Root/drivers/pcmcia/pcmcia_cis.c

1/*
2 * PCMCIA high-level CIS access functions
3 *
4 * The initial developer of the original code is David A. Hinds
5 * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
6 * are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
7 *
8 * Copyright (C) 1999 David A. Hinds
9 * Copyright (C) 2004-2010 Dominik Brodowski
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/netdevice.h>
21
22#include <pcmcia/cisreg.h>
23#include <pcmcia/cistpl.h>
24#include <pcmcia/ss.h>
25#include <pcmcia/ds.h>
26#include "cs_internal.h"
27
28
29/**
30 * pccard_read_tuple() - internal CIS tuple access
31 * @s: the struct pcmcia_socket where the card is inserted
32 * @function: the device function we loop for
33 * @code: which CIS code shall we look for?
34 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
35 *
36 * pccard_read_tuple() reads out one tuple and attempts to parse it
37 */
38int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
39        cisdata_t code, void *parse)
40{
41    tuple_t tuple;
42    cisdata_t *buf;
43    int ret;
44
45    buf = kmalloc(256, GFP_KERNEL);
46    if (buf == NULL) {
47        dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
48        return -ENOMEM;
49    }
50    tuple.DesiredTuple = code;
51    tuple.Attributes = 0;
52    if (function == BIND_FN_ALL)
53        tuple.Attributes = TUPLE_RETURN_COMMON;
54    ret = pccard_get_first_tuple(s, function, &tuple);
55    if (ret != 0)
56        goto done;
57    tuple.TupleData = buf;
58    tuple.TupleOffset = 0;
59    tuple.TupleDataMax = 255;
60    ret = pccard_get_tuple_data(s, &tuple);
61    if (ret != 0)
62        goto done;
63    ret = pcmcia_parse_tuple(&tuple, parse);
64done:
65    kfree(buf);
66    return ret;
67}
68
69
70/**
71 * pccard_loop_tuple() - loop over tuples in the CIS
72 * @s: the struct pcmcia_socket where the card is inserted
73 * @function: the device function we loop for
74 * @code: which CIS code shall we look for?
75 * @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
76 * @priv_data: private data to be passed to the loop_tuple function.
77 * @loop_tuple: function to call for each CIS entry of type @function. IT
78 * gets passed the raw tuple, the paresed tuple (if @parse is
79 * set) and @priv_data.
80 *
81 * pccard_loop_tuple() loops over all CIS entries of type @function, and
82 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
83 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
84 */
85int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
86              cisdata_t code, cisparse_t *parse, void *priv_data,
87              int (*loop_tuple) (tuple_t *tuple,
88                     cisparse_t *parse,
89                     void *priv_data))
90{
91    tuple_t tuple;
92    cisdata_t *buf;
93    int ret;
94
95    buf = kzalloc(256, GFP_KERNEL);
96    if (buf == NULL) {
97        dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
98        return -ENOMEM;
99    }
100
101    tuple.TupleData = buf;
102    tuple.TupleDataMax = 255;
103    tuple.TupleOffset = 0;
104    tuple.DesiredTuple = code;
105    tuple.Attributes = 0;
106
107    ret = pccard_get_first_tuple(s, function, &tuple);
108    while (!ret) {
109        if (pccard_get_tuple_data(s, &tuple))
110            goto next_entry;
111
112        if (parse)
113            if (pcmcia_parse_tuple(&tuple, parse))
114                goto next_entry;
115
116        ret = loop_tuple(&tuple, parse, priv_data);
117        if (!ret)
118            break;
119
120next_entry:
121        ret = pccard_get_next_tuple(s, function, &tuple);
122    }
123
124    kfree(buf);
125    return ret;
126}
127
128
129/**
130 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
131 */
132static int pcmcia_io_cfg_data_width(unsigned int flags)
133{
134    if (!(flags & CISTPL_IO_8BIT))
135        return IO_DATA_PATH_WIDTH_16;
136    if (!(flags & CISTPL_IO_16BIT))
137        return IO_DATA_PATH_WIDTH_8;
138    return IO_DATA_PATH_WIDTH_AUTO;
139}
140
141
142struct pcmcia_cfg_mem {
143    struct pcmcia_device *p_dev;
144    int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
145    void *priv_data;
146    cisparse_t parse;
147    cistpl_cftable_entry_t dflt;
148};
149
150/**
151 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
152 *
153 * pcmcia_do_loop_config() is the internal callback for the call from
154 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
155 * by a struct pcmcia_cfg_mem.
