }; |
519 | |
520 | |
521 | /* For more insight of what's going on here, refer to PDC Procedures doc, |
522 | * Section PDC_STABLE */ |
523 | |
524 | /** |
525 | * pdcs_size_read - Stable Storage size output. |
526 | * @buf: The output buffer to write to. |
527 | */ |
528 | static ssize_t pdcs_size_read(struct kobject *kobj, |
529 | struct kobj_attribute *attr, |
530 | char *buf) |
531 | { |
532 | char *out = buf; |
533 | |
534 | if (!buf) |
535 | return -EINVAL; |
536 | |
537 | /* show the size of the stable storage */ |
538 | out += sprintf(out, "%ld\n", pdcs_size); |
539 | |
540 | return out - buf; |
541 | } |
542 | |
543 | /** |
544 | * pdcs_auto_read - Stable Storage autoboot/search flag output. |
545 | * @buf: The output buffer to write to. |
546 | * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag |
547 | */ |
548 | static ssize_t pdcs_auto_read(struct kobject *kobj, |
549 | struct kobj_attribute *attr, |
550 | char *buf, int knob) |
551 | { |
552 | char *out = buf; |
553 | struct pdcspath_entry *pathentry; |
554 | |
555 | if (!buf) |
556 | return -EINVAL; |
557 | |
558 | /* Current flags are stored in primary boot path entry */ |
559 | pathentry = &pdcspath_entry_primary; |
560 | |
561 | read_lock(&pathentry->rw_lock); |
562 | out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ? |
563 | "On" : "Off"); |
564 | read_unlock(&pathentry->rw_lock); |
565 | |
566 | return out - buf; |
567 | } |
568 | |
569 | /** |
570 | * pdcs_autoboot_read - Stable Storage autoboot flag output. |
571 | * @buf: The output buffer to write to. |
572 | */ |
573 | static ssize_t pdcs_autoboot_read(struct kobject *kobj, |
574 | struct kobj_attribute *attr, char *buf) |
575 | { |
576 | return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT); |
577 | } |
578 | |
579 | /** |
580 | * pdcs_autosearch_read - Stable Storage autoboot flag output. |
581 | * @buf: The output buffer to write to. |
582 | */ |
583 | static ssize_t pdcs_autosearch_read(struct kobject *kobj, |
584 | struct kobj_attribute *attr, char *buf) |
585 | { |
586 | return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH); |
587 | } |
588 | |
589 | /** |
590 | * pdcs_timer_read - Stable Storage timer count output (in seconds). |
591 | * @buf: The output buffer to write to. |
592 | * |
593 | * The value of the timer field correponds to a number of seconds in powers of 2. |
594 | */ |
595 | static ssize_t pdcs_timer_read(struct kobject *kobj, |
596 | struct kobj_attribute *attr, char *buf) |
597 | { |
598 | char *out = buf; |
599 | struct pdcspath_entry *pathentry; |
600 | |
601 | if (!buf) |
602 | return -EINVAL; |
603 | |
604 | /* Current flags are stored in primary boot path entry */ |
605 | pathentry = &pdcspath_entry_primary; |
606 | |
607 | /* print the timer value in seconds */ |
608 | read_lock(&pathentry->rw_lock); |
609 | out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ? |
610 | (1 << (pathentry->devpath.flags & PF_TIMER)) : 0); |
611 | read_unlock(&pathentry->rw_lock); |
612 | |
613 | return out - buf; |
614 | } |
615 | |
616 | /** |
617 | * pdcs_osid_read - Stable Storage OS ID register output. |
618 | * @buf: The output buffer to write to. |
619 | */ |
620 | static ssize_t pdcs_osid_read(struct kobject *kobj, |
621 | struct kobj_attribute *attr, char *buf) |
622 | { |
623 | char *out = buf; |
624 | |
625 | if (!buf) |
626 | return -EINVAL; |
627 | |
628 | out += sprintf(out, "%s dependent data (0x%.4x)\n", |
629 | os_id_to_string(pdcs_osid), pdcs_osid); |
630 | |
631 | return out - buf; |
632 | } |
633 | |
634 | /** |
635 | * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output. |
636 | * @buf: The output buffer to write to. |
637 | * |
