Root/
1 | /* |
2 | * Copyright (C) ST-Ericsson AB 2012 |
3 | * |
4 | * Main and Back-up battery management driver. |
5 | * |
6 | * Note: Backup battery management is required in case of Li-Ion battery and not |
7 | * for capacitive battery. HREF boards have capacitive battery and hence backup |
8 | * battery management is not used and the supported code is available in this |
9 | * driver. |
10 | * |
11 | * License Terms: GNU General Public License v2 |
12 | * Author: |
13 | * Johan Palsson <johan.palsson@stericsson.com> |
14 | * Karl Komierowski <karl.komierowski@stericsson.com> |
15 | * Arun R Murthy <arun.murthy@stericsson.com> |
16 | */ |
17 | |
18 | #include <linux/init.h> |
19 | #include <linux/module.h> |
20 | #include <linux/device.h> |
21 | #include <linux/interrupt.h> |
22 | #include <linux/platform_device.h> |
23 | #include <linux/power_supply.h> |
24 | #include <linux/kobject.h> |
25 | #include <linux/mfd/abx500/ab8500.h> |
26 | #include <linux/mfd/abx500.h> |
27 | #include <linux/slab.h> |
28 | #include <linux/mfd/abx500/ab8500-bm.h> |
29 | #include <linux/delay.h> |
30 | #include <linux/mfd/abx500/ab8500-gpadc.h> |
31 | #include <linux/mfd/abx500.h> |
32 | #include <linux/time.h> |
33 | #include <linux/completion.h> |
34 | |
35 | #define MILLI_TO_MICRO 1000 |
36 | #define FG_LSB_IN_MA 1627 |
37 | #define QLSB_NANO_AMP_HOURS_X10 1129 |
38 | #define INS_CURR_TIMEOUT (3 * HZ) |
39 | |
40 | #define SEC_TO_SAMPLE(S) (S * 4) |
41 | |
42 | #define NBR_AVG_SAMPLES 20 |
43 | |
44 | #define LOW_BAT_CHECK_INTERVAL (2 * HZ) |
45 | |
46 | #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ |
47 | #define BATT_OK_MIN 2360 /* mV */ |
48 | #define BATT_OK_INCREMENT 50 /* mV */ |
49 | #define BATT_OK_MAX_NR_INCREMENTS 0xE |
50 | |
51 | /* FG constants */ |
52 | #define BATT_OVV 0x01 |
53 | |
54 | #define interpolate(x, x1, y1, x2, y2) \ |
55 | ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1)))); |
56 | |
57 | #define to_ab8500_fg_device_info(x) container_of((x), \ |
58 | struct ab8500_fg, fg_psy); |
59 | |
60 | /** |
61 | * struct ab8500_fg_interrupts - ab8500 fg interupts |
62 | * @name: name of the interrupt |
63 | * @isr function pointer to the isr |
64 | */ |
65 | struct ab8500_fg_interrupts { |
66 | char *name; |
67 | irqreturn_t (*isr)(int irq, void *data); |
68 | }; |
69 | |
70 | enum ab8500_fg_discharge_state { |
71 | AB8500_FG_DISCHARGE_INIT, |
72 | AB8500_FG_DISCHARGE_INITMEASURING, |
73 | AB8500_FG_DISCHARGE_INIT_RECOVERY, |
74 | AB8500_FG_DISCHARGE_RECOVERY, |
75 | AB8500_FG_DISCHARGE_READOUT_INIT, |
76 | AB8500_FG_DISCHARGE_READOUT, |
77 | AB8500_FG_DISCHARGE_WAKEUP, |
78 | }; |
79 | |
80 | static char *discharge_state[] = { |
81 | "DISCHARGE_INIT", |
82 | "DISCHARGE_INITMEASURING", |
83 | "DISCHARGE_INIT_RECOVERY", |
84 | "DISCHARGE_RECOVERY", |
85 | "DISCHARGE_READOUT_INIT", |
86 | "DISCHARGE_READOUT", |
87 | "DISCHARGE_WAKEUP", |
88 | }; |
89 | |
90 | enum ab8500_fg_charge_state { |
91 | AB8500_FG_CHARGE_INIT, |
92 | AB8500_FG_CHARGE_READOUT, |
93 | }; |
94 | |
95 | static char *charge_state[] = { |
96 | "CHARGE_INIT", |
97 | "CHARGE_READOUT", |
98 | }; |
99 | |
100 | enum ab8500_fg_calibration_state { |
101 | AB8500_FG_CALIB_INIT, |
102 | AB8500_FG_CALIB_WAIT, |
103 | AB8500_FG_CALIB_END, |
104 | }; |
105 | |
106 | struct ab8500_fg_avg_cap { |
107 | int avg; |
108 | int samples[NBR_AVG_SAMPLES]; |
109 | __kernel_time_t time_stamps[NBR_AVG_SAMPLES]; |
110 | int pos; |
111 | int nbr_samples; |
112 | int sum; |
113 | }; |
114 | |
115 | struct ab8500_fg_battery_capacity { |
116 | int max_mah_design; |
117 | int max_mah; |
118 | int mah; |
119 | int permille; |
120 | int level; |
121 | int prev_mah; |
122 | int prev_percent; |
123 | int prev_level; |
124 | int user_mah; |
125 | }; |
126 | |
127 | struct ab8500_fg_flags { |
128 | bool fg_enabled; |
129 | bool conv_done; |
130 | bool charging; |
131 | bool fully_charged; |
132 | bool force_full; |
133 | bool low_bat_delay; |
134 | bool low_bat; |
135 | bool bat_ovv; |
136 | bool batt_unknown; |
137 | bool calibrate; |
138 | bool user_cap; |
139 | bool batt_id_received; |
140 | }; |
141 | |
142 | struct inst_curr_result_list { |
143 | struct list_head list; |
144 | int *result; |
145 | }; |
146 | |
147 | /** |
148 | * struct ab8500_fg - ab8500 FG device information |
149 | * @dev: Pointer to the structure device |
150 | * @node: a list of AB8500 FGs, hence prepared for reentrance |
151 | * @irq holds the CCEOC interrupt number |
152 | * @vbat: Battery voltage in mV |
153 | * @vbat_nom: Nominal battery voltage in mV |
154 | * @inst_curr: Instantenous battery current in mA |
155 | * @avg_curr: Average battery current in mA |
156 | * @bat_temp battery temperature |
157 | * @fg_samples: Number of samples used in the FG accumulation |
158 | * @accu_charge: Accumulated charge from the last conversion |
159 | * @recovery_cnt: Counter for recovery mode |
160 | * @high_curr_cnt: Counter for high current mode |
161 | * @init_cnt: Counter for init mode |
162 | * @recovery_needed: Indicate if recovery is needed |
163 | * @high_curr_mode: Indicate if we're in high current mode |
164 | * @init_capacity: Indicate if initial capacity measuring should be done |
165 | * @turn_off_fg: True if fg was off before current measurement |
166 | * @calib_state State during offset calibration |
167 | * @discharge_state: Current discharge state |
168 | * @charge_state: Current charge state |
169 | * @ab8500_fg_complete Completion struct used for the instant current reading |
170 | * @flags: Structure for information about events triggered |
171 | * @bat_cap: Structure for battery capacity specific parameters |
172 | * @avg_cap: Average capacity filter |
173 | * @parent: Pointer to the struct ab8500 |
174 | * @gpadc: Pointer to the struct gpadc |
175 | * @pdata: Pointer to the abx500_fg platform data |
176 | * @bat: Pointer to the abx500_bm platform data |
177 | * @fg_psy: Structure that holds the FG specific battery properties |
178 | * @fg_wq: Work queue for running the FG algorithm |
179 | * @fg_periodic_work: Work to run the FG algorithm periodically |
180 | * @fg_low_bat_work: Work to check low bat condition |
181 | * @fg_reinit_work Work used to reset and reinitialise the FG algorithm |
182 | * @fg_work: Work to run the FG algorithm instantly |
183 | * @fg_acc_cur_work: Work to read the FG accumulator |
184 | * @fg_check_hw_failure_work: Work for checking HW state |
185 | * @cc_lock: Mutex for locking the CC |
186 | * @fg_kobject: Structure of type kobject |
187 | */ |
188 | struct ab8500_fg { |
189 | struct device *dev; |
190 | struct list_head node; |
191 | int irq; |
192 | int vbat; |
193 | int vbat_nom; |
194 | int inst_curr; |
195 | int avg_curr; |
196 | int bat_temp; |
197 | int fg_samples; |
198 | int accu_charge; |
199 | int recovery_cnt; |
200 | int high_curr_cnt; |
201 | int init_cnt; |
202 | bool recovery_needed; |
203 | bool high_curr_mode; |
204 | bool init_capacity; |
205 | bool turn_off_fg; |
206 | enum ab8500_fg_calibration_state calib_state; |
207 | enum ab8500_fg_discharge_state discharge_state; |
208 | enum ab8500_fg_charge_state charge_state; |
209 | struct completion ab8500_fg_complete; |
210 | struct ab8500_fg_flags flags; |
211 | struct ab8500_fg_battery_capacity bat_cap; |
212 | struct ab8500_fg_avg_cap avg_cap; |
213 | struct ab8500 *parent; |
214 | struct ab8500_gpadc *gpadc; |
215 | struct abx500_fg_platform_data *pdata; |
216 | struct abx500_bm_data *bat; |
217 | struct power_supply fg_psy; |
218 | struct workqueue_struct *fg_wq; |
219 | struct delayed_work fg_periodic_work; |
220 | struct delayed_work fg_low_bat_work; |
221 | struct delayed_work fg_reinit_work; |
222 | struct work_struct fg_work; |
223 | struct work_struct fg_acc_cur_work; |
224 | struct delayed_work fg_check_hw_failure_work; |
225 | struct mutex cc_lock; |
226 | struct kobject fg_kobject; |
227 | }; |
228 | static LIST_HEAD(ab8500_fg_list); |
229 | |
230 | /** |
231 | * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge |
232 | * (i.e. the first fuel gauge in the instance list) |
233 | */ |
234 | struct ab8500_fg *ab8500_fg_get(void) |
235 | { |
236 | struct ab8500_fg *fg; |
237 | |
238 | if (list_empty(&ab8500_fg_list)) |
239 | return NULL; |
240 | |
241 | fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node); |
242 | return fg; |
243 | } |
244 | |
245 | /* Main battery properties */ |
246 | static enum power_supply_property ab8500_fg_props[] = { |
247 | POWER_SUPPLY_PROP_VOLTAGE_NOW, |
248 | POWER_SUPPLY_PROP_CURRENT_NOW, |
249 | POWER_SUPPLY_PROP_CURRENT_AVG, |
250 | POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, |
251 | POWER_SUPPLY_PROP_ENERGY_FULL, |
252 | POWER_SUPPLY_PROP_ENERGY_NOW, |
253 | POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, |
254 | POWER_SUPPLY_PROP_CHARGE_FULL, |
255 | POWER_SUPPLY_PROP_CHARGE_NOW, |
256 | POWER_SUPPLY_PROP_CAPACITY, |
257 | POWER_SUPPLY_PROP_CAPACITY_LEVEL, |
258 | }; |
259 | |
260 | /* |
261 | * This array maps the raw hex value to lowbat voltage used by the AB8500 |
262 | * Values taken from the UM0836 |
263 | */ |
264 | static int ab8500_fg_lowbat_voltage_map[] = { |
265 | 2300 , |
266 | 2325 , |
267 | 2350 , |
268 | 2375 , |
269 | 2400 , |
270 | 2425 , |
271 | 2450 , |
272 | 2475 , |
273 | 2500 , |
274 | 2525 , |
275 | 2550 , |
276 | 2575 , |
277 | 2600 , |
278 | 2625 , |
279 | 2650 , |
280 | 2675 , |
281 | 2700 , |
282 | 2725 , |
283 | 2750 , |
284 | 2775 , |
285 | 2800 , |
286 | 2825 , |
287 | 2850 , |
288 | 2875 , |
289 | 2900 , |
290 | 2925 , |
291 | 2950 , |
292 | 2975 , |
293 | 3000 , |
294 | 3025 , |
295 | 3050 , |
296 | 3075 , |
297 | 3100 , |
298 | 3125 , |
299 | 3150 , |
300 | 3175 , |
301 | 3200 , |
302 | 3225 , |
303 | 3250 , |
304 | 3275 , |
305 | 3300 , |
306 | 3325 , |
307 | 3350 , |
308 | 3375 , |
309 | 3400 , |
310 | 3425 , |
311 | 3450 , |
312 | 3475 , |
313 | 3500 , |
314 | 3525 , |
315 | 3550 , |
316 | 3575 , |
317 | 3600 , |
318 | 3625 , |
319 | 3650 , |
320 | 3675 , |
321 | 3700 , |
322 | 3725 , |
323 | 3750 , |
324 | 3775 , |
325 | 3800 , |
326 | 3825 , |
327 | 3850 , |
328 | 3850 , |
329 | }; |
330 | |
331 | static u8 ab8500_volt_to_regval(int voltage) |
332 | { |
333 | int i; |
334 | |
335 | if (voltage < ab8500_fg_lowbat_voltage_map[0]) |
336 | return 0; |
337 | |
338 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { |
339 | if (voltage < ab8500_fg_lowbat_voltage_map[i]) |
340 | return (u8) i - 1; |
341 | } |
342 | |
343 | /* If not captured above, return index of last element */ |
344 | return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; |
345 | } |
346 | |
347 | /** |
348 | * ab8500_fg_is_low_curr() - Low or high current mode |
349 | * @di: pointer to the ab8500_fg structure |
350 | * @curr: the current to base or our decision on |
351 | * |
