Root/drivers/power/ab8500_fg.c

1/*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/power_supply.h>
24#include <linux/kobject.h>
25#include <linux/mfd/abx500/ab8500.h>
26#include <linux/mfd/abx500.h>
27#include <linux/slab.h>
28#include <linux/mfd/abx500/ab8500-bm.h>
29#include <linux/delay.h>
30#include <linux/mfd/abx500/ab8500-gpadc.h>
31#include <linux/mfd/abx500.h>
32#include <linux/time.h>
33#include <linux/completion.h>
34
35#define MILLI_TO_MICRO 1000
36#define FG_LSB_IN_MA 1627
37#define QLSB_NANO_AMP_HOURS_X10 1129
38#define INS_CURR_TIMEOUT (3 * HZ)
39
40#define SEC_TO_SAMPLE(S) (S * 4)
41
42#define NBR_AVG_SAMPLES 20
43
44#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
45
46#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
47#define BATT_OK_MIN 2360 /* mV */
48#define BATT_OK_INCREMENT 50 /* mV */
49#define BATT_OK_MAX_NR_INCREMENTS 0xE
50
51/* FG constants */
52#define BATT_OVV 0x01
53
54#define interpolate(x, x1, y1, x2, y2) \
55    ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
56
57#define to_ab8500_fg_device_info(x) container_of((x), \
58    struct ab8500_fg, fg_psy);
59
60/**
61 * struct ab8500_fg_interrupts - ab8500 fg interupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
64 */
65struct ab8500_fg_interrupts {
66    char *name;
67    irqreturn_t (*isr)(int irq, void *data);
68};
69
70enum ab8500_fg_discharge_state {
71    AB8500_FG_DISCHARGE_INIT,
72    AB8500_FG_DISCHARGE_INITMEASURING,
73    AB8500_FG_DISCHARGE_INIT_RECOVERY,
74    AB8500_FG_DISCHARGE_RECOVERY,
75    AB8500_FG_DISCHARGE_READOUT_INIT,
76    AB8500_FG_DISCHARGE_READOUT,
77    AB8500_FG_DISCHARGE_WAKEUP,
78};
79
80static char *discharge_state[] = {
81    "DISCHARGE_INIT",
82    "DISCHARGE_INITMEASURING",
83    "DISCHARGE_INIT_RECOVERY",
84    "DISCHARGE_RECOVERY",
85    "DISCHARGE_READOUT_INIT",
86    "DISCHARGE_READOUT",
87    "DISCHARGE_WAKEUP",
88};
89
90enum ab8500_fg_charge_state {
91    AB8500_FG_CHARGE_INIT,
92    AB8500_FG_CHARGE_READOUT,
93};
94
95static char *charge_state[] = {
96    "CHARGE_INIT",
97    "CHARGE_READOUT",
98};
99
100enum ab8500_fg_calibration_state {
101    AB8500_FG_CALIB_INIT,
102    AB8500_FG_CALIB_WAIT,
103    AB8500_FG_CALIB_END,
104};
105
106struct ab8500_fg_avg_cap {
107    int avg;
108    int samples[NBR_AVG_SAMPLES];
109    __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
110    int pos;
111    int nbr_samples;
112    int sum;
113};
114
115struct ab8500_fg_battery_capacity {
116    int max_mah_design;
117    int max_mah;
118    int mah;
119    int permille;
120    int level;
121    int prev_mah;
122    int prev_percent;
123    int prev_level;
124    int user_mah;
125};
126
127struct ab8500_fg_flags {
128    bool fg_enabled;
129    bool conv_done;
130    bool charging;
131    bool fully_charged;
132    bool force_full;
133    bool low_bat_delay;
134    bool low_bat;
135    bool bat_ovv;
136    bool batt_unknown;
137    bool calibrate;
138    bool user_cap;
139    bool batt_id_received;
140};
141
142struct inst_curr_result_list {
143    struct list_head list;
144    int *result;
145};
146
147/**
148 * struct ab8500_fg - ab8500 FG device information
149 * @dev: Pointer to the structure device
150 * @node: a list of AB8500 FGs, hence prepared for reentrance
151 * @irq holds the CCEOC interrupt number
152 * @vbat: Battery voltage in mV
153 * @vbat_nom: Nominal battery voltage in mV
154 * @inst_curr: Instantenous battery current in mA
155 * @avg_curr: Average battery current in mA
156 * @bat_temp battery temperature
157 * @fg_samples: Number of samples used in the FG accumulation
158 * @accu_charge: Accumulated charge from the last conversion
159 * @recovery_cnt: Counter for recovery mode
160 * @high_curr_cnt: Counter for high current mode
161 * @init_cnt: Counter for init mode
162 * @recovery_needed: Indicate if recovery is needed
163 * @high_curr_mode: Indicate if we're in high current mode
164 * @init_capacity: Indicate if initial capacity measuring should be done
165 * @turn_off_fg: True if fg was off before current measurement
166 * @calib_state State during offset calibration
167 * @discharge_state: Current discharge state
168 * @charge_state: Current charge state
169 * @ab8500_fg_complete Completion struct used for the instant current reading
170 * @flags: Structure for information about events triggered
171 * @bat_cap: Structure for battery capacity specific parameters
172 * @avg_cap: Average capacity filter
173 * @parent: Pointer to the struct ab8500
174 * @gpadc: Pointer to the struct gpadc
175 * @pdata: Pointer to the abx500_fg platform data
176 * @bat: Pointer to the abx500_bm platform data
177 * @fg_psy: Structure that holds the FG specific battery properties
178 * @fg_wq: Work queue for running the FG algorithm
179 * @fg_periodic_work: Work to run the FG algorithm periodically
180 * @fg_low_bat_work: Work to check low bat condition
181 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
182 * @fg_work: Work to run the FG algorithm instantly
183 * @fg_acc_cur_work: Work to read the FG accumulator
184 * @fg_check_hw_failure_work: Work for checking HW state
185 * @cc_lock: Mutex for locking the CC
186 * @fg_kobject: Structure of type kobject
187 */
188struct ab8500_fg {
189    struct device *dev;
190    struct list_head node;
191    int irq;
192    int vbat;
193    int vbat_nom;
194    int inst_curr;
195    int avg_curr;
196    int bat_temp;
197    int fg_samples;
198    int accu_charge;
199    int recovery_cnt;
200    int high_curr_cnt;
201    int init_cnt;
202    bool recovery_needed;
203    bool high_curr_mode;
204    bool init_capacity;
205    bool turn_off_fg;
206    enum ab8500_fg_calibration_state calib_state;
207    enum ab8500_fg_discharge_state discharge_state;
208    enum ab8500_fg_charge_state charge_state;
209    struct completion ab8500_fg_complete;
210    struct ab8500_fg_flags flags;
211    struct ab8500_fg_battery_capacity bat_cap;
212    struct ab8500_fg_avg_cap avg_cap;
213    struct ab8500 *parent;
214    struct ab8500_gpadc *gpadc;
215    struct abx500_fg_platform_data *pdata;
216    struct abx500_bm_data *bat;
217    struct power_supply fg_psy;
218    struct workqueue_struct *fg_wq;
219    struct delayed_work fg_periodic_work;
220    struct delayed_work fg_low_bat_work;
221    struct delayed_work fg_reinit_work;
222    struct work_struct fg_work;
223    struct work_struct fg_acc_cur_work;
224    struct delayed_work fg_check_hw_failure_work;
225    struct mutex cc_lock;
226    struct kobject fg_kobject;
227};
228static LIST_HEAD(ab8500_fg_list);
229
230/**
231 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
232 * (i.e. the first fuel gauge in the instance list)
233 */
234struct ab8500_fg *ab8500_fg_get(void)
235{
236    struct ab8500_fg *fg;
237
238    if (list_empty(&ab8500_fg_list))
239        return NULL;
240
241    fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
242    return fg;
243}
244
245/* Main battery properties */
246static enum power_supply_property ab8500_fg_props[] = {
247    POWER_SUPPLY_PROP_VOLTAGE_NOW,
248    POWER_SUPPLY_PROP_CURRENT_NOW,
249    POWER_SUPPLY_PROP_CURRENT_AVG,
250    POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
251    POWER_SUPPLY_PROP_ENERGY_FULL,
252    POWER_SUPPLY_PROP_ENERGY_NOW,
253    POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
254    POWER_SUPPLY_PROP_CHARGE_FULL,
255    POWER_SUPPLY_PROP_CHARGE_NOW,
256    POWER_SUPPLY_PROP_CAPACITY,
257    POWER_SUPPLY_PROP_CAPACITY_LEVEL,
258};
259
260/*
261 * This array maps the raw hex value to lowbat voltage used by the AB8500
262 * Values taken from the UM0836
263 */
264static int ab8500_fg_lowbat_voltage_map[] = {
265    2300 ,
266    2325 ,
267    2350 ,
268    2375 ,
269    2400 ,
270    2425 ,
271    2450 ,
272    2475 ,
273    2500 ,
274    2525 ,
275    2550 ,
276    2575 ,
277    2600 ,
278    2625 ,
279    2650 ,
280    2675 ,
281    2700 ,
282    2725 ,
283    2750 ,
284    2775 ,
285    2800 ,
286    2825 ,
287    2850 ,
288    2875 ,
289    2900 ,
290    2925 ,
291    2950 ,
292    2975 ,
293    3000 ,
294    3025 ,
295    3050 ,
296    3075 ,
297    3100 ,
298    3125 ,
299    3150 ,
300    3175 ,
301    3200 ,
302    3225 ,
303    3250 ,
304    3275 ,
305    3300 ,
306    3325 ,
307    3350 ,
308    3375 ,
309    3400 ,
310    3425 ,
311    3450 ,
312    3475 ,
313    3500 ,
314    3525 ,
315    3550 ,
316    3575 ,
317    3600 ,
318    3625 ,
319    3650 ,
320    3675 ,
321    3700 ,
322    3725 ,
323    3750 ,
324    3775 ,
325    3800 ,
326    3825 ,
327    3850 ,
328    3850 ,
329};
330
331static u8 ab8500_volt_to_regval(int voltage)
332{
333    int i;
334
335    if (voltage < ab8500_fg_lowbat_voltage_map[0])
336        return 0;
337
338    for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
339        if (voltage < ab8500_fg_lowbat_voltage_map[i])
340            return (u8) i - 1;
341    }
342
343    /* If not captured above, return index of last element */
344    return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
345}
346
347/**
348 * ab8500_fg_is_low_curr() - Low or high current mode
349 * @di: pointer to the ab8500_fg structure
350 * @curr: the current to base or our decision on
351 *
352 * Low current mode if the current consumption is below a certain threshold
353 */
354static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
355{
356    /*
357     * We want to know if we're in low current mode
358     */
359    if (curr > -di->bat->fg_params->high_curr_threshold)
360        return true;
361    else
362        return false;
363}
364
365/**
366 * ab8500_fg_add_cap_sample() - Add capacity to average filter
367 * @di: pointer to the ab8500_fg structure
368 * @sample: the capacity in mAh to add to the filter
369 *
370 * A capacity is added to the filter and a new mean capacity is calculated and
371 * returned
372 */
373static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
374{
375    struct timespec ts;
376    struct ab8500_fg_avg_cap *avg = &di->avg_cap;
377
378    getnstimeofday(&ts);
379
380    do {
381        avg->sum += sample - avg->samples[avg->pos];
382        avg->samples[avg->pos] = sample;
383        avg->time_stamps[avg->pos] = ts.tv_sec;
384        avg->pos++;
385
386        if (avg->pos == NBR_AVG_SAMPLES)
387            avg->pos = 0;
388
389        if (avg->nbr_samples < NBR_AVG_SAMPLES)
390            avg->nbr_samples++;
391
392        /*
393         * Check the time stamp for each sample. If too old,
394         * replace with latest sample
395         */
396    } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
397
398    avg->avg = avg->sum / avg->nbr_samples;
399
400    return avg->avg;
401}
402
403/**
404 * ab8500_fg_clear_cap_samples() - Clear average filter
405 * @di: pointer to the ab8500_fg structure
406 *
407 * The capacity filter is is reset to zero.
