Root/drivers/regulator/core.c

1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...) \
41    pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...) \
43    pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...) \
45    pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...) \
47    pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...) \
49    pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65    struct list_head list;
66    const char *dev_name; /* The dev_name() for the consumer */
67    const char *supply;
68    struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77    struct device *dev;
78    struct list_head list;
79    unsigned int always_on:1;
80    int uA_load;
81    int min_uV;
82    int max_uV;
83    char *supply_name;
84    struct device_attribute dev_attr;
85    struct regulator_dev *rdev;
86    struct dentry *debugfs;
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95                  unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97                     int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99                      struct device *dev,
100                      const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104    if (rdev->constraints && rdev->constraints->name)
105        return rdev->constraints->name;
106    else if (rdev->desc->name)
107        return rdev->desc->name;
108    else
109        return "";
110}
111
112/**
113 * of_get_regulator - get a regulator device node based on supply name
114 * @dev: Device pointer for the consumer (of regulator) device
115 * @supply: regulator supply name
116 *
117 * Extract the regulator device node corresponding to the supply name.
118 * retruns the device node corresponding to the regulator if found, else
119 * returns NULL.
120 */
121static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122{
123    struct device_node *regnode = NULL;
124    char prop_name[32]; /* 32 is max size of property name */
125
126    dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127
128    snprintf(prop_name, 32, "%s-supply", supply);
129    regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130
131    if (!regnode) {
132        dev_dbg(dev, "Looking up %s property in node %s failed",
133                prop_name, dev->of_node->full_name);
134        return NULL;
135    }
136    return regnode;
137}
138
139static int _regulator_can_change_status(struct regulator_dev *rdev)
140{
141    if (!rdev->constraints)
142        return 0;
143
144    if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145        return 1;
146    else
147        return 0;
148}
149
150/* Platform voltage constraint check */
151static int regulator_check_voltage(struct regulator_dev *rdev,
152                   int *min_uV, int *max_uV)
153{
154    BUG_ON(*min_uV > *max_uV);
155
156    if (!rdev->constraints) {
157        rdev_err(rdev, "no constraints\n");
158        return -ENODEV;
159    }
160    if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161        rdev_err(rdev, "operation not allowed\n");
162        return -EPERM;
163    }
164
165    if (*max_uV > rdev->constraints->max_uV)
166        *max_uV = rdev->constraints->max_uV;
167    if (*min_uV < rdev->constraints->min_uV)
168        *min_uV = rdev->constraints->min_uV;
169
170    if (*min_uV > *max_uV) {
171        rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172             *min_uV, *max_uV);
173        return -EINVAL;
174    }
175
176    return 0;
177}
178
179/* Make sure we select a voltage that suits the needs of all
180 * regulator consumers
181 */
182static int regulator_check_consumers(struct regulator_dev *rdev,
183                     int *min_uV, int *max_uV)
184{
185    struct regulator *regulator;
186
187    list_for_each_entry(regulator, &rdev->consumer_list, list) {
188        /*
189         * Assume consumers that didn't say anything are OK
190         * with anything in the constraint range.