352 | * Low current mode if the current consumption is below a certain threshold |
353 | */ |
354 | static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr) |
355 | { |
356 | /* |
357 | * We want to know if we're in low current mode |
358 | */ |
359 | if (curr > -di->bat->fg_params->high_curr_threshold) |
360 | return true; |
361 | else |
362 | return false; |
363 | } |
364 | |
365 | /** |
366 | * ab8500_fg_add_cap_sample() - Add capacity to average filter |
367 | * @di: pointer to the ab8500_fg structure |
368 | * @sample: the capacity in mAh to add to the filter |
369 | * |
370 | * A capacity is added to the filter and a new mean capacity is calculated and |
371 | * returned |
372 | */ |
373 | static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) |
374 | { |
375 | struct timespec ts; |
376 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
377 | |
378 | getnstimeofday(&ts); |
379 | |
380 | do { |
381 | avg->sum += sample - avg->samples[avg->pos]; |
382 | avg->samples[avg->pos] = sample; |
383 | avg->time_stamps[avg->pos] = ts.tv_sec; |
384 | avg->pos++; |
385 | |
386 | if (avg->pos == NBR_AVG_SAMPLES) |
387 | avg->pos = 0; |
388 | |
389 | if (avg->nbr_samples < NBR_AVG_SAMPLES) |
390 | avg->nbr_samples++; |
391 | |
392 | /* |
393 | * Check the time stamp for each sample. If too old, |
394 | * replace with latest sample |
395 | */ |
396 | } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); |
397 | |
398 | avg->avg = avg->sum / avg->nbr_samples; |
399 | |
400 | return avg->avg; |
401 | } |
402 | |
403 | /** |
404 | * ab8500_fg_clear_cap_samples() - Clear average filter |
405 | * @di: pointer to the ab8500_fg structure |
406 | * |
407 | * The capacity filter is is reset to zero. |
408 | */ |
409 | static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) |
410 | { |
411 | int i; |
412 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
413 | |
414 | avg->pos = 0; |
415 | avg->nbr_samples = 0; |
416 | avg->sum = 0; |
417 | avg->avg = 0; |
418 | |
419 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { |
420 | avg->samples[i] = 0; |
421 | avg->time_stamps[i] = 0; |
422 | } |
423 | } |
424 | |
425 | /** |
426 | * ab8500_fg_fill_cap_sample() - Fill average filter |
427 | * @di: pointer to the ab8500_fg structure |
428 | * @sample: the capacity in mAh to fill the filter with |
429 | * |
430 | * The capacity filter is filled with a capacity in mAh |
431 | */ |
432 | static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) |
433 | { |
434 | int i; |
435 | struct timespec ts; |
436 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
437 | |
438 | getnstimeofday(&ts); |
439 | |
440 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { |
441 | avg->samples[i] = sample; |
442 | avg->time_stamps[i] = ts.tv_sec; |
443 | } |
444 | |
445 | avg->pos = 0; |
446 | avg->nbr_samples = NBR_AVG_SAMPLES; |
447 | avg->sum = sample * NBR_AVG_SAMPLES; |
448 | avg->avg = sample; |
449 | } |
450 | |
451 | /** |
452 | * ab8500_fg_coulomb_counter() - enable coulomb counter |
453 | * @di: pointer to the ab8500_fg structure |
454 | * @enable: enable/disable |
455 | * |
456 | * Enable/Disable coulomb counter. |
457 | * On failure returns negative value. |
458 | */ |
459 | static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) |
460 | { |
461 | int ret = 0; |
462 | mutex_lock(&di->cc_lock); |
463 | if (enable) { |
464 | /* To be able to reprogram the number of samples, we have to |
465 | * first stop the CC and then enable it again */ |
466 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
467 | AB8500_RTC_CC_CONF_REG, 0x00); |
468 | if (ret) |
469 | goto cc_err; |
470 | |
471 | /* Program the samples */ |
472 | ret = abx500_set_register_interruptible(di->dev, |
473 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, |
474 | di->fg_samples); |
475 | if (ret) |
476 | goto cc_err; |
477 | |
478 | /* Start the CC */ |
479 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
480 | AB8500_RTC_CC_CONF_REG, |
481 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); |
482 | if (ret) |
483 | goto cc_err; |
484 | |
485 | di->flags.fg_enabled = true; |
486 | } else { |
487 | /* Clear any pending read requests */ |
488 | ret = abx500_set_register_interruptible(di->dev, |
489 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); |
490 | if (ret) |
491 | goto cc_err; |
492 | |
493 | ret = abx500_set_register_interruptible(di->dev, |
494 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); |
495 | if (ret) |
496 | goto cc_err; |
497 | |
498 | /* Stop the CC */ |
499 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
500 | AB8500_RTC_CC_CONF_REG, 0); |
501 | if (ret) |
502 | goto cc_err; |
503 | |
504 | di->flags.fg_enabled = false; |
505 | |
506 | } |
507 | dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", |
508 | enable, di->fg_samples); |
509 | |
510 | mutex_unlock(&di->cc_lock); |
511 | |
512 | return ret; |
513 | cc_err: |
514 | dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); |
515 | mutex_unlock(&di->cc_lock); |
516 | return ret; |
517 | } |
518 | |
519 | /** |
520 | * ab8500_fg_inst_curr_start() - start battery instantaneous current |
521 | * @di: pointer to the ab8500_fg structure |
522 | * |
523 | * Returns 0 or error code |
524 | * Note: This is part "one" and has to be called before |
525 | * ab8500_fg_inst_curr_finalize() |
526 | */ |
527 | int ab8500_fg_inst_curr_start(struct ab8500_fg *di) |
528 | { |
529 | u8 reg_val; |
530 | int ret; |
531 | |
532 | mutex_lock(&di->cc_lock); |
533 | |
534 | ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, |
535 | AB8500_RTC_CC_CONF_REG, ®_val); |
536 | if (ret < 0) |
537 | goto fail; |
538 | |
539 | if (!(reg_val & CC_PWR_UP_ENA)) { |
540 | dev_dbg(di->dev, "%s Enable FG\n", __func__); |
541 | di->turn_off_fg = true; |
542 | |
543 | /* Program the samples */ |
544 | ret = abx500_set_register_interruptible(di->dev, |
545 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, |
546 | SEC_TO_SAMPLE(10)); |
547 | if (ret) |
548 | goto fail; |
549 | |
550 | /* Start the CC */ |
551 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
552 | AB8500_RTC_CC_CONF_REG, |
553 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); |
554 | if (ret) |
555 | goto fail; |
556 | } else { |
557 | di->turn_off_fg = false; |
558 | } |
559 | |
560 | /* Return and WFI */ |
561 | INIT_COMPLETION(di->ab8500_fg_complete); |
562 | enable_irq(di->irq); |
563 | |
564 | /* Note: cc_lock is still locked */ |
565 | return 0; |
566 | fail: |
567 | mutex_unlock(&di->cc_lock); |
568 | return ret; |
569 | } |
570 | |
571 | /** |
572 | * ab8500_fg_inst_curr_done() - check if fg conversion is done |
573 | * @di: pointer to the ab8500_fg structure |
574 | * |
575 | * Returns 1 if conversion done, 0 if still waiting |
576 | */ |
577 | int ab8500_fg_inst_curr_done(struct ab8500_fg *di) |
578 | { |
579 | return completion_done(&di->ab8500_fg_complete); |
580 | } |
581 | |
582 | /** |
583 | * ab8500_fg_inst_curr_finalize() - battery instantaneous current |
584 | * @di: pointer to the ab8500_fg structure |
585 | * @res: battery instantenous current(on success) |
586 | * |
587 | * Returns 0 or an error code |
588 | * Note: This is part "two" and has to be called at earliest 250 ms |
589 | * after ab8500_fg_inst_curr_start() |
590 | */ |
591 | int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res) |
592 | { |
593 | u8 low, high; |
594 | int val; |
595 | int ret; |
596 | int timeout; |
597 | |
598 | if (!completion_done(&di->ab8500_fg_complete)) { |
599 | timeout = wait_for_completion_timeout(&di->ab8500_fg_complete, |
600 | INS_CURR_TIMEOUT); |
601 | dev_dbg(di->dev, "Finalize time: %d ms\n", |
602 | ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ); |
603 | if (!timeout) { |
604 | ret = -ETIME; |
605 | disable_irq(di->irq); |
606 | dev_err(di->dev, "completion timed out [%d]\n", |
607 | __LINE__); |
608 | goto fail; |
609 | } |
610 | } |
611 | |
612 | disable_irq(di->irq); |
613 | |
614 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
615 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
616 | READ_REQ, READ_REQ); |
617 | |
618 | /* 100uS between read request and read is needed */ |
619 | usleep_range(100, 100); |
620 | |
621 | /* Read CC Sample conversion value Low and high */ |
622 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
623 | AB8500_GASG_CC_SMPL_CNVL_REG, &low); |
624 | if (ret < 0) |
625 | goto fail; |
626 | |
627 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
628 | AB8500_GASG_CC_SMPL_CNVH_REG, &high); |
629 | if (ret < 0) |
630 | goto fail; |
631 | |
632 | /* |
633 | * negative value for Discharging |
634 | * convert 2's compliment into decimal |
635 | */ |
636 | if (high & 0x10) |
637 | val = (low | (high << 8) | 0xFFFFE000); |
638 | else |
639 | val = (low | (high << 8)); |
640 | |
641 | /* |
642 | * Convert to unit value in mA |
643 | * Full scale input voltage is |
644 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA |
645 | * Given a 250ms conversion cycle time the LSB corresponds |
646 | * to 112.9 nAh. Convert to current by dividing by the conversion |
647 | * time in hours (250ms = 1 / (3600 * 4)h) |
648 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
649 | */ |
650 | val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / |
651 | (1000 * di->bat->fg_res); |
652 | |
653 | if (di->turn_off_fg) { |
654 | dev_dbg(di->dev, "%s Disable FG\n", __func__); |
655 | |
656 | /* Clear any pending read requests */ |
657 | ret = abx500_set_register_interruptible(di->dev, |
658 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); |
659 | if (ret) |
660 | goto fail; |
661 | |
662 | /* Stop the CC */ |
663 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
664 | AB8500_RTC_CC_CONF_REG, 0); |
665 | if (ret) |
666 | goto fail; |
667 | } |
668 | mutex_unlock(&di->cc_lock); |
669 | (*res) = val; |
670 | |
671 | return 0; |
672 | fail: |
673 | mutex_unlock(&di->cc_lock); |
674 | return ret; |
675 | } |
676 | |
677 | /** |
678 | * ab8500_fg_inst_curr_blocking() - battery instantaneous current |
679 | * @di: pointer to the ab8500_fg structure |
680 | * @res: battery instantenous current(on success) |
681 | * |
682 | * Returns 0 else error code |
683 | */ |
684 | int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) |
685 | { |
686 | int ret; |
687 | int res = 0; |
688 | |
689 | ret = ab8500_fg_inst_curr_start(di); |
690 | if (ret) { |
691 | dev_err(di->dev, "Failed to initialize fg_inst\n"); |
692 | return 0; |
693 | } |
694 | |
695 | ret = ab8500_fg_inst_curr_finalize(di, &res); |
696 | if (ret) { |
697 | dev_err(di->dev, "Failed to finalize fg_inst\n"); |
698 | return 0; |
699 | } |
700 | |
701 | return res; |
702 | } |
703 | |
704 | /** |
705 | * ab8500_fg_acc_cur_work() - average battery current |
