Root/
1 | /* |
2 | * core.c -- Voltage/Current Regulator framework. |
3 | * |
4 | * Copyright 2007, 2008 Wolfson Microelectronics PLC. |
5 | * Copyright 2008 SlimLogic Ltd. |
6 | * |
7 | * Author: Liam Girdwood <lrg@slimlogic.co.uk> |
8 | * |
9 | * This program is free software; you can redistribute it and/or modify it |
10 | * under the terms of the GNU General Public License as published by the |
11 | * Free Software Foundation; either version 2 of the License, or (at your |
12 | * option) any later version. |
13 | * |
14 | */ |
15 | |
16 | #include <linux/kernel.h> |
17 | #include <linux/init.h> |
18 | #include <linux/debugfs.h> |
19 | #include <linux/device.h> |
20 | #include <linux/slab.h> |
21 | #include <linux/async.h> |
22 | #include <linux/err.h> |
23 | #include <linux/mutex.h> |
24 | #include <linux/suspend.h> |
25 | #include <linux/delay.h> |
26 | #include <linux/gpio.h> |
27 | #include <linux/of.h> |
28 | #include <linux/regmap.h> |
29 | #include <linux/regulator/of_regulator.h> |
30 | #include <linux/regulator/consumer.h> |
31 | #include <linux/regulator/driver.h> |
32 | #include <linux/regulator/machine.h> |
33 | #include <linux/module.h> |
34 | |
35 | #define CREATE_TRACE_POINTS |
36 | #include <trace/events/regulator.h> |
37 | |
38 | #include "dummy.h" |
39 | |
40 | #define rdev_crit(rdev, fmt, ...) \ |
41 | pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
42 | #define rdev_err(rdev, fmt, ...) \ |
43 | pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
44 | #define rdev_warn(rdev, fmt, ...) \ |
45 | pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
46 | #define rdev_info(rdev, fmt, ...) \ |
47 | pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
48 | #define rdev_dbg(rdev, fmt, ...) \ |
49 | pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) |
50 | |
51 | static DEFINE_MUTEX(regulator_list_mutex); |
52 | static LIST_HEAD(regulator_list); |
53 | static LIST_HEAD(regulator_map_list); |
54 | static bool has_full_constraints; |
55 | static bool board_wants_dummy_regulator; |
56 | |
57 | static struct dentry *debugfs_root; |
58 | |
59 | /* |
60 | * struct regulator_map |
61 | * |
62 | * Used to provide symbolic supply names to devices. |
63 | */ |
64 | struct regulator_map { |
65 | struct list_head list; |
66 | const char *dev_name; /* The dev_name() for the consumer */ |
67 | const char *supply; |
68 | struct regulator_dev *regulator; |
69 | }; |
70 | |
71 | /* |
72 | * struct regulator |
73 | * |
74 | * One for each consumer device. |
75 | */ |
76 | struct regulator { |
77 | struct device *dev; |
78 | struct list_head list; |
79 | unsigned int always_on:1; |
80 | int uA_load; |
81 | int min_uV; |
82 | int max_uV; |
83 | char *supply_name; |
84 | struct device_attribute dev_attr; |
85 | struct regulator_dev *rdev; |
86 | struct dentry *debugfs; |
87 | }; |
88 | |
89 | static int _regulator_is_enabled(struct regulator_dev *rdev); |
90 | static int _regulator_disable(struct regulator_dev *rdev); |
91 | static int _regulator_get_voltage(struct regulator_dev *rdev); |
92 | static int _regulator_get_current_limit(struct regulator_dev *rdev); |
93 | static unsigned int _regulator_get_mode(struct regulator_dev *rdev); |
94 | static void _notifier_call_chain(struct regulator_dev *rdev, |
95 | unsigned long event, void *data); |
96 | static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
97 | int min_uV, int max_uV); |
98 | static struct regulator *create_regulator(struct regulator_dev *rdev, |
99 | struct device *dev, |
100 | const char *supply_name); |
101 | |
102 | static const char *rdev_get_name(struct regulator_dev *rdev) |
103 | { |
104 | if (rdev->constraints && rdev->constraints->name) |
105 | return rdev->constraints->name; |
106 | else if (rdev->desc->name) |
107 | return rdev->desc->name; |
108 | else |
109 | return ""; |
110 | } |
111 | |
112 | /** |
113 | * of_get_regulator - get a regulator device node based on supply name |
114 | * @dev: Device pointer for the consumer (of regulator) device |
115 | * @supply: regulator supply name |
116 | * |
117 | * Extract the regulator device node corresponding to the supply name. |
118 | * retruns the device node corresponding to the regulator if found, else |
119 | * returns NULL. |
120 | */ |
121 | static struct device_node *of_get_regulator(struct device *dev, const char *supply) |
122 | { |
123 | struct device_node *regnode = NULL; |
124 | char prop_name[32]; /* 32 is max size of property name */ |
125 | |
126 | dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); |
127 | |
128 | snprintf(prop_name, 32, "%s-supply", supply); |
129 | regnode = of_parse_phandle(dev->of_node, prop_name, 0); |
130 | |
131 | if (!regnode) { |
132 | dev_dbg(dev, "Looking up %s property in node %s failed", |
133 | prop_name, dev->of_node->full_name); |
134 | return NULL; |
135 | } |
136 | return regnode; |
137 | } |
138 | |
139 | static int _regulator_can_change_status(struct regulator_dev *rdev) |
140 | { |
141 | if (!rdev->constraints) |
142 | return 0; |
143 | |
144 | if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) |
145 | return 1; |
146 | else |
147 | return 0; |
148 | } |
149 | |
150 | /* Platform voltage constraint check */ |
151 | static int regulator_check_voltage(struct regulator_dev *rdev, |
152 | int *min_uV, int *max_uV) |
153 | { |
154 | BUG_ON(*min_uV > *max_uV); |
155 | |
156 | if (!rdev->constraints) { |
157 | rdev_err(rdev, "no constraints\n"); |
158 | return -ENODEV; |
159 | } |
160 | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
161 | rdev_err(rdev, "operation not allowed\n"); |
162 | return -EPERM; |
163 | } |
164 | |
165 | if (*max_uV > rdev->constraints->max_uV) |
166 | *max_uV = rdev->constraints->max_uV; |
167 | if (*min_uV < rdev->constraints->min_uV) |
168 | *min_uV = rdev->constraints->min_uV; |
169 | |
170 | if (*min_uV > *max_uV) { |
171 | rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", |
172 | *min_uV, *max_uV); |
173 | return -EINVAL; |
174 | } |
175 | |
176 | return 0; |
177 | } |
178 | |
179 | /* Make sure we select a voltage that suits the needs of all |
180 | * regulator consumers |
181 | */ |
182 | static int regulator_check_consumers(struct regulator_dev *rdev, |
183 | int *min_uV, int *max_uV) |
184 | { |
185 | struct regulator *regulator; |
186 | |
187 | list_for_each_entry(regulator, &rdev->consumer_list, list) { |
188 | /* |
189 | * Assume consumers that didn't say anything are OK |
190 | * with anything in the constraint range. |
191 | */ |
192 | if (!regulator->min_uV && !regulator->max_uV) |
193 | continue; |
194 | |
195 | if (*max_uV > regulator->max_uV) |
196 | *max_uV = regulator->max_uV; |
197 | if (*min_uV < regulator->min_uV) |
198 | *min_uV = regulator->min_uV; |
199 | } |
200 | |
201 | if (*min_uV > *max_uV) |
202 | return -EINVAL; |
203 | |
204 | return 0; |
205 | } |
206 | |
207 | /* current constraint check */ |
208 | static int regulator_check_current_limit(struct regulator_dev *rdev, |
209 | int *min_uA, int *max_uA) |
210 | { |
211 | BUG_ON(*min_uA > *max_uA); |
212 | |
213 | if (!rdev->constraints) { |
214 | rdev_err(rdev, "no constraints\n"); |
215 | return -ENODEV; |
216 | } |
217 | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { |
218 | rdev_err(rdev, "operation not allowed\n"); |
219 | return -EPERM; |
220 | } |
221 | |
222 | if (*max_uA > rdev->constraints->max_uA) |
223 | *max_uA = rdev->constraints->max_uA; |
224 | if (*min_uA < rdev->constraints->min_uA) |
225 | *min_uA = rdev->constraints->min_uA; |
226 | |
227 | if (*min_uA > *max_uA) { |
228 | rdev_err(rdev, "unsupportable current range: %d-%duA\n", |
229 | *min_uA, *max_uA); |
230 | return -EINVAL; |
231 | } |
232 | |
233 | return 0; |
234 | } |
235 | |
236 | /* operating mode constraint check */ |
237 | static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) |
238 | { |
239 | switch (*mode) { |
240 | case REGULATOR_MODE_FAST: |
241 | case REGULATOR_MODE_NORMAL: |
242 | case REGULATOR_MODE_IDLE: |
243 | case REGULATOR_MODE_STANDBY: |
244 | break; |
245 | default: |
246 | rdev_err(rdev, "invalid mode %x specified\n", *mode); |
247 | return -EINVAL; |
248 | } |
249 | |
250 | if (!rdev->constraints) { |
251 | rdev_err(rdev, "no constraints\n"); |
252 | return -ENODEV; |
253 | } |
254 | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { |
255 | rdev_err(rdev, "operation not allowed\n"); |
256 | return -EPERM; |
257 | } |
258 | |
259 | /* The modes are bitmasks, the most power hungry modes having |
260 | * the lowest values. If the requested mode isn't supported |
261 | * try higher modes. */ |
262 | while (*mode) { |
263 | if (rdev->constraints->valid_modes_mask & *mode) |
264 | return 0; |
265 | *mode /= 2; |
266 | } |
267 | |
268 | return -EINVAL; |
269 | } |
270 | |
271 | /* dynamic regulator mode switching constraint check */ |
272 | static int regulator_check_drms(struct regulator_dev *rdev) |
273 | { |
274 | if (!rdev->constraints) { |
275 | rdev_err(rdev, "no constraints\n"); |
276 | return -ENODEV; |
277 | } |
278 | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { |
279 | rdev_err(rdev, "operation not allowed\n"); |
280 | return -EPERM; |
281 | } |
282 | return 0; |
283 | } |
284 | |
285 | static ssize_t regulator_uV_show(struct device *dev, |
286 | struct device_attribute *attr, char *buf) |
287 | { |
288 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
289 | ssize_t ret; |
290 | |
291 | mutex_lock(&rdev->mutex); |
292 | ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); |
293 | mutex_unlock(&rdev->mutex); |
294 | |
295 | return ret; |
296 | } |
297 | static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); |
298 | |
299 | static ssize_t regulator_uA_show(struct device *dev, |
300 | struct device_attribute *attr, char *buf) |
301 | { |
302 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
303 | |
304 | return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); |
305 | } |
306 | static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); |
307 | |
308 | static ssize_t regulator_name_show(struct device *dev, |
309 | struct device_attribute *attr, char *buf) |
310 | { |
311 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
312 | |
313 | return sprintf(buf, "%s\n", rdev_get_name(rdev)); |
314 | } |
315 | |
316 | static ssize_t regulator_print_opmode(char *buf, int mode) |
317 | { |
318 | switch (mode) { |
319 | case REGULATOR_MODE_FAST: |
320 | return sprintf(buf, "fast\n"); |
321 | case REGULATOR_MODE_NORMAL: |
322 | return sprintf(buf, "normal\n"); |
323 | case REGULATOR_MODE_IDLE: |
324 | return sprintf(buf, "idle\n"); |
325 | case REGULATOR_MODE_STANDBY: |
326 | return sprintf(buf, "standby\n"); |
327 | } |
328 | return sprintf(buf, "unknown\n"); |
329 | } |
330 | |
331 | static ssize_t regulator_opmode_show(struct device *dev, |
332 | struct device_attribute *attr, char *buf) |
333 | { |
334 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
335 | |
336 | return regulator_print_opmode(buf, _regulator_get_mode(rdev)); |
337 | } |
338 | static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); |
339 | |
340 | static ssize_t regulator_print_state(char *buf, int state) |
341 | { |
342 | if (state > 0) |
343 | return sprintf(buf, "enabled\n"); |
344 | else if (state == 0) |
345 | return sprintf(buf, "disabled\n"); |
346 | else |
347 | return sprintf(buf, "unknown\n"); |
348 | } |
349 | |
350 | static ssize_t regulator_state_show(struct device *dev, |
351 | struct device_attribute *attr, char *buf) |
352 | { |
353 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
354 | ssize_t ret; |
355 | |
356 | mutex_lock(&rdev->mutex); |
357 | ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); |
358 | mutex_unlock(&rdev->mutex); |
359 | |
360 | return ret; |
361 | } |
362 | static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); |
363 | |
364 | static ssize_t regulator_status_show(struct device *dev, |
365 | struct device_attribute *attr, char *buf) |
366 | { |
367 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
368 | int status; |
369 | char *label; |
370 | |
371 | status = rdev->desc->ops->get_status(rdev); |
372 | if (status < 0) |
373 | return status; |
374 | |
375 | switch (status) { |
376 | case REGULATOR_STATUS_OFF: |
377 | label = "off"; |
378 | break; |
379 | case REGULATOR_STATUS_ON: |
380 | label = "on"; |
381 | break; |
382 | case REGULATOR_STATUS_ERROR: |
383 | label = "error"; |
384 | break; |
385 | case REGULATOR_STATUS_FAST: |
386 | label = "fast"; |
387 | break; |
388 | case REGULATOR_STATUS_NORMAL: |
389 | label = "normal"; |
390 | break; |
391 | case REGULATOR_STATUS_IDLE: |
392 | label = "idle"; |
393 | break; |
394 | case REGULATOR_STATUS_STANDBY: |
395 | label = "standby"; |
396 | break; |
397 | case REGULATOR_STATUS_UNDEFINED: |
398 | label = "undefined"; |
399 | break; |
400 | default: |
401 | return -ERANGE; |
402 | } |
403 | |
404 | return sprintf(buf, "%s\n", label); |
405 | } |
406 | static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); |
407 | |
408 | static ssize_t regulator_min_uA_show(struct device *dev, |
409 | struct device_attribute *attr, char *buf) |
410 | { |
411 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
412 | |
413 | if (!rdev->constraints) |
414 | return sprintf(buf, "constraint not defined\n"); |
415 | |
416 | return sprintf(buf, "%d\n", rdev->constraints->min_uA); |
417 | } |
418 | static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); |
419 | |
420 | static ssize_t regulator_max_uA_show(struct device *dev, |
421 | struct device_attribute *attr, char *buf) |
422 | { |
423 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
424 | |
425 | if (!rdev->constraints) |
426 | return sprintf(buf, "constraint not defined\n"); |
427 | |
428 | return sprintf(buf, "%d\n", rdev->constraints->max_uA); |
429 | } |
430 | static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); |
431 | |
432 | static ssize_t regulator_min_uV_show(struct device *dev, |
433 | struct device_attribute *attr, char *buf) |
434 | { |
435 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
436 | |
437 | if (!rdev->constraints) |
438 | return sprintf(buf, "constraint not defined\n"); |
439 | |
440 | return sprintf(buf, "%d\n", rdev->constraints->min_uV); |
441 | } |
442 | static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); |
443 | |
444 | static ssize_t regulator_max_uV_show(struct device *dev, |
445 | struct device_attribute *attr, char *buf) |
446 | { |
447 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
448 | |
449 | if (!rdev->constraints) |
450 | return sprintf(buf, "constraint not defined\n"); |
451 | |
452 | return sprintf(buf, "%d\n", rdev->constraints->max_uV); |
453 | } |
454 | static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); |
455 | |
456 | static ssize_t regulator_total_uA_show(struct device *dev, |
457 | struct device_attribute *attr, char *buf) |
458 | { |
459 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
460 | struct regulator *regulator; |
461 | int uA = 0; |
462 | |
463 | mutex_lock(&rdev->mutex); |
464 | list_for_each_entry(regulator, &rdev->consumer_list, list) |
465 | uA += regulator->uA_load; |