638 | * This can hold 16 bytes of OS-Dependent data. |
639 | */ |
640 | static ssize_t pdcs_osdep1_read(struct kobject *kobj, |
641 | struct kobj_attribute *attr, char *buf) |
642 | { |
643 | char *out = buf; |
644 | u32 result[4]; |
645 | |
646 | if (!buf) |
647 | return -EINVAL; |
648 | |
649 | if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK) |
650 | return -EIO; |
651 | |
652 | out += sprintf(out, "0x%.8x\n", result[0]); |
653 | out += sprintf(out, "0x%.8x\n", result[1]); |
654 | out += sprintf(out, "0x%.8x\n", result[2]); |
655 | out += sprintf(out, "0x%.8x\n", result[3]); |
656 | |
657 | return out - buf; |
658 | } |
659 | |
660 | /** |
661 | * pdcs_diagnostic_read - Stable Storage Diagnostic register output. |
662 | * @buf: The output buffer to write to. |
663 | * |
664 | * I have NFC how to interpret the content of that register ;-). |
665 | */ |
666 | static ssize_t pdcs_diagnostic_read(struct kobject *kobj, |
667 | struct kobj_attribute *attr, char *buf) |
668 | { |
669 | char *out = buf; |
670 | u32 result; |
671 | |
672 | if (!buf) |
673 | return -EINVAL; |
674 | |
675 | /* get diagnostic */ |
676 | if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK) |
677 | return -EIO; |
678 | |
679 | out += sprintf(out, "0x%.4x\n", (result >> 16)); |
680 | |
681 | return out - buf; |
682 | } |
683 | |
684 | /** |
685 | * pdcs_fastsize_read - Stable Storage FastSize register output. |
686 | * @buf: The output buffer to write to. |
687 | * |
688 | * This register holds the amount of system RAM to be tested during boot sequence. |
689 | */ |
690 | static ssize_t pdcs_fastsize_read(struct kobject *kobj, |
691 | struct kobj_attribute *attr, char *buf) |
692 | { |
693 | char *out = buf; |
694 | u32 result; |
695 | |
696 | if (!buf) |
697 | return -EINVAL; |
698 | |
699 | /* get fast-size */ |
700 | if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK) |
701 | return -EIO; |
702 | |
703 | if ((result & 0x0F) < 0x0E) |
704 | out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256); |
705 | else |
706 | out += sprintf(out, "All"); |
707 | out += sprintf(out, "\n"); |
708 | |
709 | return out - buf; |
710 | } |
711 | |
712 | /** |
713 | * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output. |
714 | * @buf: The output buffer to write to. |
715 | * |
716 | * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available. |
717 | */ |
718 | static ssize_t pdcs_osdep2_read(struct kobject *kobj, |
719 | struct kobj_attribute *attr, char *buf) |
720 | { |
721 | char *out = buf; |
722 | unsigned long size; |
723 | unsigned short i; |
724 | u32 result; |
725 | |
726 | if (unlikely(pdcs_size <= 224)) |
727 | return -ENODATA; |
728 | |
729 | size = pdcs_size - 224; |
730 | |
731 | if (!buf) |
732 | return -EINVAL; |
733 | |
734 | for (i=0; i<size; i+=4) { |
735 | if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result, |
736 | sizeof(result)) != PDC_OK)) |
737 | return -EIO; |
738 | out += sprintf(out, "0x%.8x\n", result); |
739 | } |
740 | |
741 | return out - buf; |
742 | } |
743 | |
744 | /** |
745 | * pdcs_auto_write - This function handles autoboot/search flag modifying. |
746 | * @buf: The input buffer to read from. |
747 | * @count: The number of bytes to be read. |
748 | * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag |
749 | * |
750 | * We will call this function to change the current autoboot flag. |
751 | * We expect a precise syntax: |
752 | * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On |
753 | */ |
754 | static ssize_t pdcs_auto_write(struct kobject *kobj, |
755 | struct kobj_attribute *attr, const char *buf, |
756 | size_t count, int knob) |
757 | { |
758 | struct pdcspath_entry *pathentry; |