191         */
192        if (!regulator->min_uV && !regulator->max_uV)
193            continue;
194
195        if (*max_uV > regulator->max_uV)
196            *max_uV = regulator->max_uV;
197        if (*min_uV < regulator->min_uV)
198            *min_uV = regulator->min_uV;
199    }
200
201    if (*min_uV > *max_uV)
202        return -EINVAL;
203
204    return 0;
205}
206
207/* current constraint check */
208static int regulator_check_current_limit(struct regulator_dev *rdev,
209                    int *min_uA, int *max_uA)
210{
211    BUG_ON(*min_uA > *max_uA);
212
213    if (!rdev->constraints) {
214        rdev_err(rdev, "no constraints\n");
215        return -ENODEV;
216    }
217    if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218        rdev_err(rdev, "operation not allowed\n");
219        return -EPERM;
220    }
221
222    if (*max_uA > rdev->constraints->max_uA)
223        *max_uA = rdev->constraints->max_uA;
224    if (*min_uA < rdev->constraints->min_uA)
225        *min_uA = rdev->constraints->min_uA;
226
227    if (*min_uA > *max_uA) {
228        rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229             *min_uA, *max_uA);
230        return -EINVAL;
231    }
232
233    return 0;
234}
235
236/* operating mode constraint check */
237static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238{
239    switch (*mode) {
240    case REGULATOR_MODE_FAST:
241    case REGULATOR_MODE_NORMAL:
242    case REGULATOR_MODE_IDLE:
243    case REGULATOR_MODE_STANDBY:
244        break;
245    default:
246        rdev_err(rdev, "invalid mode %x specified\n", *mode);
247        return -EINVAL;
248    }
249
250    if (!rdev->constraints) {
251        rdev_err(rdev, "no constraints\n");
252        return -ENODEV;
253    }
254    if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255        rdev_err(rdev, "operation not allowed\n");
256        return -EPERM;
257    }
258
259    /* The modes are bitmasks, the most power hungry modes having
260     * the lowest values. If the requested mode isn't supported
261     * try higher modes. */
262    while (*mode) {
263        if (rdev->constraints->valid_modes_mask & *mode)
264            return 0;
265        *mode /= 2;
266    }
267
268    return -EINVAL;
269}
270
271/* dynamic regulator mode switching constraint check */
272static int regulator_check_drms(struct regulator_dev *rdev)
273{
274    if (!rdev->constraints) {
275        rdev_err(rdev, "no constraints\n");
276        return -ENODEV;
277    }
278    if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279        rdev_err(rdev, "operation not allowed\n");
280        return -EPERM;
281    }
282    return 0;
283}
284
285static ssize_t regulator_uV_show(struct device *dev,
286                struct device_attribute *attr, char *buf)
287{
288    struct regulator_dev *rdev = dev_get_drvdata(dev);
289    ssize_t ret;
290
291    mutex_lock(&rdev->mutex);
292    ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293    mutex_unlock(&rdev->mutex);
294
295    return ret;
296}
297static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298
299static ssize_t regulator_uA_show(struct device *dev,
300                struct device_attribute *attr, char *buf)
301{
302    struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304    return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305}
306static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307
308static ssize_t regulator_name_show(struct device *dev,
309                 struct device_attribute *attr, char *buf)
310{
311    struct regulator_dev *rdev = dev_get_drvdata(dev);
312
313    return sprintf(buf, "%s\n", rdev_get_name(rdev));
314}
315
316static ssize_t regulator_print_opmode(char *buf, int mode)
317{
318    switch (mode) {
319    case REGULATOR_MODE_FAST:
320        return sprintf(buf, "fast\n");
321    case REGULATOR_MODE_NORMAL:
322        return sprintf(buf, "normal\n");
323    case REGULATOR_MODE_IDLE:
324        return sprintf(buf, "idle\n");
325    case REGULATOR_MODE_STANDBY:
326        return sprintf(buf, "standby\n");
327    }
328    return sprintf(buf, "unknown\n");
329}
330
331static ssize_t regulator_opmode_show(struct device *dev,
332                    struct device_attribute *attr, char *buf)
333{
334    struct regulator_dev *rdev = dev_get_drvdata(dev);
335
336    return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337}
338static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339
340static ssize_t regulator_print_state(char *buf, int state)
341{
342    if (state > 0)
343        return sprintf(buf, "enabled\n");
344    else if (state == 0)
345        return sprintf(buf, "disabled\n");
346    else
347        return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_state_show(struct device *dev,
351                   struct device_attribute *attr, char *buf)
352{
353    struct regulator_dev *rdev = dev_get_drvdata(dev);
354    ssize_t ret;
355
356    mutex_lock(&rdev->mutex);
357    ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358    mutex_unlock(&rdev->mutex);
359
360    return ret;
361}