466 | mutex_unlock(&rdev->mutex); |
467 | return sprintf(buf, "%d\n", uA); |
468 | } |
469 | static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); |
470 | |
471 | static ssize_t regulator_num_users_show(struct device *dev, |
472 | struct device_attribute *attr, char *buf) |
473 | { |
474 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
475 | return sprintf(buf, "%d\n", rdev->use_count); |
476 | } |
477 | |
478 | static ssize_t regulator_type_show(struct device *dev, |
479 | struct device_attribute *attr, char *buf) |
480 | { |
481 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
482 | |
483 | switch (rdev->desc->type) { |
484 | case REGULATOR_VOLTAGE: |
485 | return sprintf(buf, "voltage\n"); |
486 | case REGULATOR_CURRENT: |
487 | return sprintf(buf, "current\n"); |
488 | } |
489 | return sprintf(buf, "unknown\n"); |
490 | } |
491 | |
492 | static ssize_t regulator_suspend_mem_uV_show(struct device *dev, |
493 | struct device_attribute *attr, char *buf) |
494 | { |
495 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
496 | |
497 | return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); |
498 | } |
499 | static DEVICE_ATTR(suspend_mem_microvolts, 0444, |
500 | regulator_suspend_mem_uV_show, NULL); |
501 | |
502 | static ssize_t regulator_suspend_disk_uV_show(struct device *dev, |
503 | struct device_attribute *attr, char *buf) |
504 | { |
505 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
506 | |
507 | return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); |
508 | } |
509 | static DEVICE_ATTR(suspend_disk_microvolts, 0444, |
510 | regulator_suspend_disk_uV_show, NULL); |
511 | |
512 | static ssize_t regulator_suspend_standby_uV_show(struct device *dev, |
513 | struct device_attribute *attr, char *buf) |
514 | { |
515 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
516 | |
517 | return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); |
518 | } |
519 | static DEVICE_ATTR(suspend_standby_microvolts, 0444, |
520 | regulator_suspend_standby_uV_show, NULL); |
521 | |
522 | static ssize_t regulator_suspend_mem_mode_show(struct device *dev, |
523 | struct device_attribute *attr, char *buf) |
524 | { |
525 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
526 | |
527 | return regulator_print_opmode(buf, |
528 | rdev->constraints->state_mem.mode); |
529 | } |
530 | static DEVICE_ATTR(suspend_mem_mode, 0444, |
531 | regulator_suspend_mem_mode_show, NULL); |
532 | |
533 | static ssize_t regulator_suspend_disk_mode_show(struct device *dev, |
534 | struct device_attribute *attr, char *buf) |
535 | { |
536 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
537 | |
538 | return regulator_print_opmode(buf, |
539 | rdev->constraints->state_disk.mode); |
540 | } |
541 | static DEVICE_ATTR(suspend_disk_mode, 0444, |
542 | regulator_suspend_disk_mode_show, NULL); |
543 | |
544 | static ssize_t regulator_suspend_standby_mode_show(struct device *dev, |
545 | struct device_attribute *attr, char *buf) |
546 | { |
547 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
548 | |
549 | return regulator_print_opmode(buf, |
550 | rdev->constraints->state_standby.mode); |
551 | } |
552 | static DEVICE_ATTR(suspend_standby_mode, 0444, |
553 | regulator_suspend_standby_mode_show, NULL); |
554 | |
555 | static ssize_t regulator_suspend_mem_state_show(struct device *dev, |
556 | struct device_attribute *attr, char *buf) |
557 | { |
558 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
559 | |
560 | return regulator_print_state(buf, |
561 | rdev->constraints->state_mem.enabled); |
562 | } |
563 | static DEVICE_ATTR(suspend_mem_state, 0444, |
564 | regulator_suspend_mem_state_show, NULL); |
565 | |
566 | static ssize_t regulator_suspend_disk_state_show(struct device *dev, |
567 | struct device_attribute *attr, char *buf) |
568 | { |
569 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
570 | |
571 | return regulator_print_state(buf, |
572 | rdev->constraints->state_disk.enabled); |
573 | } |
574 | static DEVICE_ATTR(suspend_disk_state, 0444, |
575 | regulator_suspend_disk_state_show, NULL); |
576 | |
577 | static ssize_t regulator_suspend_standby_state_show(struct device *dev, |
578 | struct device_attribute *attr, char *buf) |
579 | { |
580 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
581 | |
582 | return regulator_print_state(buf, |
583 | rdev->constraints->state_standby.enabled); |
584 | } |
585 | static DEVICE_ATTR(suspend_standby_state, 0444, |
586 | regulator_suspend_standby_state_show, NULL); |
587 | |
588 | |
589 | /* |
590 | * These are the only attributes are present for all regulators. |
591 | * Other attributes are a function of regulator functionality. |
592 | */ |
593 | static struct device_attribute regulator_dev_attrs[] = { |
594 | __ATTR(name, 0444, regulator_name_show, NULL), |
595 | __ATTR(num_users, 0444, regulator_num_users_show, NULL), |
596 | __ATTR(type, 0444, regulator_type_show, NULL), |
597 | __ATTR_NULL, |
598 | }; |
599 | |
600 | static void regulator_dev_release(struct device *dev) |
601 | { |
602 | struct regulator_dev *rdev = dev_get_drvdata(dev); |
603 | kfree(rdev); |
604 | } |
605 | |
606 | static struct class regulator_class = { |
607 | .name = "regulator", |
608 | .dev_release = regulator_dev_release, |
609 | .dev_attrs = regulator_dev_attrs, |
610 | }; |
611 | |
612 | /* Calculate the new optimum regulator operating mode based on the new total |
613 | * consumer load. All locks held by caller */ |
614 | static void drms_uA_update(struct regulator_dev *rdev) |
615 | { |
616 | struct regulator *sibling; |
617 | int current_uA = 0, output_uV, input_uV, err; |
618 | unsigned int mode; |
619 | |
620 | err = regulator_check_drms(rdev); |
621 | if (err < 0 || !rdev->desc->ops->get_optimum_mode || |
622 | (!rdev->desc->ops->get_voltage && |
623 | !rdev->desc->ops->get_voltage_sel) || |
624 | !rdev->desc->ops->set_mode) |
625 | return; |
626 | |
627 | /* get output voltage */ |
628 | output_uV = _regulator_get_voltage(rdev); |
629 | if (output_uV <= 0) |
630 | return; |
631 | |
632 | /* get input voltage */ |
633 | input_uV = 0; |
634 | if (rdev->supply) |
635 | input_uV = regulator_get_voltage(rdev->supply); |
636 | if (input_uV <= 0) |
637 | input_uV = rdev->constraints->input_uV; |
638 | if (input_uV <= 0) |
639 | return; |
640 | |
641 | /* calc total requested load */ |
642 | list_for_each_entry(sibling, &rdev->consumer_list, list) |
643 | current_uA += sibling->uA_load; |
644 | |
645 | /* now get the optimum mode for our new total regulator load */ |
646 | mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, |
647 | output_uV, current_uA); |
648 | |
649 | /* check the new mode is allowed */ |
650 | err = regulator_mode_constrain(rdev, &mode); |
651 | if (err == 0) |
652 | rdev->desc->ops->set_mode(rdev, mode); |
653 | } |
654 | |
655 | static int suspend_set_state(struct regulator_dev *rdev, |
656 | struct regulator_state *rstate) |
657 | { |
658 | int ret = 0; |
659 | |
660 | /* If we have no suspend mode configration don't set anything; |
661 | * only warn if the driver implements set_suspend_voltage or |
662 | * set_suspend_mode callback. |
663 | */ |
664 | if (!rstate->enabled && !rstate->disabled) { |
665 | if (rdev->desc->ops->set_suspend_voltage || |
666 | rdev->desc->ops->set_suspend_mode) |
667 | rdev_warn(rdev, "No configuration\n"); |
668 | return 0; |
669 | } |
670 | |
671 | if (rstate->enabled && rstate->disabled) { |
672 | rdev_err(rdev, "invalid configuration\n"); |
673 | return -EINVAL; |
674 | } |
675 | |
676 | if (rstate->enabled && rdev->desc->ops->set_suspend_enable) |
677 | ret = rdev->desc->ops->set_suspend_enable(rdev); |
678 | else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) |
679 | ret = rdev->desc->ops->set_suspend_disable(rdev); |
680 | else /* OK if set_suspend_enable or set_suspend_disable is NULL */ |
681 | ret = 0; |
682 | |
683 | if (ret < 0) { |
684 | rdev_err(rdev, "failed to enabled/disable\n"); |
685 | return ret; |
686 | } |
687 | |
688 | if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { |
689 | ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); |
690 | if (ret < 0) { |
691 | rdev_err(rdev, "failed to set voltage\n"); |
692 | return ret; |
693 | } |
694 | } |
695 | |
696 | if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { |
697 | ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); |
698 | if (ret < 0) { |
699 | rdev_err(rdev, "failed to set mode\n"); |
700 | return ret; |
701 | } |
702 | } |
703 | return ret; |
704 | } |
705 | |
706 | /* locks held by caller */ |
707 | static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) |
708 | { |
709 | if (!rdev->constraints) |
710 | return -EINVAL; |
711 | |
712 | switch (state) { |
713 | case PM_SUSPEND_STANDBY: |
714 | return suspend_set_state(rdev, |
715 | &rdev->constraints->state_standby); |
716 | case PM_SUSPEND_MEM: |
717 | return suspend_set_state(rdev, |
718 | &rdev->constraints->state_mem); |
719 | case PM_SUSPEND_MAX: |
720 | return suspend_set_state(rdev, |
721 | &rdev->constraints->state_disk); |
722 | default: |
723 | return -EINVAL; |
724 | } |
725 | } |
726 | |
727 | static void print_constraints(struct regulator_dev *rdev) |
728 | { |
729 | struct regulation_constraints *constraints = rdev->constraints; |
730 | char buf[80] = ""; |
731 | int count = 0; |
732 | int ret; |
733 | |
734 | if (constraints->min_uV && constraints->max_uV) { |
735 | if (constraints->min_uV == constraints->max_uV) |
736 | count += sprintf(buf + count, "%d mV ", |
737 | constraints->min_uV / 1000); |
738 | else |
739 | count += sprintf(buf + count, "%d <--> %d mV ", |
740 | constraints->min_uV / 1000, |
741 | constraints->max_uV / 1000); |
742 | } |
743 | |
744 | if (!constraints->min_uV || |
745 | constraints->min_uV != constraints->max_uV) { |
746 | ret = _regulator_get_voltage(rdev); |
747 | if (ret > 0) |
748 | count += sprintf(buf + count, "at %d mV ", ret / 1000); |
749 | } |
750 | |
751 | if (constraints->uV_offset) |
752 | count += sprintf(buf, "%dmV offset ", |
753 | constraints->uV_offset / 1000); |
754 | |
755 | if (constraints->min_uA && constraints->max_uA) { |
756 | if (constraints->min_uA == constraints->max_uA) |
757 | count += sprintf(buf + count, "%d mA ", |
758 | constraints->min_uA / 1000); |
759 | else |
760 | count += sprintf(buf + count, "%d <--> %d mA ", |
761 | constraints->min_uA / 1000, |
762 | constraints->max_uA / 1000); |
763 | } |
764 | |
765 | if (!constraints->min_uA || |
766 | constraints->min_uA != constraints->max_uA) { |
767 | ret = _regulator_get_current_limit(rdev); |
768 | if (ret > 0) |
769 | count += sprintf(buf + count, "at %d mA ", ret / 1000); |
770 | } |
771 | |
772 | if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) |
773 | count += sprintf(buf + count, "fast "); |
774 | if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) |
775 | count += sprintf(buf + count, "normal "); |
776 | if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) |
777 | count += sprintf(buf + count, "idle "); |
778 | if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) |
779 | count += sprintf(buf + count, "standby"); |
780 | |
781 | rdev_info(rdev, "%s\n", buf); |
782 | |
783 | if ((constraints->min_uV != constraints->max_uV) && |
784 | !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) |
785 | rdev_warn(rdev, |
786 | "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); |
787 | } |
788 | |
789 | static int machine_constraints_voltage(struct regulator_dev *rdev, |
790 | struct regulation_constraints *constraints) |
791 | { |
792 | struct regulator_ops *ops = rdev->desc->ops; |
793 | int ret; |
794 | |
795 | /* do we need to apply the constraint voltage */ |
796 | if (rdev->constraints->apply_uV && |
797 | rdev->constraints->min_uV == rdev->constraints->max_uV) { |
798 | ret = _regulator_do_set_voltage(rdev, |
799 | rdev->constraints->min_uV, |
800 | rdev->constraints->max_uV); |
801 | if (ret < 0) { |
802 | rdev_err(rdev, "failed to apply %duV constraint\n", |
803 | rdev->constraints->min_uV); |
804 | return ret; |
805 | } |
806 | } |
807 | |
808 | /* constrain machine-level voltage specs to fit |
809 | * the actual range supported by this regulator. |
810 | */ |
811 | if (ops->list_voltage && rdev->desc->n_voltages) { |
812 | int count = rdev->desc->n_voltages; |
813 | int i; |
814 | int min_uV = INT_MAX; |
815 | int max_uV = INT_MIN; |
816 | int cmin = constraints->min_uV; |
817 | int cmax = constraints->max_uV; |
818 | |
819 | /* it's safe to autoconfigure fixed-voltage supplies |
820 | and the constraints are used by list_voltage. */ |
821 | if (count == 1 && !cmin) { |
822 | cmin = 1; |
823 | cmax = INT_MAX; |
824 | constraints->min_uV = cmin; |
825 | constraints->max_uV = cmax; |
826 | } |
827 | |
828 | /* voltage constraints are optional */ |
829 | if ((cmin == 0) && (cmax == 0)) |
830 | return 0; |
831 | |
832 | /* else require explicit machine-level constraints */ |
833 | if (cmin <= 0 || cmax <= 0 || cmax < cmin) { |
834 | rdev_err(rdev, "invalid voltage constraints\n"); |
835 | return -EINVAL; |
836 | } |
837 | |
838 | /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ |
839 | for (i = 0; i < count; i++) { |
840 | int value; |
841 | |
842 | value = ops->list_voltage(rdev, i); |
843 | if (value <= 0) |
844 | continue; |
845 | |
846 | /* maybe adjust [min_uV..max_uV] */ |
847 | if (value >= cmin && value < min_uV) |
848 | min_uV = value; |
849 | if (value <= cmax && value > max_uV) |
850 | max_uV = value; |
851 | } |
852 | |
853 | /* final: [min_uV..max_uV] valid iff constraints valid */ |
854 | if (max_uV < min_uV) { |
855 | rdev_err(rdev, "unsupportable voltage constraints\n"); |
856 | return -EINVAL; |
857 | } |
858 | |
859 | /* use regulator's subset of machine constraints */ |
860 | if (constraints->min_uV < min_uV) { |
861 | rdev_dbg(rdev, "override min_uV, %d -> %d\n", |
862 | constraints->min_uV, min_uV); |
863 | constraints->min_uV = min_uV; |
864 | } |
865 | if (constraints->max_uV > max_uV) { |
866 | rdev_dbg(rdev, "override max_uV, %d -> %d\n", |
867 | constraints->max_uV, max_uV); |
868 | constraints->max_uV = max_uV; |
869 | } |
870 | } |
871 | |
872 | return 0; |
873 | } |
874 | |
875 | /** |
876 | * set_machine_constraints - sets regulator constraints |
877 | * @rdev: regulator source |
878 | * @constraints: constraints to apply |
879 | * |
880 | * Allows platform initialisation code to define and constrain |
881 | * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: |
882 | * Constraints *must* be set by platform code in order for some |
883 | * regulator operations to proceed i.e. set_voltage, set_current_limit, |
884 | * set_mode. |
885 | */ |
886 | static int set_machine_constraints(struct regulator_dev *rdev, |
887 | const struct regulation_constraints *constraints) |
888 | { |
889 | int ret = 0; |
890 | struct regulator_ops *ops = rdev->desc->ops; |
891 | |
892 | if (constraints) |
893 | rdev->constraints = kmemdup(constraints, sizeof(*constraints), |
894 | GFP_KERNEL); |
895 | else |
896 | rdev->constraints = kzalloc(sizeof(*constraints), |
897 | GFP_KERNEL); |
898 | if (!rdev->constraints) |
899 | return -ENOMEM; |