759 | unsigned char flags; |
760 | char in[count+1], *temp; |
761 | char c; |
762 | |
763 | if (!capable(CAP_SYS_ADMIN)) |
764 | return -EACCES; |
765 | |
766 | if (!buf || !count) |
767 | return -EINVAL; |
768 | |
769 | /* We'll use a local copy of buf */ |
770 | memset(in, 0, count+1); |
771 | strncpy(in, buf, count); |
772 | |
773 | /* Current flags are stored in primary boot path entry */ |
774 | pathentry = &pdcspath_entry_primary; |
775 | |
776 | /* Be nice to the existing flag record */ |
777 | read_lock(&pathentry->rw_lock); |
778 | flags = pathentry->devpath.flags; |
779 | read_unlock(&pathentry->rw_lock); |
780 | |
781 | DPRINTK("%s: flags before: 0x%X\n", __func__, flags); |
782 | |
783 | temp = skip_spaces(in); |
784 | |
785 | c = *temp++ - '0'; |
786 | if ((c != 0) && (c != 1)) |
787 | goto parse_error; |
788 | if (c == 0) |
789 | flags &= ~knob; |
790 | else |
791 | flags |= knob; |
792 | |
793 | DPRINTK("%s: flags after: 0x%X\n", __func__, flags); |
794 | |
795 | /* So far so good, let's get in deep */ |
796 | write_lock(&pathentry->rw_lock); |
797 | |
798 | /* Change the path entry flags first */ |
799 | pathentry->devpath.flags = flags; |
800 | |
801 | /* Now, dive in. Write back to the hardware */ |
802 | pdcspath_store(pathentry); |
803 | write_unlock(&pathentry->rw_lock); |
804 | |
805 | printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n", |
806 | (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch", |
807 | (flags & knob) ? "On" : "Off"); |
808 | |
809 | return count; |
810 | |
811 | parse_error: |
812 | printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__); |
813 | return -EINVAL; |
814 | } |
815 | |
816 | /** |
817 | * pdcs_autoboot_write - This function handles autoboot flag modifying. |
818 | * @buf: The input buffer to read from. |
819 | * @count: The number of bytes to be read. |
820 | * |
821 | * We will call this function to change the current boot flags. |
822 | * We expect a precise syntax: |
823 | * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On |
824 | */ |
825 | static ssize_t pdcs_autoboot_write(struct kobject *kobj, |
826 | struct kobj_attribute *attr, |
827 | const char *buf, size_t count) |
828 | { |
829 | return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT); |
830 | } |
831 | |
832 | /** |
833 | * pdcs_autosearch_write - This function handles autosearch flag modifying. |
834 | * @buf: The input buffer to read from. |
835 | * @count: The number of bytes to be read. |
836 | * |
837 | * We will call this function to change the current boot flags. |
838 | * We expect a precise syntax: |
839 | * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On |
840 | */ |
841 | static ssize_t pdcs_autosearch_write(struct kobject *kobj, |
842 | struct kobj_attribute *attr, |
843 | const char *buf, size_t count) |
844 | { |
845 | return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH); |
846 | } |
847 | |
848 | /** |
849 | * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input. |
850 | * @buf: The input buffer to read from. |
851 | * @count: The number of bytes to be read. |
852 | * |
853 | * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte |
854 | * write approach. It's up to userspace to deal with it when constructing |
855 | * its input buffer. |
856 | */ |
857 | static ssize_t pdcs_osdep1_write(struct kobject *kobj, |
858 | struct kobj_attribute *attr, |
859 | const char *buf, size_t count) |
860 | { |
861 | u8 in[16]; |
862 | |
863 | if (!capable(CAP_SYS_ADMIN)) |
864 | return -EACCES; |
865 | |
866 | if (!buf || !count) |
867 | return -EINVAL; |
868 | |
869 | if (unlikely(pdcs_osid != OS_ID_LINUX)) |
870 | return -EPERM; |