362static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363
364static ssize_t regulator_status_show(struct device *dev,
365                   struct device_attribute *attr, char *buf)
366{
367    struct regulator_dev *rdev = dev_get_drvdata(dev);
368    int status;
369    char *label;
370
371    status = rdev->desc->ops->get_status(rdev);
372    if (status < 0)
373        return status;
374
375    switch (status) {
376    case REGULATOR_STATUS_OFF:
377        label = "off";
378        break;
379    case REGULATOR_STATUS_ON:
380        label = "on";
381        break;
382    case REGULATOR_STATUS_ERROR:
383        label = "error";
384        break;
385    case REGULATOR_STATUS_FAST:
386        label = "fast";
387        break;
388    case REGULATOR_STATUS_NORMAL:
389        label = "normal";
390        break;
391    case REGULATOR_STATUS_IDLE:
392        label = "idle";
393        break;
394    case REGULATOR_STATUS_STANDBY:
395        label = "standby";
396        break;
397    case REGULATOR_STATUS_UNDEFINED:
398        label = "undefined";
399        break;
400    default:
401        return -ERANGE;
402    }
403
404    return sprintf(buf, "%s\n", label);
405}
406static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
407
408static ssize_t regulator_min_uA_show(struct device *dev,
409                    struct device_attribute *attr, char *buf)
410{
411    struct regulator_dev *rdev = dev_get_drvdata(dev);
412
413    if (!rdev->constraints)
414        return sprintf(buf, "constraint not defined\n");
415
416    return sprintf(buf, "%d\n", rdev->constraints->min_uA);
417}
418static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419
420static ssize_t regulator_max_uA_show(struct device *dev,
421                    struct device_attribute *attr, char *buf)
422{
423    struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425    if (!rdev->constraints)
426        return sprintf(buf, "constraint not defined\n");
427
428    return sprintf(buf, "%d\n", rdev->constraints->max_uA);
429}
430static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431
432static ssize_t regulator_min_uV_show(struct device *dev,
433                    struct device_attribute *attr, char *buf)
434{
435    struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437    if (!rdev->constraints)
438        return sprintf(buf, "constraint not defined\n");
439
440    return sprintf(buf, "%d\n", rdev->constraints->min_uV);
441}
442static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443
444static ssize_t regulator_max_uV_show(struct device *dev,
445                    struct device_attribute *attr, char *buf)
446{
447    struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449    if (!rdev->constraints)
450        return sprintf(buf, "constraint not defined\n");
451
452    return sprintf(buf, "%d\n", rdev->constraints->max_uV);
453}
454static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455
456static ssize_t regulator_total_uA_show(struct device *dev,
457                      struct device_attribute *attr, char *buf)
458{
459    struct regulator_dev *rdev = dev_get_drvdata(dev);
460    struct regulator *regulator;
461    int uA = 0;
462
463    mutex_lock(&rdev->mutex);
464    list_for_each_entry(regulator, &rdev->consumer_list, list)
465        uA += regulator->uA_load;
466    mutex_unlock(&rdev->mutex);
467    return sprintf(buf, "%d\n", uA);
468}
469static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470
471static ssize_t regulator_num_users_show(struct device *dev,
472                      struct device_attribute *attr, char *buf)
473{
474    struct regulator_dev *rdev = dev_get_drvdata(dev);
475    return sprintf(buf, "%d\n", rdev->use_count);
476}
477
478static ssize_t regulator_type_show(struct device *dev,
479                  struct device_attribute *attr, char *buf)
480{
481    struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483    switch (rdev->desc->type) {
484    case REGULATOR_VOLTAGE:
485        return sprintf(buf, "voltage\n");
486    case REGULATOR_CURRENT:
487        return sprintf(buf, "current\n");
488    }
489    return sprintf(buf, "unknown\n");
490}
491
492static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493                struct device_attribute *attr, char *buf)
494{
495    struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497    return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
498}
499static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500        regulator_suspend_mem_uV_show, NULL);
501
502static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503                struct device_attribute *attr, char *buf)
504{
505    struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507    return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
508}
509static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510        regulator_suspend_disk_uV_show, NULL);
511
512static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513                struct device_attribute *attr, char *buf)
514{