900 | |
901 | ret = machine_constraints_voltage(rdev, rdev->constraints); |
902 | if (ret != 0) |
903 | goto out; |
904 | |
905 | /* do we need to setup our suspend state */ |
906 | if (rdev->constraints->initial_state) { |
907 | ret = suspend_prepare(rdev, rdev->constraints->initial_state); |
908 | if (ret < 0) { |
909 | rdev_err(rdev, "failed to set suspend state\n"); |
910 | goto out; |
911 | } |
912 | } |
913 | |
914 | if (rdev->constraints->initial_mode) { |
915 | if (!ops->set_mode) { |
916 | rdev_err(rdev, "no set_mode operation\n"); |
917 | ret = -EINVAL; |
918 | goto out; |
919 | } |
920 | |
921 | ret = ops->set_mode(rdev, rdev->constraints->initial_mode); |
922 | if (ret < 0) { |
923 | rdev_err(rdev, "failed to set initial mode: %d\n", ret); |
924 | goto out; |
925 | } |
926 | } |
927 | |
928 | /* If the constraints say the regulator should be on at this point |
929 | * and we have control then make sure it is enabled. |
930 | */ |
931 | if ((rdev->constraints->always_on || rdev->constraints->boot_on) && |
932 | ops->enable) { |
933 | ret = ops->enable(rdev); |
934 | if (ret < 0) { |
935 | rdev_err(rdev, "failed to enable\n"); |
936 | goto out; |
937 | } |
938 | } |
939 | |
940 | if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { |
941 | ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); |
942 | if (ret < 0) { |
943 | rdev_err(rdev, "failed to set ramp_delay\n"); |
944 | goto out; |
945 | } |
946 | } |
947 | |
948 | print_constraints(rdev); |
949 | return 0; |
950 | out: |
951 | kfree(rdev->constraints); |
952 | rdev->constraints = NULL; |
953 | return ret; |
954 | } |
955 | |
956 | /** |
957 | * set_supply - set regulator supply regulator |
958 | * @rdev: regulator name |
959 | * @supply_rdev: supply regulator name |
960 | * |
961 | * Called by platform initialisation code to set the supply regulator for this |
962 | * regulator. This ensures that a regulators supply will also be enabled by the |
963 | * core if it's child is enabled. |
964 | */ |
965 | static int set_supply(struct regulator_dev *rdev, |
966 | struct regulator_dev *supply_rdev) |
967 | { |
968 | int err; |
969 | |
970 | rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); |
971 | |
972 | rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); |
973 | if (rdev->supply == NULL) { |
974 | err = -ENOMEM; |
975 | return err; |
976 | } |
977 | |
978 | return 0; |
979 | } |
980 | |
981 | /** |
982 | * set_consumer_device_supply - Bind a regulator to a symbolic supply |
983 | * @rdev: regulator source |
984 | * @consumer_dev_name: dev_name() string for device supply applies to |
985 | * @supply: symbolic name for supply |
986 | * |
987 | * Allows platform initialisation code to map physical regulator |
988 | * sources to symbolic names for supplies for use by devices. Devices |
989 | * should use these symbolic names to request regulators, avoiding the |
990 | * need to provide board-specific regulator names as platform data. |
991 | */ |
992 | static int set_consumer_device_supply(struct regulator_dev *rdev, |
993 | const char *consumer_dev_name, |
994 | const char *supply) |
995 | { |
996 | struct regulator_map *node; |
997 | int has_dev; |
998 | |
999 | if (supply == NULL) |
1000 | return -EINVAL; |
1001 | |
1002 | if (consumer_dev_name != NULL) |
1003 | has_dev = 1; |
1004 | else |
1005 | has_dev = 0; |
1006 | |
1007 | list_for_each_entry(node, ®ulator_map_list, list) { |
1008 | if (node->dev_name && consumer_dev_name) { |
1009 | if (strcmp(node->dev_name, consumer_dev_name) != 0) |
1010 | continue; |
1011 | } else if (node->dev_name || consumer_dev_name) { |
1012 | continue; |
1013 | } |
1014 | |
1015 | if (strcmp(node->supply, supply) != 0) |
1016 | continue; |
1017 | |
1018 | pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", |
1019 | consumer_dev_name, |
1020 | dev_name(&node->regulator->dev), |
1021 | node->regulator->desc->name, |
1022 | supply, |
1023 | dev_name(&rdev->dev), rdev_get_name(rdev)); |
1024 | return -EBUSY; |
1025 | } |
1026 | |
1027 | node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); |
1028 | if (node == NULL) |
1029 | return -ENOMEM; |
1030 | |
1031 | node->regulator = rdev; |
1032 | node->supply = supply; |
1033 | |
1034 | if (has_dev) { |
1035 | node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); |
1036 | if (node->dev_name == NULL) { |
1037 | kfree(node); |
1038 | return -ENOMEM; |
1039 | } |
1040 | } |
1041 | |
1042 | list_add(&node->list, ®ulator_map_list); |
1043 | return 0; |
1044 | } |
1045 | |
1046 | static void unset_regulator_supplies(struct regulator_dev *rdev) |
1047 | { |
1048 | struct regulator_map *node, *n; |
1049 | |
1050 | list_for_each_entry_safe(node, n, ®ulator_map_list, list) { |
1051 | if (rdev == node->regulator) { |
1052 | list_del(&node->list); |
1053 | kfree(node->dev_name); |
1054 | kfree(node); |
1055 | } |
1056 | } |
1057 | } |
1058 | |
1059 | #define REG_STR_SIZE 64 |
1060 | |
1061 | static struct regulator *create_regulator(struct regulator_dev *rdev, |
1062 | struct device *dev, |
1063 | const char *supply_name) |
1064 | { |
1065 | struct regulator *regulator; |
1066 | char buf[REG_STR_SIZE]; |
1067 | int err, size; |
1068 | |
1069 | regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); |
1070 | if (regulator == NULL) |
1071 | return NULL; |
1072 | |
1073 | mutex_lock(&rdev->mutex); |
1074 | regulator->rdev = rdev; |
1075 | list_add(®ulator->list, &rdev->consumer_list); |
1076 | |
1077 | if (dev) { |
1078 | regulator->dev = dev; |
1079 | |
1080 | /* Add a link to the device sysfs entry */ |
1081 | size = scnprintf(buf, REG_STR_SIZE, "%s-%s", |
1082 | dev->kobj.name, supply_name); |
1083 | if (size >= REG_STR_SIZE) |
1084 | goto overflow_err; |
1085 | |
1086 | regulator->supply_name = kstrdup(buf, GFP_KERNEL); |
1087 | if (regulator->supply_name == NULL) |
1088 | goto overflow_err; |
1089 | |
1090 | err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, |
1091 | buf); |
1092 | if (err) { |
1093 | rdev_warn(rdev, "could not add device link %s err %d\n", |
1094 | dev->kobj.name, err); |
1095 | /* non-fatal */ |
1096 | } |
1097 | } else { |
1098 | regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); |
1099 | if (regulator->supply_name == NULL) |
1100 | goto overflow_err; |
1101 | } |
1102 | |
1103 | regulator->debugfs = debugfs_create_dir(regulator->supply_name, |
1104 | rdev->debugfs); |
1105 | if (!regulator->debugfs) { |
1106 | rdev_warn(rdev, "Failed to create debugfs directory\n"); |
1107 | } else { |
1108 | debugfs_create_u32("uA_load", 0444, regulator->debugfs, |
1109 | ®ulator->uA_load); |
1110 | debugfs_create_u32("min_uV", 0444, regulator->debugfs, |
1111 | ®ulator->min_uV); |
1112 | debugfs_create_u32("max_uV", 0444, regulator->debugfs, |
1113 | ®ulator->max_uV); |
1114 | } |
1115 | |
1116 | /* |
1117 | * Check now if the regulator is an always on regulator - if |
1118 | * it is then we don't need to do nearly so much work for |
1119 | * enable/disable calls. |
1120 | */ |
1121 | if (!_regulator_can_change_status(rdev) && |
1122 | _regulator_is_enabled(rdev)) |
1123 | regulator->always_on = true; |
1124 | |
1125 | mutex_unlock(&rdev->mutex); |
1126 | return regulator; |
1127 | overflow_err: |
1128 | list_del(®ulator->list); |
1129 | kfree(regulator); |
1130 | mutex_unlock(&rdev->mutex); |
1131 | return NULL; |
1132 | } |
1133 | |
1134 | static int _regulator_get_enable_time(struct regulator_dev *rdev) |
1135 | { |
1136 | if (!rdev->desc->ops->enable_time) |
1137 | return rdev->desc->enable_time; |
1138 | return rdev->desc->ops->enable_time(rdev); |
1139 | } |
1140 | |
1141 | static struct regulator_dev *regulator_dev_lookup(struct device *dev, |
1142 | const char *supply, |
1143 | int *ret) |
1144 | { |
1145 | struct regulator_dev *r; |
1146 | struct device_node *node; |
1147 | struct regulator_map *map; |
1148 | const char *devname = NULL; |
1149 | |
1150 | /* first do a dt based lookup */ |
1151 | if (dev && dev->of_node) { |
1152 | node = of_get_regulator(dev, supply); |
1153 | if (node) { |
1154 | list_for_each_entry(r, ®ulator_list, list) |
1155 | if (r->dev.parent && |
1156 | node == r->dev.of_node) |
1157 | return r; |
1158 | } else { |
1159 | /* |
1160 | * If we couldn't even get the node then it's |
1161 | * not just that the device didn't register |
1162 | * yet, there's no node and we'll never |
1163 | * succeed. |
1164 | */ |
1165 | *ret = -ENODEV; |
1166 | } |
1167 | } |
1168 | |
1169 | /* if not found, try doing it non-dt way */ |
1170 | if (dev) |
1171 | devname = dev_name(dev); |
1172 | |
1173 | list_for_each_entry(r, ®ulator_list, list) |
1174 | if (strcmp(rdev_get_name(r), supply) == 0) |
1175 | return r; |
1176 | |
1177 | list_for_each_entry(map, ®ulator_map_list, list) { |
1178 | /* If the mapping has a device set up it must match */ |
1179 | if (map->dev_name && |
1180 | (!devname || strcmp(map->dev_name, devname))) |
1181 | continue; |
1182 | |
1183 | if (strcmp(map->supply, supply) == 0) |
1184 | return map->regulator; |
1185 | } |
1186 | |
1187 | |
1188 | return NULL; |
1189 | } |
1190 | |
1191 | /* Internal regulator request function */ |
1192 | static struct regulator *_regulator_get(struct device *dev, const char *id, |
1193 | int exclusive) |
1194 | { |
1195 | struct regulator_dev *rdev; |
1196 | struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); |
1197 | const char *devname = NULL; |
1198 | int ret; |
1199 | |
1200 | if (id == NULL) { |
1201 | pr_err("get() with no identifier\n"); |
1202 | return regulator; |
1203 | } |
1204 | |
1205 | if (dev) |
1206 | devname = dev_name(dev); |
1207 | |
1208 | mutex_lock(®ulator_list_mutex); |
1209 | |
1210 | rdev = regulator_dev_lookup(dev, id, &ret); |
1211 | if (rdev) |
1212 | goto found; |
1213 | |
1214 | if (board_wants_dummy_regulator) { |
1215 | rdev = dummy_regulator_rdev; |
1216 | goto found; |
1217 | } |
1218 | |
1219 | #ifdef CONFIG_REGULATOR_DUMMY |
1220 | if (!devname) |
1221 | devname = "deviceless"; |
1222 | |
1223 | /* If the board didn't flag that it was fully constrained then |
1224 | * substitute in a dummy regulator so consumers can continue. |
1225 | */ |
1226 | if (!has_full_constraints) { |
1227 | pr_warn("%s supply %s not found, using dummy regulator\n", |
1228 | devname, id); |
1229 | rdev = dummy_regulator_rdev; |
1230 | goto found; |
1231 | } |
1232 | #endif |
1233 | |
1234 | mutex_unlock(®ulator_list_mutex); |
1235 | return regulator; |
1236 | |
1237 | found: |
1238 | if (rdev->exclusive) { |
1239 | regulator = ERR_PTR(-EPERM); |
1240 | goto out; |
1241 | } |
1242 | |
1243 | if (exclusive && rdev->open_count) { |
1244 | regulator = ERR_PTR(-EBUSY); |
1245 | goto out; |
1246 | } |
1247 | |
1248 | if (!try_module_get(rdev->owner)) |
1249 | goto out; |
1250 | |
1251 | regulator = create_regulator(rdev, dev, id); |
1252 | if (regulator == NULL) { |
1253 | regulator = ERR_PTR(-ENOMEM); |
1254 | module_put(rdev->owner); |
1255 | goto out; |
1256 | } |
1257 | |
1258 | rdev->open_count++; |
1259 | if (exclusive) { |
1260 | rdev->exclusive = 1; |
1261 | |
1262 | ret = _regulator_is_enabled(rdev); |
1263 | if (ret > 0) |
1264 | rdev->use_count = 1; |
1265 | else |
1266 | rdev->use_count = 0; |
1267 | } |
1268 | |
1269 | out: |
1270 | mutex_unlock(®ulator_list_mutex); |
1271 | |
1272 | return regulator; |
1273 | } |
1274 | |
1275 | /** |
1276 | * regulator_get - lookup and obtain a reference to a regulator. |
1277 | * @dev: device for regulator "consumer" |
1278 | * @id: Supply name or regulator ID. |
1279 | * |
1280 | * Returns a struct regulator corresponding to the regulator producer, |
1281 | * or IS_ERR() condition containing errno. |
1282 | * |
1283 | * Use of supply names configured via regulator_set_device_supply() is |
1284 | * strongly encouraged. It is recommended that the supply name used |
1285 | * should match the name used for the supply and/or the relevant |
1286 | * device pins in the datasheet. |
1287 | */ |
1288 | struct regulator *regulator_get(struct device *dev, const char *id) |
1289 | { |
1290 | return _regulator_get(dev, id, 0); |
1291 | } |
1292 | EXPORT_SYMBOL_GPL(regulator_get); |
1293 | |
1294 | static void devm_regulator_release(struct device *dev, void *res) |
1295 | { |
1296 | regulator_put(*(struct regulator **)res); |
1297 | } |
1298 | |
1299 | /** |
1300 | * devm_regulator_get - Resource managed regulator_get() |
1301 | * @dev: device for regulator "consumer" |
1302 | * @id: Supply name or regulator ID. |
1303 | * |
1304 | * Managed regulator_get(). Regulators returned from this function are |
1305 | * automatically regulator_put() on driver detach. See regulator_get() for more |
1306 | * information. |
1307 | */ |
1308 | struct regulator *devm_regulator_get(struct device *dev, const char *id) |
1309 | { |
1310 | struct regulator **ptr, *regulator; |
1311 | |
1312 | ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); |
1313 | if (!ptr) |
1314 | return ERR_PTR(-ENOMEM); |
1315 | |
1316 | regulator = regulator_get(dev, id); |
1317 | if (!IS_ERR(regulator)) { |
1318 | *ptr = regulator; |
1319 | devres_add(dev, ptr); |
1320 | } else { |
1321 | devres_free(ptr); |
1322 | } |
1323 | |
1324 | return regulator; |
1325 | } |
1326 | EXPORT_SYMBOL_GPL(devm_regulator_get); |
1327 | |
1328 | /** |
1329 | * regulator_get_exclusive - obtain exclusive access to a regulator. |
1330 | * @dev: device for regulator "consumer" |
1331 | * @id: Supply name or regulator ID. |
1332 | * |
1333 | * Returns a struct regulator corresponding to the regulator producer, |
1334 | * or IS_ERR() condition containing errno. Other consumers will be |
1335 | * unable to obtain this reference is held and the use count for the |
1336 | * regulator will be initialised to reflect the current state of the |
1337 | * regulator. |
1338 | * |
1339 | * This is intended for use by consumers which cannot tolerate shared |
1340 | * use of the regulator such as those which need to force the |
1341 | * regulator off for correct operation of the hardware they are |
1342 | * controlling. |
1343 | * |
1344 | * Use of supply names configured via regulator_set_device_supply() is |
1345 | * strongly encouraged. It is recommended that the supply name used |
1346 | * should match the name used for the supply and/or the relevant |
1347 | * device pins in the datasheet. |
1348 | */ |
1349 | struct regulator *regulator_get_exclusive(struct device *dev, const char *id) |
1350 | { |
1351 | return _regulator_get(dev, id, 1); |
1352 | } |
1353 | EXPORT_SYMBOL_GPL(regulator_get_exclusive); |
1354 | |
1355 | /** |
1356 | * regulator_put - "free" the regulator source |
1357 | * @regulator: regulator source |
1358 | * |
1359 | * Note: drivers must ensure that all regulator_enable calls made on this |
1360 | * regulator source are balanced by regulator_disable calls prior to calling |
1361 | * this function. |
1362 | */ |
1363 | void regulator_put(struct regulator *regulator) |
1364 | { |
1365 | struct regulator_dev *rdev; |
1366 | |
1367 | if (regulator == NULL || IS_ERR(regulator)) |
1368 | return; |
1369 | |
1370 | mutex_lock(®ulator_list_mutex); |
1371 | rdev = regulator->rdev; |
1372 | |
1373 | debugfs_remove_recursive(regulator->debugfs); |