408 */
409static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
410{
411    int i;
412    struct ab8500_fg_avg_cap *avg = &di->avg_cap;
413
414    avg->pos = 0;
415    avg->nbr_samples = 0;
416    avg->sum = 0;
417    avg->avg = 0;
418
419    for (i = 0; i < NBR_AVG_SAMPLES; i++) {
420        avg->samples[i] = 0;
421        avg->time_stamps[i] = 0;
422    }
423}
424
425/**
426 * ab8500_fg_fill_cap_sample() - Fill average filter
427 * @di: pointer to the ab8500_fg structure
428 * @sample: the capacity in mAh to fill the filter with
429 *
430 * The capacity filter is filled with a capacity in mAh
431 */
432static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
433{
434    int i;
435    struct timespec ts;
436    struct ab8500_fg_avg_cap *avg = &di->avg_cap;
437
438    getnstimeofday(&ts);
439
440    for (i = 0; i < NBR_AVG_SAMPLES; i++) {
441        avg->samples[i] = sample;
442        avg->time_stamps[i] = ts.tv_sec;
443    }
444
445    avg->pos = 0;
446    avg->nbr_samples = NBR_AVG_SAMPLES;
447    avg->sum = sample * NBR_AVG_SAMPLES;
448    avg->avg = sample;
449}
450
451/**
452 * ab8500_fg_coulomb_counter() - enable coulomb counter
453 * @di: pointer to the ab8500_fg structure
454 * @enable: enable/disable
455 *
456 * Enable/Disable coulomb counter.
457 * On failure returns negative value.
458 */
459static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
460{
461    int ret = 0;
462    mutex_lock(&di->cc_lock);
463    if (enable) {
464        /* To be able to reprogram the number of samples, we have to
465         * first stop the CC and then enable it again */
466        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
467            AB8500_RTC_CC_CONF_REG, 0x00);
468        if (ret)
469            goto cc_err;
470
471        /* Program the samples */
472        ret = abx500_set_register_interruptible(di->dev,
473            AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
474            di->fg_samples);
475        if (ret)
476            goto cc_err;
477
478        /* Start the CC */
479        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
480            AB8500_RTC_CC_CONF_REG,
481            (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
482        if (ret)
483            goto cc_err;
484
485        di->flags.fg_enabled = true;
486    } else {
487        /* Clear any pending read requests */
488        ret = abx500_set_register_interruptible(di->dev,
489            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
490        if (ret)
491            goto cc_err;
492
493        ret = abx500_set_register_interruptible(di->dev,
494            AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
495        if (ret)
496            goto cc_err;
497
498        /* Stop the CC */
499        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
500            AB8500_RTC_CC_CONF_REG, 0);
501        if (ret)
502            goto cc_err;
503
504        di->flags.fg_enabled = false;
505
506    }
507    dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
508        enable, di->fg_samples);
509
510    mutex_unlock(&di->cc_lock);
511
512    return ret;
513cc_err:
514    dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
515    mutex_unlock(&di->cc_lock);
516    return ret;
517}
518
519/**
520 * ab8500_fg_inst_curr_start() - start battery instantaneous current
521 * @di: pointer to the ab8500_fg structure
522 *
523 * Returns 0 or error code
524 * Note: This is part "one" and has to be called before
525 * ab8500_fg_inst_curr_finalize()
526 */
527 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
528{
529    u8 reg_val;
530    int ret;
531
532    mutex_lock(&di->cc_lock);
533
534    ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
535        AB8500_RTC_CC_CONF_REG, &reg_val);
536    if (ret < 0)
537        goto fail;
538
539    if (!(reg_val & CC_PWR_UP_ENA)) {
540        dev_dbg(di->dev, "%s Enable FG\n", __func__);
541        di->turn_off_fg = true;
542
543        /* Program the samples */
544        ret = abx500_set_register_interruptible(di->dev,
545            AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
546            SEC_TO_SAMPLE(10));
547        if (ret)
548            goto fail;
549
550        /* Start the CC */
551        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
552            AB8500_RTC_CC_CONF_REG,
553            (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
554        if (ret)
555            goto fail;
556    } else {
557        di->turn_off_fg = false;
558    }
559
560    /* Return and WFI */
561    INIT_COMPLETION(di->ab8500_fg_complete);
562    enable_irq(di->irq);
563
564    /* Note: cc_lock is still locked */
565    return 0;
566fail:
567    mutex_unlock(&di->cc_lock);
568    return ret;
569}
570
571/**
572 * ab8500_fg_inst_curr_done() - check if fg conversion is done
573 * @di: pointer to the ab8500_fg structure
574 *
575 * Returns 1 if conversion done, 0 if still waiting
576 */
577int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
578{
579    return completion_done(&di->ab8500_fg_complete);
580}
581
582/**
583 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
584 * @di: pointer to the ab8500_fg structure
585 * @res: battery instantenous current(on success)
586 *
587 * Returns 0 or an error code
588 * Note: This is part "two" and has to be called at earliest 250 ms
589 * after ab8500_fg_inst_curr_start()
590 */
591int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
592{
593    u8 low, high;
594    int val;
595    int ret;
596    int timeout;
597
598    if (!completion_done(&di->ab8500_fg_complete)) {
599        timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
600            INS_CURR_TIMEOUT);
601        dev_dbg(di->dev, "Finalize time: %d ms\n",
602            ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
603        if (!timeout) {
604            ret = -ETIME;
605            disable_irq(di->irq);
606            dev_err(di->dev, "completion timed out [%d]\n",
607                __LINE__);
608            goto fail;
609        }
610    }
611
612    disable_irq(di->irq);
613
614    ret = abx500_mask_and_set_register_interruptible(di->dev,
615            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
616            READ_REQ, READ_REQ);
617
618    /* 100uS between read request and read is needed */
619    usleep_range(100, 100);
620
621    /* Read CC Sample conversion value Low and high */
622    ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
623        AB8500_GASG_CC_SMPL_CNVL_REG, &low);
624    if (ret < 0)
625        goto fail;
626
627    ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
628        AB8500_GASG_CC_SMPL_CNVH_REG, &high);
629    if (ret < 0)
630        goto fail;
631
632    /*
633     * negative value for Discharging
634     * convert 2's compliment into decimal
635     */
636    if (high & 0x10)
637        val = (low | (high << 8) | 0xFFFFE000);
638    else
639        val = (low | (high << 8));
640
641    /*
642     * Convert to unit value in mA
643     * Full scale input voltage is
644     * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
645     * Given a 250ms conversion cycle time the LSB corresponds
646     * to 112.9 nAh. Convert to current by dividing by the conversion
647     * time in hours (250ms = 1 / (3600 * 4)h)
648     * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
649     */
650    val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
651        (1000 * di->bat->fg_res);
652
653    if (di->turn_off_fg) {
654        dev_dbg(di->dev, "%s Disable FG\n", __func__);
655
656        /* Clear any pending read requests */
657        ret = abx500_set_register_interruptible(di->dev,
658            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
659        if (ret)
660            goto fail;
661
662        /* Stop the CC */
663        ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
664            AB8500_RTC_CC_CONF_REG, 0);
665        if (ret)
666            goto fail;
667    }
668    mutex_unlock(&di->cc_lock);
669    (*res) = val;
670
671    return 0;
672fail:
673    mutex_unlock(&di->cc_lock);
674    return ret;
675}
676
677/**
678 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
679 * @di: pointer to the ab8500_fg structure
680 * @res: battery instantenous current(on success)
681 *
682 * Returns 0 else error code
683 */
684int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
685{
686    int ret;
687    int res = 0;
688
689    ret = ab8500_fg_inst_curr_start(di);
690    if (ret) {
691        dev_err(di->dev, "Failed to initialize fg_inst\n");
692        return 0;
693    }
694
695    ret = ab8500_fg_inst_curr_finalize(di, &res);
696    if (ret) {
697        dev_err(di->dev, "Failed to finalize fg_inst\n");
698        return 0;
699    }
700
701    return res;
702}
703
704/**
705 * ab8500_fg_acc_cur_work() - average battery current
706 * @work: pointer to the work_struct structure
707 *
708 * Updated the average battery current obtained from the
709 * coulomb counter.