706 | * @work: pointer to the work_struct structure |
707 | * |
708 | * Updated the average battery current obtained from the |
709 | * coulomb counter. |
710 | */ |
711 | static void ab8500_fg_acc_cur_work(struct work_struct *work) |
712 | { |
713 | int val; |
714 | int ret; |
715 | u8 low, med, high; |
716 | |
717 | struct ab8500_fg *di = container_of(work, |
718 | struct ab8500_fg, fg_acc_cur_work); |
719 | |
720 | mutex_lock(&di->cc_lock); |
721 | ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
722 | AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); |
723 | if (ret) |
724 | goto exit; |
725 | |
726 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
727 | AB8500_GASG_CC_NCOV_ACCU_LOW, &low); |
728 | if (ret < 0) |
729 | goto exit; |
730 | |
731 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
732 | AB8500_GASG_CC_NCOV_ACCU_MED, &med); |
733 | if (ret < 0) |
734 | goto exit; |
735 | |
736 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
737 | AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); |
738 | if (ret < 0) |
739 | goto exit; |
740 | |
741 | /* Check for sign bit in case of negative value, 2's compliment */ |
742 | if (high & 0x10) |
743 | val = (low | (med << 8) | (high << 16) | 0xFFE00000); |
744 | else |
745 | val = (low | (med << 8) | (high << 16)); |
746 | |
747 | /* |
748 | * Convert to uAh |
749 | * Given a 250ms conversion cycle time the LSB corresponds |
750 | * to 112.9 nAh. |
751 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
752 | */ |
753 | di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / |
754 | (100 * di->bat->fg_res); |
755 | |
756 | /* |
757 | * Convert to unit value in mA |
758 | * Full scale input voltage is |
759 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA |
760 | * Given a 250ms conversion cycle time the LSB corresponds |
761 | * to 112.9 nAh. Convert to current by dividing by the conversion |
762 | * time in hours (= samples / (3600 * 4)h) |
763 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
764 | */ |
765 | di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / |
766 | (1000 * di->bat->fg_res * (di->fg_samples / 4)); |
767 | |
768 | di->flags.conv_done = true; |
769 | |
770 | mutex_unlock(&di->cc_lock); |
771 | |
772 | queue_work(di->fg_wq, &di->fg_work); |
773 | |
774 | return; |
775 | exit: |
776 | dev_err(di->dev, |
777 | "Failed to read or write gas gauge registers\n"); |
778 | mutex_unlock(&di->cc_lock); |
779 | queue_work(di->fg_wq, &di->fg_work); |
780 | } |
781 | |
782 | /** |
783 | * ab8500_fg_bat_voltage() - get battery voltage |
784 | * @di: pointer to the ab8500_fg structure |
785 | * |
786 | * Returns battery voltage(on success) else error code |
787 | */ |
788 | static int ab8500_fg_bat_voltage(struct ab8500_fg *di) |
789 | { |
790 | int vbat; |
791 | static int prev; |
792 | |
793 | vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V); |
794 | if (vbat < 0) { |
795 | dev_err(di->dev, |
796 | "%s gpadc conversion failed, using previous value\n", |
797 | __func__); |
798 | return prev; |
799 | } |
800 | |
801 | prev = vbat; |
802 | return vbat; |
803 | } |
804 | |
805 | /** |
806 | * ab8500_fg_volt_to_capacity() - Voltage based capacity |
807 | * @di: pointer to the ab8500_fg structure |
808 | * @voltage: The voltage to convert to a capacity |
809 | * |
810 | * Returns battery capacity in per mille based on voltage |
811 | */ |
812 | static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage) |
813 | { |
814 | int i, tbl_size; |
815 | struct abx500_v_to_cap *tbl; |
816 | int cap = 0; |
817 | |
818 | tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl, |
819 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements; |
820 | |
821 | for (i = 0; i < tbl_size; ++i) { |
822 | if (voltage > tbl[i].voltage) |
823 | break; |
824 | } |
825 | |
826 | if ((i > 0) && (i < tbl_size)) { |
827 | cap = interpolate(voltage, |
828 | tbl[i].voltage, |
829 | tbl[i].capacity * 10, |
830 | tbl[i-1].voltage, |
831 | tbl[i-1].capacity * 10); |
832 | } else if (i == 0) { |
833 | cap = 1000; |
834 | } else { |
835 | cap = 0; |
836 | } |
837 | |
838 | dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille", |
839 | __func__, voltage, cap); |
840 | |
841 | return cap; |
842 | } |
843 | |
844 | /** |
845 | * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity |
846 | * @di: pointer to the ab8500_fg structure |
847 | * |
848 | * Returns battery capacity based on battery voltage that is not compensated |
849 | * for the voltage drop due to the load |
850 | */ |
851 | static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) |
852 | { |
853 | di->vbat = ab8500_fg_bat_voltage(di); |
854 | return ab8500_fg_volt_to_capacity(di, di->vbat); |
855 | } |
856 | |
857 | /** |
858 | * ab8500_fg_battery_resistance() - Returns the battery inner resistance |
859 | * @di: pointer to the ab8500_fg structure |
860 | * |
861 | * Returns battery inner resistance added with the fuel gauge resistor value |
862 | * to get the total resistance in the whole link from gnd to bat+ node. |
863 | */ |
864 | static int ab8500_fg_battery_resistance(struct ab8500_fg *di) |
865 | { |
866 | int i, tbl_size; |
867 | struct batres_vs_temp *tbl; |
868 | int resist = 0; |
869 | |
870 | tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl; |
871 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements; |
872 | |
873 | for (i = 0; i < tbl_size; ++i) { |
874 | if (di->bat_temp / 10 > tbl[i].temp) |
875 | break; |
876 | } |
877 | |
878 | if ((i > 0) && (i < tbl_size)) { |
879 | resist = interpolate(di->bat_temp / 10, |
880 | tbl[i].temp, |
881 | tbl[i].resist, |
882 | tbl[i-1].temp, |
883 | tbl[i-1].resist); |
884 | } else if (i == 0) { |
885 | resist = tbl[0].resist; |
886 | } else { |
887 | resist = tbl[tbl_size - 1].resist; |
888 | } |
889 | |
890 | dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" |
891 | " fg resistance %d, total: %d (mOhm)\n", |
892 | __func__, di->bat_temp, resist, di->bat->fg_res / 10, |
893 | (di->bat->fg_res / 10) + resist); |
894 | |
895 | /* fg_res variable is in 0.1mOhm */ |
896 | resist += di->bat->fg_res / 10; |
897 | |
898 | return resist; |
899 | } |
900 | |
901 | /** |
902 | * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity |
903 | * @di: pointer to the ab8500_fg structure |
904 | * |
905 | * Returns battery capacity based on battery voltage that is load compensated |
906 | * for the voltage drop |
907 | */ |
908 | static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) |
909 | { |
910 | int vbat_comp, res; |
911 | int i = 0; |
912 | int vbat = 0; |
913 | |
914 | ab8500_fg_inst_curr_start(di); |
915 | |
916 | do { |
917 | vbat += ab8500_fg_bat_voltage(di); |
918 | i++; |
919 | msleep(5); |
920 | } while (!ab8500_fg_inst_curr_done(di)); |
921 | |
922 | ab8500_fg_inst_curr_finalize(di, &di->inst_curr); |
923 | |
924 | di->vbat = vbat / i; |
925 | res = ab8500_fg_battery_resistance(di); |
926 | |
927 | /* Use Ohms law to get the load compensated voltage */ |
928 | vbat_comp = di->vbat - (di->inst_curr * res) / 1000; |
929 | |
930 | dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, " |
931 | "R: %dmOhm, Current: %dmA Vbat Samples: %d\n", |
932 | __func__, di->vbat, vbat_comp, res, di->inst_curr, i); |
933 | |
934 | return ab8500_fg_volt_to_capacity(di, vbat_comp); |
935 | } |
936 | |
937 | /** |
938 | * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille |
939 | * @di: pointer to the ab8500_fg structure |
940 | * @cap_mah: capacity in mAh |
941 | * |
942 | * Converts capacity in mAh to capacity in permille |
943 | */ |
944 | static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) |
945 | { |
946 | return (cap_mah * 1000) / di->bat_cap.max_mah_design; |
947 | } |
948 | |
949 | /** |
950 | * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh |
951 | * @di: pointer to the ab8500_fg structure |
952 | * @cap_pm: capacity in permille |
953 | * |
954 | * Converts capacity in permille to capacity in mAh |
955 | */ |
956 | static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) |
957 | { |
958 | return cap_pm * di->bat_cap.max_mah_design / 1000; |
959 | } |
960 | |
961 | /** |
962 | * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh |
963 | * @di: pointer to the ab8500_fg structure |
964 | * @cap_mah: capacity in mAh |
965 | * |
966 | * Converts capacity in mAh to capacity in uWh |
967 | */ |
968 | static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) |
969 | { |
970 | u64 div_res; |
971 | u32 div_rem; |
972 | |
973 | div_res = ((u64) cap_mah) * ((u64) di->vbat_nom); |
974 | div_rem = do_div(div_res, 1000); |
975 | |
976 | /* Make sure to round upwards if necessary */ |
977 | if (div_rem >= 1000 / 2) |
978 | div_res++; |
979 | |
980 | return (int) div_res; |
981 | } |
982 | |
983 | /** |
984 | * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging |
985 | * @di: pointer to the ab8500_fg structure |
986 | * |
987 | * Return the capacity in mAh based on previous calculated capcity and the FG |
988 | * accumulator register value. The filter is filled with this capacity |
989 | */ |
990 | static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) |
991 | { |
992 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", |
993 | __func__, |
994 | di->bat_cap.mah, |
995 | di->accu_charge); |
996 | |
997 | /* Capacity should not be less than 0 */ |
998 | if (di->bat_cap.mah + di->accu_charge > 0) |
999 | di->bat_cap.mah += di->accu_charge; |
1000 | else |
1001 | di->bat_cap.mah = 0; |
1002 | /* |
1003 | * We force capacity to 100% once when the algorithm |
1004 | * reports that it's full. |
1005 | */ |
1006 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design || |
1007 | di->flags.force_full) { |
1008 | di->bat_cap.mah = di->bat_cap.max_mah_design; |
1009 | } |
1010 | |
1011 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
1012 | di->bat_cap.permille = |
1013 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
1014 | |
1015 | /* We need to update battery voltage and inst current when charging */ |
1016 | di->vbat = ab8500_fg_bat_voltage(di); |
1017 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
1018 | |
1019 | return di->bat_cap.mah; |
1020 | } |
1021 | |
1022 | /** |
1023 | * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage |
1024 | * @di: pointer to the ab8500_fg structure |
1025 | * @comp: if voltage should be load compensated before capacity calc |
1026 | * |
1027 | * Return the capacity in mAh based on the battery voltage. The voltage can |
1028 | * either be load compensated or not. This value is added to the filter and a |
1029 | * new mean value is calculated and returned. |
1030 | */ |
1031 | static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp) |
1032 | { |
1033 | int permille, mah; |
1034 | |
1035 | if (comp) |
1036 | permille = ab8500_fg_load_comp_volt_to_capacity(di); |