515    struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517    return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
518}
519static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520        regulator_suspend_standby_uV_show, NULL);
521
522static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523                struct device_attribute *attr, char *buf)
524{
525    struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527    return regulator_print_opmode(buf,
528        rdev->constraints->state_mem.mode);
529}
530static DEVICE_ATTR(suspend_mem_mode, 0444,
531        regulator_suspend_mem_mode_show, NULL);
532
533static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534                struct device_attribute *attr, char *buf)
535{
536    struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538    return regulator_print_opmode(buf,
539        rdev->constraints->state_disk.mode);
540}
541static DEVICE_ATTR(suspend_disk_mode, 0444,
542        regulator_suspend_disk_mode_show, NULL);
543
544static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545                struct device_attribute *attr, char *buf)
546{
547    struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549    return regulator_print_opmode(buf,
550        rdev->constraints->state_standby.mode);
551}
552static DEVICE_ATTR(suspend_standby_mode, 0444,
553        regulator_suspend_standby_mode_show, NULL);
554
555static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556                   struct device_attribute *attr, char *buf)
557{
558    struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560    return regulator_print_state(buf,
561            rdev->constraints->state_mem.enabled);
562}
563static DEVICE_ATTR(suspend_mem_state, 0444,
564        regulator_suspend_mem_state_show, NULL);
565
566static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567                   struct device_attribute *attr, char *buf)
568{
569    struct regulator_dev *rdev = dev_get_drvdata(dev);
570
571    return regulator_print_state(buf,
572            rdev->constraints->state_disk.enabled);
573}
574static DEVICE_ATTR(suspend_disk_state, 0444,
575        regulator_suspend_disk_state_show, NULL);
576
577static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578                   struct device_attribute *attr, char *buf)
579{
580    struct regulator_dev *rdev = dev_get_drvdata(dev);
581
582    return regulator_print_state(buf,
583            rdev->constraints->state_standby.enabled);
584}
585static DEVICE_ATTR(suspend_standby_state, 0444,
586        regulator_suspend_standby_state_show, NULL);
587
588
589/*
590 * These are the only attributes are present for all regulators.
591 * Other attributes are a function of regulator functionality.
592 */
593static struct device_attribute regulator_dev_attrs[] = {
594    __ATTR(name, 0444, regulator_name_show, NULL),
595    __ATTR(num_users, 0444, regulator_num_users_show, NULL),
596    __ATTR(type, 0444, regulator_type_show, NULL),
597    __ATTR_NULL,
598};
599
600static void regulator_dev_release(struct device *dev)
601{
602    struct regulator_dev *rdev = dev_get_drvdata(dev);
603    kfree(rdev);
604}
605
606static struct class regulator_class = {
607    .name = "regulator",
608    .dev_release = regulator_dev_release,
609    .dev_attrs = regulator_dev_attrs,
610};
611
612/* Calculate the new optimum regulator operating mode based on the new total
613 * consumer load. All locks held by caller */
614static void drms_uA_update(struct regulator_dev *rdev)
615{
616    struct regulator *sibling;
617    int current_uA = 0, output_uV, input_uV, err;
618    unsigned int mode;
619
620    err = regulator_check_drms(rdev);
621    if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622        (!rdev->desc->ops->get_voltage &&
623         !rdev->desc->ops->get_voltage_sel) ||
624        !rdev->desc->ops->set_mode)
625        return;
626
627    /* get output voltage */
628    output_uV = _regulator_get_voltage(rdev);
629    if (output_uV <= 0)
630        return;
631
632    /* get input voltage */
633    input_uV = 0;
634    if (rdev->supply)
635        input_uV = regulator_get_voltage(rdev->supply);
636    if (input_uV <= 0)
637        input_uV = rdev->constraints->input_uV;
638    if (input_uV <= 0)
639        return;
640
641    /* calc total requested load */
642    list_for_each_entry(sibling, &rdev->consumer_list, list)
643        current_uA += sibling->uA_load;
644
645    /* now get the optimum mode for our new total regulator load */
646    mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647                          output_uV, current_uA);
648
649    /* check the new mode is allowed */
650    err = regulator_mode_constrain(rdev, &mode);
651    if (err == 0)
652        rdev->desc->ops->set_mode(rdev, mode);
653}
654
655static int suspend_set_state(struct regulator_dev *rdev,
656    struct regulator_state *rstate)
657{
658    int ret = 0;
659
660    /* If we have no suspend mode configration don't set anything;
661     * only warn if the driver implements set_suspend_voltage or
662     * set_suspend_mode callback.