710 */
711static void ab8500_fg_acc_cur_work(struct work_struct *work)
712{
713    int val;
714    int ret;
715    u8 low, med, high;
716
717    struct ab8500_fg *di = container_of(work,
718        struct ab8500_fg, fg_acc_cur_work);
719
720    mutex_lock(&di->cc_lock);
721    ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
722        AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
723    if (ret)
724        goto exit;
725
726    ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
727        AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
728    if (ret < 0)
729        goto exit;
730
731    ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
732        AB8500_GASG_CC_NCOV_ACCU_MED, &med);
733    if (ret < 0)
734        goto exit;
735
736    ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
737        AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
738    if (ret < 0)
739        goto exit;
740
741    /* Check for sign bit in case of negative value, 2's compliment */
742    if (high & 0x10)
743        val = (low | (med << 8) | (high << 16) | 0xFFE00000);
744    else
745        val = (low | (med << 8) | (high << 16));
746
747    /*
748     * Convert to uAh
749     * Given a 250ms conversion cycle time the LSB corresponds
750     * to 112.9 nAh.
751     * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
752     */
753    di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
754        (100 * di->bat->fg_res);
755
756    /*
757     * Convert to unit value in mA
758     * Full scale input voltage is
759     * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
760     * Given a 250ms conversion cycle time the LSB corresponds
761     * to 112.9 nAh. Convert to current by dividing by the conversion
762     * time in hours (= samples / (3600 * 4)h)
763     * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
764     */
765    di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
766        (1000 * di->bat->fg_res * (di->fg_samples / 4));
767
768    di->flags.conv_done = true;
769
770    mutex_unlock(&di->cc_lock);
771
772    queue_work(di->fg_wq, &di->fg_work);
773
774    return;
775exit:
776    dev_err(di->dev,
777        "Failed to read or write gas gauge registers\n");
778    mutex_unlock(&di->cc_lock);
779    queue_work(di->fg_wq, &di->fg_work);
780}
781
782/**
783 * ab8500_fg_bat_voltage() - get battery voltage
784 * @di: pointer to the ab8500_fg structure
785 *
786 * Returns battery voltage(on success) else error code
787 */
788static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
789{
790    int vbat;
791    static int prev;
792
793    vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
794    if (vbat < 0) {
795        dev_err(di->dev,
796            "%s gpadc conversion failed, using previous value\n",
797            __func__);
798        return prev;
799    }
800
801    prev = vbat;
802    return vbat;
803}
804
805/**
806 * ab8500_fg_volt_to_capacity() - Voltage based capacity
807 * @di: pointer to the ab8500_fg structure
808 * @voltage: The voltage to convert to a capacity
809 *
810 * Returns battery capacity in per mille based on voltage
811 */
812static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
813{
814    int i, tbl_size;
815    struct abx500_v_to_cap *tbl;
816    int cap = 0;
817
818    tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
819    tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
820
821    for (i = 0; i < tbl_size; ++i) {
822        if (voltage > tbl[i].voltage)
823            break;
824    }
825
826    if ((i > 0) && (i < tbl_size)) {
827        cap = interpolate(voltage,
828            tbl[i].voltage,
829            tbl[i].capacity * 10,
830            tbl[i-1].voltage,
831            tbl[i-1].capacity * 10);
832    } else if (i == 0) {
833        cap = 1000;
834    } else {
835        cap = 0;
836    }
837
838    dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
839        __func__, voltage, cap);
840
841    return cap;
842}
843
844/**
845 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
846 * @di: pointer to the ab8500_fg structure
847 *
848 * Returns battery capacity based on battery voltage that is not compensated
849 * for the voltage drop due to the load
850 */
851static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
852{
853    di->vbat = ab8500_fg_bat_voltage(di);
854    return ab8500_fg_volt_to_capacity(di, di->vbat);
855}
856
857/**
858 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
859 * @di: pointer to the ab8500_fg structure
860 *
861 * Returns battery inner resistance added with the fuel gauge resistor value
862 * to get the total resistance in the whole link from gnd to bat+ node.
863 */
864static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
865{
866    int i, tbl_size;
867    struct batres_vs_temp *tbl;
868    int resist = 0;
869
870    tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
871    tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
872
873    for (i = 0; i < tbl_size; ++i) {
874        if (di->bat_temp / 10 > tbl[i].temp)
875            break;
876    }
877
878    if ((i > 0) && (i < tbl_size)) {
879        resist = interpolate(di->bat_temp / 10,
880            tbl[i].temp,
881            tbl[i].resist,
882            tbl[i-1].temp,
883            tbl[i-1].resist);
884    } else if (i == 0) {
885        resist = tbl[0].resist;
886    } else {
887        resist = tbl[tbl_size - 1].resist;
888    }
889
890    dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
891        " fg resistance %d, total: %d (mOhm)\n",
892        __func__, di->bat_temp, resist, di->bat->fg_res / 10,
893        (di->bat->fg_res / 10) + resist);
894
895    /* fg_res variable is in 0.1mOhm */
896    resist += di->bat->fg_res / 10;
897
898    return resist;
899}
900
901/**
902 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
903 * @di: pointer to the ab8500_fg structure
904 *
905 * Returns battery capacity based on battery voltage that is load compensated
906 * for the voltage drop
907 */
908static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
909{
910    int vbat_comp, res;
911    int i = 0;
912    int vbat = 0;
913
914    ab8500_fg_inst_curr_start(di);
915
916    do {
917        vbat += ab8500_fg_bat_voltage(di);
918        i++;
919        msleep(5);
920    } while (!ab8500_fg_inst_curr_done(di));
921
922    ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
923
924    di->vbat = vbat / i;
925    res = ab8500_fg_battery_resistance(di);
926
927    /* Use Ohms law to get the load compensated voltage */
928    vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
929
930    dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
931        "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
932        __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
933
934    return ab8500_fg_volt_to_capacity(di, vbat_comp);
935}
936
937/**
938 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
939 * @di: pointer to the ab8500_fg structure
940 * @cap_mah: capacity in mAh
941 *
942 * Converts capacity in mAh to capacity in permille
943 */
944static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
945{
946    return (cap_mah * 1000) / di->bat_cap.max_mah_design;
947}
948
949/**
950 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
951 * @di: pointer to the ab8500_fg structure
952 * @cap_pm: capacity in permille
953 *
954 * Converts capacity in permille to capacity in mAh
955 */
956static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
957{
958    return cap_pm * di->bat_cap.max_mah_design / 1000;
959}
960
961/**
962 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
963 * @di: pointer to the ab8500_fg structure
964 * @cap_mah: capacity in mAh
965 *
966 * Converts capacity in mAh to capacity in uWh
967 */
968static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
969{
970    u64 div_res;
971    u32 div_rem;
972
973    div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
974    div_rem = do_div(div_res, 1000);
975
976    /* Make sure to round upwards if necessary */
977    if (div_rem >= 1000 / 2)
978        div_res++;
979
980    return (int) div_res;
981}
982
983/**
984 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
985 * @di: pointer to the ab8500_fg structure
986 *
987 * Return the capacity in mAh based on previous calculated capcity and the FG
988 * accumulator register value. The filter is filled with this capacity
989 */
990static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
991{
992    dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
993        __func__,
994        di->bat_cap.mah,
995        di->accu_charge);
996
997    /* Capacity should not be less than 0 */
998    if (di->bat_cap.mah + di->accu_charge > 0)
999        di->bat_cap.mah += di->accu_charge;
1000    else
1001        di->bat_cap.mah = 0;
1002    /*
1003     * We force capacity to 100% once when the algorithm
1004     * reports that it's full.
1005     */
1006    if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1007        di->flags.force_full) {
1008        di->bat_cap.mah = di->bat_cap.max_mah_design;
1009    }
1010
1011    ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1012    di->bat_cap.permille =
1013        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1014
1015    /* We need to update battery voltage and inst current when charging */
1016    di->vbat = ab8500_fg_bat_voltage(di);
1017    di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1018
1019    return di->bat_cap.mah;
1020}
1021
1022/**
1023 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1024 * @di: pointer to the ab8500_fg structure
1025 * @comp: if voltage should be load compensated before capacity calc
1026 *
1027 * Return the capacity in mAh based on the battery voltage. The voltage can
1028 * either be load compensated or not. This value is added to the filter and a
1029 * new mean value is calculated and returned.
1030 */
1031static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1032{
1033    int permille, mah;
1034
1035    if (comp)
1036        permille = ab8500_fg_load_comp_volt_to_capacity(di);
1037    else
1038        permille = ab8500_fg_uncomp_volt_to_capacity(di);
1039
1040    mah = ab8500_fg_convert_permille_to_mah(di, permille);
1041
1042    di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1043    di->bat_cap.permille =
1044        ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1045
1046    return di->bat_cap.mah;
1047}
1048
1049/**
1050 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1051 * @di: pointer to the ab8500_fg structure
1052 *
1053 * Return the capacity in mAh based on previous calculated capcity and the FG
1054 * accumulator register value. This value is added to the filter and a
1055 * new mean value is calculated and returned.