1037 | else |
1038 | permille = ab8500_fg_uncomp_volt_to_capacity(di); |
1039 | |
1040 | mah = ab8500_fg_convert_permille_to_mah(di, permille); |
1041 | |
1042 | di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); |
1043 | di->bat_cap.permille = |
1044 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
1045 | |
1046 | return di->bat_cap.mah; |
1047 | } |
1048 | |
1049 | /** |
1050 | * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG |
1051 | * @di: pointer to the ab8500_fg structure |
1052 | * |
1053 | * Return the capacity in mAh based on previous calculated capcity and the FG |
1054 | * accumulator register value. This value is added to the filter and a |
1055 | * new mean value is calculated and returned. |
1056 | */ |
1057 | static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) |
1058 | { |
1059 | int permille_volt, permille; |
1060 | |
1061 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", |
1062 | __func__, |
1063 | di->bat_cap.mah, |
1064 | di->accu_charge); |
1065 | |
1066 | /* Capacity should not be less than 0 */ |
1067 | if (di->bat_cap.mah + di->accu_charge > 0) |
1068 | di->bat_cap.mah += di->accu_charge; |
1069 | else |
1070 | di->bat_cap.mah = 0; |
1071 | |
1072 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design) |
1073 | di->bat_cap.mah = di->bat_cap.max_mah_design; |
1074 | |
1075 | /* |
1076 | * Check against voltage based capacity. It can not be lower |
1077 | * than what the uncompensated voltage says |
1078 | */ |
1079 | permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
1080 | permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); |
1081 | |
1082 | if (permille < permille_volt) { |
1083 | di->bat_cap.permille = permille_volt; |
1084 | di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, |
1085 | di->bat_cap.permille); |
1086 | |
1087 | dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", |
1088 | __func__, |
1089 | permille, |
1090 | permille_volt); |
1091 | |
1092 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
1093 | } else { |
1094 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
1095 | di->bat_cap.permille = |
1096 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
1097 | } |
1098 | |
1099 | return di->bat_cap.mah; |
1100 | } |
1101 | |
1102 | /** |
1103 | * ab8500_fg_capacity_level() - Get the battery capacity level |
1104 | * @di: pointer to the ab8500_fg structure |
1105 | * |
1106 | * Get the battery capacity level based on the capacity in percent |
1107 | */ |
1108 | static int ab8500_fg_capacity_level(struct ab8500_fg *di) |
1109 | { |
1110 | int ret, percent; |
1111 | |
1112 | percent = di->bat_cap.permille / 10; |
1113 | |
1114 | if (percent <= di->bat->cap_levels->critical || |
1115 | di->flags.low_bat) |
1116 | ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; |
1117 | else if (percent <= di->bat->cap_levels->low) |
1118 | ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; |
1119 | else if (percent <= di->bat->cap_levels->normal) |
1120 | ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; |
1121 | else if (percent <= di->bat->cap_levels->high) |
1122 | ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; |
1123 | else |
1124 | ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; |
1125 | |
1126 | return ret; |
1127 | } |
1128 | |
1129 | /** |
1130 | * ab8500_fg_check_capacity_limits() - Check if capacity has changed |
1131 | * @di: pointer to the ab8500_fg structure |
1132 | * @init: capacity is allowed to go up in init mode |
1133 | * |
1134 | * Check if capacity or capacity limit has changed and notify the system |
1135 | * about it using the power_supply framework |
1136 | */ |
1137 | static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) |
1138 | { |
1139 | bool changed = false; |
1140 | |
1141 | di->bat_cap.level = ab8500_fg_capacity_level(di); |
1142 | |
1143 | if (di->bat_cap.level != di->bat_cap.prev_level) { |
1144 | /* |
1145 | * We do not allow reported capacity level to go up |
1146 | * unless we're charging or if we're in init |
1147 | */ |
1148 | if (!(!di->flags.charging && di->bat_cap.level > |
1149 | di->bat_cap.prev_level) || init) { |
1150 | dev_dbg(di->dev, "level changed from %d to %d\n", |
1151 | di->bat_cap.prev_level, |
1152 | di->bat_cap.level); |
1153 | di->bat_cap.prev_level = di->bat_cap.level; |
1154 | changed = true; |
1155 | } else { |
1156 | dev_dbg(di->dev, "level not allowed to go up " |
1157 | "since no charger is connected: %d to %d\n", |
1158 | di->bat_cap.prev_level, |
1159 | di->bat_cap.level); |
1160 | } |
1161 | } |
1162 | |
1163 | /* |
1164 | * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate |
1165 | * shutdown |
1166 | */ |
1167 | if (di->flags.low_bat) { |
1168 | dev_dbg(di->dev, "Battery low, set capacity to 0\n"); |
1169 | di->bat_cap.prev_percent = 0; |
1170 | di->bat_cap.permille = 0; |
1171 | di->bat_cap.prev_mah = 0; |
1172 | di->bat_cap.mah = 0; |
1173 | changed = true; |
1174 | } else if (di->flags.fully_charged) { |
1175 | /* |
1176 | * We report 100% if algorithm reported fully charged |
1177 | * unless capacity drops too much |
1178 | */ |
1179 | if (di->flags.force_full) { |
1180 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
1181 | di->bat_cap.prev_mah = di->bat_cap.mah; |
1182 | } else if (!di->flags.force_full && |
1183 | di->bat_cap.prev_percent != |
1184 | (di->bat_cap.permille) / 10 && |
1185 | (di->bat_cap.permille / 10) < |
1186 | di->bat->fg_params->maint_thres) { |
1187 | dev_dbg(di->dev, |
1188 | "battery reported full " |
1189 | "but capacity dropping: %d\n", |
1190 | di->bat_cap.permille / 10); |
1191 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
1192 | di->bat_cap.prev_mah = di->bat_cap.mah; |
1193 | |
1194 | changed = true; |
1195 | } |
1196 | } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) { |
1197 | if (di->bat_cap.permille / 10 == 0) { |
1198 | /* |
1199 | * We will not report 0% unless we've got |
1200 | * the LOW_BAT IRQ, no matter what the FG |
1201 | * algorithm says. |
1202 | */ |
1203 | di->bat_cap.prev_percent = 1; |
1204 | di->bat_cap.permille = 1; |
1205 | di->bat_cap.prev_mah = 1; |
1206 | di->bat_cap.mah = 1; |
1207 | |
1208 | changed = true; |
1209 | } else if (!(!di->flags.charging && |
1210 | (di->bat_cap.permille / 10) > |
1211 | di->bat_cap.prev_percent) || init) { |
1212 | /* |
1213 | * We do not allow reported capacity to go up |
1214 | * unless we're charging or if we're in init |
1215 | */ |
1216 | dev_dbg(di->dev, |
1217 | "capacity changed from %d to %d (%d)\n", |
1218 | di->bat_cap.prev_percent, |
1219 | di->bat_cap.permille / 10, |
1220 | di->bat_cap.permille); |
1221 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
1222 | di->bat_cap.prev_mah = di->bat_cap.mah; |
1223 | |
1224 | changed = true; |
1225 | } else { |
1226 | dev_dbg(di->dev, "capacity not allowed to go up since " |
1227 | "no charger is connected: %d to %d (%d)\n", |
1228 | di->bat_cap.prev_percent, |
1229 | di->bat_cap.permille / 10, |
1230 | di->bat_cap.permille); |
1231 | } |
1232 | } |
1233 | |
1234 | if (changed) { |
1235 | power_supply_changed(&di->fg_psy); |
1236 | if (di->flags.fully_charged && di->flags.force_full) { |
1237 | dev_dbg(di->dev, "Battery full, notifying.\n"); |
1238 | di->flags.force_full = false; |
1239 | sysfs_notify(&di->fg_kobject, NULL, "charge_full"); |
1240 | } |
1241 | sysfs_notify(&di->fg_kobject, NULL, "charge_now"); |
1242 | } |
1243 | } |
1244 | |
1245 | static void ab8500_fg_charge_state_to(struct ab8500_fg *di, |
1246 | enum ab8500_fg_charge_state new_state) |
1247 | { |
1248 | dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", |
1249 | di->charge_state, |
1250 | charge_state[di->charge_state], |
1251 | new_state, |
1252 | charge_state[new_state]); |
1253 | |
1254 | di->charge_state = new_state; |
1255 | } |
1256 | |
1257 | static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, |
1258 | enum ab8500_fg_discharge_state new_state) |
1259 | { |
1260 | dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n", |
1261 | di->discharge_state, |
1262 | discharge_state[di->discharge_state], |
1263 | new_state, |
1264 | discharge_state[new_state]); |
1265 | |
1266 | di->discharge_state = new_state; |
1267 | } |
1268 | |
1269 | /** |
1270 | * ab8500_fg_algorithm_charging() - FG algorithm for when charging |
1271 | * @di: pointer to the ab8500_fg structure |
1272 | * |
1273 | * Battery capacity calculation state machine for when we're charging |
1274 | */ |
1275 | static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) |
1276 | { |
1277 | /* |
1278 | * If we change to discharge mode |
1279 | * we should start with recovery |
1280 | */ |
1281 | if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) |
1282 | ab8500_fg_discharge_state_to(di, |
1283 | AB8500_FG_DISCHARGE_INIT_RECOVERY); |
1284 | |
1285 | switch (di->charge_state) { |
1286 | case AB8500_FG_CHARGE_INIT: |
1287 | di->fg_samples = SEC_TO_SAMPLE( |
1288 | di->bat->fg_params->accu_charging); |
1289 | |
1290 | ab8500_fg_coulomb_counter(di, true); |
1291 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); |
1292 | |
1293 | break; |
1294 | |
1295 | case AB8500_FG_CHARGE_READOUT: |
1296 | /* |
1297 | * Read the FG and calculate the new capacity |
1298 | */ |
1299 | mutex_lock(&di->cc_lock); |
1300 | if (!di->flags.conv_done) { |
1301 | /* Wasn't the CC IRQ that got us here */ |
1302 | mutex_unlock(&di->cc_lock); |
1303 | dev_dbg(di->dev, "%s CC conv not done\n", |
1304 | __func__); |
1305 | |
1306 | break; |
1307 | } |
1308 | di->flags.conv_done = false; |
1309 | mutex_unlock(&di->cc_lock); |
1310 | |
1311 | ab8500_fg_calc_cap_charging(di); |
1312 | |
1313 | break; |
1314 | |
1315 | default: |
1316 | break; |
1317 | } |
1318 | |
1319 | /* Check capacity limits */ |
1320 | ab8500_fg_check_capacity_limits(di, false); |
1321 | } |
1322 | |
1323 | static void force_capacity(struct ab8500_fg *di) |
1324 | { |
1325 | int cap; |
1326 | |
1327 | ab8500_fg_clear_cap_samples(di); |
1328 | cap = di->bat_cap.user_mah; |
1329 | if (cap > di->bat_cap.max_mah_design) { |
1330 | dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" |
1331 | " %d\n", cap, di->bat_cap.max_mah_design); |
1332 | cap = di->bat_cap.max_mah_design; |
1333 | } |
1334 | ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); |
1335 | di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); |
1336 | di->bat_cap.mah = cap; |
1337 | ab8500_fg_check_capacity_limits(di, true); |
1338 | } |
1339 | |
1340 | static bool check_sysfs_capacity(struct ab8500_fg *di) |
1341 | { |
1342 | int cap, lower, upper; |
1343 | int cap_permille; |
1344 | |
1345 | cap = di->bat_cap.user_mah; |
1346 | |
1347 | cap_permille = ab8500_fg_convert_mah_to_permille(di, |
1348 | di->bat_cap.user_mah); |
1349 | |