156 */
157static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
158{
159    struct pcmcia_cfg_mem *cfg_mem = priv;
160    struct pcmcia_device *p_dev = cfg_mem->p_dev;
161    cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
162    cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
163    unsigned int flags = p_dev->config_flags;
164    unsigned int vcc = p_dev->socket->socket.Vcc;
165
166    dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
167        cfg->index, flags);
168
169    /* default values */
170    cfg_mem->p_dev->config_index = cfg->index;
171    if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
172        cfg_mem->dflt = *cfg;
173
174    /* check for matching Vcc? */
175    if (flags & CONF_AUTO_CHECK_VCC) {
176        if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
177            if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
178                return -ENODEV;
179        } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
180            if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
181                return -ENODEV;
182        }
183    }
184
185    /* set Vpp? */
186    if (flags & CONF_AUTO_SET_VPP) {
187        if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
188            p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
189        else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
190            p_dev->vpp =
191                dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
192    }
193
194    /* enable audio? */
195    if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
196        p_dev->config_flags |= CONF_ENABLE_SPKR;
197
198
199    /* IO window settings? */
200    if (flags & CONF_AUTO_SET_IO) {
201        cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
202        int i = 0;
203
204        p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
205        p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
206        if (io->nwin == 0)
207            return -ENODEV;
208
209        p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
210        p_dev->resource[0]->flags |=
211                    pcmcia_io_cfg_data_width(io->flags);
212        if (io->nwin > 1) {
213            /* For multifunction cards, by convention, we
214             * configure the network function with window 0,
215             * and serial with window 1 */
216            i = (io->win[1].len > io->win[0].len);
217            p_dev->resource[1]->flags = p_dev->resource[0]->flags;
218            p_dev->resource[1]->start = io->win[1-i].base;
219            p_dev->resource[1]->end = io->win[1-i].len;
220        }
221        p_dev->resource[0]->start = io->win[i].base;
222        p_dev->resource[0]->end = io->win[i].len;
223        p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
224    }
225
226    /* MEM window settings? */
227    if (flags & CONF_AUTO_SET_IOMEM) {
228        /* so far, we only set one memory window */
229        cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
230
231        p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
232        if (mem->nwin == 0)
233            return -ENODEV;
234
235        p_dev->resource[2]->start = mem->win[0].host_addr;
236        p_dev->resource[2]->end = mem->win[0].len;
237        if (p_dev->resource[2]->end < 0x1000)
238            p_dev->resource[2]->end = 0x1000;
239        p_dev->card_addr = mem->win[0].card_addr;
240    }
241
242    dev_dbg(&p_dev->dev,
243        "checking configuration %x: %pr %pr %pr (%d lines)\n",
244        p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
245        p_dev->resource[2], p_dev->io_lines);
246
247    return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
248}
249
250/**
251 * pcmcia_loop_config() - loop over configuration options
252 * @p_dev: the struct pcmcia_device which we need to loop for.
253 * @conf_check: function to call for each configuration option.
254 * It gets passed the struct pcmcia_device and private data
255 * being passed to pcmcia_loop_config()
256 * @priv_data: private data to be passed to the conf_check function.
257 *
258 * pcmcia_loop_config() loops over all configuration options, and calls
259 * the driver-specific conf_check() for each one, checking whether
260 * it is a valid one. Returns 0 on success or errorcode otherwise.