1056 */
1057static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1058{
1059    int permille_volt, permille;
1060
1061    dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1062        __func__,
1063        di->bat_cap.mah,
1064        di->accu_charge);
1065
1066    /* Capacity should not be less than 0 */
1067    if (di->bat_cap.mah + di->accu_charge > 0)
1068        di->bat_cap.mah += di->accu_charge;
1069    else
1070        di->bat_cap.mah = 0;
1071
1072    if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1073        di->bat_cap.mah = di->bat_cap.max_mah_design;
1074
1075    /*
1076     * Check against voltage based capacity. It can not be lower
1077     * than what the uncompensated voltage says
1078     */
1079    permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1080    permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1081
1082    if (permille < permille_volt) {
1083        di->bat_cap.permille = permille_volt;
1084        di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1085            di->bat_cap.permille);
1086
1087        dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1088            __func__,
1089            permille,
1090            permille_volt);
1091
1092        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1093    } else {
1094        ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1095        di->bat_cap.permille =
1096            ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1097    }
1098
1099    return di->bat_cap.mah;
1100}
1101
1102/**
1103 * ab8500_fg_capacity_level() - Get the battery capacity level
1104 * @di: pointer to the ab8500_fg structure
1105 *
1106 * Get the battery capacity level based on the capacity in percent
1107 */
1108static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1109{
1110    int ret, percent;
1111
1112    percent = di->bat_cap.permille / 10;
1113
1114    if (percent <= di->bat->cap_levels->critical ||
1115        di->flags.low_bat)
1116        ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1117    else if (percent <= di->bat->cap_levels->low)
1118        ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1119    else if (percent <= di->bat->cap_levels->normal)
1120        ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1121    else if (percent <= di->bat->cap_levels->high)
1122        ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1123    else
1124        ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1125
1126    return ret;
1127}
1128
1129/**
1130 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1131 * @di: pointer to the ab8500_fg structure
1132 * @init: capacity is allowed to go up in init mode
1133 *
1134 * Check if capacity or capacity limit has changed and notify the system
1135 * about it using the power_supply framework
1136 */
1137static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1138{
1139    bool changed = false;
1140
1141    di->bat_cap.level = ab8500_fg_capacity_level(di);
1142
1143    if (di->bat_cap.level != di->bat_cap.prev_level) {
1144        /*
1145         * We do not allow reported capacity level to go up
1146         * unless we're charging or if we're in init
1147         */
1148        if (!(!di->flags.charging && di->bat_cap.level >
1149            di->bat_cap.prev_level) || init) {
1150            dev_dbg(di->dev, "level changed from %d to %d\n",
1151                di->bat_cap.prev_level,
1152                di->bat_cap.level);
1153            di->bat_cap.prev_level = di->bat_cap.level;
1154            changed = true;
1155        } else {
1156            dev_dbg(di->dev, "level not allowed to go up "
1157                "since no charger is connected: %d to %d\n",
1158                di->bat_cap.prev_level,
1159                di->bat_cap.level);
1160        }
1161    }
1162
1163    /*
1164     * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1165     * shutdown
1166     */
1167    if (di->flags.low_bat) {
1168        dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1169        di->bat_cap.prev_percent = 0;
1170        di->bat_cap.permille = 0;
1171        di->bat_cap.prev_mah = 0;
1172        di->bat_cap.mah = 0;
1173        changed = true;
1174    } else if (di->flags.fully_charged) {
1175        /*
1176         * We report 100% if algorithm reported fully charged
1177         * unless capacity drops too much
1178         */
1179        if (di->flags.force_full) {
1180            di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1181            di->bat_cap.prev_mah = di->bat_cap.mah;
1182        } else if (!di->flags.force_full &&
1183            di->bat_cap.prev_percent !=
1184            (di->bat_cap.permille) / 10 &&
1185            (di->bat_cap.permille / 10) <
1186            di->bat->fg_params->maint_thres) {
1187            dev_dbg(di->dev,
1188                "battery reported full "
1189                "but capacity dropping: %d\n",
1190                di->bat_cap.permille / 10);
1191            di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1192            di->bat_cap.prev_mah = di->bat_cap.mah;
1193
1194            changed = true;
1195        }
1196    } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1197        if (di->bat_cap.permille / 10 == 0) {
1198            /*
1199             * We will not report 0% unless we've got
1200             * the LOW_BAT IRQ, no matter what the FG
1201             * algorithm says.
1202             */
1203            di->bat_cap.prev_percent = 1;
1204            di->bat_cap.permille = 1;
1205            di->bat_cap.prev_mah = 1;
1206            di->bat_cap.mah = 1;
1207
1208            changed = true;
1209        } else if (!(!di->flags.charging &&
1210            (di->bat_cap.permille / 10) >
1211            di->bat_cap.prev_percent) || init) {
1212            /*
1213             * We do not allow reported capacity to go up
1214             * unless we're charging or if we're in init
1215             */
1216            dev_dbg(di->dev,
1217                "capacity changed from %d to %d (%d)\n",
1218                di->bat_cap.prev_percent,
1219                di->bat_cap.permille / 10,
1220                di->bat_cap.permille);
1221            di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1222            di->bat_cap.prev_mah = di->bat_cap.mah;
1223
1224            changed = true;
1225        } else {
1226            dev_dbg(di->dev, "capacity not allowed to go up since "
1227                "no charger is connected: %d to %d (%d)\n",
1228                di->bat_cap.prev_percent,
1229                di->bat_cap.permille / 10,
1230                di->bat_cap.permille);
1231        }
1232    }
1233
1234    if (changed) {
1235        power_supply_changed(&di->fg_psy);
1236        if (di->flags.fully_charged && di->flags.force_full) {
1237            dev_dbg(di->dev, "Battery full, notifying.\n");
1238            di->flags.force_full = false;
1239            sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1240        }
1241        sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1242    }
1243}
1244
1245static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1246    enum ab8500_fg_charge_state new_state)
1247{
1248    dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1249        di->charge_state,
1250        charge_state[di->charge_state],
1251        new_state,
1252        charge_state[new_state]);
1253
1254    di->charge_state = new_state;
1255}
1256
1257static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1258    enum ab8500_fg_discharge_state new_state)
1259{
1260    dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1261        di->discharge_state,
1262        discharge_state[di->discharge_state],
1263        new_state,
1264        discharge_state[new_state]);
1265
1266    di->discharge_state = new_state;
1267}
1268
1269/**
1270 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1271 * @di: pointer to the ab8500_fg structure
1272 *
1273 * Battery capacity calculation state machine for when we're charging
1274 */
1275static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1276{
1277    /*
1278     * If we change to discharge mode
1279     * we should start with recovery
1280     */
1281    if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1282        ab8500_fg_discharge_state_to(di,
1283            AB8500_FG_DISCHARGE_INIT_RECOVERY);
1284
1285    switch (di->charge_state) {
1286    case AB8500_FG_CHARGE_INIT:
1287        di->fg_samples = SEC_TO_SAMPLE(
1288            di->bat->fg_params->accu_charging);
1289
1290        ab8500_fg_coulomb_counter(di, true);
1291        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1292
1293        break;
1294
1295    case AB8500_FG_CHARGE_READOUT:
1296        /*
1297         * Read the FG and calculate the new capacity
1298         */
1299        mutex_lock(&di->cc_lock);
1300        if (!di->flags.conv_done) {
1301            /* Wasn't the CC IRQ that got us here */
1302            mutex_unlock(&di->cc_lock);
1303            dev_dbg(di->dev, "%s CC conv not done\n",
1304                __func__);
1305
1306            break;
1307        }
1308        di->flags.conv_done = false;
1309        mutex_unlock(&di->cc_lock);
1310
1311        ab8500_fg_calc_cap_charging(di);
1312
1313        break;
1314
1315    default:
1316        break;
1317    }
1318
1319    /* Check capacity limits */
1320    ab8500_fg_check_capacity_limits(di, false);
1321}
1322
1323static void force_capacity(struct ab8500_fg *di)
1324{
1325    int cap;
1326
1327    ab8500_fg_clear_cap_samples(di);
1328    cap = di->bat_cap.user_mah;
1329    if (cap > di->bat_cap.max_mah_design) {
1330        dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1331            " %d\n", cap, di->bat_cap.max_mah_design);
1332        cap = di->bat_cap.max_mah_design;
1333    }
1334    ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1335    di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1336    di->bat_cap.mah = cap;
1337    ab8500_fg_check_capacity_limits(di, true);
1338}
1339
1340static bool check_sysfs_capacity(struct ab8500_fg *di)
1341{
1342    int cap, lower, upper;
1343    int cap_permille;
1344
1345    cap = di->bat_cap.user_mah;
1346
1347    cap_permille = ab8500_fg_convert_mah_to_permille(di,
1348        di->bat_cap.user_mah);
1349
1350    lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
1351    upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
1352
1353    if (lower < 0)
1354        lower = 0;
1355    /* 1000 is permille, -> 100 percent */
1356    if (upper > 1000)
1357        upper = 1000;
1358
1359    dev_dbg(di->dev, "Capacity limits:"
1360        " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1361        lower, cap_permille, upper, cap, di->bat_cap.mah);
1362
1363    /* If within limits, use the saved capacity and exit estimation...*/
1364    if (cap_permille > lower && cap_permille < upper) {
1365        dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1366        force_capacity(di);
1367        return true;
1368    }
1369    dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1370    return false;
1371}
1372
1373/**
1374 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1375 * @di: pointer to the ab8500_fg structure
1376 *
1377 * Battery capacity calculation state machine for when we're discharging
1378 */
1379static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1380{
1381    int sleep_time;
1382
1383    /* If we change to charge mode we should start with init */
1384    if (di->charge_state != AB8500_FG_CHARGE_INIT)
1385        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1386
1387    switch (di->discharge_state) {
1388    case AB8500_FG_DISCHARGE_INIT:
1389        /* We use the FG IRQ to work on */
1390        di->init_cnt = 0;
1391        di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
1392        ab8500_fg_coulomb_counter(di, true);
1393        ab8500_fg_discharge_state_to(di,
1394            AB8500_FG_DISCHARGE_INITMEASURING);
1395
1396        /* Intentional fallthrough */
1397    case AB8500_FG_DISCHARGE_INITMEASURING:
1398        /*
1399         * Discard a number of samples during startup.