871 | |
872 | if (count > 16) |
873 | return -EMSGSIZE; |
874 | |
875 | /* We'll use a local copy of buf */ |
876 | memset(in, 0, 16); |
877 | memcpy(in, buf, count); |
878 | |
879 | if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK) |
880 | return -EIO; |
881 | |
882 | return count; |
883 | } |
884 | |
885 | /** |
886 | * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input. |
887 | * @buf: The input buffer to read from. |
888 | * @count: The number of bytes to be read. |
889 | * |
890 | * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a |
891 | * byte-by-byte write approach. It's up to userspace to deal with it when |
892 | * constructing its input buffer. |
893 | */ |
894 | static ssize_t pdcs_osdep2_write(struct kobject *kobj, |
895 | struct kobj_attribute *attr, |
896 | const char *buf, size_t count) |
897 | { |
898 | unsigned long size; |
899 | unsigned short i; |
900 | u8 in[4]; |
901 | |
902 | if (!capable(CAP_SYS_ADMIN)) |
903 | return -EACCES; |
904 | |
905 | if (!buf || !count) |
906 | return -EINVAL; |
907 | |
908 | if (unlikely(pdcs_size <= 224)) |
909 | return -ENOSYS; |
910 | |
911 | if (unlikely(pdcs_osid != OS_ID_LINUX)) |
912 | return -EPERM; |
913 | |
914 | size = pdcs_size - 224; |
915 | |
916 | if (count > size) |
917 | return -EMSGSIZE; |
918 | |
919 | /* We'll use a local copy of buf */ |
920 | |
921 | for (i=0; i<count; i+=4) { |
922 | memset(in, 0, 4); |
923 | memcpy(in, buf+i, (count-i < 4) ? count-i : 4); |
924 | if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in, |
925 | sizeof(in)) != PDC_OK)) |
926 | return -EIO; |
927 | } |
928 | |
929 | return count; |
930 | } |
931 | |
932 | /* The remaining attributes. */ |
933 | static PDCS_ATTR(size, 0444, pdcs_size_read, NULL); |
934 | static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write); |
935 | static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write); |
936 | static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL); |
937 | static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL); |
938 | static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write); |
939 | static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL); |
940 | static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL); |
941 | static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write); |
942 | |
943 | static struct attribute *pdcs_subsys_attrs[] = { |
944 | &pdcs_attr_size.attr, |
945 | &pdcs_attr_autoboot.attr, |
946 | &pdcs_attr_autosearch.attr, |
947 | &pdcs_attr_timer.attr, |
948 | &pdcs_attr_osid.attr, |
949 | &pdcs_attr_osdep1.attr, |
950 | &pdcs_attr_diagnostic.attr, |
951 | &pdcs_attr_fastsize.attr, |
952 | &pdcs_attr_osdep2.attr, |
953 | NULL, |
954 | }; |
955 | |
956 | static struct attribute_group pdcs_attr_group = { |
957 | .attrs = pdcs_subsys_attrs, |
958 | }; |
959 | |
960 | static struct kobject *stable_kobj; |
961 | static struct kset *paths_kset; |
962 | |
963 | /** |
964 | * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage. |
965 | * |
966 | * It creates kobjects corresponding to each path entry with nice sysfs |
967 | * links to the real device. This is where the magic takes place: when |
968 | * registering the subsystem attributes during module init, each kobject hereby |
969 | * created will show in the sysfs tree as a folder containing files as defined |
970 | * by path_subsys_attr[]. |
971 | */ |
972 | static inline int __init |
973 | pdcs_register_pathentries(void) |
974 | { |
975 | unsigned short i; |
976 | struct pdcspath_entry *entry; |
977 | int err; |
978 | |
979 | /* Initialize the entries rw_lock before anything else */ |
980 | for (i = 0; (entry = pdcspath_entries[i]); i++) |