1350 | lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10; |
1351 | upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10; |
1352 | |
1353 | if (lower < 0) |
1354 | lower = 0; |
1355 | /* 1000 is permille, -> 100 percent */ |
1356 | if (upper > 1000) |
1357 | upper = 1000; |
1358 | |
1359 | dev_dbg(di->dev, "Capacity limits:" |
1360 | " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", |
1361 | lower, cap_permille, upper, cap, di->bat_cap.mah); |
1362 | |
1363 | /* If within limits, use the saved capacity and exit estimation...*/ |
1364 | if (cap_permille > lower && cap_permille < upper) { |
1365 | dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); |
1366 | force_capacity(di); |
1367 | return true; |
1368 | } |
1369 | dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); |
1370 | return false; |
1371 | } |
1372 | |
1373 | /** |
1374 | * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging |
1375 | * @di: pointer to the ab8500_fg structure |
1376 | * |
1377 | * Battery capacity calculation state machine for when we're discharging |
1378 | */ |
1379 | static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) |
1380 | { |
1381 | int sleep_time; |
1382 | |
1383 | /* If we change to charge mode we should start with init */ |
1384 | if (di->charge_state != AB8500_FG_CHARGE_INIT) |
1385 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
1386 | |
1387 | switch (di->discharge_state) { |
1388 | case AB8500_FG_DISCHARGE_INIT: |
1389 | /* We use the FG IRQ to work on */ |
1390 | di->init_cnt = 0; |
1391 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); |
1392 | ab8500_fg_coulomb_counter(di, true); |
1393 | ab8500_fg_discharge_state_to(di, |
1394 | AB8500_FG_DISCHARGE_INITMEASURING); |
1395 | |
1396 | /* Intentional fallthrough */ |
1397 | case AB8500_FG_DISCHARGE_INITMEASURING: |
1398 | /* |
1399 | * Discard a number of samples during startup. |
1400 | * After that, use compensated voltage for a few |
1401 | * samples to get an initial capacity. |
1402 | * Then go to READOUT |
1403 | */ |
1404 | sleep_time = di->bat->fg_params->init_timer; |
1405 | |
1406 | /* Discard the first [x] seconds */ |
1407 | if (di->init_cnt > |
1408 | di->bat->fg_params->init_discard_time) { |
1409 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
1410 | |
1411 | ab8500_fg_check_capacity_limits(di, true); |
1412 | } |
1413 | |
1414 | di->init_cnt += sleep_time; |
1415 | if (di->init_cnt > di->bat->fg_params->init_total_time) |
1416 | ab8500_fg_discharge_state_to(di, |
1417 | AB8500_FG_DISCHARGE_READOUT_INIT); |
1418 | |
1419 | break; |
1420 | |
1421 | case AB8500_FG_DISCHARGE_INIT_RECOVERY: |
1422 | di->recovery_cnt = 0; |
1423 | di->recovery_needed = true; |
1424 | ab8500_fg_discharge_state_to(di, |
1425 | AB8500_FG_DISCHARGE_RECOVERY); |
1426 | |
1427 | /* Intentional fallthrough */ |
1428 | |
1429 | case AB8500_FG_DISCHARGE_RECOVERY: |
1430 | sleep_time = di->bat->fg_params->recovery_sleep_timer; |
1431 | |
1432 | /* |
1433 | * We should check the power consumption |
1434 | * If low, go to READOUT (after x min) or |
1435 | * RECOVERY_SLEEP if time left. |
1436 | * If high, go to READOUT |
1437 | */ |
1438 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
1439 | |
1440 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { |
1441 | if (di->recovery_cnt > |
1442 | di->bat->fg_params->recovery_total_time) { |
1443 | di->fg_samples = SEC_TO_SAMPLE( |
1444 | di->bat->fg_params->accu_high_curr); |
1445 | ab8500_fg_coulomb_counter(di, true); |
1446 | ab8500_fg_discharge_state_to(di, |
1447 | AB8500_FG_DISCHARGE_READOUT); |
1448 | di->recovery_needed = false; |
1449 | } else { |
1450 | queue_delayed_work(di->fg_wq, |
1451 | &di->fg_periodic_work, |
1452 | sleep_time * HZ); |
1453 | } |
1454 | di->recovery_cnt += sleep_time; |
1455 | } else { |
1456 | di->fg_samples = SEC_TO_SAMPLE( |
1457 | di->bat->fg_params->accu_high_curr); |
1458 | ab8500_fg_coulomb_counter(di, true); |
1459 | ab8500_fg_discharge_state_to(di, |
1460 | AB8500_FG_DISCHARGE_READOUT); |
1461 | } |
1462 | break; |
1463 | |
1464 | case AB8500_FG_DISCHARGE_READOUT_INIT: |
1465 | di->fg_samples = SEC_TO_SAMPLE( |
1466 | di->bat->fg_params->accu_high_curr); |
1467 | ab8500_fg_coulomb_counter(di, true); |
1468 | ab8500_fg_discharge_state_to(di, |
1469 | AB8500_FG_DISCHARGE_READOUT); |
1470 | break; |
1471 | |
1472 | case AB8500_FG_DISCHARGE_READOUT: |
1473 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
1474 | |
1475 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { |
1476 | /* Detect mode change */ |
1477 | if (di->high_curr_mode) { |
1478 | di->high_curr_mode = false; |
1479 | di->high_curr_cnt = 0; |
1480 | } |
1481 | |
1482 | if (di->recovery_needed) { |
1483 | ab8500_fg_discharge_state_to(di, |
1484 | AB8500_FG_DISCHARGE_RECOVERY); |
1485 | |
1486 | queue_delayed_work(di->fg_wq, |
1487 | &di->fg_periodic_work, 0); |
1488 | |
1489 | break; |
1490 | } |
1491 | |
1492 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
1493 | } else { |
1494 | mutex_lock(&di->cc_lock); |
1495 | if (!di->flags.conv_done) { |
1496 | /* Wasn't the CC IRQ that got us here */ |
1497 | mutex_unlock(&di->cc_lock); |
1498 | dev_dbg(di->dev, "%s CC conv not done\n", |
1499 | __func__); |
1500 | |
1501 | break; |
1502 | } |
1503 | di->flags.conv_done = false; |
1504 | mutex_unlock(&di->cc_lock); |
1505 | |
1506 | /* Detect mode change */ |
1507 | if (!di->high_curr_mode) { |
1508 | di->high_curr_mode = true; |
1509 | di->high_curr_cnt = 0; |
1510 | } |
1511 | |
1512 | di->high_curr_cnt += |
1513 | di->bat->fg_params->accu_high_curr; |
1514 | if (di->high_curr_cnt > |
1515 | di->bat->fg_params->high_curr_time) |
1516 | di->recovery_needed = true; |
1517 | |
1518 | ab8500_fg_calc_cap_discharge_fg(di); |
1519 | } |
1520 | |
1521 | ab8500_fg_check_capacity_limits(di, false); |
1522 | |
1523 | break; |
1524 | |
1525 | case AB8500_FG_DISCHARGE_WAKEUP: |
1526 | ab8500_fg_coulomb_counter(di, true); |
1527 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
1528 | |
1529 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
1530 | |
1531 | di->fg_samples = SEC_TO_SAMPLE( |
1532 | di->bat->fg_params->accu_high_curr); |
1533 | ab8500_fg_coulomb_counter(di, true); |
1534 | ab8500_fg_discharge_state_to(di, |
1535 | AB8500_FG_DISCHARGE_READOUT); |
1536 | |
1537 | ab8500_fg_check_capacity_limits(di, false); |
1538 | |
1539 | break; |
1540 | |
1541 | default: |
1542 | break; |
1543 | } |
1544 | } |
1545 | |
1546 | /** |
1547 | * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration |
1548 | * @di: pointer to the ab8500_fg structure |
1549 | * |
1550 | */ |
1551 | static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) |
1552 | { |
1553 | int ret; |
1554 | |
1555 | switch (di->calib_state) { |
1556 | case AB8500_FG_CALIB_INIT: |
1557 | dev_dbg(di->dev, "Calibration ongoing...\n"); |
1558 | |
1559 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
1560 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
1561 | CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); |
1562 | if (ret < 0) |
1563 | goto err; |
1564 | |
1565 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
1566 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
1567 | CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); |
1568 | if (ret < 0) |
1569 | goto err; |
1570 | di->calib_state = AB8500_FG_CALIB_WAIT; |
1571 | break; |
1572 | case AB8500_FG_CALIB_END: |
1573 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
1574 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
1575 | CC_MUXOFFSET, CC_MUXOFFSET); |
1576 | if (ret < 0) |
1577 | goto err; |
1578 | di->flags.calibrate = false; |
1579 | dev_dbg(di->dev, "Calibration done...\n"); |
1580 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
1581 | break; |
1582 | case AB8500_FG_CALIB_WAIT: |
1583 | dev_dbg(di->dev, "Calibration WFI\n"); |
1584 | default: |
1585 | break; |
1586 | } |
1587 | return; |
1588 | err: |
1589 | /* Something went wrong, don't calibrate then */ |
1590 | dev_err(di->dev, "failed to calibrate the CC\n"); |
1591 | di->flags.calibrate = false; |
1592 | di->calib_state = AB8500_FG_CALIB_INIT; |
1593 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
1594 | } |
1595 | |
1596 | /** |
1597 | * ab8500_fg_algorithm() - Entry point for the FG algorithm |
1598 | * @di: pointer to the ab8500_fg structure |
1599 | * |
1600 | * Entry point for the battery capacity calculation state machine |
1601 | */ |
1602 | static void ab8500_fg_algorithm(struct ab8500_fg *di) |
1603 | { |
1604 | if (di->flags.calibrate) |
1605 | ab8500_fg_algorithm_calibrate(di); |
1606 | else { |
1607 | if (di->flags.charging) |
1608 | ab8500_fg_algorithm_charging(di); |
1609 | else |
1610 | ab8500_fg_algorithm_discharging(di); |
1611 | } |
1612 | |
1613 | dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d " |
1614 | "%d %d %d %d %d %d %d\n", |
1615 | di->bat_cap.max_mah_design, |
1616 | di->bat_cap.mah, |
1617 | di->bat_cap.permille, |
1618 | di->bat_cap.level, |
1619 | di->bat_cap.prev_mah, |
1620 | di->bat_cap.prev_percent, |
1621 | di->bat_cap.prev_level, |
1622 | di->vbat, |
1623 | di->inst_curr, |
1624 | di->avg_curr, |
1625 | di->accu_charge, |
1626 | di->flags.charging, |
1627 | di->charge_state, |
1628 | di->discharge_state, |
1629 | di->high_curr_mode, |
1630 | di->recovery_needed); |
1631 | } |
1632 | |
1633 | /** |
1634 | * ab8500_fg_periodic_work() - Run the FG state machine periodically |
1635 | * @work: pointer to the work_struct structure |
1636 | * |
1637 | * Work queue function for periodic work |
1638 | */ |
1639 | static void ab8500_fg_periodic_work(struct work_struct *work) |
1640 | { |
1641 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
1642 | fg_periodic_work.work); |
1643 | |
1644 | if (di->init_capacity) { |
1645 | /* A dummy read that will return 0 */ |
1646 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
1647 | /* Get an initial capacity calculation */ |
1648 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
1649 | ab8500_fg_check_capacity_limits(di, true); |
1650 | di->init_capacity = false; |
1651 | |
1652 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
1653 | } else if (di->flags.user_cap) { |
1654 | if (check_sysfs_capacity(di)) { |
1655 | ab8500_fg_check_capacity_limits(di, true); |
1656 | if (di->flags.charging) |
1657 | ab8500_fg_charge_state_to(di, |
1658 | AB8500_FG_CHARGE_INIT); |
1659 | else |
1660 | ab8500_fg_discharge_state_to(di, |
1661 | AB8500_FG_DISCHARGE_READOUT_INIT); |
1662 | } |
1663 | di->flags.user_cap = false; |
1664 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
1665 | } else |
1666 | ab8500_fg_algorithm(di); |
1667 | |
1668 | } |
1669 | |
1670 | /** |
1671 | * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition |
1672 | * @work: pointer to the work_struct structure |