1400         * After that, use compensated voltage for a few
1401         * samples to get an initial capacity.
1402         * Then go to READOUT
1403         */
1404        sleep_time = di->bat->fg_params->init_timer;
1405
1406        /* Discard the first [x] seconds */
1407        if (di->init_cnt >
1408            di->bat->fg_params->init_discard_time) {
1409            ab8500_fg_calc_cap_discharge_voltage(di, true);
1410
1411            ab8500_fg_check_capacity_limits(di, true);
1412        }
1413
1414        di->init_cnt += sleep_time;
1415        if (di->init_cnt > di->bat->fg_params->init_total_time)
1416            ab8500_fg_discharge_state_to(di,
1417                AB8500_FG_DISCHARGE_READOUT_INIT);
1418
1419        break;
1420
1421    case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1422        di->recovery_cnt = 0;
1423        di->recovery_needed = true;
1424        ab8500_fg_discharge_state_to(di,
1425            AB8500_FG_DISCHARGE_RECOVERY);
1426
1427        /* Intentional fallthrough */
1428
1429    case AB8500_FG_DISCHARGE_RECOVERY:
1430        sleep_time = di->bat->fg_params->recovery_sleep_timer;
1431
1432        /*
1433         * We should check the power consumption
1434         * If low, go to READOUT (after x min) or
1435         * RECOVERY_SLEEP if time left.
1436         * If high, go to READOUT
1437         */
1438        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1439
1440        if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1441            if (di->recovery_cnt >
1442                di->bat->fg_params->recovery_total_time) {
1443                di->fg_samples = SEC_TO_SAMPLE(
1444                    di->bat->fg_params->accu_high_curr);
1445                ab8500_fg_coulomb_counter(di, true);
1446                ab8500_fg_discharge_state_to(di,
1447                    AB8500_FG_DISCHARGE_READOUT);
1448                di->recovery_needed = false;
1449            } else {
1450                queue_delayed_work(di->fg_wq,
1451                    &di->fg_periodic_work,
1452                    sleep_time * HZ);
1453            }
1454            di->recovery_cnt += sleep_time;
1455        } else {
1456            di->fg_samples = SEC_TO_SAMPLE(
1457                di->bat->fg_params->accu_high_curr);
1458            ab8500_fg_coulomb_counter(di, true);
1459            ab8500_fg_discharge_state_to(di,
1460                AB8500_FG_DISCHARGE_READOUT);
1461        }
1462        break;
1463
1464    case AB8500_FG_DISCHARGE_READOUT_INIT:
1465        di->fg_samples = SEC_TO_SAMPLE(
1466            di->bat->fg_params->accu_high_curr);
1467        ab8500_fg_coulomb_counter(di, true);
1468        ab8500_fg_discharge_state_to(di,
1469                AB8500_FG_DISCHARGE_READOUT);
1470        break;
1471
1472    case AB8500_FG_DISCHARGE_READOUT:
1473        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1474
1475        if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1476            /* Detect mode change */
1477            if (di->high_curr_mode) {
1478                di->high_curr_mode = false;
1479                di->high_curr_cnt = 0;
1480            }
1481
1482            if (di->recovery_needed) {
1483                ab8500_fg_discharge_state_to(di,
1484                    AB8500_FG_DISCHARGE_RECOVERY);
1485
1486                queue_delayed_work(di->fg_wq,
1487                    &di->fg_periodic_work, 0);
1488
1489                break;
1490            }
1491
1492            ab8500_fg_calc_cap_discharge_voltage(di, true);
1493        } else {
1494            mutex_lock(&di->cc_lock);
1495            if (!di->flags.conv_done) {
1496                /* Wasn't the CC IRQ that got us here */
1497                mutex_unlock(&di->cc_lock);
1498                dev_dbg(di->dev, "%s CC conv not done\n",
1499                    __func__);
1500
1501                break;
1502            }
1503            di->flags.conv_done = false;
1504            mutex_unlock(&di->cc_lock);
1505
1506            /* Detect mode change */
1507            if (!di->high_curr_mode) {
1508                di->high_curr_mode = true;
1509                di->high_curr_cnt = 0;
1510            }
1511
1512            di->high_curr_cnt +=
1513                di->bat->fg_params->accu_high_curr;
1514            if (di->high_curr_cnt >
1515                di->bat->fg_params->high_curr_time)
1516                di->recovery_needed = true;
1517
1518            ab8500_fg_calc_cap_discharge_fg(di);
1519        }
1520
1521        ab8500_fg_check_capacity_limits(di, false);
1522
1523        break;
1524
1525    case AB8500_FG_DISCHARGE_WAKEUP:
1526        ab8500_fg_coulomb_counter(di, true);
1527        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1528
1529        ab8500_fg_calc_cap_discharge_voltage(di, true);
1530
1531        di->fg_samples = SEC_TO_SAMPLE(
1532            di->bat->fg_params->accu_high_curr);
1533        ab8500_fg_coulomb_counter(di, true);
1534        ab8500_fg_discharge_state_to(di,
1535                AB8500_FG_DISCHARGE_READOUT);
1536
1537        ab8500_fg_check_capacity_limits(di, false);
1538
1539        break;
1540
1541    default:
1542        break;
1543    }
1544}
1545
1546/**
1547 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1548 * @di: pointer to the ab8500_fg structure
1549 *
1550 */
1551static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1552{
1553    int ret;
1554
1555    switch (di->calib_state) {
1556    case AB8500_FG_CALIB_INIT:
1557        dev_dbg(di->dev, "Calibration ongoing...\n");
1558
1559        ret = abx500_mask_and_set_register_interruptible(di->dev,
1560            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1561            CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1562        if (ret < 0)
1563            goto err;
1564
1565        ret = abx500_mask_and_set_register_interruptible(di->dev,
1566            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1567            CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1568        if (ret < 0)
1569            goto err;
1570        di->calib_state = AB8500_FG_CALIB_WAIT;
1571        break;
1572    case AB8500_FG_CALIB_END:
1573        ret = abx500_mask_and_set_register_interruptible(di->dev,
1574            AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1575            CC_MUXOFFSET, CC_MUXOFFSET);
1576        if (ret < 0)
1577            goto err;
1578        di->flags.calibrate = false;
1579        dev_dbg(di->dev, "Calibration done...\n");
1580        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1581        break;
1582    case AB8500_FG_CALIB_WAIT:
1583        dev_dbg(di->dev, "Calibration WFI\n");
1584    default:
1585        break;
1586    }
1587    return;
1588err:
1589    /* Something went wrong, don't calibrate then */
1590    dev_err(di->dev, "failed to calibrate the CC\n");
1591    di->flags.calibrate = false;
1592    di->calib_state = AB8500_FG_CALIB_INIT;
1593    queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1594}
1595
1596/**
1597 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1598 * @di: pointer to the ab8500_fg structure
1599 *
1600 * Entry point for the battery capacity calculation state machine
1601 */
1602static void ab8500_fg_algorithm(struct ab8500_fg *di)
1603{
1604    if (di->flags.calibrate)
1605        ab8500_fg_algorithm_calibrate(di);
1606    else {
1607        if (di->flags.charging)
1608            ab8500_fg_algorithm_charging(di);
1609        else
1610            ab8500_fg_algorithm_discharging(di);
1611    }
1612
1613    dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1614        "%d %d %d %d %d %d %d\n",
1615        di->bat_cap.max_mah_design,
1616        di->bat_cap.mah,
1617        di->bat_cap.permille,
1618        di->bat_cap.level,
1619        di->bat_cap.prev_mah,
1620        di->bat_cap.prev_percent,
1621        di->bat_cap.prev_level,
1622        di->vbat,
1623        di->inst_curr,
1624        di->avg_curr,
1625        di->accu_charge,
1626        di->flags.charging,
1627        di->charge_state,
1628        di->discharge_state,
1629        di->high_curr_mode,
1630        di->recovery_needed);
1631}
1632
1633/**
1634 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1635 * @work: pointer to the work_struct structure
1636 *
1637 * Work queue function for periodic work
1638 */
1639static void ab8500_fg_periodic_work(struct work_struct *work)
1640{
1641    struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1642        fg_periodic_work.work);
1643
1644    if (di->init_capacity) {
1645        /* A dummy read that will return 0 */
1646        di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1647        /* Get an initial capacity calculation */
1648        ab8500_fg_calc_cap_discharge_voltage(di, true);
1649        ab8500_fg_check_capacity_limits(di, true);
1650        di->init_capacity = false;
1651
1652        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1653    } else if (di->flags.user_cap) {
1654        if (check_sysfs_capacity(di)) {
1655            ab8500_fg_check_capacity_limits(di, true);
1656            if (di->flags.charging)
1657                ab8500_fg_charge_state_to(di,
1658                    AB8500_FG_CHARGE_INIT);
1659            else
1660                ab8500_fg_discharge_state_to(di,
1661                    AB8500_FG_DISCHARGE_READOUT_INIT);
1662        }
1663        di->flags.user_cap = false;
1664        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1665    } else
1666        ab8500_fg_algorithm(di);
1667
1668}
1669
1670/**
1671 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1672 * @work: pointer to the work_struct structure
1673 *
1674 * Work queue function for checking the OVV_BAT condition
1675 */
1676static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1677{
1678    int ret;
1679    u8 reg_value;
1680
1681    struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1682        fg_check_hw_failure_work.work);
1683
1684    /*
1685     * If we have had a battery over-voltage situation,
1686     * check ovv-bit to see if it should be reset.