1374 | |
1375 | /* remove any sysfs entries */ |
1376 | if (regulator->dev) |
1377 | sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); |
1378 | kfree(regulator->supply_name); |
1379 | list_del(®ulator->list); |
1380 | kfree(regulator); |
1381 | |
1382 | rdev->open_count--; |
1383 | rdev->exclusive = 0; |
1384 | |
1385 | module_put(rdev->owner); |
1386 | mutex_unlock(®ulator_list_mutex); |
1387 | } |
1388 | EXPORT_SYMBOL_GPL(regulator_put); |
1389 | |
1390 | static int devm_regulator_match(struct device *dev, void *res, void *data) |
1391 | { |
1392 | struct regulator **r = res; |
1393 | if (!r || !*r) { |
1394 | WARN_ON(!r || !*r); |
1395 | return 0; |
1396 | } |
1397 | return *r == data; |
1398 | } |
1399 | |
1400 | /** |
1401 | * devm_regulator_put - Resource managed regulator_put() |
1402 | * @regulator: regulator to free |
1403 | * |
1404 | * Deallocate a regulator allocated with devm_regulator_get(). Normally |
1405 | * this function will not need to be called and the resource management |
1406 | * code will ensure that the resource is freed. |
1407 | */ |
1408 | void devm_regulator_put(struct regulator *regulator) |
1409 | { |
1410 | int rc; |
1411 | |
1412 | rc = devres_release(regulator->dev, devm_regulator_release, |
1413 | devm_regulator_match, regulator); |
1414 | if (rc != 0) |
1415 | WARN_ON(rc); |
1416 | } |
1417 | EXPORT_SYMBOL_GPL(devm_regulator_put); |
1418 | |
1419 | static int _regulator_do_enable(struct regulator_dev *rdev) |
1420 | { |
1421 | int ret, delay; |
1422 | |
1423 | /* Query before enabling in case configuration dependent. */ |
1424 | ret = _regulator_get_enable_time(rdev); |
1425 | if (ret >= 0) { |
1426 | delay = ret; |
1427 | } else { |
1428 | rdev_warn(rdev, "enable_time() failed: %d\n", ret); |
1429 | delay = 0; |
1430 | } |
1431 | |
1432 | trace_regulator_enable(rdev_get_name(rdev)); |
1433 | |
1434 | if (rdev->ena_gpio) { |
1435 | gpio_set_value_cansleep(rdev->ena_gpio, |
1436 | !rdev->ena_gpio_invert); |
1437 | rdev->ena_gpio_state = 1; |
1438 | } else if (rdev->desc->ops->enable) { |
1439 | ret = rdev->desc->ops->enable(rdev); |
1440 | if (ret < 0) |
1441 | return ret; |
1442 | } else { |
1443 | return -EINVAL; |
1444 | } |
1445 | |
1446 | /* Allow the regulator to ramp; it would be useful to extend |
1447 | * this for bulk operations so that the regulators can ramp |
1448 | * together. */ |
1449 | trace_regulator_enable_delay(rdev_get_name(rdev)); |
1450 | |
1451 | if (delay >= 1000) { |
1452 | mdelay(delay / 1000); |
1453 | udelay(delay % 1000); |
1454 | } else if (delay) { |
1455 | udelay(delay); |
1456 | } |
1457 | |
1458 | trace_regulator_enable_complete(rdev_get_name(rdev)); |
1459 | |
1460 | return 0; |
1461 | } |
1462 | |
1463 | /* locks held by regulator_enable() */ |
1464 | static int _regulator_enable(struct regulator_dev *rdev) |
1465 | { |
1466 | int ret; |
1467 | |
1468 | /* check voltage and requested load before enabling */ |
1469 | if (rdev->constraints && |
1470 | (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) |
1471 | drms_uA_update(rdev); |
1472 | |
1473 | if (rdev->use_count == 0) { |
1474 | /* The regulator may on if it's not switchable or left on */ |
1475 | ret = _regulator_is_enabled(rdev); |
1476 | if (ret == -EINVAL || ret == 0) { |
1477 | if (!_regulator_can_change_status(rdev)) |
1478 | return -EPERM; |
1479 | |
1480 | ret = _regulator_do_enable(rdev); |
1481 | if (ret < 0) |
1482 | return ret; |
1483 | |
1484 | } else if (ret < 0) { |
1485 | rdev_err(rdev, "is_enabled() failed: %d\n", ret); |
1486 | return ret; |
1487 | } |
1488 | /* Fallthrough on positive return values - already enabled */ |
1489 | } |
1490 | |
1491 | rdev->use_count++; |
1492 | |
1493 | return 0; |
1494 | } |
1495 | |
1496 | /** |
1497 | * regulator_enable - enable regulator output |
1498 | * @regulator: regulator source |
1499 | * |
1500 | * Request that the regulator be enabled with the regulator output at |
1501 | * the predefined voltage or current value. Calls to regulator_enable() |
1502 | * must be balanced with calls to regulator_disable(). |
1503 | * |
1504 | * NOTE: the output value can be set by other drivers, boot loader or may be |
1505 | * hardwired in the regulator. |
1506 | */ |
1507 | int regulator_enable(struct regulator *regulator) |
1508 | { |
1509 | struct regulator_dev *rdev = regulator->rdev; |
1510 | int ret = 0; |
1511 | |
1512 | if (regulator->always_on) |
1513 | return 0; |
1514 | |
1515 | if (rdev->supply) { |
1516 | ret = regulator_enable(rdev->supply); |
1517 | if (ret != 0) |
1518 | return ret; |
1519 | } |
1520 | |
1521 | mutex_lock(&rdev->mutex); |
1522 | ret = _regulator_enable(rdev); |
1523 | mutex_unlock(&rdev->mutex); |
1524 | |
1525 | if (ret != 0 && rdev->supply) |
1526 | regulator_disable(rdev->supply); |
1527 | |
1528 | return ret; |
1529 | } |
1530 | EXPORT_SYMBOL_GPL(regulator_enable); |
1531 | |
1532 | static int _regulator_do_disable(struct regulator_dev *rdev) |
1533 | { |
1534 | int ret; |
1535 | |
1536 | trace_regulator_disable(rdev_get_name(rdev)); |
1537 | |
1538 | if (rdev->ena_gpio) { |
1539 | gpio_set_value_cansleep(rdev->ena_gpio, |
1540 | rdev->ena_gpio_invert); |
1541 | rdev->ena_gpio_state = 0; |
1542 | |
1543 | } else if (rdev->desc->ops->disable) { |
1544 | ret = rdev->desc->ops->disable(rdev); |
1545 | if (ret != 0) |
1546 | return ret; |
1547 | } |
1548 | |
1549 | trace_regulator_disable_complete(rdev_get_name(rdev)); |
1550 | |
1551 | _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, |
1552 | NULL); |
1553 | return 0; |
1554 | } |
1555 | |
1556 | /* locks held by regulator_disable() */ |
1557 | static int _regulator_disable(struct regulator_dev *rdev) |
1558 | { |
1559 | int ret = 0; |
1560 | |
1561 | if (WARN(rdev->use_count <= 0, |
1562 | "unbalanced disables for %s\n", rdev_get_name(rdev))) |
1563 | return -EIO; |
1564 | |
1565 | /* are we the last user and permitted to disable ? */ |
1566 | if (rdev->use_count == 1 && |
1567 | (rdev->constraints && !rdev->constraints->always_on)) { |
1568 | |
1569 | /* we are last user */ |
1570 | if (_regulator_can_change_status(rdev)) { |
1571 | ret = _regulator_do_disable(rdev); |
1572 | if (ret < 0) { |
1573 | rdev_err(rdev, "failed to disable\n"); |
1574 | return ret; |
1575 | } |
1576 | } |
1577 | |
1578 | rdev->use_count = 0; |
1579 | } else if (rdev->use_count > 1) { |
1580 | |
1581 | if (rdev->constraints && |
1582 | (rdev->constraints->valid_ops_mask & |
1583 | REGULATOR_CHANGE_DRMS)) |
1584 | drms_uA_update(rdev); |
1585 | |
1586 | rdev->use_count--; |
1587 | } |
1588 | |
1589 | return ret; |
1590 | } |
1591 | |
1592 | /** |
1593 | * regulator_disable - disable regulator output |
1594 | * @regulator: regulator source |
1595 | * |
1596 | * Disable the regulator output voltage or current. Calls to |
1597 | * regulator_enable() must be balanced with calls to |
1598 | * regulator_disable(). |
1599 | * |
1600 | * NOTE: this will only disable the regulator output if no other consumer |
1601 | * devices have it enabled, the regulator device supports disabling and |
1602 | * machine constraints permit this operation. |
1603 | */ |
1604 | int regulator_disable(struct regulator *regulator) |
1605 | { |
1606 | struct regulator_dev *rdev = regulator->rdev; |
1607 | int ret = 0; |
1608 | |
1609 | if (regulator->always_on) |
1610 | return 0; |
1611 | |
1612 | mutex_lock(&rdev->mutex); |
1613 | ret = _regulator_disable(rdev); |
1614 | mutex_unlock(&rdev->mutex); |
1615 | |
1616 | if (ret == 0 && rdev->supply) |
1617 | regulator_disable(rdev->supply); |
1618 | |
1619 | return ret; |
1620 | } |
1621 | EXPORT_SYMBOL_GPL(regulator_disable); |
1622 | |
1623 | /* locks held by regulator_force_disable() */ |
1624 | static int _regulator_force_disable(struct regulator_dev *rdev) |
1625 | { |
1626 | int ret = 0; |
1627 | |
1628 | /* force disable */ |
1629 | if (rdev->desc->ops->disable) { |
1630 | /* ah well, who wants to live forever... */ |
1631 | ret = rdev->desc->ops->disable(rdev); |
1632 | if (ret < 0) { |
1633 | rdev_err(rdev, "failed to force disable\n"); |
1634 | return ret; |
1635 | } |
1636 | /* notify other consumers that power has been forced off */ |
1637 | _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | |
1638 | REGULATOR_EVENT_DISABLE, NULL); |
1639 | } |
1640 | |
1641 | return ret; |
1642 | } |
1643 | |
1644 | /** |
1645 | * regulator_force_disable - force disable regulator output |
1646 | * @regulator: regulator source |
1647 | * |
1648 | * Forcibly disable the regulator output voltage or current. |
1649 | * NOTE: this *will* disable the regulator output even if other consumer |
1650 | * devices have it enabled. This should be used for situations when device |
1651 | * damage will likely occur if the regulator is not disabled (e.g. over temp). |
1652 | */ |
1653 | int regulator_force_disable(struct regulator *regulator) |
1654 | { |
1655 | struct regulator_dev *rdev = regulator->rdev; |
1656 | int ret; |
1657 | |
1658 | mutex_lock(&rdev->mutex); |
1659 | regulator->uA_load = 0; |
1660 | ret = _regulator_force_disable(regulator->rdev); |
1661 | mutex_unlock(&rdev->mutex); |
1662 | |
1663 | if (rdev->supply) |
1664 | while (rdev->open_count--) |
1665 | regulator_disable(rdev->supply); |
1666 | |
1667 | return ret; |
1668 | } |
1669 | EXPORT_SYMBOL_GPL(regulator_force_disable); |
1670 | |
1671 | static void regulator_disable_work(struct work_struct *work) |
1672 | { |
1673 | struct regulator_dev *rdev = container_of(work, struct regulator_dev, |
1674 | disable_work.work); |
1675 | int count, i, ret; |
1676 | |
1677 | mutex_lock(&rdev->mutex); |
1678 | |
1679 | BUG_ON(!rdev->deferred_disables); |
1680 | |
1681 | count = rdev->deferred_disables; |
1682 | rdev->deferred_disables = 0; |
1683 | |
1684 | for (i = 0; i < count; i++) { |
1685 | ret = _regulator_disable(rdev); |
1686 | if (ret != 0) |
1687 | rdev_err(rdev, "Deferred disable failed: %d\n", ret); |
1688 | } |
1689 | |
1690 | mutex_unlock(&rdev->mutex); |
1691 | |
1692 | if (rdev->supply) { |
1693 | for (i = 0; i < count; i++) { |
1694 | ret = regulator_disable(rdev->supply); |
1695 | if (ret != 0) { |
1696 | rdev_err(rdev, |
1697 | "Supply disable failed: %d\n", ret); |
1698 | } |
1699 | } |
1700 | } |
1701 | } |
1702 | |
1703 | /** |
1704 | * regulator_disable_deferred - disable regulator output with delay |
1705 | * @regulator: regulator source |
1706 | * @ms: miliseconds until the regulator is disabled |
1707 | * |
1708 | * Execute regulator_disable() on the regulator after a delay. This |
1709 | * is intended for use with devices that require some time to quiesce. |
1710 | * |
1711 | * NOTE: this will only disable the regulator output if no other consumer |
1712 | * devices have it enabled, the regulator device supports disabling and |
1713 | * machine constraints permit this operation. |
1714 | */ |
1715 | int regulator_disable_deferred(struct regulator *regulator, int ms) |
1716 | { |
1717 | struct regulator_dev *rdev = regulator->rdev; |
1718 | int ret; |
1719 | |
1720 | if (regulator->always_on) |
1721 | return 0; |
1722 | |
1723 | mutex_lock(&rdev->mutex); |
1724 | rdev->deferred_disables++; |
1725 | mutex_unlock(&rdev->mutex); |
1726 | |
1727 | ret = schedule_delayed_work(&rdev->disable_work, |
1728 | msecs_to_jiffies(ms)); |
1729 | if (ret < 0) |
1730 | return ret; |
1731 | else |
1732 | return 0; |
1733 | } |
1734 | EXPORT_SYMBOL_GPL(regulator_disable_deferred); |
1735 | |
1736 | /** |
1737 | * regulator_is_enabled_regmap - standard is_enabled() for regmap users |
1738 | * |
1739 | * @rdev: regulator to operate on |
1740 | * |
1741 | * Regulators that use regmap for their register I/O can set the |
1742 | * enable_reg and enable_mask fields in their descriptor and then use |
1743 | * this as their is_enabled operation, saving some code. |
1744 | */ |
1745 | int regulator_is_enabled_regmap(struct regulator_dev *rdev) |
1746 | { |
1747 | unsigned int val; |
1748 | int ret; |
1749 | |
1750 | ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); |
1751 | if (ret != 0) |
1752 | return ret; |
1753 | |
1754 | return (val & rdev->desc->enable_mask) != 0; |
1755 | } |
1756 | EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); |
1757 | |
1758 | /** |
1759 | * regulator_enable_regmap - standard enable() for regmap users |
1760 | * |
1761 | * @rdev: regulator to operate on |
1762 | * |
1763 | * Regulators that use regmap for their register I/O can set the |
1764 | * enable_reg and enable_mask fields in their descriptor and then use |
1765 | * this as their enable() operation, saving some code. |
1766 | */ |
1767 | int regulator_enable_regmap(struct regulator_dev *rdev) |
1768 | { |
1769 | return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, |
1770 | rdev->desc->enable_mask, |
1771 | rdev->desc->enable_mask); |
1772 | } |
1773 | EXPORT_SYMBOL_GPL(regulator_enable_regmap); |
1774 | |
1775 | /** |
1776 | * regulator_disable_regmap - standard disable() for regmap users |
1777 | * |
1778 | * @rdev: regulator to operate on |
1779 | * |
1780 | * Regulators that use regmap for their register I/O can set the |
1781 | * enable_reg and enable_mask fields in their descriptor and then use |
1782 | * this as their disable() operation, saving some code. |
1783 | */ |
1784 | int regulator_disable_regmap(struct regulator_dev *rdev) |
1785 | { |
1786 | return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, |
1787 | rdev->desc->enable_mask, 0); |
1788 | } |
1789 | EXPORT_SYMBOL_GPL(regulator_disable_regmap); |
1790 | |
1791 | static int _regulator_is_enabled(struct regulator_dev *rdev) |
1792 | { |
1793 | /* A GPIO control always takes precedence */ |
1794 | if (rdev->ena_gpio) |
1795 | return rdev->ena_gpio_state; |
1796 | |
1797 | /* If we don't know then assume that the regulator is always on */ |
1798 | if (!rdev->desc->ops->is_enabled) |
1799 | return 1; |
1800 | |
1801 | return rdev->desc->ops->is_enabled(rdev); |
1802 | } |
1803 | |
1804 | /** |
1805 | * regulator_is_enabled - is the regulator output enabled |
1806 | * @regulator: regulator source |
1807 | * |
1808 | * Returns positive if the regulator driver backing the source/client |
1809 | * has requested that the device be enabled, zero if it hasn't, else a |
1810 | * negative errno code. |
1811 | * |
1812 | * Note that the device backing this regulator handle can have multiple |
1813 | * users, so it might be enabled even if regulator_enable() was never |
1814 | * called for this particular source. |
1815 | */ |
1816 | int regulator_is_enabled(struct regulator *regulator) |
1817 | { |
1818 | int ret; |
1819 | |
1820 | if (regulator->always_on) |
1821 | return 1; |
1822 | |
1823 | mutex_lock(®ulator->rdev->mutex); |
1824 | ret = _regulator_is_enabled(regulator->rdev); |
1825 | mutex_unlock(®ulator->rdev->mutex); |
1826 | |
1827 | return ret; |
1828 | } |
1829 | EXPORT_SYMBOL_GPL(regulator_is_enabled); |
1830 | |
1831 | /** |
1832 | * regulator_count_voltages - count regulator_list_voltage() selectors |
1833 | * @regulator: regulator source |
1834 | * |
1835 | * Returns number of selectors, or negative errno. Selectors are |
1836 | * numbered starting at zero, and typically correspond to bitfields |