663     */
664    if (!rstate->enabled && !rstate->disabled) {
665        if (rdev->desc->ops->set_suspend_voltage ||
666            rdev->desc->ops->set_suspend_mode)
667            rdev_warn(rdev, "No configuration\n");
668        return 0;
669    }
670
671    if (rstate->enabled && rstate->disabled) {
672        rdev_err(rdev, "invalid configuration\n");
673        return -EINVAL;
674    }
675
676    if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677        ret = rdev->desc->ops->set_suspend_enable(rdev);
678    else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679        ret = rdev->desc->ops->set_suspend_disable(rdev);
680    else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681        ret = 0;
682
683    if (ret < 0) {
684        rdev_err(rdev, "failed to enabled/disable\n");
685        return ret;
686    }
687
688    if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689        ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690        if (ret < 0) {
691            rdev_err(rdev, "failed to set voltage\n");
692            return ret;
693        }
694    }
695
696    if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697        ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698        if (ret < 0) {
699            rdev_err(rdev, "failed to set mode\n");
700            return ret;
701        }
702    }
703    return ret;
704}
705
706/* locks held by caller */
707static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
708{
709    if (!rdev->constraints)
710        return -EINVAL;
711
712    switch (state) {
713    case PM_SUSPEND_STANDBY:
714        return suspend_set_state(rdev,
715            &rdev->constraints->state_standby);
716    case PM_SUSPEND_MEM:
717        return suspend_set_state(rdev,
718            &rdev->constraints->state_mem);
719    case PM_SUSPEND_MAX:
720        return suspend_set_state(rdev,
721            &rdev->constraints->state_disk);
722    default:
723        return -EINVAL;
724    }
725}
726
727static void print_constraints(struct regulator_dev *rdev)
728{
729    struct regulation_constraints *constraints = rdev->constraints;
730    char buf[80] = "";
731    int count = 0;
732    int ret;
733
734    if (constraints->min_uV && constraints->max_uV) {
735        if (constraints->min_uV == constraints->max_uV)
736            count += sprintf(buf + count, "%d mV ",
737                     constraints->min_uV / 1000);
738        else
739            count += sprintf(buf + count, "%d <--> %d mV ",
740                     constraints->min_uV / 1000,
741                     constraints->max_uV / 1000);
742    }
743
744    if (!constraints->min_uV ||
745        constraints->min_uV != constraints->max_uV) {
746        ret = _regulator_get_voltage(rdev);
747        if (ret > 0)
748            count += sprintf(buf + count, "at %d mV ", ret / 1000);
749    }
750
751    if (constraints->uV_offset)
752        count += sprintf(buf, "%dmV offset ",
753                 constraints->uV_offset / 1000);
754
755    if (constraints->min_uA && constraints->max_uA) {
756        if (constraints->min_uA == constraints->max_uA)
757            count += sprintf(buf + count, "%d mA ",
758                     constraints->min_uA / 1000);
759        else
760            count += sprintf(buf + count, "%d <--> %d mA ",
761                     constraints->min_uA / 1000,
762                     constraints->max_uA / 1000);
763    }
764
765    if (!constraints->min_uA ||
766        constraints->min_uA != constraints->max_uA) {
767        ret = _regulator_get_current_limit(rdev);
768        if (ret > 0)
769            count += sprintf(buf + count, "at %d mA ", ret / 1000);
770    }
771