1687     */
1688    if (di->flags.bat_ovv) {
1689        ret = abx500_get_register_interruptible(di->dev,
1690            AB8500_CHARGER, AB8500_CH_STAT_REG,
1691            &reg_value);
1692        if (ret < 0) {
1693            dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1694            return;
1695        }
1696        if ((reg_value & BATT_OVV) != BATT_OVV) {
1697            dev_dbg(di->dev, "Battery recovered from OVV\n");
1698            di->flags.bat_ovv = false;
1699            power_supply_changed(&di->fg_psy);
1700            return;
1701        }
1702
1703        /* Not yet recovered from ovv, reschedule this test */
1704        queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1705                   round_jiffies(HZ));
1706    }
1707}
1708
1709/**
1710 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1711 * @work: pointer to the work_struct structure
1712 *
1713 * Work queue function for checking the LOW_BAT condition
1714 */
1715static void ab8500_fg_low_bat_work(struct work_struct *work)
1716{
1717    int vbat;
1718
1719    struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1720        fg_low_bat_work.work);
1721
1722    vbat = ab8500_fg_bat_voltage(di);
1723
1724    /* Check if LOW_BAT still fulfilled */
1725    if (vbat < di->bat->fg_params->lowbat_threshold) {
1726        di->flags.low_bat = true;
1727        dev_warn(di->dev, "Battery voltage still LOW\n");
1728
1729        /*
1730         * We need to re-schedule this check to be able to detect
1731         * if the voltage increases again during charging
1732         */
1733        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1734            round_jiffies(LOW_BAT_CHECK_INTERVAL));
1735    } else {
1736        di->flags.low_bat = false;
1737        dev_warn(di->dev, "Battery voltage OK again\n");
1738    }
1739
1740    /* This is needed to dispatch LOW_BAT */
1741    ab8500_fg_check_capacity_limits(di, false);
1742
1743    /* Set this flag to check if LOW_BAT IRQ still occurs */
1744    di->flags.low_bat_delay = false;
1745}
1746
1747/**
1748 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1749 * to the target voltage.
1750 * @di: pointer to the ab8500_fg structure
1751 * @target target voltage
1752 *
1753 * Returns bit pattern closest to the target voltage
1754 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1755 */
1756
1757static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1758{
1759    if (target > BATT_OK_MIN +
1760        (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1761        return BATT_OK_MAX_NR_INCREMENTS;
1762    if (target < BATT_OK_MIN)
1763        return 0;
1764    return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1765}
1766
1767/**
1768 * ab8500_fg_battok_init_hw_register - init battok levels
1769 * @di: pointer to the ab8500_fg structure
1770 *
1771 */
1772
1773static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1774{
1775    int selected;
1776    int sel0;
1777    int sel1;
1778    int cbp_sel0;
1779    int cbp_sel1;
1780    int ret;
1781    int new_val;
1782
1783    sel0 = di->bat->fg_params->battok_falling_th_sel0;
1784    sel1 = di->bat->fg_params->battok_raising_th_sel1;
1785
1786    cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1787    cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1788
1789    selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1790
1791    if (selected != sel0)
1792        dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1793            sel0, selected, cbp_sel0);
1794
1795    selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1796
1797    if (selected != sel1)
1798        dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1799            sel1, selected, cbp_sel1);
1800
1801    new_val = cbp_sel0 | (cbp_sel1 << 4);
1802
1803    dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1804    ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1805        AB8500_BATT_OK_REG, new_val);
1806    return ret;
1807}
1808
1809/**
1810 * ab8500_fg_instant_work() - Run the FG state machine instantly
1811 * @work: pointer to the work_struct structure
1812 *
1813 * Work queue function for instant work
1814 */
1815static void ab8500_fg_instant_work(struct work_struct *work)
1816{
1817    struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1818
1819    ab8500_fg_algorithm(di);
1820}
1821
1822/**
1823 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1824 * @irq: interrupt number
1825 * @_di: pointer to the ab8500_fg structure
1826 *
1827 * Returns IRQ status(IRQ_HANDLED)
1828 */
1829static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1830{
1831    struct ab8500_fg *di = _di;
1832    complete(&di->ab8500_fg_complete);
1833    return IRQ_HANDLED;
1834}
1835
1836/**
1837 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1838 * @irq: interrupt number
1839 * @_di: pointer to the ab8500_fg structure
1840 *
1841 * Returns IRQ status(IRQ_HANDLED)
1842 */
1843static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1844{
1845    struct ab8500_fg *di = _di;
1846    di->calib_state = AB8500_FG_CALIB_END;
1847    queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1848    return IRQ_HANDLED;
1849}
1850
1851/**
1852 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1853 * @irq: interrupt number
1854 * @_di: pointer to the ab8500_fg structure
1855 *
1856 * Returns IRQ status(IRQ_HANDLED)
1857 */
1858static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1859{
1860    struct ab8500_fg *di = _di;
1861
1862    queue_work(di->fg_wq, &di->fg_acc_cur_work);
1863
1864    return IRQ_HANDLED;
1865}
1866
1867/**
1868 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1869 * @irq: interrupt number
1870 * @_di: pointer to the ab8500_fg structure
1871 *
1872 * Returns IRQ status(IRQ_HANDLED)
1873 */
1874static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1875{
1876    struct ab8500_fg *di = _di;
1877
1878    dev_dbg(di->dev, "Battery OVV\n");
1879    di->flags.bat_ovv = true;
1880    power_supply_changed(&di->fg_psy);
1881
1882    /* Schedule a new HW failure check */
1883    queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1884
1885    return IRQ_HANDLED;
1886}
1887
1888/**
1889 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1890 * @irq: interrupt number
1891 * @_di: pointer to the ab8500_fg structure
1892 *
1893 * Returns IRQ status(IRQ_HANDLED)
1894 */
1895static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1896{
1897    struct ab8500_fg *di = _di;
1898
1899    if (!di->flags.low_bat_delay) {
1900        dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1901        di->flags.low_bat_delay = true;
1902        /*
1903         * Start a timer to check LOW_BAT again after some time
1904         * This is done to avoid shutdown on single voltage dips
1905         */
1906        queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1907            round_jiffies(LOW_BAT_CHECK_INTERVAL));
1908    }
1909    return IRQ_HANDLED;
1910}
1911
1912/**
1913 * ab8500_fg_get_property() - get the fg properties
1914 * @psy: pointer to the power_supply structure
1915 * @psp: pointer to the power_supply_property structure
1916 * @val: pointer to the power_supply_propval union
1917 *
1918 * This function gets called when an application tries to get the
1919 * fg properties by reading the sysfs files.