1837 | * in hardware registers. |
1838 | */ |
1839 | int regulator_count_voltages(struct regulator *regulator) |
1840 | { |
1841 | struct regulator_dev *rdev = regulator->rdev; |
1842 | |
1843 | return rdev->desc->n_voltages ? : -EINVAL; |
1844 | } |
1845 | EXPORT_SYMBOL_GPL(regulator_count_voltages); |
1846 | |
1847 | /** |
1848 | * regulator_list_voltage_linear - List voltages with simple calculation |
1849 | * |
1850 | * @rdev: Regulator device |
1851 | * @selector: Selector to convert into a voltage |
1852 | * |
1853 | * Regulators with a simple linear mapping between voltages and |
1854 | * selectors can set min_uV and uV_step in the regulator descriptor |
1855 | * and then use this function as their list_voltage() operation, |
1856 | */ |
1857 | int regulator_list_voltage_linear(struct regulator_dev *rdev, |
1858 | unsigned int selector) |
1859 | { |
1860 | if (selector >= rdev->desc->n_voltages) |
1861 | return -EINVAL; |
1862 | |
1863 | return rdev->desc->min_uV + (rdev->desc->uV_step * selector); |
1864 | } |
1865 | EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); |
1866 | |
1867 | /** |
1868 | * regulator_list_voltage_table - List voltages with table based mapping |
1869 | * |
1870 | * @rdev: Regulator device |
1871 | * @selector: Selector to convert into a voltage |
1872 | * |
1873 | * Regulators with table based mapping between voltages and |
1874 | * selectors can set volt_table in the regulator descriptor |
1875 | * and then use this function as their list_voltage() operation. |
1876 | */ |
1877 | int regulator_list_voltage_table(struct regulator_dev *rdev, |
1878 | unsigned int selector) |
1879 | { |
1880 | if (!rdev->desc->volt_table) { |
1881 | BUG_ON(!rdev->desc->volt_table); |
1882 | return -EINVAL; |
1883 | } |
1884 | |
1885 | if (selector >= rdev->desc->n_voltages) |
1886 | return -EINVAL; |
1887 | |
1888 | return rdev->desc->volt_table[selector]; |
1889 | } |
1890 | EXPORT_SYMBOL_GPL(regulator_list_voltage_table); |
1891 | |
1892 | /** |
1893 | * regulator_list_voltage - enumerate supported voltages |
1894 | * @regulator: regulator source |
1895 | * @selector: identify voltage to list |
1896 | * Context: can sleep |
1897 | * |
1898 | * Returns a voltage that can be passed to @regulator_set_voltage(), |
1899 | * zero if this selector code can't be used on this system, or a |
1900 | * negative errno. |
1901 | */ |
1902 | int regulator_list_voltage(struct regulator *regulator, unsigned selector) |
1903 | { |
1904 | struct regulator_dev *rdev = regulator->rdev; |
1905 | struct regulator_ops *ops = rdev->desc->ops; |
1906 | int ret; |
1907 | |
1908 | if (!ops->list_voltage || selector >= rdev->desc->n_voltages) |
1909 | return -EINVAL; |
1910 | |
1911 | mutex_lock(&rdev->mutex); |
1912 | ret = ops->list_voltage(rdev, selector); |
1913 | mutex_unlock(&rdev->mutex); |
1914 | |
1915 | if (ret > 0) { |
1916 | if (ret < rdev->constraints->min_uV) |
1917 | ret = 0; |
1918 | else if (ret > rdev->constraints->max_uV) |
1919 | ret = 0; |
1920 | } |
1921 | |
1922 | return ret; |
1923 | } |
1924 | EXPORT_SYMBOL_GPL(regulator_list_voltage); |
1925 | |
1926 | /** |
1927 | * regulator_is_supported_voltage - check if a voltage range can be supported |
1928 | * |
1929 | * @regulator: Regulator to check. |
1930 | * @min_uV: Minimum required voltage in uV. |
1931 | * @max_uV: Maximum required voltage in uV. |
1932 | * |
1933 | * Returns a boolean or a negative error code. |
1934 | */ |
1935 | int regulator_is_supported_voltage(struct regulator *regulator, |
1936 | int min_uV, int max_uV) |
1937 | { |
1938 | struct regulator_dev *rdev = regulator->rdev; |
1939 | int i, voltages, ret; |
1940 | |
1941 | /* If we can't change voltage check the current voltage */ |
1942 | if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
1943 | ret = regulator_get_voltage(regulator); |
1944 | if (ret >= 0) |
1945 | return (min_uV >= ret && ret <= max_uV); |
1946 | else |
1947 | return ret; |
1948 | } |
1949 | |
1950 | ret = regulator_count_voltages(regulator); |
1951 | if (ret < 0) |
1952 | return ret; |
1953 | voltages = ret; |
1954 | |
1955 | for (i = 0; i < voltages; i++) { |
1956 | ret = regulator_list_voltage(regulator, i); |
1957 | |
1958 | if (ret >= min_uV && ret <= max_uV) |
1959 | return 1; |
1960 | } |
1961 | |
1962 | return 0; |
1963 | } |
1964 | EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); |
1965 | |
1966 | /** |
1967 | * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users |
1968 | * |
1969 | * @rdev: regulator to operate on |
1970 | * |
1971 | * Regulators that use regmap for their register I/O can set the |
1972 | * vsel_reg and vsel_mask fields in their descriptor and then use this |
1973 | * as their get_voltage_vsel operation, saving some code. |
1974 | */ |
1975 | int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) |
1976 | { |
1977 | unsigned int val; |
1978 | int ret; |
1979 | |
1980 | ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); |
1981 | if (ret != 0) |
1982 | return ret; |
1983 | |
1984 | val &= rdev->desc->vsel_mask; |
1985 | val >>= ffs(rdev->desc->vsel_mask) - 1; |
1986 | |
1987 | return val; |
1988 | } |
1989 | EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); |
1990 | |
1991 | /** |
1992 | * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users |
1993 | * |
1994 | * @rdev: regulator to operate on |
1995 | * @sel: Selector to set |
1996 | * |
1997 | * Regulators that use regmap for their register I/O can set the |
1998 | * vsel_reg and vsel_mask fields in their descriptor and then use this |
1999 | * as their set_voltage_vsel operation, saving some code. |
2000 | */ |
2001 | int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) |
2002 | { |
2003 | sel <<= ffs(rdev->desc->vsel_mask) - 1; |
2004 | |
2005 | return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, |
2006 | rdev->desc->vsel_mask, sel); |
2007 | } |
2008 | EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); |
2009 | |
2010 | /** |
2011 | * regulator_map_voltage_iterate - map_voltage() based on list_voltage() |
2012 | * |
2013 | * @rdev: Regulator to operate on |
2014 | * @min_uV: Lower bound for voltage |
2015 | * @max_uV: Upper bound for voltage |
2016 | * |
2017 | * Drivers implementing set_voltage_sel() and list_voltage() can use |
2018 | * this as their map_voltage() operation. It will find a suitable |
2019 | * voltage by calling list_voltage() until it gets something in bounds |
2020 | * for the requested voltages. |
2021 | */ |
2022 | int regulator_map_voltage_iterate(struct regulator_dev *rdev, |
2023 | int min_uV, int max_uV) |
2024 | { |
2025 | int best_val = INT_MAX; |
2026 | int selector = 0; |
2027 | int i, ret; |
2028 | |
2029 | /* Find the smallest voltage that falls within the specified |
2030 | * range. |
2031 | */ |
2032 | for (i = 0; i < rdev->desc->n_voltages; i++) { |
2033 | ret = rdev->desc->ops->list_voltage(rdev, i); |
2034 | if (ret < 0) |
2035 | continue; |
2036 | |
2037 | if (ret < best_val && ret >= min_uV && ret <= max_uV) { |
2038 | best_val = ret; |
2039 | selector = i; |
2040 | } |
2041 | } |
2042 | |
2043 | if (best_val != INT_MAX) |
2044 | return selector; |
2045 | else |
2046 | return -EINVAL; |
2047 | } |
2048 | EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); |
2049 | |
2050 | /** |
2051 | * regulator_map_voltage_linear - map_voltage() for simple linear mappings |
2052 | * |
2053 | * @rdev: Regulator to operate on |
2054 | * @min_uV: Lower bound for voltage |
2055 | * @max_uV: Upper bound for voltage |
2056 | * |
2057 | * Drivers providing min_uV and uV_step in their regulator_desc can |
2058 | * use this as their map_voltage() operation. |
2059 | */ |
2060 | int regulator_map_voltage_linear(struct regulator_dev *rdev, |
2061 | int min_uV, int max_uV) |
2062 | { |
2063 | int ret, voltage; |
2064 | |
2065 | /* Allow uV_step to be 0 for fixed voltage */ |
2066 | if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { |
2067 | if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) |
2068 | return 0; |
2069 | else |
2070 | return -EINVAL; |
2071 | } |
2072 | |
2073 | if (!rdev->desc->uV_step) { |
2074 | BUG_ON(!rdev->desc->uV_step); |
2075 | return -EINVAL; |
2076 | } |
2077 | |
2078 | if (min_uV < rdev->desc->min_uV) |
2079 | min_uV = rdev->desc->min_uV; |
2080 | |
2081 | ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); |
2082 | if (ret < 0) |
2083 | return ret; |
2084 | |
2085 | /* Map back into a voltage to verify we're still in bounds */ |
2086 | voltage = rdev->desc->ops->list_voltage(rdev, ret); |
2087 | if (voltage < min_uV || voltage > max_uV) |
2088 | return -EINVAL; |
2089 | |
2090 | return ret; |
2091 | } |
2092 | EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); |
2093 | |
2094 | static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
2095 | int min_uV, int max_uV) |
2096 | { |
2097 | int ret; |
2098 | int delay = 0; |
2099 | int best_val = 0; |
2100 | unsigned int selector; |
2101 | int old_selector = -1; |
2102 | |
2103 | trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); |
2104 | |
2105 | min_uV += rdev->constraints->uV_offset; |
2106 | max_uV += rdev->constraints->uV_offset; |
2107 | |
2108 | /* |
2109 | * If we can't obtain the old selector there is not enough |
2110 | * info to call set_voltage_time_sel(). |
2111 | */ |
2112 | if (_regulator_is_enabled(rdev) && |
2113 | rdev->desc->ops->set_voltage_time_sel && |
2114 | rdev->desc->ops->get_voltage_sel) { |
2115 | old_selector = rdev->desc->ops->get_voltage_sel(rdev); |
2116 | if (old_selector < 0) |
2117 | return old_selector; |
2118 | } |
2119 | |
2120 | if (rdev->desc->ops->set_voltage) { |
2121 | ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, |
2122 | &selector); |
2123 | |
2124 | if (ret >= 0) { |
2125 | if (rdev->desc->ops->list_voltage) |
2126 | best_val = rdev->desc->ops->list_voltage(rdev, |
2127 | selector); |
2128 | else |
2129 | best_val = _regulator_get_voltage(rdev); |
2130 | } |
2131 | |
2132 | } else if (rdev->desc->ops->set_voltage_sel) { |
2133 | if (rdev->desc->ops->map_voltage) { |
2134 | ret = rdev->desc->ops->map_voltage(rdev, min_uV, |
2135 | max_uV); |
2136 | } else { |
2137 | if (rdev->desc->ops->list_voltage == |
2138 | regulator_list_voltage_linear) |
2139 | ret = regulator_map_voltage_linear(rdev, |
2140 | min_uV, max_uV); |
2141 | else |
2142 | ret = regulator_map_voltage_iterate(rdev, |
2143 | min_uV, max_uV); |
2144 | } |
2145 | |
2146 | if (ret >= 0) { |
2147 | best_val = rdev->desc->ops->list_voltage(rdev, ret); |
2148 | if (min_uV <= best_val && max_uV >= best_val) { |
2149 | selector = ret; |
2150 | ret = rdev->desc->ops->set_voltage_sel(rdev, |
2151 | ret); |
2152 | } else { |
2153 | ret = -EINVAL; |
2154 | } |
2155 | } |
2156 | } else { |
2157 | ret = -EINVAL; |
2158 | } |
2159 | |
2160 | /* Call set_voltage_time_sel if successfully obtained old_selector */ |
2161 | if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && |
2162 | rdev->desc->ops->set_voltage_time_sel) { |
2163 | |
2164 | delay = rdev->desc->ops->set_voltage_time_sel(rdev, |
2165 | old_selector, selector); |
2166 | if (delay < 0) { |
2167 | rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", |
2168 | delay); |
2169 | delay = 0; |
2170 | } |
2171 | |
2172 | /* Insert any necessary delays */ |
2173 | if (delay >= 1000) { |
2174 | mdelay(delay / 1000); |
2175 | udelay(delay % 1000); |
2176 | } else if (delay) { |
2177 | udelay(delay); |
2178 | } |
2179 | } |
2180 | |
2181 | if (ret == 0 && best_val >= 0) |
2182 | _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, |
2183 | (void *)best_val); |
2184 | |
2185 | trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); |
2186 | |
2187 | return ret; |
2188 | } |
2189 | |
2190 | /** |
2191 | * regulator_set_voltage - set regulator output voltage |
2192 | * @regulator: regulator source |
2193 | * @min_uV: Minimum required voltage in uV |
2194 | * @max_uV: Maximum acceptable voltage in uV |
2195 | * |
2196 | * Sets a voltage regulator to the desired output voltage. This can be set |
2197 | * during any regulator state. IOW, regulator can be disabled or enabled. |
2198 | * |
2199 | * If the regulator is enabled then the voltage will change to the new value |
2200 | * immediately otherwise if the regulator is disabled the regulator will |
2201 | * output at the new voltage when enabled. |
2202 | * |
2203 | * NOTE: If the regulator is shared between several devices then the lowest |
2204 | * request voltage that meets the system constraints will be used. |
2205 | * Regulator system constraints must be set for this regulator before |
2206 | * calling this function otherwise this call will fail. |
2207 | */ |
2208 | int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) |
2209 | { |
2210 | struct regulator_dev *rdev = regulator->rdev; |
2211 | int ret = 0; |
2212 | |
2213 | mutex_lock(&rdev->mutex); |
2214 | |
2215 | /* If we're setting the same range as last time the change |
2216 | * should be a noop (some cpufreq implementations use the same |
2217 | * voltage for multiple frequencies, for example). |
2218 | */ |
2219 | if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) |
2220 | goto out; |
2221 | |
2222 | /* sanity check */ |
2223 | if (!rdev->desc->ops->set_voltage && |
2224 | !rdev->desc->ops->set_voltage_sel) { |
2225 | ret = -EINVAL; |
2226 | goto out; |
2227 | } |
2228 | |
2229 | /* constraints check */ |
2230 | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
2231 | if (ret < 0) |
2232 | goto out; |
2233 | regulator->min_uV = min_uV; |
2234 | regulator->max_uV = max_uV; |
2235 | |
2236 | ret = regulator_check_consumers(rdev, &min_uV, &max_uV); |
2237 | if (ret < 0) |
2238 | goto out; |
2239 | |
2240 | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
2241 | |
2242 | out: |
2243 | mutex_unlock(&rdev->mutex); |
2244 | return ret; |
2245 | } |
2246 | EXPORT_SYMBOL_GPL(regulator_set_voltage); |
2247 | |
2248 | /** |
2249 | * regulator_set_voltage_time - get raise/fall time |
2250 | * @regulator: regulator source |
2251 | * @old_uV: starting voltage in microvolts |
2252 | * @new_uV: target voltage in microvolts |
2253 | * |
2254 | * Provided with the starting and ending voltage, this function attempts to |
2255 | * calculate the time in microseconds required to rise or fall to this new |
2256 | * voltage. |
2257 | */ |
2258 | int regulator_set_voltage_time(struct regulator *regulator, |
2259 | int old_uV, int new_uV) |
2260 | { |
2261 | struct regulator_dev *rdev = regulator->rdev; |
2262 | struct regulator_ops *ops = rdev->desc->ops; |
2263 | int old_sel = -1; |
2264 | int new_sel = -1; |
2265 | int voltage; |
2266 | int i; |
2267 | |
2268 | /* Currently requires operations to do this */ |
2269 | if (!ops->list_voltage || !ops->set_voltage_time_sel |
2270 | || !rdev->desc->n_voltages) |
2271 | return -EINVAL; |
2272 | |
2273 | for (i = 0; i < rdev->desc->n_voltages; i++) { |
2274 | /* We only look for exact voltage matches here */ |
2275 | voltage = regulator_list_voltage(regulator, i); |
2276 | if (voltage < 0) |
2277 | return -EINVAL; |
2278 | if (voltage == 0) |
2279 | continue; |