1673 | * |
1674 | * Work queue function for checking the OVV_BAT condition |
1675 | */ |
1676 | static void ab8500_fg_check_hw_failure_work(struct work_struct *work) |
1677 | { |
1678 | int ret; |
1679 | u8 reg_value; |
1680 | |
1681 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
1682 | fg_check_hw_failure_work.work); |
1683 | |
1684 | /* |
1685 | * If we have had a battery over-voltage situation, |
1686 | * check ovv-bit to see if it should be reset. |
1687 | */ |
1688 | if (di->flags.bat_ovv) { |
1689 | ret = abx500_get_register_interruptible(di->dev, |
1690 | AB8500_CHARGER, AB8500_CH_STAT_REG, |
1691 | ®_value); |
1692 | if (ret < 0) { |
1693 | dev_err(di->dev, "%s ab8500 read failed\n", __func__); |
1694 | return; |
1695 | } |
1696 | if ((reg_value & BATT_OVV) != BATT_OVV) { |
1697 | dev_dbg(di->dev, "Battery recovered from OVV\n"); |
1698 | di->flags.bat_ovv = false; |
1699 | power_supply_changed(&di->fg_psy); |
1700 | return; |
1701 | } |
1702 | |
1703 | /* Not yet recovered from ovv, reschedule this test */ |
1704 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, |
1705 | round_jiffies(HZ)); |
1706 | } |
1707 | } |
1708 | |
1709 | /** |
1710 | * ab8500_fg_low_bat_work() - Check LOW_BAT condition |
1711 | * @work: pointer to the work_struct structure |
1712 | * |
1713 | * Work queue function for checking the LOW_BAT condition |
1714 | */ |
1715 | static void ab8500_fg_low_bat_work(struct work_struct *work) |
1716 | { |
1717 | int vbat; |
1718 | |
1719 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
1720 | fg_low_bat_work.work); |
1721 | |
1722 | vbat = ab8500_fg_bat_voltage(di); |
1723 | |
1724 | /* Check if LOW_BAT still fulfilled */ |
1725 | if (vbat < di->bat->fg_params->lowbat_threshold) { |
1726 | di->flags.low_bat = true; |
1727 | dev_warn(di->dev, "Battery voltage still LOW\n"); |
1728 | |
1729 | /* |
1730 | * We need to re-schedule this check to be able to detect |
1731 | * if the voltage increases again during charging |
1732 | */ |
1733 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, |
1734 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); |
1735 | } else { |
1736 | di->flags.low_bat = false; |
1737 | dev_warn(di->dev, "Battery voltage OK again\n"); |
1738 | } |
1739 | |
1740 | /* This is needed to dispatch LOW_BAT */ |
1741 | ab8500_fg_check_capacity_limits(di, false); |
1742 | |
1743 | /* Set this flag to check if LOW_BAT IRQ still occurs */ |
1744 | di->flags.low_bat_delay = false; |
1745 | } |
1746 | |
1747 | /** |
1748 | * ab8500_fg_battok_calc - calculate the bit pattern corresponding |
1749 | * to the target voltage. |
1750 | * @di: pointer to the ab8500_fg structure |
1751 | * @target target voltage |
1752 | * |
1753 | * Returns bit pattern closest to the target voltage |
1754 | * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) |
1755 | */ |
1756 | |
1757 | static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) |
1758 | { |
1759 | if (target > BATT_OK_MIN + |
1760 | (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) |
1761 | return BATT_OK_MAX_NR_INCREMENTS; |
1762 | if (target < BATT_OK_MIN) |
1763 | return 0; |
1764 | return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; |
1765 | } |
1766 | |
1767 | /** |
1768 | * ab8500_fg_battok_init_hw_register - init battok levels |
1769 | * @di: pointer to the ab8500_fg structure |
1770 | * |
1771 | */ |
1772 | |
1773 | static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) |
1774 | { |
1775 | int selected; |
1776 | int sel0; |
1777 | int sel1; |
1778 | int cbp_sel0; |
1779 | int cbp_sel1; |
1780 | int ret; |
1781 | int new_val; |
1782 | |
1783 | sel0 = di->bat->fg_params->battok_falling_th_sel0; |
1784 | sel1 = di->bat->fg_params->battok_raising_th_sel1; |
1785 | |
1786 | cbp_sel0 = ab8500_fg_battok_calc(di, sel0); |
1787 | cbp_sel1 = ab8500_fg_battok_calc(di, sel1); |
1788 | |
1789 | selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; |
1790 | |
1791 | if (selected != sel0) |
1792 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", |
1793 | sel0, selected, cbp_sel0); |
1794 | |
1795 | selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; |
1796 | |
1797 | if (selected != sel1) |
1798 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", |
1799 | sel1, selected, cbp_sel1); |
1800 | |
1801 | new_val = cbp_sel0 | (cbp_sel1 << 4); |
1802 | |
1803 | dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); |
1804 | ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, |
1805 | AB8500_BATT_OK_REG, new_val); |
1806 | return ret; |
1807 | } |
1808 | |
1809 | /** |
1810 | * ab8500_fg_instant_work() - Run the FG state machine instantly |
1811 | * @work: pointer to the work_struct structure |
1812 | * |
1813 | * Work queue function for instant work |
1814 | */ |
1815 | static void ab8500_fg_instant_work(struct work_struct *work) |
1816 | { |
1817 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); |
1818 | |
1819 | ab8500_fg_algorithm(di); |
1820 | } |
1821 | |
1822 | /** |
1823 | * ab8500_fg_cc_data_end_handler() - isr to get battery avg current. |
1824 | * @irq: interrupt number |
1825 | * @_di: pointer to the ab8500_fg structure |
1826 | * |
1827 | * Returns IRQ status(IRQ_HANDLED) |
1828 | */ |
1829 | static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) |
1830 | { |
1831 | struct ab8500_fg *di = _di; |
1832 | complete(&di->ab8500_fg_complete); |
1833 | return IRQ_HANDLED; |
1834 | } |
1835 | |
1836 | /** |
1837 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. |
1838 | * @irq: interrupt number |
1839 | * @_di: pointer to the ab8500_fg structure |
1840 | * |
1841 | * Returns IRQ status(IRQ_HANDLED) |
1842 | */ |
1843 | static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) |
1844 | { |
1845 | struct ab8500_fg *di = _di; |
1846 | di->calib_state = AB8500_FG_CALIB_END; |
1847 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
1848 | return IRQ_HANDLED; |
1849 | } |
1850 | |
1851 | /** |
1852 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. |
1853 | * @irq: interrupt number |
1854 | * @_di: pointer to the ab8500_fg structure |
1855 | * |
1856 | * Returns IRQ status(IRQ_HANDLED) |
1857 | */ |
1858 | static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) |
1859 | { |
1860 | struct ab8500_fg *di = _di; |
1861 | |
1862 | queue_work(di->fg_wq, &di->fg_acc_cur_work); |
1863 | |
1864 | return IRQ_HANDLED; |
1865 | } |
1866 | |
1867 | /** |
1868 | * ab8500_fg_batt_ovv_handler() - Battery OVV occured |
1869 | * @irq: interrupt number |
1870 | * @_di: pointer to the ab8500_fg structure |
1871 | * |
1872 | * Returns IRQ status(IRQ_HANDLED) |
1873 | */ |
1874 | static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) |
1875 | { |
1876 | struct ab8500_fg *di = _di; |
1877 | |
1878 | dev_dbg(di->dev, "Battery OVV\n"); |
1879 | di->flags.bat_ovv = true; |
1880 | power_supply_changed(&di->fg_psy); |
1881 | |
1882 | /* Schedule a new HW failure check */ |
1883 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); |
1884 | |
1885 | return IRQ_HANDLED; |
1886 | } |
1887 | |
1888 | /** |
1889 | * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold |
1890 | * @irq: interrupt number |
1891 | * @_di: pointer to the ab8500_fg structure |
1892 | * |
1893 | * Returns IRQ status(IRQ_HANDLED) |
1894 | */ |
1895 | static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) |
1896 | { |
1897 | struct ab8500_fg *di = _di; |
1898 | |
1899 | if (!di->flags.low_bat_delay) { |
1900 | dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); |
1901 | di->flags.low_bat_delay = true; |
1902 | /* |
1903 | * Start a timer to check LOW_BAT again after some time |
1904 | * This is done to avoid shutdown on single voltage dips |
1905 | */ |
1906 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, |
1907 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); |
1908 | } |
1909 | return IRQ_HANDLED; |
1910 | } |
1911 | |
1912 | /** |
1913 | * ab8500_fg_get_property() - get the fg properties |
1914 | * @psy: pointer to the power_supply structure |
1915 | * @psp: pointer to the power_supply_property structure |
1916 | * @val: pointer to the power_supply_propval union |
1917 | * |
1918 | * This function gets called when an application tries to get the |
1919 | * fg properties by reading the sysfs files. |
1920 | * voltage_now: battery voltage |
1921 | * current_now: battery instant current |
1922 | * current_avg: battery average current |
1923 | * charge_full_design: capacity where battery is considered full |
1924 | * charge_now: battery capacity in nAh |
1925 | * capacity: capacity in percent |
1926 | * capacity_level: capacity level |
1927 | * |
1928 | * Returns error code in case of failure else 0 on success |
1929 | */ |
1930 | static int ab8500_fg_get_property(struct power_supply *psy, |
1931 | enum power_supply_property psp, |
1932 | union power_supply_propval *val) |
1933 | { |
1934 | struct ab8500_fg *di; |
1935 | |
1936 | di = to_ab8500_fg_device_info(psy); |
1937 | |
1938 | /* |
1939 | * If battery is identified as unknown and charging of unknown |
1940 | * batteries is disabled, we always report 100% capacity and |
1941 | * capacity level UNKNOWN, since we can't calculate |
1942 | * remaining capacity |
1943 | */ |
1944 | |
1945 | switch (psp) { |
1946 | case POWER_SUPPLY_PROP_VOLTAGE_NOW: |
1947 | if (di->flags.bat_ovv) |
1948 | val->intval = BATT_OVV_VALUE * 1000; |
1949 | else |
1950 | val->intval = di->vbat * 1000; |
1951 | break; |
1952 | case POWER_SUPPLY_PROP_CURRENT_NOW: |
1953 | val->intval = di->inst_curr * 1000; |
1954 | break; |
1955 | case POWER_SUPPLY_PROP_CURRENT_AVG: |
1956 | val->intval = di->avg_curr * 1000; |
1957 | break; |
1958 | case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: |
1959 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
1960 | di->bat_cap.max_mah_design); |
1961 | break; |
1962 | case POWER_SUPPLY_PROP_ENERGY_FULL: |
1963 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
1964 | di->bat_cap.max_mah); |
1965 | break; |
1966 | case POWER_SUPPLY_PROP_ENERGY_NOW: |
1967 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
1968 | di->flags.batt_id_received) |
1969 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
1970 | di->bat_cap.max_mah); |
1971 | else |
1972 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
1973 | di->bat_cap.prev_mah); |
1974 | break; |
1975 | case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: |
1976 | val->intval = di->bat_cap.max_mah_design; |
1977 | break; |
1978 | case POWER_SUPPLY_PROP_CHARGE_FULL: |
1979 | val->intval = di->bat_cap.max_mah; |
1980 | break; |
1981 | case POWER_SUPPLY_PROP_CHARGE_NOW: |
1982 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
1983 | di->flags.batt_id_received) |
1984 | val->intval = di->bat_cap.max_mah; |
1985 | else |