981 | rwlock_init(&entry->rw_lock); |
982 | |
983 | for (i = 0; (entry = pdcspath_entries[i]); i++) { |
984 | write_lock(&entry->rw_lock); |
985 | err = pdcspath_fetch(entry); |
986 | write_unlock(&entry->rw_lock); |
987 | |
988 | if (err < 0) |
989 | continue; |
990 | |
991 | entry->kobj.kset = paths_kset; |
992 | err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL, |
993 | "%s", entry->name); |
994 | if (err) |
995 | return err; |
996 | |
997 | /* kobject is now registered */ |
998 | write_lock(&entry->rw_lock); |
999 | entry->ready = 2; |
1000 | |
1001 | /* Add a nice symlink to the real device */ |
1002 | if (entry->dev) { |
1003 | err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); |
1004 | WARN_ON(err); |
1005 | } |
1006 | |
1007 | write_unlock(&entry->rw_lock); |
1008 | kobject_uevent(&entry->kobj, KOBJ_ADD); |
1009 | } |
1010 | |
1011 | return 0; |
1012 | } |
1013 | |
1014 | /** |
1015 | * pdcs_unregister_pathentries - Routine called when unregistering the module. |
1016 | */ |
1017 | static inline void |
1018 | pdcs_unregister_pathentries(void) |
1019 | { |
1020 | unsigned short i; |
1021 | struct pdcspath_entry *entry; |
1022 | |
1023 | for (i = 0; (entry = pdcspath_entries[i]); i++) { |
1024 | read_lock(&entry->rw_lock); |
1025 | if (entry->ready >= 2) |
1026 | kobject_put(&entry->kobj); |
1027 | read_unlock(&entry->rw_lock); |
1028 | } |
1029 | } |
1030 | |
1031 | /* |
1032 | * For now we register the stable subsystem with the firmware subsystem |
1033 | * and the paths subsystem with the stable subsystem |
1034 | */ |
1035 | static int __init |
1036 | pdc_stable_init(void) |
1037 | { |
1038 | int rc = 0, error = 0; |
1039 | u32 result; |
1040 | |
1041 | /* find the size of the stable storage */ |
1042 | if (pdc_stable_get_size(&pdcs_size) != PDC_OK) |
1043 | return -ENODEV; |
1044 | |
1045 | /* make sure we have enough data */ |
1046 | if (pdcs_size < 96) |
1047 | return -ENODATA; |
1048 | |
1049 | printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION); |
1050 | |
1051 | /* get OSID */ |
1052 | if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK) |
1053 | return -EIO; |
1054 | |
1055 | /* the actual result is 16 bits away */ |
1056 | pdcs_osid = (u16)(result >> 16); |
1057 | |
1058 | /* For now we'll register the directory at /sys/firmware/stable */ |
1059 | stable_kobj = kobject_create_and_add("stable", firmware_kobj); |
1060 | if (!stable_kobj) { |
1061 | rc = -ENOMEM; |
1062 | goto fail_firmreg; |
1063 | } |
1064 | |
1065 | /* Don't forget the root entries */ |
1066 | error = sysfs_create_group(stable_kobj, &pdcs_attr_group); |
1067 | |
1068 | /* register the paths kset as a child of the stable kset */ |
1069 | paths_kset = kset_create_and_add("paths", NULL, stable_kobj); |
1070 | if (!paths_kset) { |
1071 | rc = -ENOMEM; |
1072 | goto fail_ksetreg; |
1073 | } |
1074 | |
1075 | /* now we create all "files" for the paths kset */ |
1076 | if ((rc = pdcs_register_pathentries())) |
1077 | goto fail_pdcsreg; |
1078 | |
1079 | return rc; |
1080 | |
1081 | fail_pdcsreg: |
1082 | pdcs_unregister_pathentries(); |
1083 | kset_unregister(paths_kset); |
1084 | |
1085 | fail_ksetreg: |
1086 | kobject_put(stable_kobj); |
1087 | |
1088 | fail_firmreg: |
1089 | printk(KERN_INFO PDCS_PREFIX " bailing out\n"); |
1090 | return rc; |
1091 | } |
1092 | |
1093 | static void __exit |
1094 | pdc_stable_exit(void) |
1095 | { |
1096 | pdcs_unregister_pathentries(); |
1097 | kset_unregister(paths_kset); |
1098 | kobject_put(stable_kobj); |
1099 | } |
1100 | |
1101 | |
1102 | module_init(pdc_stable_init); |
1103 | module_exit(pdc_stable_exit); |
1104 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9