2280 | if (voltage == old_uV) |
2281 | old_sel = i; |
2282 | if (voltage == new_uV) |
2283 | new_sel = i; |
2284 | } |
2285 | |
2286 | if (old_sel < 0 || new_sel < 0) |
2287 | return -EINVAL; |
2288 | |
2289 | return ops->set_voltage_time_sel(rdev, old_sel, new_sel); |
2290 | } |
2291 | EXPORT_SYMBOL_GPL(regulator_set_voltage_time); |
2292 | |
2293 | /** |
2294 | *regulator_set_voltage_time_sel - get raise/fall time |
2295 | * @regulator: regulator source |
2296 | * @old_selector: selector for starting voltage |
2297 | * @new_selector: selector for target voltage |
2298 | * |
2299 | * Provided with the starting and target voltage selectors, this function |
2300 | * returns time in microseconds required to rise or fall to this new voltage |
2301 | * |
2302 | * Drivers providing ramp_delay in regulation_constraints can use this as their |
2303 | * set_voltage_time_sel() operation. |
2304 | */ |
2305 | int regulator_set_voltage_time_sel(struct regulator_dev *rdev, |
2306 | unsigned int old_selector, |
2307 | unsigned int new_selector) |
2308 | { |
2309 | unsigned int ramp_delay = 0; |
2310 | int old_volt, new_volt; |
2311 | |
2312 | if (rdev->constraints->ramp_delay) |
2313 | ramp_delay = rdev->constraints->ramp_delay; |
2314 | else if (rdev->desc->ramp_delay) |
2315 | ramp_delay = rdev->desc->ramp_delay; |
2316 | |
2317 | if (ramp_delay == 0) { |
2318 | rdev_warn(rdev, "ramp_delay not set\n"); |
2319 | return 0; |
2320 | } |
2321 | |
2322 | /* sanity check */ |
2323 | if (!rdev->desc->ops->list_voltage) |
2324 | return -EINVAL; |
2325 | |
2326 | old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); |
2327 | new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); |
2328 | |
2329 | return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); |
2330 | } |
2331 | EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); |
2332 | |
2333 | /** |
2334 | * regulator_sync_voltage - re-apply last regulator output voltage |
2335 | * @regulator: regulator source |
2336 | * |
2337 | * Re-apply the last configured voltage. This is intended to be used |
2338 | * where some external control source the consumer is cooperating with |
2339 | * has caused the configured voltage to change. |
2340 | */ |
2341 | int regulator_sync_voltage(struct regulator *regulator) |
2342 | { |
2343 | struct regulator_dev *rdev = regulator->rdev; |
2344 | int ret, min_uV, max_uV; |
2345 | |
2346 | mutex_lock(&rdev->mutex); |
2347 | |
2348 | if (!rdev->desc->ops->set_voltage && |
2349 | !rdev->desc->ops->set_voltage_sel) { |
2350 | ret = -EINVAL; |
2351 | goto out; |
2352 | } |
2353 | |
2354 | /* This is only going to work if we've had a voltage configured. */ |
2355 | if (!regulator->min_uV && !regulator->max_uV) { |
2356 | ret = -EINVAL; |
2357 | goto out; |
2358 | } |
2359 | |
2360 | min_uV = regulator->min_uV; |
2361 | max_uV = regulator->max_uV; |
2362 | |
2363 | /* This should be a paranoia check... */ |
2364 | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
2365 | if (ret < 0) |
2366 | goto out; |
2367 | |
2368 | ret = regulator_check_consumers(rdev, &min_uV, &max_uV); |
2369 | if (ret < 0) |
2370 | goto out; |
2371 | |
2372 | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
2373 | |
2374 | out: |
2375 | mutex_unlock(&rdev->mutex); |
2376 | return ret; |
2377 | } |
2378 | EXPORT_SYMBOL_GPL(regulator_sync_voltage); |
2379 | |
2380 | static int _regulator_get_voltage(struct regulator_dev *rdev) |
2381 | { |
2382 | int sel, ret; |
2383 | |
2384 | if (rdev->desc->ops->get_voltage_sel) { |
2385 | sel = rdev->desc->ops->get_voltage_sel(rdev); |
2386 | if (sel < 0) |
2387 | return sel; |
2388 | ret = rdev->desc->ops->list_voltage(rdev, sel); |
2389 | } else if (rdev->desc->ops->get_voltage) { |
2390 | ret = rdev->desc->ops->get_voltage(rdev); |
2391 | } else { |
2392 | return -EINVAL; |
2393 | } |
2394 | |
2395 | if (ret < 0) |
2396 | return ret; |
2397 | return ret - rdev->constraints->uV_offset; |
2398 | } |
2399 | |
2400 | /** |
2401 | * regulator_get_voltage - get regulator output voltage |
2402 | * @regulator: regulator source |
2403 | * |
2404 | * This returns the current regulator voltage in uV. |
2405 | * |
2406 | * NOTE: If the regulator is disabled it will return the voltage value. This |
2407 | * function should not be used to determine regulator state. |
2408 | */ |
2409 | int regulator_get_voltage(struct regulator *regulator) |
2410 | { |
2411 | int ret; |
2412 | |
2413 | mutex_lock(®ulator->rdev->mutex); |
2414 | |
2415 | ret = _regulator_get_voltage(regulator->rdev); |
2416 | |
2417 | mutex_unlock(®ulator->rdev->mutex); |
2418 | |
2419 | return ret; |
2420 | } |
2421 | EXPORT_SYMBOL_GPL(regulator_get_voltage); |
2422 | |
2423 | /** |
2424 | * regulator_set_current_limit - set regulator output current limit |
2425 | * @regulator: regulator source |
2426 | * @min_uA: Minimuum supported current in uA |
2427 | * @max_uA: Maximum supported current in uA |
2428 | * |
2429 | * Sets current sink to the desired output current. This can be set during |
2430 | * any regulator state. IOW, regulator can be disabled or enabled. |
2431 | * |
2432 | * If the regulator is enabled then the current will change to the new value |
2433 | * immediately otherwise if the regulator is disabled the regulator will |
2434 | * output at the new current when enabled. |
2435 | * |
2436 | * NOTE: Regulator system constraints must be set for this regulator before |
2437 | * calling this function otherwise this call will fail. |
2438 | */ |
2439 | int regulator_set_current_limit(struct regulator *regulator, |
2440 | int min_uA, int max_uA) |
2441 | { |
2442 | struct regulator_dev *rdev = regulator->rdev; |
2443 | int ret; |
2444 | |
2445 | mutex_lock(&rdev->mutex); |
2446 | |
2447 | /* sanity check */ |
2448 | if (!rdev->desc->ops->set_current_limit) { |
2449 | ret = -EINVAL; |
2450 | goto out; |
2451 | } |
2452 | |
2453 | /* constraints check */ |
2454 | ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); |
2455 | if (ret < 0) |
2456 | goto out; |
2457 | |
2458 | ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); |
2459 | out: |
2460 | mutex_unlock(&rdev->mutex); |
2461 | return ret; |
2462 | } |
2463 | EXPORT_SYMBOL_GPL(regulator_set_current_limit); |
2464 | |
2465 | static int _regulator_get_current_limit(struct regulator_dev *rdev) |
2466 | { |
2467 | int ret; |
2468 | |
2469 | mutex_lock(&rdev->mutex); |
2470 | |
2471 | /* sanity check */ |
2472 | if (!rdev->desc->ops->get_current_limit) { |
2473 | ret = -EINVAL; |
2474 | goto out; |
2475 | } |
2476 | |
2477 | ret = rdev->desc->ops->get_current_limit(rdev); |
2478 | out: |
2479 | mutex_unlock(&rdev->mutex); |
2480 | return ret; |
2481 | } |
2482 | |
2483 | /** |
2484 | * regulator_get_current_limit - get regulator output current |
2485 | * @regulator: regulator source |
2486 | * |
2487 | * This returns the current supplied by the specified current sink in uA. |
2488 | * |
2489 | * NOTE: If the regulator is disabled it will return the current value. This |
2490 | * function should not be used to determine regulator state. |
2491 | */ |
2492 | int regulator_get_current_limit(struct regulator *regulator) |
2493 | { |
2494 | return _regulator_get_current_limit(regulator->rdev); |
2495 | } |
2496 | EXPORT_SYMBOL_GPL(regulator_get_current_limit); |
2497 | |
2498 | /** |
2499 | * regulator_set_mode - set regulator operating mode |
2500 | * @regulator: regulator source |
2501 | * @mode: operating mode - one of the REGULATOR_MODE constants |
2502 | * |
2503 | * Set regulator operating mode to increase regulator efficiency or improve |
2504 | * regulation performance. |
2505 | * |
2506 | * NOTE: Regulator system constraints must be set for this regulator before |
2507 | * calling this function otherwise this call will fail. |
2508 | */ |
2509 | int regulator_set_mode(struct regulator *regulator, unsigned int mode) |
2510 | { |
2511 | struct regulator_dev *rdev = regulator->rdev; |
2512 | int ret; |
2513 | int regulator_curr_mode; |
2514 | |
2515 | mutex_lock(&rdev->mutex); |
2516 | |
2517 | /* sanity check */ |
2518 | if (!rdev->desc->ops->set_mode) { |
2519 | ret = -EINVAL; |
2520 | goto out; |
2521 | } |
2522 | |
2523 | /* return if the same mode is requested */ |
2524 | if (rdev->desc->ops->get_mode) { |
2525 | regulator_curr_mode = rdev->desc->ops->get_mode(rdev); |
2526 | if (regulator_curr_mode == mode) { |
2527 | ret = 0; |
2528 | goto out; |
2529 | } |
2530 | } |
2531 | |
2532 | /* constraints check */ |
2533 | ret = regulator_mode_constrain(rdev, &mode); |
2534 | if (ret < 0) |
2535 | goto out; |
2536 | |
2537 | ret = rdev->desc->ops->set_mode(rdev, mode); |
2538 | out: |
2539 | mutex_unlock(&rdev->mutex); |
2540 | return ret; |
2541 | } |
2542 | EXPORT_SYMBOL_GPL(regulator_set_mode); |
2543 | |
2544 | static unsigned int _regulator_get_mode(struct regulator_dev *rdev) |
2545 | { |
2546 | int ret; |
2547 | |
2548 | mutex_lock(&rdev->mutex); |
2549 | |
2550 | /* sanity check */ |
2551 | if (!rdev->desc->ops->get_mode) { |
2552 | ret = -EINVAL; |
2553 | goto out; |
2554 | } |
2555 | |
2556 | ret = rdev->desc->ops->get_mode(rdev); |
2557 | out: |
2558 | mutex_unlock(&rdev->mutex); |
2559 | return ret; |
2560 | } |
2561 | |
2562 | /** |
2563 | * regulator_get_mode - get regulator operating mode |
2564 | * @regulator: regulator source |
2565 | * |
2566 | * Get the current regulator operating mode. |
2567 | */ |
2568 | unsigned int regulator_get_mode(struct regulator *regulator) |
2569 | { |
2570 | return _regulator_get_mode(regulator->rdev); |
2571 | } |
2572 | EXPORT_SYMBOL_GPL(regulator_get_mode); |
2573 | |
2574 | /** |
2575 | * regulator_set_optimum_mode - set regulator optimum operating mode |
2576 | * @regulator: regulator source |
2577 | * @uA_load: load current |
2578 | * |
2579 | * Notifies the regulator core of a new device load. This is then used by |
2580 | * DRMS (if enabled by constraints) to set the most efficient regulator |
2581 | * operating mode for the new regulator loading. |
2582 | * |
2583 | * Consumer devices notify their supply regulator of the maximum power |
2584 | * they will require (can be taken from device datasheet in the power |
2585 | * consumption tables) when they change operational status and hence power |
2586 | * state. Examples of operational state changes that can affect power |
2587 | * consumption are :- |
2588 | * |
2589 | * o Device is opened / closed. |
2590 | * o Device I/O is about to begin or has just finished. |
2591 | * o Device is idling in between work. |
2592 | * |
2593 | * This information is also exported via sysfs to userspace. |
2594 | * |
2595 | * DRMS will sum the total requested load on the regulator and change |
2596 | * to the most efficient operating mode if platform constraints allow. |
2597 | * |
2598 | * Returns the new regulator mode or error. |
2599 | */ |
2600 | int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) |
2601 | { |
2602 | struct regulator_dev *rdev = regulator->rdev; |
2603 | struct regulator *consumer; |
2604 | int ret, output_uV, input_uV = 0, total_uA_load = 0; |
2605 | unsigned int mode; |
2606 | |
2607 | if (rdev->supply) |
2608 | input_uV = regulator_get_voltage(rdev->supply); |
2609 | |
2610 | mutex_lock(&rdev->mutex); |
2611 | |
2612 | /* |
2613 | * first check to see if we can set modes at all, otherwise just |
2614 | * tell the consumer everything is OK. |
2615 | */ |
2616 | regulator->uA_load = uA_load; |
2617 | ret = regulator_check_drms(rdev); |
2618 | if (ret < 0) { |
2619 | ret = 0; |
2620 | goto out; |
2621 | } |
2622 | |
2623 | if (!rdev->desc->ops->get_optimum_mode) |
2624 | goto out; |
2625 | |
2626 | /* |
2627 | * we can actually do this so any errors are indicators of |
2628 | * potential real failure. |
2629 | */ |
2630 | ret = -EINVAL; |
2631 | |
2632 | if (!rdev->desc->ops->set_mode) |
2633 | goto out; |
2634 | |
2635 | /* get output voltage */ |
2636 | output_uV = _regulator_get_voltage(rdev); |
2637 | if (output_uV <= 0) { |
2638 | rdev_err(rdev, "invalid output voltage found\n"); |
2639 | goto out; |
2640 | } |
2641 | |
2642 | /* No supply? Use constraint voltage */ |
2643 | if (input_uV <= 0) |
2644 | input_uV = rdev->constraints->input_uV; |
2645 | if (input_uV <= 0) { |
2646 | rdev_err(rdev, "invalid input voltage found\n"); |
2647 | goto out; |
2648 | } |
2649 | |
2650 | /* calc total requested load for this regulator */ |
2651 | list_for_each_entry(consumer, &rdev->consumer_list, list) |
2652 | total_uA_load += consumer->uA_load; |
2653 | |
2654 | mode = rdev->desc->ops->get_optimum_mode(rdev, |
2655 | input_uV, output_uV, |
2656 | total_uA_load); |
2657 | ret = regulator_mode_constrain(rdev, &mode); |
2658 | if (ret < 0) { |
2659 | rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", |
2660 | total_uA_load, input_uV, output_uV); |
2661 | goto out; |
2662 | } |
2663 | |
2664 | ret = rdev->desc->ops->set_mode(rdev, mode); |
2665 | if (ret < 0) { |
2666 | rdev_err(rdev, "failed to set optimum mode %x\n", mode); |
2667 | goto out; |
2668 | } |
2669 | ret = mode; |
2670 | out: |
2671 | mutex_unlock(&rdev->mutex); |
2672 | return ret; |
2673 | } |
2674 | EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); |
2675 | |
2676 | /** |
2677 | * regulator_register_notifier - register regulator event notifier |
2678 | * @regulator: regulator source |
2679 | * @nb: notifier block |
2680 | * |
2681 | * Register notifier block to receive regulator events. |
2682 | */ |
2683 | int regulator_register_notifier(struct regulator *regulator, |
2684 | struct notifier_block *nb) |
2685 | { |
2686 | return blocking_notifier_chain_register(®ulator->rdev->notifier, |
2687 | nb); |
2688 | } |
2689 | EXPORT_SYMBOL_GPL(regulator_register_notifier); |
2690 | |
2691 | /** |
2692 | * regulator_unregister_notifier - unregister regulator event notifier |
2693 | * @regulator: regulator source |
2694 | * @nb: notifier block |
2695 | * |
2696 | * Unregister regulator event notifier block. |
2697 | */ |
2698 | int regulator_unregister_notifier(struct regulator *regulator, |
2699 | struct notifier_block *nb) |
2700 | { |
2701 | return blocking_notifier_chain_unregister(®ulator->rdev->notifier, |
2702 | nb); |
2703 | } |
2704 | EXPORT_SYMBOL_GPL(regulator_unregister_notifier); |
2705 | |
2706 | /* notify regulator consumers and downstream regulator consumers. |
2707 | * Note mutex must be held by caller. |
2708 | */ |
2709 | static void _notifier_call_chain(struct regulator_dev *rdev, |
2710 | unsigned long event, void *data) |
2711 | { |
2712 | /* call rdev chain first */ |
2713 | blocking_notifier_call_chain(&rdev->notifier, event, data); |
2714 | } |
2715 | |
2716 | /** |
2717 | * regulator_bulk_get - get multiple regulator consumers |
2718 | * |
2719 | * @dev: Device to supply |
2720 | * @num_consumers: Number of consumers to register |
2721 | * @consumers: Configuration of consumers; clients are stored here. |
2722 | * |
2723 | * @return 0 on success, an errno on failure. |
2724 | * |
2725 | * This helper function allows drivers to get several regulator |
2726 | * consumers in one operation. If any of the regulators cannot be |
2727 | * acquired then any regulators that were allocated will be freed |