261 */
262int pcmcia_loop_config(struct pcmcia_device *p_dev,
263               int (*conf_check) (struct pcmcia_device *p_dev,
264                         void *priv_data),
265               void *priv_data)
266{
267    struct pcmcia_cfg_mem *cfg_mem;
268    int ret;
269
270    cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
271    if (cfg_mem == NULL)
272        return -ENOMEM;
273
274    cfg_mem->p_dev = p_dev;
275    cfg_mem->conf_check = conf_check;
276    cfg_mem->priv_data = priv_data;
277
278    ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
279                CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
280                cfg_mem, pcmcia_do_loop_config);
281
282    kfree(cfg_mem);
283    return ret;
284}
285EXPORT_SYMBOL(pcmcia_loop_config);
286
287
288struct pcmcia_loop_mem {
289    struct pcmcia_device *p_dev;
290    void *priv_data;
291    int (*loop_tuple) (struct pcmcia_device *p_dev,
292               tuple_t *tuple,
293               void *priv_data);
294};
295
296/**
297 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
298 *
299 * pcmcia_do_loop_tuple() is the internal callback for the call from
300 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
301 * by a struct pcmcia_cfg_mem.
302 */
303static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
304{
305    struct pcmcia_loop_mem *loop = priv;
306
307    return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
308};
309
310/**
311 * pcmcia_loop_tuple() - loop over tuples in the CIS
312 * @p_dev: the struct pcmcia_device which we need to loop for.
313 * @code: which CIS code shall we look for?
314 * @priv_data: private data to be passed to the loop_tuple function.
315 * @loop_tuple: function to call for each CIS entry of type @function. IT
316 * gets passed the raw tuple and @priv_data.
317 *
318 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
319 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
320 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
321 */
322int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
323              int (*loop_tuple) (struct pcmcia_device *p_dev,
324                     tuple_t *tuple,
325                     void *priv_data),
326              void *priv_data)
327{
328    struct pcmcia_loop_mem loop = {
329        .p_dev = p_dev,
330        .loop_tuple = loop_tuple,
331        .priv_data = priv_data};
332
333    return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
334                 &loop, pcmcia_do_loop_tuple);
335}
336EXPORT_SYMBOL(pcmcia_loop_tuple);
337
338
339struct pcmcia_loop_get {
340    size_t len;
341    cisdata_t **buf;
342};
343
344/**
345 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
346 *
347 * pcmcia_do_get_tuple() is the internal callback for the call from
348 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
349 * the first tuple, return 0 unconditionally. Create a memory buffer large
350 * enough to hold the content of the tuple, and fill it with the tuple data.
351 * The caller is responsible to free the buffer.
352 */
353static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
354                   void *priv)
355{
356    struct pcmcia_loop_get *get = priv;
357
358    *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
359    if (*get->buf) {
360        get->len = tuple->TupleDataLen;
361        memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
362    } else
363        dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
364    return 0;
365}
366
367/**
368 * pcmcia_get_tuple() - get first tuple from CIS
369 * @p_dev: the struct pcmcia_device which we need to loop for.
370 * @code: which CIS code shall we look for?
371 * @buf: pointer to store the buffer to.
372 *
373 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
374 * It returns the buffer length (or zero). The caller is responsible to free
375 * the buffer passed in @buf.
376 */
377size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
378            unsigned char **buf)
379{
380    struct pcmcia_loop_get get = {
381        .len = 0,
382        .buf = buf,
383    };
384
385    *get.buf = NULL;
386    pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
387
388    return get.len;
389}
390EXPORT_SYMBOL(pcmcia_get_tuple);
391
392
393/**
394 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
395 *
396 * pcmcia_do_get_mac() is the internal callback for the call from
397 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
398 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
399 * to struct net_device->dev_addr[i].
400 */
401static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
402                 void *priv)
403{
404    struct net_device *dev = priv;
405    int i;
406
407    if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
408        return -EINVAL;
409    if (tuple->TupleDataLen < ETH_ALEN + 2) {
410        dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
411            "LAN_NODE_ID\n");
412        return -EINVAL;
413    }
414
415    if (tuple->TupleData[1] != ETH_ALEN) {
416        dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
417        return -EINVAL;
418    }
419    for (i = 0; i < 6; i++)
420        dev->dev_addr[i] = tuple->TupleData[i+2];
421    return 0;
422}
423
424/**
425 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
426 * @p_dev: the struct pcmcia_device for which we want the address.
427 * @dev: a properly prepared struct net_device to store the info to.
428 *
429 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
430 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
431 * must be set up properly by the driver (see examples!).
432 */
433int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
434{
435    return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
436}
437EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
438
439

Archive Download this file



interactive