1986 | val->intval = di->bat_cap.prev_mah; |
1987 | break; |
1988 | case POWER_SUPPLY_PROP_CAPACITY: |
1989 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
1990 | di->flags.batt_id_received) |
1991 | val->intval = 100; |
1992 | else |
1993 | val->intval = di->bat_cap.prev_percent; |
1994 | break; |
1995 | case POWER_SUPPLY_PROP_CAPACITY_LEVEL: |
1996 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
1997 | di->flags.batt_id_received) |
1998 | val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; |
1999 | else |
2000 | val->intval = di->bat_cap.prev_level; |
2001 | break; |
2002 | default: |
2003 | return -EINVAL; |
2004 | } |
2005 | return 0; |
2006 | } |
2007 | |
2008 | static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data) |
2009 | { |
2010 | struct power_supply *psy; |
2011 | struct power_supply *ext; |
2012 | struct ab8500_fg *di; |
2013 | union power_supply_propval ret; |
2014 | int i, j; |
2015 | bool psy_found = false; |
2016 | |
2017 | psy = (struct power_supply *)data; |
2018 | ext = dev_get_drvdata(dev); |
2019 | di = to_ab8500_fg_device_info(psy); |
2020 | |
2021 | /* |
2022 | * For all psy where the name of your driver |
2023 | * appears in any supplied_to |
2024 | */ |
2025 | for (i = 0; i < ext->num_supplicants; i++) { |
2026 | if (!strcmp(ext->supplied_to[i], psy->name)) |
2027 | psy_found = true; |
2028 | } |
2029 | |
2030 | if (!psy_found) |
2031 | return 0; |
2032 | |
2033 | /* Go through all properties for the psy */ |
2034 | for (j = 0; j < ext->num_properties; j++) { |
2035 | enum power_supply_property prop; |
2036 | prop = ext->properties[j]; |
2037 | |
2038 | if (ext->get_property(ext, prop, &ret)) |
2039 | continue; |
2040 | |
2041 | switch (prop) { |
2042 | case POWER_SUPPLY_PROP_STATUS: |
2043 | switch (ext->type) { |
2044 | case POWER_SUPPLY_TYPE_BATTERY: |
2045 | switch (ret.intval) { |
2046 | case POWER_SUPPLY_STATUS_UNKNOWN: |
2047 | case POWER_SUPPLY_STATUS_DISCHARGING: |
2048 | case POWER_SUPPLY_STATUS_NOT_CHARGING: |
2049 | if (!di->flags.charging) |
2050 | break; |
2051 | di->flags.charging = false; |
2052 | di->flags.fully_charged = false; |
2053 | queue_work(di->fg_wq, &di->fg_work); |
2054 | break; |
2055 | case POWER_SUPPLY_STATUS_FULL: |
2056 | if (di->flags.fully_charged) |
2057 | break; |
2058 | di->flags.fully_charged = true; |
2059 | di->flags.force_full = true; |
2060 | /* Save current capacity as maximum */ |
2061 | di->bat_cap.max_mah = di->bat_cap.mah; |
2062 | queue_work(di->fg_wq, &di->fg_work); |
2063 | break; |
2064 | case POWER_SUPPLY_STATUS_CHARGING: |
2065 | if (di->flags.charging) |
2066 | break; |
2067 | di->flags.charging = true; |
2068 | di->flags.fully_charged = false; |
2069 | queue_work(di->fg_wq, &di->fg_work); |
2070 | break; |
2071 | }; |
2072 | default: |
2073 | break; |
2074 | }; |
2075 | break; |
2076 | case POWER_SUPPLY_PROP_TECHNOLOGY: |
2077 | switch (ext->type) { |
2078 | case POWER_SUPPLY_TYPE_BATTERY: |
2079 | if (!di->flags.batt_id_received) { |
2080 | const struct abx500_battery_type *b; |
2081 | |
2082 | b = &(di->bat->bat_type[di->bat->batt_id]); |
2083 | |
2084 | di->flags.batt_id_received = true; |
2085 | |
2086 | di->bat_cap.max_mah_design = |
2087 | MILLI_TO_MICRO * |
2088 | b->charge_full_design; |
2089 | |
2090 | di->bat_cap.max_mah = |
2091 | di->bat_cap.max_mah_design; |
2092 | |
2093 | di->vbat_nom = b->nominal_voltage; |
2094 | } |
2095 | |
2096 | if (ret.intval) |
2097 | di->flags.batt_unknown = false; |
2098 | else |
2099 | di->flags.batt_unknown = true; |
2100 | break; |
2101 | default: |
2102 | break; |
2103 | } |
2104 | break; |
2105 | case POWER_SUPPLY_PROP_TEMP: |
2106 | switch (ext->type) { |
2107 | case POWER_SUPPLY_TYPE_BATTERY: |
2108 | if (di->flags.batt_id_received) |
2109 | di->bat_temp = ret.intval; |
2110 | break; |
2111 | default: |
2112 | break; |
2113 | } |
2114 | break; |
2115 | default: |
2116 | break; |
2117 | } |
2118 | } |
2119 | return 0; |
2120 | } |
2121 | |
2122 | /** |
2123 | * ab8500_fg_init_hw_registers() - Set up FG related registers |
2124 | * @di: pointer to the ab8500_fg structure |
2125 | * |
2126 | * Set up battery OVV, low battery voltage registers |
2127 | */ |
2128 | static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) |
2129 | { |
2130 | int ret; |
2131 | |
2132 | /* Set VBAT OVV threshold */ |
2133 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
2134 | AB8500_CHARGER, |
2135 | AB8500_BATT_OVV, |
2136 | BATT_OVV_TH_4P75, |
2137 | BATT_OVV_TH_4P75); |
2138 | if (ret) { |
2139 | dev_err(di->dev, "failed to set BATT_OVV\n"); |
2140 | goto out; |
2141 | } |
2142 | |
2143 | /* Enable VBAT OVV detection */ |
2144 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
2145 | AB8500_CHARGER, |
2146 | AB8500_BATT_OVV, |
2147 | BATT_OVV_ENA, |
2148 | BATT_OVV_ENA); |
2149 | if (ret) { |
2150 | dev_err(di->dev, "failed to enable BATT_OVV\n"); |
2151 | goto out; |
2152 | } |
2153 | |
2154 | /* Low Battery Voltage */ |
2155 | ret = abx500_set_register_interruptible(di->dev, |
2156 | AB8500_SYS_CTRL2_BLOCK, |
2157 | AB8500_LOW_BAT_REG, |
2158 | ab8500_volt_to_regval( |
2159 | di->bat->fg_params->lowbat_threshold) << 1 | |
2160 | LOW_BAT_ENABLE); |
2161 | if (ret) { |
2162 | dev_err(di->dev, "%s write failed\n", __func__); |
2163 | goto out; |
2164 | } |
2165 | |
2166 | /* Battery OK threshold */ |
2167 | ret = ab8500_fg_battok_init_hw_register(di); |
2168 | if (ret) { |
2169 | dev_err(di->dev, "BattOk init write failed.\n"); |
2170 | goto out; |
2171 | } |
2172 | out: |
2173 | return ret; |
2174 | } |
2175 | |
2176 | /** |
2177 | * ab8500_fg_external_power_changed() - callback for power supply changes |
2178 | * @psy: pointer to the structure power_supply |
2179 | * |
2180 | * This function is the entry point of the pointer external_power_changed |
2181 | * of the structure power_supply. |
2182 | * This function gets executed when there is a change in any external power |
2183 | * supply that this driver needs to be notified of. |
2184 | */ |
2185 | static void ab8500_fg_external_power_changed(struct power_supply *psy) |
2186 | { |
2187 | struct ab8500_fg *di = to_ab8500_fg_device_info(psy); |
2188 | |
2189 | class_for_each_device(power_supply_class, NULL, |
2190 | &di->fg_psy, ab8500_fg_get_ext_psy_data); |
2191 | } |
2192 | |
2193 | /** |
2194 | * abab8500_fg_reinit_work() - work to reset the FG algorithm |
2195 | * @work: pointer to the work_struct structure |
2196 | * |
2197 | * Used to reset the current battery capacity to be able to |
2198 | * retrigger a new voltage base capacity calculation. For |
2199 | * test and verification purpose. |
2200 | */ |
2201 | static void ab8500_fg_reinit_work(struct work_struct *work) |
2202 | { |
2203 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
2204 | fg_reinit_work.work); |
2205 | |
2206 | if (di->flags.calibrate == false) { |
2207 | dev_dbg(di->dev, "Resetting FG state machine to init.\n"); |
2208 | ab8500_fg_clear_cap_samples(di); |
2209 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
2210 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
2211 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); |
2212 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
2213 | |
2214 | } else { |
2215 | dev_err(di->dev, "Residual offset calibration ongoing " |
2216 | "retrying..\n"); |
2217 | /* Wait one second until next try*/ |
2218 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, |
2219 | round_jiffies(1)); |
2220 | } |
2221 | } |
2222 | |
2223 | /** |
2224 | * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values |
2225 | * |
2226 | * This function can be used to force the FG algorithm to recalculate a new |
2227 | * voltage based battery capacity. |
2228 | */ |
2229 | void ab8500_fg_reinit(void) |
2230 | { |
2231 | struct ab8500_fg *di = ab8500_fg_get(); |
2232 | /* User won't be notified if a null pointer returned. */ |
2233 | if (di != NULL) |
2234 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0); |
2235 | } |
2236 | |
2237 | /* Exposure to the sysfs interface */ |
2238 | |
2239 | struct ab8500_fg_sysfs_entry { |
2240 | struct attribute attr; |
2241 | ssize_t (*show)(struct ab8500_fg *, char *); |
2242 | ssize_t (*store)(struct ab8500_fg *, const char *, size_t); |
2243 | }; |
2244 | |
2245 | static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) |
2246 | { |
2247 | return sprintf(buf, "%d\n", di->bat_cap.max_mah); |
2248 | } |
2249 | |
2250 | static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, |
2251 | size_t count) |
2252 | { |
2253 | unsigned long charge_full; |
2254 | ssize_t ret = -EINVAL; |
2255 | |
2256 | ret = strict_strtoul(buf, 10, &charge_full); |
2257 | |
2258 | dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full); |
2259 | |
2260 | if (!ret) { |
2261 | di->bat_cap.max_mah = (int) charge_full; |
2262 | ret = count; |
2263 | } |
2264 | return ret; |
2265 | } |
2266 | |
2267 | static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) |
2268 | { |
2269 | return sprintf(buf, "%d\n", di->bat_cap.prev_mah); |
2270 | } |
2271 | |
2272 | static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, |
2273 | size_t count) |
2274 | { |
2275 | unsigned long charge_now; |
2276 | ssize_t ret; |
2277 | |
2278 | ret = strict_strtoul(buf, 10, &charge_now); |
2279 | |
2280 | dev_dbg(di->dev, "Ret %zd charge_now %lu was %d", |
2281 | ret, charge_now, di->bat_cap.prev_mah); |
2282 | |
2283 | if (!ret) { |
2284 | di->bat_cap.user_mah = (int) charge_now; |
2285 | di->flags.user_cap = true; |
2286 | ret = count; |
2287 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
2288 | } |
2289 | return ret; |
2290 | } |
2291 | |
2292 | static struct ab8500_fg_sysfs_entry charge_full_attr = |
2293 | __ATTR(charge_full, 0644, charge_full_show, charge_full_store); |
2294 | |
2295 | static struct ab8500_fg_sysfs_entry charge_now_attr = |
2296 | __ATTR(charge_now, 0644, charge_now_show, charge_now_store); |
2297 | |
2298 | static ssize_t |
2299 | ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) |
2300 | { |
2301 | struct ab8500_fg_sysfs_entry *entry; |
2302 | struct ab8500_fg *di; |
2303 | |
2304 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); |
2305 | di = container_of(kobj, struct ab8500_fg, fg_kobject); |
2306 | |
2307 | if (!entry->show) |
2308 | return -EIO; |
2309 | |
2310 | return entry->show(di, buf); |
2311 | } |
2312 | static ssize_t |
2313 | ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, |
2314 | size_t count) |
2315 | { |
2316 | struct ab8500_fg_sysfs_entry *entry; |
2317 | struct ab8500_fg *di; |
2318 | |
2319 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); |
2320 | di = container_of(kobj, struct ab8500_fg, fg_kobject); |
2321 | |
2322 | if (!entry->store) |
2323 | return -EIO; |
2324 | |
2325 | return entry->store(di, buf, count); |
2326 | } |