2728 | * before returning to the caller. |
2729 | */ |
2730 | int regulator_bulk_get(struct device *dev, int num_consumers, |
2731 | struct regulator_bulk_data *consumers) |
2732 | { |
2733 | int i; |
2734 | int ret; |
2735 | |
2736 | for (i = 0; i < num_consumers; i++) |
2737 | consumers[i].consumer = NULL; |
2738 | |
2739 | for (i = 0; i < num_consumers; i++) { |
2740 | consumers[i].consumer = regulator_get(dev, |
2741 | consumers[i].supply); |
2742 | if (IS_ERR(consumers[i].consumer)) { |
2743 | ret = PTR_ERR(consumers[i].consumer); |
2744 | dev_err(dev, "Failed to get supply '%s': %d\n", |
2745 | consumers[i].supply, ret); |
2746 | consumers[i].consumer = NULL; |
2747 | goto err; |
2748 | } |
2749 | } |
2750 | |
2751 | return 0; |
2752 | |
2753 | err: |
2754 | while (--i >= 0) |
2755 | regulator_put(consumers[i].consumer); |
2756 | |
2757 | return ret; |
2758 | } |
2759 | EXPORT_SYMBOL_GPL(regulator_bulk_get); |
2760 | |
2761 | /** |
2762 | * devm_regulator_bulk_get - managed get multiple regulator consumers |
2763 | * |
2764 | * @dev: Device to supply |
2765 | * @num_consumers: Number of consumers to register |
2766 | * @consumers: Configuration of consumers; clients are stored here. |
2767 | * |
2768 | * @return 0 on success, an errno on failure. |
2769 | * |
2770 | * This helper function allows drivers to get several regulator |
2771 | * consumers in one operation with management, the regulators will |
2772 | * automatically be freed when the device is unbound. If any of the |
2773 | * regulators cannot be acquired then any regulators that were |
2774 | * allocated will be freed before returning to the caller. |
2775 | */ |
2776 | int devm_regulator_bulk_get(struct device *dev, int num_consumers, |
2777 | struct regulator_bulk_data *consumers) |
2778 | { |
2779 | int i; |
2780 | int ret; |
2781 | |
2782 | for (i = 0; i < num_consumers; i++) |
2783 | consumers[i].consumer = NULL; |
2784 | |
2785 | for (i = 0; i < num_consumers; i++) { |
2786 | consumers[i].consumer = devm_regulator_get(dev, |
2787 | consumers[i].supply); |
2788 | if (IS_ERR(consumers[i].consumer)) { |
2789 | ret = PTR_ERR(consumers[i].consumer); |
2790 | dev_err(dev, "Failed to get supply '%s': %d\n", |
2791 | consumers[i].supply, ret); |
2792 | consumers[i].consumer = NULL; |
2793 | goto err; |
2794 | } |
2795 | } |
2796 | |
2797 | return 0; |
2798 | |
2799 | err: |
2800 | for (i = 0; i < num_consumers && consumers[i].consumer; i++) |
2801 | devm_regulator_put(consumers[i].consumer); |
2802 | |
2803 | return ret; |
2804 | } |
2805 | EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); |
2806 | |
2807 | static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) |
2808 | { |
2809 | struct regulator_bulk_data *bulk = data; |
2810 | |
2811 | bulk->ret = regulator_enable(bulk->consumer); |
2812 | } |
2813 | |
2814 | /** |
2815 | * regulator_bulk_enable - enable multiple regulator consumers |
2816 | * |
2817 | * @num_consumers: Number of consumers |
2818 | * @consumers: Consumer data; clients are stored here. |
2819 | * @return 0 on success, an errno on failure |
2820 | * |
2821 | * This convenience API allows consumers to enable multiple regulator |
2822 | * clients in a single API call. If any consumers cannot be enabled |
2823 | * then any others that were enabled will be disabled again prior to |
2824 | * return. |
2825 | */ |
2826 | int regulator_bulk_enable(int num_consumers, |
2827 | struct regulator_bulk_data *consumers) |
2828 | { |
2829 | ASYNC_DOMAIN_EXCLUSIVE(async_domain); |
2830 | int i; |
2831 | int ret = 0; |
2832 | |
2833 | for (i = 0; i < num_consumers; i++) { |
2834 | if (consumers[i].consumer->always_on) |
2835 | consumers[i].ret = 0; |
2836 | else |
2837 | async_schedule_domain(regulator_bulk_enable_async, |
2838 | &consumers[i], &async_domain); |
2839 | } |
2840 | |
2841 | async_synchronize_full_domain(&async_domain); |
2842 | |
2843 | /* If any consumer failed we need to unwind any that succeeded */ |
2844 | for (i = 0; i < num_consumers; i++) { |
2845 | if (consumers[i].ret != 0) { |
2846 | ret = consumers[i].ret; |
2847 | goto err; |
2848 | } |
2849 | } |
2850 | |
2851 | return 0; |
2852 | |
2853 | err: |
2854 | pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); |
2855 | while (--i >= 0) |
2856 | regulator_disable(consumers[i].consumer); |
2857 | |
2858 | return ret; |
2859 | } |
2860 | EXPORT_SYMBOL_GPL(regulator_bulk_enable); |
2861 | |
2862 | /** |
2863 | * regulator_bulk_disable - disable multiple regulator consumers |
2864 | * |
2865 | * @num_consumers: Number of consumers |
2866 | * @consumers: Consumer data; clients are stored here. |
2867 | * @return 0 on success, an errno on failure |
2868 | * |
2869 | * This convenience API allows consumers to disable multiple regulator |
2870 | * clients in a single API call. If any consumers cannot be disabled |
2871 | * then any others that were disabled will be enabled again prior to |
2872 | * return. |
2873 | */ |
2874 | int regulator_bulk_disable(int num_consumers, |
2875 | struct regulator_bulk_data *consumers) |
2876 | { |
2877 | int i; |
2878 | int ret, r; |
2879 | |
2880 | for (i = num_consumers - 1; i >= 0; --i) { |
2881 | ret = regulator_disable(consumers[i].consumer); |
2882 | if (ret != 0) |
2883 | goto err; |
2884 | } |
2885 | |
2886 | return 0; |
2887 | |
2888 | err: |
2889 | pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); |
2890 | for (++i; i < num_consumers; ++i) { |
2891 | r = regulator_enable(consumers[i].consumer); |
2892 | if (r != 0) |
2893 | pr_err("Failed to reename %s: %d\n", |
2894 | consumers[i].supply, r); |
2895 | } |
2896 | |
2897 | return ret; |
2898 | } |
2899 | EXPORT_SYMBOL_GPL(regulator_bulk_disable); |
2900 | |
2901 | /** |
2902 | * regulator_bulk_force_disable - force disable multiple regulator consumers |
2903 | * |
2904 | * @num_consumers: Number of consumers |
2905 | * @consumers: Consumer data; clients are stored here. |
2906 | * @return 0 on success, an errno on failure |
2907 | * |
2908 | * This convenience API allows consumers to forcibly disable multiple regulator |
2909 | * clients in a single API call. |
2910 | * NOTE: This should be used for situations when device damage will |
2911 | * likely occur if the regulators are not disabled (e.g. over temp). |
2912 | * Although regulator_force_disable function call for some consumers can |
2913 | * return error numbers, the function is called for all consumers. |
2914 | */ |
2915 | int regulator_bulk_force_disable(int num_consumers, |
2916 | struct regulator_bulk_data *consumers) |
2917 | { |
2918 | int i; |
2919 | int ret; |
2920 | |
2921 | for (i = 0; i < num_consumers; i++) |
2922 | consumers[i].ret = |
2923 | regulator_force_disable(consumers[i].consumer); |
2924 | |
2925 | for (i = 0; i < num_consumers; i++) { |
2926 | if (consumers[i].ret != 0) { |
2927 | ret = consumers[i].ret; |
2928 | goto out; |
2929 | } |
2930 | } |
2931 | |
2932 | return 0; |
2933 | out: |
2934 | return ret; |
2935 | } |
2936 | EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); |
2937 | |
2938 | /** |
2939 | * regulator_bulk_free - free multiple regulator consumers |
2940 | * |
2941 | * @num_consumers: Number of consumers |
2942 | * @consumers: Consumer data; clients are stored here. |
2943 | * |
2944 | * This convenience API allows consumers to free multiple regulator |
2945 | * clients in a single API call. |
2946 | */ |
2947 | void regulator_bulk_free(int num_consumers, |
2948 | struct regulator_bulk_data *consumers) |
2949 | { |
2950 | int i; |
2951 | |
2952 | for (i = 0; i < num_consumers; i++) { |
2953 | regulator_put(consumers[i].consumer); |
2954 | consumers[i].consumer = NULL; |
2955 | } |
2956 | } |
2957 | EXPORT_SYMBOL_GPL(regulator_bulk_free); |
2958 | |
2959 | /** |
2960 | * regulator_notifier_call_chain - call regulator event notifier |
2961 | * @rdev: regulator source |
2962 | * @event: notifier block |
2963 | * @data: callback-specific data. |
2964 | * |
2965 | * Called by regulator drivers to notify clients a regulator event has |
2966 | * occurred. We also notify regulator clients downstream. |
2967 | * Note lock must be held by caller. |
2968 | */ |
2969 | int regulator_notifier_call_chain(struct regulator_dev *rdev, |
2970 | unsigned long event, void *data) |
2971 | { |
2972 | _notifier_call_chain(rdev, event, data); |
2973 | return NOTIFY_DONE; |
2974 | |
2975 | } |
2976 | EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); |
2977 | |
2978 | /** |
2979 | * regulator_mode_to_status - convert a regulator mode into a status |
2980 | * |
2981 | * @mode: Mode to convert |
2982 | * |
2983 | * Convert a regulator mode into a status. |
2984 | */ |
2985 | int regulator_mode_to_status(unsigned int mode) |
2986 | { |
2987 | switch (mode) { |
2988 | case REGULATOR_MODE_FAST: |
2989 | return REGULATOR_STATUS_FAST; |
2990 | case REGULATOR_MODE_NORMAL: |
2991 | return REGULATOR_STATUS_NORMAL; |
2992 | case REGULATOR_MODE_IDLE: |
2993 | return REGULATOR_STATUS_IDLE; |
2994 | case REGULATOR_MODE_STANDBY: |
2995 | return REGULATOR_STATUS_STANDBY; |
2996 | default: |
2997 | return REGULATOR_STATUS_UNDEFINED; |
2998 | } |
2999 | } |
3000 | EXPORT_SYMBOL_GPL(regulator_mode_to_status); |
3001 | |
3002 | /* |
3003 | * To avoid cluttering sysfs (and memory) with useless state, only |
3004 | * create attributes that can be meaningfully displayed. |
3005 | */ |
3006 | static int add_regulator_attributes(struct regulator_dev *rdev) |
3007 | { |
3008 | struct device *dev = &rdev->dev; |
3009 | struct regulator_ops *ops = rdev->desc->ops; |
3010 | int status = 0; |
3011 | |
3012 | /* some attributes need specific methods to be displayed */ |
3013 | if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || |
3014 | (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) { |
3015 | status = device_create_file(dev, &dev_attr_microvolts); |
3016 | if (status < 0) |
3017 | return status; |
3018 | } |
3019 | if (ops->get_current_limit) { |
3020 | status = device_create_file(dev, &dev_attr_microamps); |
3021 | if (status < 0) |
3022 | return status; |
3023 | } |
3024 | if (ops->get_mode) { |
3025 | status = device_create_file(dev, &dev_attr_opmode); |
3026 | if (status < 0) |
3027 | return status; |
3028 | } |
3029 | if (ops->is_enabled) { |
3030 | status = device_create_file(dev, &dev_attr_state); |
3031 | if (status < 0) |
3032 | return status; |
3033 | } |
3034 | if (ops->get_status) { |
3035 | status = device_create_file(dev, &dev_attr_status); |
3036 | if (status < 0) |
3037 | return status; |
3038 | } |
3039 | |
3040 | /* some attributes are type-specific */ |
3041 | if (rdev->desc->type == REGULATOR_CURRENT) { |
3042 | status = device_create_file(dev, &dev_attr_requested_microamps); |
3043 | if (status < 0) |
3044 | return status; |
3045 | } |
3046 | |
3047 | /* all the other attributes exist to support constraints; |
3048 | * don't show them if there are no constraints, or if the |
3049 | * relevant supporting methods are missing. |
3050 | */ |
3051 | if (!rdev->constraints) |
3052 | return status; |
3053 | |
3054 | /* constraints need specific supporting methods */ |
3055 | if (ops->set_voltage || ops->set_voltage_sel) { |
3056 | status = device_create_file(dev, &dev_attr_min_microvolts); |
3057 | if (status < 0) |
3058 | return status; |
3059 | status = device_create_file(dev, &dev_attr_max_microvolts); |
3060 | if (status < 0) |
3061 | return status; |
3062 | } |
3063 | if (ops->set_current_limit) { |
3064 | status = device_create_file(dev, &dev_attr_min_microamps); |
3065 | if (status < 0) |
3066 | return status; |
3067 | status = device_create_file(dev, &dev_attr_max_microamps); |
3068 | if (status < 0) |
3069 | return status; |
3070 | } |
3071 | |
3072 | status = device_create_file(dev, &dev_attr_suspend_standby_state); |
3073 | if (status < 0) |
3074 | return status; |
3075 | status = device_create_file(dev, &dev_attr_suspend_mem_state); |
3076 | if (status < 0) |
3077 | return status; |
3078 | status = device_create_file(dev, &dev_attr_suspend_disk_state); |
3079 | if (status < 0) |
3080 | return status; |
3081 | |
3082 | if (ops->set_suspend_voltage) { |
3083 | status = device_create_file(dev, |
3084 | &dev_attr_suspend_standby_microvolts); |
3085 | if (status < 0) |
3086 | return status; |
3087 | status = device_create_file(dev, |
3088 | &dev_attr_suspend_mem_microvolts); |
3089 | if (status < 0) |
3090 | return status; |
3091 | status = device_create_file(dev, |
3092 | &dev_attr_suspend_disk_microvolts); |
3093 | if (status < 0) |
3094 | return status; |
3095 | } |
3096 | |
3097 | if (ops->set_suspend_mode) { |
3098 | status = device_create_file(dev, |
3099 | &dev_attr_suspend_standby_mode); |
3100 | if (status < 0) |
3101 | return status; |
3102 | status = device_create_file(dev, |
3103 | &dev_attr_suspend_mem_mode); |
3104 | if (status < 0) |
3105 | return status; |
3106 | status = device_create_file(dev, |
3107 | &dev_attr_suspend_disk_mode); |
3108 | if (status < 0) |
3109 | return status; |
3110 | } |
3111 | |
3112 | return status; |
3113 | } |
3114 | |
3115 | static void rdev_init_debugfs(struct regulator_dev *rdev) |
3116 | { |
3117 | rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); |
3118 | if (!rdev->debugfs) { |
3119 | rdev_warn(rdev, "Failed to create debugfs directory\n"); |
3120 | return; |
3121 | } |
3122 | |
3123 | debugfs_create_u32("use_count", 0444, rdev->debugfs, |
3124 | &rdev->use_count); |
3125 | debugfs_create_u32("open_count", 0444, rdev->debugfs, |
3126 | &rdev->open_count); |
3127 | } |
3128 | |
3129 | /** |
3130 | * regulator_register - register regulator |
3131 | * @regulator_desc: regulator to register |
3132 | * @config: runtime configuration for regulator |
3133 | * |
3134 | * Called by regulator drivers to register a regulator. |
3135 | * Returns 0 on success. |
3136 | */ |
3137 | struct regulator_dev * |
3138 | regulator_register(const struct regulator_desc *regulator_desc, |
3139 | const struct regulator_config *config) |
3140 | { |
3141 | const struct regulation_constraints *constraints = NULL; |
3142 | const struct regulator_init_data *init_data; |
3143 | static atomic_t regulator_no = ATOMIC_INIT(0); |
3144 | struct regulator_dev *rdev; |
3145 | struct device *dev; |
3146 | int ret, i; |
3147 | const char *supply = NULL; |
3148 | |
3149 | if (regulator_desc == NULL || config == NULL) |
3150 | return ERR_PTR(-EINVAL); |
3151 | |
3152 | dev = config->dev; |
3153 | WARN_ON(!dev); |
3154 | |
3155 | if (regulator_desc->name == NULL || regulator_desc->ops == NULL) |
3156 | return ERR_PTR(-EINVAL); |
3157 | |
3158 | if (regulator_desc->type != REGULATOR_VOLTAGE && |
3159 | regulator_desc->type != REGULATOR_CURRENT) |
3160 | return ERR_PTR(-EINVAL); |
3161 | |
3162 | /* Only one of each should be implemented */ |
3163 | WARN_ON(regulator_desc->ops->get_voltage && |
3164 | regulator_desc->ops->get_voltage_sel); |
3165 | WARN_ON(regulator_desc->ops->set_voltage && |
3166 | regulator_desc->ops->set_voltage_sel); |
3167 | |
3168 | /* If we're using selectors we must implement list_voltage. */ |
3169 | if (regulator_desc->ops->get_voltage_sel && |