1920 * voltage_now: battery voltage
1921 * current_now: battery instant current
1922 * current_avg: battery average current
1923 * charge_full_design: capacity where battery is considered full
1924 * charge_now: battery capacity in nAh
1925 * capacity: capacity in percent
1926 * capacity_level: capacity level
1927 *
1928 * Returns error code in case of failure else 0 on success
1929 */
1930static int ab8500_fg_get_property(struct power_supply *psy,
1931    enum power_supply_property psp,
1932    union power_supply_propval *val)
1933{
1934    struct ab8500_fg *di;
1935
1936    di = to_ab8500_fg_device_info(psy);
1937
1938    /*
1939     * If battery is identified as unknown and charging of unknown
1940     * batteries is disabled, we always report 100% capacity and
1941     * capacity level UNKNOWN, since we can't calculate
1942     * remaining capacity
1943     */
1944
1945    switch (psp) {
1946    case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1947        if (di->flags.bat_ovv)
1948            val->intval = BATT_OVV_VALUE * 1000;
1949        else
1950            val->intval = di->vbat * 1000;
1951        break;
1952    case POWER_SUPPLY_PROP_CURRENT_NOW:
1953        val->intval = di->inst_curr * 1000;
1954        break;
1955    case POWER_SUPPLY_PROP_CURRENT_AVG:
1956        val->intval = di->avg_curr * 1000;
1957        break;
1958    case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1959        val->intval = ab8500_fg_convert_mah_to_uwh(di,
1960                di->bat_cap.max_mah_design);
1961        break;
1962    case POWER_SUPPLY_PROP_ENERGY_FULL:
1963        val->intval = ab8500_fg_convert_mah_to_uwh(di,
1964                di->bat_cap.max_mah);
1965        break;
1966    case POWER_SUPPLY_PROP_ENERGY_NOW:
1967        if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1968                di->flags.batt_id_received)
1969            val->intval = ab8500_fg_convert_mah_to_uwh(di,
1970                    di->bat_cap.max_mah);
1971        else
1972            val->intval = ab8500_fg_convert_mah_to_uwh(di,
1973                    di->bat_cap.prev_mah);
1974        break;
1975    case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1976        val->intval = di->bat_cap.max_mah_design;
1977        break;
1978    case POWER_SUPPLY_PROP_CHARGE_FULL:
1979        val->intval = di->bat_cap.max_mah;
1980        break;
1981    case POWER_SUPPLY_PROP_CHARGE_NOW:
1982        if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1983                di->flags.batt_id_received)
1984            val->intval = di->bat_cap.max_mah;
1985        else
1986            val->intval = di->bat_cap.prev_mah;
1987        break;
1988    case POWER_SUPPLY_PROP_CAPACITY:
1989        if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1990                di->flags.batt_id_received)
1991            val->intval = 100;
1992        else
1993            val->intval = di->bat_cap.prev_percent;
1994        break;
1995    case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1996        if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1997                di->flags.batt_id_received)
1998            val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1999        else
2000            val->intval = di->bat_cap.prev_level;
2001        break;
2002    default:
2003        return -EINVAL;
2004    }
2005    return 0;
2006}
2007
2008static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2009{
2010    struct power_supply *psy;
2011    struct power_supply *ext;
2012    struct ab8500_fg *di;
2013    union power_supply_propval ret;
2014    int i, j;
2015    bool psy_found = false;
2016
2017    psy = (struct power_supply *)data;
2018    ext = dev_get_drvdata(dev);
2019    di = to_ab8500_fg_device_info(psy);
2020
2021    /*
2022     * For all psy where the name of your driver
2023     * appears in any supplied_to
2024     */
2025    for (i = 0; i < ext->num_supplicants; i++) {
2026        if (!strcmp(ext->supplied_to[i], psy->name))
2027            psy_found = true;
2028    }
2029
2030    if (!psy_found)
2031        return 0;
2032
2033    /* Go through all properties for the psy */
2034    for (j = 0; j < ext->num_properties; j++) {
2035        enum power_supply_property prop;
2036        prop = ext->properties[j];
2037
2038        if (ext->get_property(ext, prop, &ret))
2039            continue;
2040
2041        switch (prop) {
2042        case POWER_SUPPLY_PROP_STATUS:
2043            switch (ext->type) {
2044            case POWER_SUPPLY_TYPE_BATTERY:
2045                switch (ret.intval) {
2046                case POWER_SUPPLY_STATUS_UNKNOWN:
2047                case POWER_SUPPLY_STATUS_DISCHARGING:
2048                case POWER_SUPPLY_STATUS_NOT_CHARGING:
2049                    if (!di->flags.charging)
2050                        break;
2051                    di->flags.charging = false;
2052                    di->flags.fully_charged = false;
2053                    queue_work(di->fg_wq, &di->fg_work);
2054                    break;
2055                case POWER_SUPPLY_STATUS_FULL:
2056                    if (di->flags.fully_charged)
2057                        break;
2058                    di->flags.fully_charged = true;
2059                    di->flags.force_full = true;
2060                    /* Save current capacity as maximum */
2061                    di->bat_cap.max_mah = di->bat_cap.mah;
2062                    queue_work(di->fg_wq, &di->fg_work);
2063                    break;
2064                case POWER_SUPPLY_STATUS_CHARGING:
2065                    if (di->flags.charging)
2066                        break;
2067                    di->flags.charging = true;
2068                    di->flags.fully_charged = false;
2069                    queue_work(di->fg_wq, &di->fg_work);
2070                    break;
2071                };
2072            default:
2073                break;
2074            };
2075            break;
2076        case POWER_SUPPLY_PROP_TECHNOLOGY:
2077            switch (ext->type) {
2078            case POWER_SUPPLY_TYPE_BATTERY:
2079                if (!di->flags.batt_id_received) {
2080                    const struct abx500_battery_type *b;
2081
2082                    b = &(di->bat->bat_type[di->bat->batt_id]);
2083
2084                    di->flags.batt_id_received = true;
2085
2086                    di->bat_cap.max_mah_design =
2087                        MILLI_TO_MICRO *
2088                        b->charge_full_design;
2089
2090                    di->bat_cap.max_mah =
2091                        di->bat_cap.max_mah_design;
2092
2093                    di->vbat_nom = b->nominal_voltage;
2094                }
2095
2096                if (ret.intval)
2097                    di->flags.batt_unknown = false;
2098                else
2099                    di->flags.batt_unknown = true;
2100                break;
2101            default:
2102                break;
2103            }
2104            break;
2105        case POWER_SUPPLY_PROP_TEMP:
2106            switch (ext->type) {
2107            case POWER_SUPPLY_TYPE_BATTERY:
2108                if (di->flags.batt_id_received)
2109                di->bat_temp = ret.intval;
2110                break;
2111            default:
2112                break;
2113            }
2114            break;
2115        default:
2116            break;
2117        }
2118    }
2119    return 0;
2120}
2121
2122/**
2123 * ab8500_fg_init_hw_registers() - Set up FG related registers
2124 * @di: pointer to the ab8500_fg structure
2125 *
2126 * Set up battery OVV, low battery voltage registers
2127 */
2128static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2129{
2130    int ret;
2131
2132    /* Set VBAT OVV threshold */
2133    ret = abx500_mask_and_set_register_interruptible(di->dev,
2134        AB8500_CHARGER,
2135        AB8500_BATT_OVV,
2136        BATT_OVV_TH_4P75,
2137        BATT_OVV_TH_4P75);
2138    if (ret) {
2139        dev_err(di->dev, "failed to set BATT_OVV\n");
2140        goto out;
2141    }
2142
2143    /* Enable VBAT OVV detection */
2144    ret = abx500_mask_and_set_register_interruptible(di->dev,
2145        AB8500_CHARGER,
2146        AB8500_BATT_OVV,
2147        BATT_OVV_ENA,
2148        BATT_OVV_ENA);
2149    if (ret) {
2150        dev_err(di->dev, "failed to enable BATT_OVV\n");
2151        goto out;
2152    }
2153
2154    /* Low Battery Voltage */
2155    ret = abx500_set_register_interruptible(di->dev,
2156        AB8500_SYS_CTRL2_BLOCK,
2157        AB8500_LOW_BAT_REG,
2158        ab8500_volt_to_regval(
2159            di->bat->fg_params->lowbat_threshold) << 1 |
2160        LOW_BAT_ENABLE);
2161    if (ret) {
2162        dev_err(di->dev, "%s write failed\n", __func__);
2163        goto out;
2164    }
2165
2166    /* Battery OK threshold */
2167    ret = ab8500_fg_battok_init_hw_register(di);
2168    if (ret) {
2169        dev_err(di->dev, "BattOk init write failed.\n");
2170        goto out;
2171    }
2172out:
2173    return ret;
2174}
2175
2176/**
2177 * ab8500_fg_external_power_changed() - callback for power supply changes
2178 * @psy: pointer to the structure power_supply
2179 *
2180 * This function is the entry point of the pointer external_power_changed
2181 * of the structure power_supply.
2182 * This function gets executed when there is a change in any external power
2183 * supply that this driver needs to be notified of.
2184 */
2185static void ab8500_fg_external_power_changed(struct power_supply *psy)
2186{
2187    struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2188
2189    class_for_each_device(power_supply_class, NULL,
2190        &di->fg_psy, ab8500_fg_get_ext_psy_data);
2191}
2192
2193/**
2194 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2195 * @work: pointer to the work_struct structure
2196 *
2197 * Used to reset the current battery capacity to be able to
2198 * retrigger a new voltage base capacity calculation. For
2199 * test and verification purpose.
2200 */
2201static void ab8500_fg_reinit_work(struct work_struct *work)
2202{
2203    struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2204        fg_reinit_work.work);
2205
2206    if (di->flags.calibrate == false) {
2207        dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2208        ab8500_fg_clear_cap_samples(di);
2209        ab8500_fg_calc_cap_discharge_voltage(di, true);
2210        ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2211        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2212        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2213
2214    } else {
2215        dev_err(di->dev, "Residual offset calibration ongoing "
2216            "retrying..\n");
2217        /* Wait one second until next try*/
2218        queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2219            round_jiffies(1));
2220    }
2221}
2222
2223/**
2224 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2225 *
2226 * This function can be used to force the FG algorithm to recalculate a new
2227 * voltage based battery capacity.
2228 */
2229void ab8500_fg_reinit(void)
2230{
2231    struct ab8500_fg *di = ab8500_fg_get();
2232    /* User won't be notified if a null pointer returned. */
2233    if (di != NULL)
2234        queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2235}
2236
2237/* Exposure to the sysfs interface */
2238
2239struct ab8500_fg_sysfs_entry {
2240    struct attribute attr;
2241    ssize_t (*show)(struct ab8500_fg *, char *);
2242    ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2243};
2244
2245static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2246{
2247    return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2248}
2249
2250static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2251                 size_t count)
2252{
2253    unsigned long charge_full;
2254    ssize_t ret = -EINVAL;
2255
2256    ret = strict_strtoul(buf, 10, &charge_full);
2257
2258    dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2259
2260    if (!ret) {
2261        di->bat_cap.max_mah = (int) charge_full;
2262        ret = count;
2263    }
2264    return ret;
2265}
2266
2267static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2268{
2269    return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2270}
2271
2272static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2273                 size_t count)
2274{
2275    unsigned long charge_now;
2276    ssize_t ret;
2277
2278    ret = strict_strtoul(buf, 10, &charge_now);
2279
2280    dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2281        ret, charge_now, di->bat_cap.prev_mah);
2282
2283    if (!ret) {
2284        di->bat_cap.user_mah = (int) charge_now;
2285        di->flags.user_cap = true;
2286        ret = count;
2287        queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2288    }
2289    return ret;
2290}
2291
2292static struct ab8500_fg_sysfs_entry charge_full_attr =
2293    __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2294
2295static struct ab8500_fg_sysfs_entry charge_now_attr =
2296    __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2297
2298static ssize_t
2299ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2300{
2301    struct ab8500_fg_sysfs_entry *entry;
2302    struct ab8500_fg *di;
2303
2304    entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2305    di = container_of(kobj, struct ab8500_fg, fg_kobject);
2306
2307    if (!entry->show)
2308        return -EIO;
2309
2310    return entry->show(di, buf);
2311}
2312static ssize_t
2313ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2314        size_t count)
2315{
2316    struct ab8500_fg_sysfs_entry *entry;
2317    struct ab8500_fg *di;
2318
2319    entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2320    di = container_of(kobj, struct ab8500_fg, fg_kobject);
2321
2322    if (!entry->store)
2323        return -EIO;
2324
2325    return entry->store(di, buf, count);
2326}
2327
2328static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2329    .show = ab8500_fg_show,
2330    .store = ab8500_fg_store,
2331};
2332
2333static struct attribute *ab8500_fg_attrs[] = {
2334    &charge_full_attr.attr,
2335    &charge_now_attr.attr,
2336    NULL,
2337};
2338
2339static struct kobj_type ab8500_fg_ktype = {
2340    .sysfs_ops = &ab8500_fg_sysfs_ops,
2341    .default_attrs = ab8500_fg_attrs,
2342};
2343
2344/**
2345 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2346 * @di: pointer to the struct ab8500_chargalg
2347 *
2348 * This function removes the entry in sysfs.