2327 | |
2328 | static const struct sysfs_ops ab8500_fg_sysfs_ops = { |
2329 | .show = ab8500_fg_show, |
2330 | .store = ab8500_fg_store, |
2331 | }; |
2332 | |
2333 | static struct attribute *ab8500_fg_attrs[] = { |
2334 | &charge_full_attr.attr, |
2335 | &charge_now_attr.attr, |
2336 | NULL, |
2337 | }; |
2338 | |
2339 | static struct kobj_type ab8500_fg_ktype = { |
2340 | .sysfs_ops = &ab8500_fg_sysfs_ops, |
2341 | .default_attrs = ab8500_fg_attrs, |
2342 | }; |
2343 | |
2344 | /** |
2345 | * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry |
2346 | * @di: pointer to the struct ab8500_chargalg |
2347 | * |
2348 | * This function removes the entry in sysfs. |
2349 | */ |
2350 | static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) |
2351 | { |
2352 | kobject_del(&di->fg_kobject); |
2353 | } |
2354 | |
2355 | /** |
2356 | * ab8500_chargalg_sysfs_init() - init of sysfs entry |
2357 | * @di: pointer to the struct ab8500_chargalg |
2358 | * |
2359 | * This function adds an entry in sysfs. |
2360 | * Returns error code in case of failure else 0(on success) |
2361 | */ |
2362 | static int ab8500_fg_sysfs_init(struct ab8500_fg *di) |
2363 | { |
2364 | int ret = 0; |
2365 | |
2366 | ret = kobject_init_and_add(&di->fg_kobject, |
2367 | &ab8500_fg_ktype, |
2368 | NULL, "battery"); |
2369 | if (ret < 0) |
2370 | dev_err(di->dev, "failed to create sysfs entry\n"); |
2371 | |
2372 | return ret; |
2373 | } |
2374 | /* Exposure to the sysfs interface <<END>> */ |
2375 | |
2376 | #if defined(CONFIG_PM) |
2377 | static int ab8500_fg_resume(struct platform_device *pdev) |
2378 | { |
2379 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
2380 | |
2381 | /* |
2382 | * Change state if we're not charging. If we're charging we will wake |
2383 | * up on the FG IRQ |
2384 | */ |
2385 | if (!di->flags.charging) { |
2386 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); |
2387 | queue_work(di->fg_wq, &di->fg_work); |
2388 | } |
2389 | |
2390 | return 0; |
2391 | } |
2392 | |
2393 | static int ab8500_fg_suspend(struct platform_device *pdev, |
2394 | pm_message_t state) |
2395 | { |
2396 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
2397 | |
2398 | flush_delayed_work(&di->fg_periodic_work); |
2399 | |
2400 | /* |
2401 | * If the FG is enabled we will disable it before going to suspend |
2402 | * only if we're not charging |
2403 | */ |
2404 | if (di->flags.fg_enabled && !di->flags.charging) |
2405 | ab8500_fg_coulomb_counter(di, false); |
2406 | |
2407 | return 0; |
2408 | } |
2409 | #else |
2410 | #define ab8500_fg_suspend NULL |
2411 | #define ab8500_fg_resume NULL |
2412 | #endif |
2413 | |
2414 | static int __devexit ab8500_fg_remove(struct platform_device *pdev) |
2415 | { |
2416 | int ret = 0; |
2417 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
2418 | |
2419 | list_del(&di->node); |
2420 | |
2421 | /* Disable coulomb counter */ |
2422 | ret = ab8500_fg_coulomb_counter(di, false); |
2423 | if (ret) |
2424 | dev_err(di->dev, "failed to disable coulomb counter\n"); |
2425 | |
2426 | destroy_workqueue(di->fg_wq); |
2427 | ab8500_fg_sysfs_exit(di); |
2428 | |
2429 | flush_scheduled_work(); |
2430 | power_supply_unregister(&di->fg_psy); |
2431 | platform_set_drvdata(pdev, NULL); |
2432 | kfree(di); |
2433 | return ret; |
2434 | } |
2435 | |
2436 | /* ab8500 fg driver interrupts and their respective isr */ |
2437 | static struct ab8500_fg_interrupts ab8500_fg_irq[] = { |
2438 | {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, |
2439 | {"BATT_OVV", ab8500_fg_batt_ovv_handler}, |
2440 | {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, |
2441 | {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, |
2442 | {"CCEOC", ab8500_fg_cc_data_end_handler}, |
2443 | }; |
2444 | |
2445 | static int __devinit ab8500_fg_probe(struct platform_device *pdev) |
2446 | { |
2447 | int i, irq; |
2448 | int ret = 0; |
2449 | struct abx500_bm_plat_data *plat_data = pdev->dev.platform_data; |
2450 | struct ab8500_fg *di; |
2451 | |
2452 | if (!plat_data) { |
2453 | dev_err(&pdev->dev, "No platform data\n"); |
2454 | return -EINVAL; |
2455 | } |
2456 | |
2457 | di = kzalloc(sizeof(*di), GFP_KERNEL); |
2458 | if (!di) |
2459 | return -ENOMEM; |
2460 | |
2461 | mutex_init(&di->cc_lock); |
2462 | |
2463 | /* get parent data */ |
2464 | di->dev = &pdev->dev; |
2465 | di->parent = dev_get_drvdata(pdev->dev.parent); |
2466 | di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0"); |
2467 | |
2468 | /* get fg specific platform data */ |
2469 | di->pdata = plat_data->fg; |
2470 | if (!di->pdata) { |
2471 | dev_err(di->dev, "no fg platform data supplied\n"); |
2472 | ret = -EINVAL; |
2473 | goto free_device_info; |
2474 | } |
2475 | |
2476 | /* get battery specific platform data */ |
2477 | di->bat = plat_data->battery; |
2478 | if (!di->bat) { |
2479 | dev_err(di->dev, "no battery platform data supplied\n"); |
2480 | ret = -EINVAL; |
2481 | goto free_device_info; |
2482 | } |
2483 | |
2484 | di->fg_psy.name = "ab8500_fg"; |
2485 | di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY; |
2486 | di->fg_psy.properties = ab8500_fg_props; |
2487 | di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props); |
2488 | di->fg_psy.get_property = ab8500_fg_get_property; |
2489 | di->fg_psy.supplied_to = di->pdata->supplied_to; |
2490 | di->fg_psy.num_supplicants = di->pdata->num_supplicants; |
2491 | di->fg_psy.external_power_changed = ab8500_fg_external_power_changed; |
2492 | |
2493 | di->bat_cap.max_mah_design = MILLI_TO_MICRO * |
2494 | di->bat->bat_type[di->bat->batt_id].charge_full_design; |
2495 | |
2496 | di->bat_cap.max_mah = di->bat_cap.max_mah_design; |
2497 | |
2498 | di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage; |
2499 | |
2500 | di->init_capacity = true; |
2501 | |
2502 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
2503 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); |
2504 | |
2505 | /* Create a work queue for running the FG algorithm */ |
2506 | di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq"); |
2507 | if (di->fg_wq == NULL) { |
2508 | dev_err(di->dev, "failed to create work queue\n"); |
2509 | goto free_device_info; |
2510 | } |
2511 | |
2512 | /* Init work for running the fg algorithm instantly */ |
2513 | INIT_WORK(&di->fg_work, ab8500_fg_instant_work); |
2514 | |
2515 | /* Init work for getting the battery accumulated current */ |
2516 | INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); |
2517 | |
2518 | /* Init work for reinitialising the fg algorithm */ |
2519 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work, |
2520 | ab8500_fg_reinit_work); |
2521 | |
2522 | /* Work delayed Queue to run the state machine */ |
2523 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work, |
2524 | ab8500_fg_periodic_work); |
2525 | |
2526 | /* Work to check low battery condition */ |
2527 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work, |
2528 | ab8500_fg_low_bat_work); |
2529 | |
2530 | /* Init work for HW failure check */ |
2531 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work, |
2532 | ab8500_fg_check_hw_failure_work); |
2533 | |
2534 | /* Initialize OVV, and other registers */ |
2535 | ret = ab8500_fg_init_hw_registers(di); |
2536 | if (ret) { |
2537 | dev_err(di->dev, "failed to initialize registers\n"); |
2538 | goto free_inst_curr_wq; |
2539 | } |
2540 | |
2541 | /* Consider battery unknown until we're informed otherwise */ |
2542 | di->flags.batt_unknown = true; |
2543 | di->flags.batt_id_received = false; |
2544 | |
2545 | /* Register FG power supply class */ |
2546 | ret = power_supply_register(di->dev, &di->fg_psy); |
2547 | if (ret) { |
2548 | dev_err(di->dev, "failed to register FG psy\n"); |
2549 | goto free_inst_curr_wq; |
2550 | } |
2551 | |
2552 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); |
2553 | ab8500_fg_coulomb_counter(di, true); |
2554 | |
2555 | /* Initialize completion used to notify completion of inst current */ |
2556 | init_completion(&di->ab8500_fg_complete); |
2557 | |
2558 | /* Register interrupts */ |
2559 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { |
2560 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); |
2561 | ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr, |
2562 | IRQF_SHARED | IRQF_NO_SUSPEND, |
2563 | ab8500_fg_irq[i].name, di); |
2564 | |
2565 | if (ret != 0) { |
2566 | dev_err(di->dev, "failed to request %s IRQ %d: %d\n" |
2567 | , ab8500_fg_irq[i].name, irq, ret); |
2568 | goto free_irq; |
2569 | } |
2570 | dev_dbg(di->dev, "Requested %s IRQ %d: %d\n", |
2571 | ab8500_fg_irq[i].name, irq, ret); |
2572 | } |
2573 | di->irq = platform_get_irq_byname(pdev, "CCEOC"); |
2574 | disable_irq(di->irq); |
2575 | |
2576 | platform_set_drvdata(pdev, di); |
2577 | |
2578 | ret = ab8500_fg_sysfs_init(di); |
2579 | if (ret) { |
2580 | dev_err(di->dev, "failed to create sysfs entry\n"); |
2581 | goto free_irq; |
2582 | } |
2583 | |
2584 | /* Calibrate the fg first time */ |
2585 | di->flags.calibrate = true; |
2586 | di->calib_state = AB8500_FG_CALIB_INIT; |
2587 | |
2588 | /* Use room temp as default value until we get an update from driver. */ |
2589 | di->bat_temp = 210; |
2590 | |
2591 | /* Run the FG algorithm */ |
2592 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
2593 | |
2594 | list_add_tail(&di->node, &ab8500_fg_list); |
2595 | |
2596 | return ret; |
2597 | |
2598 | free_irq: |
2599 | power_supply_unregister(&di->fg_psy); |
2600 | |
2601 | /* We also have to free all successfully registered irqs */ |
2602 | for (i = i - 1; i >= 0; i--) { |
2603 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); |
2604 | free_irq(irq, di); |
2605 | } |
2606 | free_inst_curr_wq: |
2607 | destroy_workqueue(di->fg_wq); |
2608 | free_device_info: |
2609 | kfree(di); |
2610 | |
2611 | return ret; |
2612 | } |
2613 | |
2614 | static struct platform_driver ab8500_fg_driver = { |
2615 | .probe = ab8500_fg_probe, |
2616 | .remove = __devexit_p(ab8500_fg_remove), |
2617 | .suspend = ab8500_fg_suspend, |
2618 | .resume = ab8500_fg_resume, |
2619 | .driver = { |
2620 | .name = "ab8500-fg", |
2621 | .owner = THIS_MODULE, |
2622 | }, |
2623 | }; |
2624 | |
2625 | static int __init ab8500_fg_init(void) |
2626 | { |
2627 | return platform_driver_register(&ab8500_fg_driver); |
2628 | } |
2629 | |
2630 | static void __exit ab8500_fg_exit(void) |
2631 | { |
2632 | platform_driver_unregister(&ab8500_fg_driver); |
2633 | } |
2634 | |
2635 | subsys_initcall_sync(ab8500_fg_init); |
2636 | module_exit(ab8500_fg_exit); |
2637 | |
2638 | MODULE_LICENSE("GPL v2"); |
2639 | MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); |
2640 | MODULE_ALIAS("platform:ab8500-fg"); |
2641 | MODULE_DESCRIPTION("AB8500 Fuel Gauge driver"); |
2642 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9