3170 | !regulator_desc->ops->list_voltage) { |
3171 | return ERR_PTR(-EINVAL); |
3172 | } |
3173 | if (regulator_desc->ops->set_voltage_sel && |
3174 | !regulator_desc->ops->list_voltage) { |
3175 | return ERR_PTR(-EINVAL); |
3176 | } |
3177 | |
3178 | init_data = config->init_data; |
3179 | |
3180 | rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); |
3181 | if (rdev == NULL) |
3182 | return ERR_PTR(-ENOMEM); |
3183 | |
3184 | mutex_lock(®ulator_list_mutex); |
3185 | |
3186 | mutex_init(&rdev->mutex); |
3187 | rdev->reg_data = config->driver_data; |
3188 | rdev->owner = regulator_desc->owner; |
3189 | rdev->desc = regulator_desc; |
3190 | if (config->regmap) |
3191 | rdev->regmap = config->regmap; |
3192 | else |
3193 | rdev->regmap = dev_get_regmap(dev, NULL); |
3194 | INIT_LIST_HEAD(&rdev->consumer_list); |
3195 | INIT_LIST_HEAD(&rdev->list); |
3196 | BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); |
3197 | INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); |
3198 | |
3199 | /* preform any regulator specific init */ |
3200 | if (init_data && init_data->regulator_init) { |
3201 | ret = init_data->regulator_init(rdev->reg_data); |
3202 | if (ret < 0) |
3203 | goto clean; |
3204 | } |
3205 | |
3206 | /* register with sysfs */ |
3207 | rdev->dev.class = ®ulator_class; |
3208 | rdev->dev.of_node = config->of_node; |
3209 | rdev->dev.parent = dev; |
3210 | dev_set_name(&rdev->dev, "regulator.%d", |
3211 | atomic_inc_return(®ulator_no) - 1); |
3212 | ret = device_register(&rdev->dev); |
3213 | if (ret != 0) { |
3214 | put_device(&rdev->dev); |
3215 | goto clean; |
3216 | } |
3217 | |
3218 | dev_set_drvdata(&rdev->dev, rdev); |
3219 | |
3220 | if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { |
3221 | ret = gpio_request_one(config->ena_gpio, |
3222 | GPIOF_DIR_OUT | config->ena_gpio_flags, |
3223 | rdev_get_name(rdev)); |
3224 | if (ret != 0) { |
3225 | rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", |
3226 | config->ena_gpio, ret); |
3227 | goto clean; |
3228 | } |
3229 | |
3230 | rdev->ena_gpio = config->ena_gpio; |
3231 | rdev->ena_gpio_invert = config->ena_gpio_invert; |
3232 | |
3233 | if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) |
3234 | rdev->ena_gpio_state = 1; |
3235 | |
3236 | if (rdev->ena_gpio_invert) |
3237 | rdev->ena_gpio_state = !rdev->ena_gpio_state; |
3238 | } |
3239 | |
3240 | /* set regulator constraints */ |
3241 | if (init_data) |
3242 | constraints = &init_data->constraints; |
3243 | |
3244 | ret = set_machine_constraints(rdev, constraints); |
3245 | if (ret < 0) |
3246 | goto scrub; |
3247 | |
3248 | /* add attributes supported by this regulator */ |
3249 | ret = add_regulator_attributes(rdev); |
3250 | if (ret < 0) |
3251 | goto scrub; |
3252 | |
3253 | if (init_data && init_data->supply_regulator) |
3254 | supply = init_data->supply_regulator; |
3255 | else if (regulator_desc->supply_name) |
3256 | supply = regulator_desc->supply_name; |
3257 | |
3258 | if (supply) { |
3259 | struct regulator_dev *r; |
3260 | |
3261 | r = regulator_dev_lookup(dev, supply, &ret); |
3262 | |
3263 | if (!r) { |
3264 | dev_err(dev, "Failed to find supply %s\n", supply); |
3265 | ret = -EPROBE_DEFER; |
3266 | goto scrub; |
3267 | } |
3268 | |
3269 | ret = set_supply(rdev, r); |
3270 | if (ret < 0) |
3271 | goto scrub; |
3272 | |
3273 | /* Enable supply if rail is enabled */ |
3274 | if (_regulator_is_enabled(rdev)) { |
3275 | ret = regulator_enable(rdev->supply); |
3276 | if (ret < 0) |
3277 | goto scrub; |
3278 | } |
3279 | } |
3280 | |
3281 | /* add consumers devices */ |
3282 | if (init_data) { |
3283 | for (i = 0; i < init_data->num_consumer_supplies; i++) { |
3284 | ret = set_consumer_device_supply(rdev, |
3285 | init_data->consumer_supplies[i].dev_name, |
3286 | init_data->consumer_supplies[i].supply); |
3287 | if (ret < 0) { |
3288 | dev_err(dev, "Failed to set supply %s\n", |
3289 | init_data->consumer_supplies[i].supply); |
3290 | goto unset_supplies; |
3291 | } |
3292 | } |
3293 | } |
3294 | |
3295 | list_add(&rdev->list, ®ulator_list); |
3296 | |
3297 | rdev_init_debugfs(rdev); |
3298 | out: |
3299 | mutex_unlock(®ulator_list_mutex); |
3300 | return rdev; |
3301 | |
3302 | unset_supplies: |
3303 | unset_regulator_supplies(rdev); |
3304 | |
3305 | scrub: |
3306 | if (rdev->supply) |
3307 | regulator_put(rdev->supply); |
3308 | if (rdev->ena_gpio) |
3309 | gpio_free(rdev->ena_gpio); |
3310 | kfree(rdev->constraints); |
3311 | device_unregister(&rdev->dev); |
3312 | /* device core frees rdev */ |
3313 | rdev = ERR_PTR(ret); |
3314 | goto out; |
3315 | |
3316 | clean: |
3317 | kfree(rdev); |
3318 | rdev = ERR_PTR(ret); |
3319 | goto out; |
3320 | } |
3321 | EXPORT_SYMBOL_GPL(regulator_register); |
3322 | |
3323 | /** |
3324 | * regulator_unregister - unregister regulator |
3325 | * @rdev: regulator to unregister |
3326 | * |
3327 | * Called by regulator drivers to unregister a regulator. |
3328 | */ |
3329 | void regulator_unregister(struct regulator_dev *rdev) |
3330 | { |
3331 | if (rdev == NULL) |
3332 | return; |
3333 | |
3334 | if (rdev->supply) |
3335 | regulator_put(rdev->supply); |
3336 | mutex_lock(®ulator_list_mutex); |
3337 | debugfs_remove_recursive(rdev->debugfs); |
3338 | flush_work_sync(&rdev->disable_work.work); |
3339 | WARN_ON(rdev->open_count); |
3340 | unset_regulator_supplies(rdev); |
3341 | list_del(&rdev->list); |
3342 | kfree(rdev->constraints); |
3343 | if (rdev->ena_gpio) |
3344 | gpio_free(rdev->ena_gpio); |
3345 | device_unregister(&rdev->dev); |
3346 | mutex_unlock(®ulator_list_mutex); |
3347 | } |
3348 | EXPORT_SYMBOL_GPL(regulator_unregister); |
3349 | |
3350 | /** |
3351 | * regulator_suspend_prepare - prepare regulators for system wide suspend |
3352 | * @state: system suspend state |
3353 | * |
3354 | * Configure each regulator with it's suspend operating parameters for state. |
3355 | * This will usually be called by machine suspend code prior to supending. |
3356 | */ |
3357 | int regulator_suspend_prepare(suspend_state_t state) |
3358 | { |
3359 | struct regulator_dev *rdev; |
3360 | int ret = 0; |
3361 | |
3362 | /* ON is handled by regulator active state */ |
3363 | if (state == PM_SUSPEND_ON) |
3364 | return -EINVAL; |
3365 | |
3366 | mutex_lock(®ulator_list_mutex); |
3367 | list_for_each_entry(rdev, ®ulator_list, list) { |
3368 | |
3369 | mutex_lock(&rdev->mutex); |
3370 | ret = suspend_prepare(rdev, state); |
3371 | mutex_unlock(&rdev->mutex); |
3372 | |
3373 | if (ret < 0) { |
3374 | rdev_err(rdev, "failed to prepare\n"); |
3375 | goto out; |
3376 | } |
3377 | } |
3378 | out: |
3379 | mutex_unlock(®ulator_list_mutex); |
3380 | return ret; |
3381 | } |
3382 | EXPORT_SYMBOL_GPL(regulator_suspend_prepare); |
3383 | |
3384 | /** |
3385 | * regulator_suspend_finish - resume regulators from system wide suspend |
3386 | * |
3387 | * Turn on regulators that might be turned off by regulator_suspend_prepare |
3388 | * and that should be turned on according to the regulators properties. |
3389 | */ |
3390 | int regulator_suspend_finish(void) |
3391 | { |
3392 | struct regulator_dev *rdev; |
3393 | int ret = 0, error; |
3394 | |
3395 | mutex_lock(®ulator_list_mutex); |
3396 | list_for_each_entry(rdev, ®ulator_list, list) { |
3397 | struct regulator_ops *ops = rdev->desc->ops; |
3398 | |
3399 | mutex_lock(&rdev->mutex); |
3400 | if ((rdev->use_count > 0 || rdev->constraints->always_on) && |
3401 | ops->enable) { |
3402 | error = ops->enable(rdev); |
3403 | if (error) |
3404 | ret = error; |
3405 | } else { |
3406 | if (!has_full_constraints) |
3407 | goto unlock; |
3408 | if (!ops->disable) |
3409 | goto unlock; |
3410 | if (!_regulator_is_enabled(rdev)) |
3411 | goto unlock; |
3412 | |
3413 | error = ops->disable(rdev); |
3414 | if (error) |
3415 | ret = error; |
3416 | } |
3417 | unlock: |
3418 | mutex_unlock(&rdev->mutex); |
3419 | } |
3420 | mutex_unlock(®ulator_list_mutex); |
3421 | return ret; |
3422 | } |
3423 | EXPORT_SYMBOL_GPL(regulator_suspend_finish); |
3424 | |
3425 | /** |
3426 | * regulator_has_full_constraints - the system has fully specified constraints |
3427 | * |
3428 | * Calling this function will cause the regulator API to disable all |
3429 | * regulators which have a zero use count and don't have an always_on |
3430 | * constraint in a late_initcall. |
3431 | * |
3432 | * The intention is that this will become the default behaviour in a |
3433 | * future kernel release so users are encouraged to use this facility |
3434 | * now. |
3435 | */ |
3436 | void regulator_has_full_constraints(void) |
3437 | { |
3438 | has_full_constraints = 1; |
3439 | } |
3440 | EXPORT_SYMBOL_GPL(regulator_has_full_constraints); |
3441 | |
3442 | /** |
3443 | * regulator_use_dummy_regulator - Provide a dummy regulator when none is found |
3444 | * |
3445 | * Calling this function will cause the regulator API to provide a |
3446 | * dummy regulator to consumers if no physical regulator is found, |
3447 | * allowing most consumers to proceed as though a regulator were |
3448 | * configured. This allows systems such as those with software |
3449 | * controllable regulators for the CPU core only to be brought up more |
3450 | * readily. |
3451 | */ |
3452 | void regulator_use_dummy_regulator(void) |
3453 | { |
3454 | board_wants_dummy_regulator = true; |
3455 | } |
3456 | EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); |
3457 | |
3458 | /** |
3459 | * rdev_get_drvdata - get rdev regulator driver data |
3460 | * @rdev: regulator |
3461 | * |
3462 | * Get rdev regulator driver private data. This call can be used in the |
3463 | * regulator driver context. |
3464 | */ |
3465 | void *rdev_get_drvdata(struct regulator_dev *rdev) |
3466 | { |
3467 | return rdev->reg_data; |
3468 | } |
3469 | EXPORT_SYMBOL_GPL(rdev_get_drvdata); |
3470 | |
3471 | /** |
3472 | * regulator_get_drvdata - get regulator driver data |
3473 | * @regulator: regulator |
3474 | * |
3475 | * Get regulator driver private data. This call can be used in the consumer |
3476 | * driver context when non API regulator specific functions need to be called. |
3477 | */ |
3478 | void *regulator_get_drvdata(struct regulator *regulator) |
3479 | { |
3480 | return regulator->rdev->reg_data; |
3481 | } |
3482 | EXPORT_SYMBOL_GPL(regulator_get_drvdata); |
3483 | |
3484 | /** |
3485 | * regulator_set_drvdata - set regulator driver data |
3486 | * @regulator: regulator |
3487 | * @data: data |
3488 | */ |
3489 | void regulator_set_drvdata(struct regulator *regulator, void *data) |
3490 | { |
3491 | regulator->rdev->reg_data = data; |
3492 | } |
3493 | EXPORT_SYMBOL_GPL(regulator_set_drvdata); |
3494 | |
3495 | /** |
3496 | * regulator_get_id - get regulator ID |
3497 | * @rdev: regulator |
3498 | */ |
3499 | int rdev_get_id(struct regulator_dev *rdev) |
3500 | { |
3501 | return rdev->desc->id; |
3502 | } |
3503 | EXPORT_SYMBOL_GPL(rdev_get_id); |
3504 | |
3505 | struct device *rdev_get_dev(struct regulator_dev *rdev) |
3506 | { |
3507 | return &rdev->dev; |
3508 | } |
3509 | EXPORT_SYMBOL_GPL(rdev_get_dev); |
3510 | |
3511 | void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) |
3512 | { |
3513 | return reg_init_data->driver_data; |
3514 | } |
3515 | EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); |
3516 | |
3517 | #ifdef CONFIG_DEBUG_FS |
3518 | static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, |
3519 | size_t count, loff_t *ppos) |
3520 | { |
3521 | char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
3522 | ssize_t len, ret = 0; |
3523 | struct regulator_map *map; |
3524 | |
3525 | if (!buf) |
3526 | return -ENOMEM; |
3527 | |
3528 | list_for_each_entry(map, ®ulator_map_list, list) { |
3529 | len = snprintf(buf + ret, PAGE_SIZE - ret, |
3530 | "%s -> %s.%s\n", |
3531 | rdev_get_name(map->regulator), map->dev_name, |
3532 | map->supply); |
3533 | if (len >= 0) |
3534 | ret += len; |
3535 | if (ret > PAGE_SIZE) { |
3536 | ret = PAGE_SIZE; |
3537 | break; |
3538 | } |
3539 | } |
3540 | |
3541 | ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); |
3542 | |
3543 | kfree(buf); |
3544 | |
3545 | return ret; |
3546 | } |
3547 | #endif |
3548 | |
3549 | static const struct file_operations supply_map_fops = { |
3550 | #ifdef CONFIG_DEBUG_FS |
3551 | .read = supply_map_read_file, |
3552 | .llseek = default_llseek, |
3553 | #endif |
3554 | }; |
3555 | |
3556 | static int __init regulator_init(void) |
3557 | { |
3558 | int ret; |
3559 | |
3560 | ret = class_register(®ulator_class); |
3561 | |
3562 | debugfs_root = debugfs_create_dir("regulator", NULL); |
3563 | if (!debugfs_root) |
3564 | pr_warn("regulator: Failed to create debugfs directory\n"); |
3565 | |
3566 | debugfs_create_file("supply_map", 0444, debugfs_root, NULL, |
3567 | &supply_map_fops); |
3568 | |
3569 | regulator_dummy_init(); |
3570 | |
3571 | return ret; |
3572 | } |
3573 | |
3574 | /* init early to allow our consumers to complete system booting */ |
3575 | core_initcall(regulator_init); |
3576 | |
3577 | static int __init regulator_init_complete(void) |
3578 | { |
3579 | struct regulator_dev *rdev; |
3580 | struct regulator_ops *ops; |
3581 | struct regulation_constraints *c; |
3582 | int enabled, ret; |
3583 | |
3584 | /* |
3585 | * Since DT doesn't provide an idiomatic mechanism for |
3586 | * enabling full constraints and since it's much more natural |
3587 | * with DT to provide them just assume that a DT enabled |
3588 | * system has full constraints. |
3589 | */ |
3590 | if (of_have_populated_dt()) |
3591 | has_full_constraints = true; |
3592 | |
3593 | mutex_lock(®ulator_list_mutex); |
3594 | |
3595 | /* If we have a full configuration then disable any regulators |
3596 | * which are not in use or always_on. This will become the |
3597 | * default behaviour in the future. |
3598 | */ |
3599 | list_for_each_entry(rdev, ®ulator_list, list) { |
3600 | ops = rdev->desc->ops; |
3601 | c = rdev->constraints; |
3602 | |
3603 | if (!ops->disable || (c && c->always_on)) |
3604 | continue; |
3605 | |
3606 | mutex_lock(&rdev->mutex); |
3607 | |
3608 | if (rdev->use_count) |
3609 | goto unlock; |
3610 | |
3611 | /* If we can't read the status assume it's on. */ |
3612 | if (ops->is_enabled) |
3613 | enabled = ops->is_enabled(rdev); |
3614 | else |
3615 | enabled = 1; |
3616 | |
3617 | if (!enabled) |
3618 | goto unlock; |
3619 | |
3620 | if (has_full_constraints) { |
3621 | /* We log since this may kill the system if it |
3622 | * goes wrong. */ |
3623 | rdev_info(rdev, "disabling\n"); |
3624 | ret = ops->disable(rdev); |
3625 | if (ret != 0) { |
3626 | rdev_err(rdev, "couldn't disable: %d\n", ret); |
3627 | } |
3628 | } else { |
3629 | /* The intention is that in future we will |
3630 | * assume that full constraints are provided |
3631 | * so warn even if we aren't going to do |
3632 | * anything here. |
3633 | */ |
3634 | rdev_warn(rdev, "incomplete constraints, leaving on\n"); |
3635 | } |
3636 | |
3637 | unlock: |
3638 | mutex_unlock(&rdev->mutex); |
3639 | } |
3640 | |
3641 | mutex_unlock(®ulator_list_mutex); |
3642 | |
3643 | return 0; |
3644 | } |
3645 | late_initcall(regulator_init_complete); |
3646 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9