2349 */
2350static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2351{
2352    kobject_del(&di->fg_kobject);
2353}
2354
2355/**
2356 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2357 * @di: pointer to the struct ab8500_chargalg
2358 *
2359 * This function adds an entry in sysfs.
2360 * Returns error code in case of failure else 0(on success)
2361 */
2362static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2363{
2364    int ret = 0;
2365
2366    ret = kobject_init_and_add(&di->fg_kobject,
2367        &ab8500_fg_ktype,
2368        NULL, "battery");
2369    if (ret < 0)
2370        dev_err(di->dev, "failed to create sysfs entry\n");
2371
2372    return ret;
2373}
2374/* Exposure to the sysfs interface <<END>> */
2375
2376#if defined(CONFIG_PM)
2377static int ab8500_fg_resume(struct platform_device *pdev)
2378{
2379    struct ab8500_fg *di = platform_get_drvdata(pdev);
2380
2381    /*
2382     * Change state if we're not charging. If we're charging we will wake
2383     * up on the FG IRQ
2384     */
2385    if (!di->flags.charging) {
2386        ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2387        queue_work(di->fg_wq, &di->fg_work);
2388    }
2389
2390    return 0;
2391}
2392
2393static int ab8500_fg_suspend(struct platform_device *pdev,
2394    pm_message_t state)
2395{
2396    struct ab8500_fg *di = platform_get_drvdata(pdev);
2397
2398    flush_delayed_work(&di->fg_periodic_work);
2399
2400    /*
2401     * If the FG is enabled we will disable it before going to suspend
2402     * only if we're not charging
2403     */
2404    if (di->flags.fg_enabled && !di->flags.charging)
2405        ab8500_fg_coulomb_counter(di, false);
2406
2407    return 0;
2408}
2409#else
2410#define ab8500_fg_suspend NULL
2411#define ab8500_fg_resume NULL
2412#endif
2413
2414static int __devexit ab8500_fg_remove(struct platform_device *pdev)
2415{
2416    int ret = 0;
2417    struct ab8500_fg *di = platform_get_drvdata(pdev);
2418
2419    list_del(&di->node);
2420
2421    /* Disable coulomb counter */
2422    ret = ab8500_fg_coulomb_counter(di, false);
2423    if (ret)
2424        dev_err(di->dev, "failed to disable coulomb counter\n");
2425
2426    destroy_workqueue(di->fg_wq);
2427    ab8500_fg_sysfs_exit(di);
2428
2429    flush_scheduled_work();
2430    power_supply_unregister(&di->fg_psy);
2431    platform_set_drvdata(pdev, NULL);
2432    kfree(di);
2433    return ret;
2434}
2435
2436/* ab8500 fg driver interrupts and their respective isr */
2437static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2438    {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2439    {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2440    {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2441    {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2442    {"CCEOC", ab8500_fg_cc_data_end_handler},
2443};
2444
2445static int __devinit ab8500_fg_probe(struct platform_device *pdev)
2446{
2447    int i, irq;
2448    int ret = 0;
2449    struct abx500_bm_plat_data *plat_data = pdev->dev.platform_data;
2450    struct ab8500_fg *di;
2451
2452    if (!plat_data) {
2453        dev_err(&pdev->dev, "No platform data\n");
2454        return -EINVAL;
2455    }
2456
2457    di = kzalloc(sizeof(*di), GFP_KERNEL);
2458    if (!di)
2459        return -ENOMEM;
2460
2461    mutex_init(&di->cc_lock);
2462
2463    /* get parent data */
2464    di->dev = &pdev->dev;
2465    di->parent = dev_get_drvdata(pdev->dev.parent);
2466    di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2467
2468    /* get fg specific platform data */
2469    di->pdata = plat_data->fg;
2470    if (!di->pdata) {
2471        dev_err(di->dev, "no fg platform data supplied\n");
2472        ret = -EINVAL;
2473        goto free_device_info;
2474    }
2475
2476    /* get battery specific platform data */
2477    di->bat = plat_data->battery;
2478    if (!di->bat) {
2479        dev_err(di->dev, "no battery platform data supplied\n");
2480        ret = -EINVAL;
2481        goto free_device_info;
2482    }
2483
2484    di->fg_psy.name = "ab8500_fg";
2485    di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2486    di->fg_psy.properties = ab8500_fg_props;
2487    di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2488    di->fg_psy.get_property = ab8500_fg_get_property;
2489    di->fg_psy.supplied_to = di->pdata->supplied_to;
2490    di->fg_psy.num_supplicants = di->pdata->num_supplicants;
2491    di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2492
2493    di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2494        di->bat->bat_type[di->bat->batt_id].charge_full_design;
2495
2496    di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2497
2498    di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
2499
2500    di->init_capacity = true;
2501
2502    ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2503    ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2504
2505    /* Create a work queue for running the FG algorithm */
2506    di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2507    if (di->fg_wq == NULL) {
2508        dev_err(di->dev, "failed to create work queue\n");
2509        goto free_device_info;
2510    }
2511
2512    /* Init work for running the fg algorithm instantly */
2513    INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2514
2515    /* Init work for getting the battery accumulated current */
2516    INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2517
2518    /* Init work for reinitialising the fg algorithm */
2519    INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work,
2520        ab8500_fg_reinit_work);
2521
2522    /* Work delayed Queue to run the state machine */
2523    INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work,
2524        ab8500_fg_periodic_work);
2525
2526    /* Work to check low battery condition */
2527    INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work,
2528        ab8500_fg_low_bat_work);
2529
2530    /* Init work for HW failure check */
2531    INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work,
2532        ab8500_fg_check_hw_failure_work);
2533
2534    /* Initialize OVV, and other registers */
2535    ret = ab8500_fg_init_hw_registers(di);
2536    if (ret) {
2537        dev_err(di->dev, "failed to initialize registers\n");
2538        goto free_inst_curr_wq;
2539    }
2540
2541    /* Consider battery unknown until we're informed otherwise */
2542    di->flags.batt_unknown = true;
2543    di->flags.batt_id_received = false;
2544
2545    /* Register FG power supply class */
2546    ret = power_supply_register(di->dev, &di->fg_psy);
2547    if (ret) {
2548        dev_err(di->dev, "failed to register FG psy\n");
2549        goto free_inst_curr_wq;
2550    }
2551
2552    di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
2553    ab8500_fg_coulomb_counter(di, true);
2554
2555    /* Initialize completion used to notify completion of inst current */
2556    init_completion(&di->ab8500_fg_complete);
2557
2558    /* Register interrupts */
2559    for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2560        irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2561        ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2562            IRQF_SHARED | IRQF_NO_SUSPEND,
2563            ab8500_fg_irq[i].name, di);
2564
2565        if (ret != 0) {
2566            dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2567                , ab8500_fg_irq[i].name, irq, ret);
2568            goto free_irq;
2569        }
2570        dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2571            ab8500_fg_irq[i].name, irq, ret);
2572    }
2573    di->irq = platform_get_irq_byname(pdev, "CCEOC");
2574    disable_irq(di->irq);
2575
2576    platform_set_drvdata(pdev, di);
2577
2578    ret = ab8500_fg_sysfs_init(di);
2579    if (ret) {
2580        dev_err(di->dev, "failed to create sysfs entry\n");
2581        goto free_irq;
2582    }
2583
2584    /* Calibrate the fg first time */
2585    di->flags.calibrate = true;
2586    di->calib_state = AB8500_FG_CALIB_INIT;
2587
2588    /* Use room temp as default value until we get an update from driver. */
2589    di->bat_temp = 210;
2590
2591    /* Run the FG algorithm */
2592    queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2593
2594    list_add_tail(&di->node, &ab8500_fg_list);
2595
2596    return ret;
2597
2598free_irq:
2599    power_supply_unregister(&di->fg_psy);
2600
2601    /* We also have to free all successfully registered irqs */
2602    for (i = i - 1; i >= 0; i--) {
2603        irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2604        free_irq(irq, di);
2605    }
2606free_inst_curr_wq:
2607    destroy_workqueue(di->fg_wq);
2608free_device_info:
2609    kfree(di);
2610
2611    return ret;
2612}
2613
2614static struct platform_driver ab8500_fg_driver = {
2615    .probe = ab8500_fg_probe,
2616    .remove = __devexit_p(ab8500_fg_remove),
2617    .suspend = ab8500_fg_suspend,
2618    .resume = ab8500_fg_resume,
2619    .driver = {
2620        .name = "ab8500-fg",
2621        .owner = THIS_MODULE,
2622    },
2623};
2624
2625static int __init ab8500_fg_init(void)
2626{
2627    return platform_driver_register(&ab8500_fg_driver);
2628}
2629
2630static void __exit ab8500_fg_exit(void)
2631{
2632    platform_driver_unregister(&ab8500_fg_driver);
2633}
2634
2635subsys_initcall_sync(ab8500_fg_init);
2636module_exit(ab8500_fg_exit);
2637
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2640MODULE_ALIAS("platform:ab8500-fg");
2641MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
2642

Archive Download this file



interactive