772    if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773        count += sprintf(buf + count, "fast ");
774    if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775        count += sprintf(buf + count, "normal ");
776    if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777        count += sprintf(buf + count, "idle ");
778    if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779        count += sprintf(buf + count, "standby");
780
781    rdev_info(rdev, "%s\n", buf);
782
783    if ((constraints->min_uV != constraints->max_uV) &&
784        !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
785        rdev_warn(rdev,
786              "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
787}
788
789static int machine_constraints_voltage(struct regulator_dev *rdev,
790    struct regulation_constraints *constraints)
791{
792    struct regulator_ops *ops = rdev->desc->ops;
793    int ret;
794
795    /* do we need to apply the constraint voltage */
796    if (rdev->constraints->apply_uV &&
797        rdev->constraints->min_uV == rdev->constraints->max_uV) {
798        ret = _regulator_do_set_voltage(rdev,
799                        rdev->constraints->min_uV,
800                        rdev->constraints->max_uV);
801        if (ret < 0) {
802            rdev_err(rdev, "failed to apply %duV constraint\n",
803                 rdev->constraints->min_uV);
804            return ret;
805        }
806    }
807
808    /* constrain machine-level voltage specs to fit
809     * the actual range supported by this regulator.
810     */
811    if (ops->list_voltage && rdev->desc->n_voltages) {
812        int count = rdev->desc->n_voltages;
813        int i;
814        int min_uV = INT_MAX;
815        int max_uV = INT_MIN;
816        int cmin = constraints->min_uV;
817        int cmax = constraints->max_uV;
818
819        /* it's safe to autoconfigure fixed-voltage supplies
820           and the constraints are used by list_voltage. */
821        if (count == 1 && !cmin) {
822            cmin = 1;
823            cmax = INT_MAX;
824            constraints->min_uV = cmin;
825            constraints->max_uV = cmax;
826        }
827
828        /* voltage constraints are optional */
829        if ((cmin == 0) && (cmax == 0))
830            return 0;
831
832        /* else require explicit machine-level constraints */
833        if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
834            rdev_err(rdev, "invalid voltage constraints\n");
835            return -EINVAL;
836        }
837
838        /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
839        for (i = 0; i < count; i++) {
840            int value;
841
842            value = ops->list_voltage(rdev, i);
843            if (value <= 0)
844                continue;
845
846            /* maybe adjust [min_uV..max_uV] */
847            if (value >= cmin && value < min_uV)
848                min_uV = value;
849            if (value <= cmax && value > max_uV)
850                max_uV = value;
851        }
852
853        /* final: [min_uV..max_uV] valid iff constraints valid */
854        if (max_uV < min_uV) {
855            rdev_err(rdev, "unsupportable voltage constraints\n");
856            return -EINVAL;
857        }
858
859        /* use regulator's subset of machine constraints */
860        if (constraints->min_uV < min_uV) {
861            rdev_dbg(rdev, "override min_uV, %d -> %d\n",
862                 constraints->min_uV, min_uV);
863            constraints->min_uV = min_uV;
864        }
865        if (constraints->max_uV > max_uV) {
866            rdev_dbg(rdev, "override max_uV, %d -> %d\n",
867                 constraints->max_uV, max_uV);
868            constraints->max_uV = max_uV;
869        }
870    }
871
872    return 0;
873}
874
875/**
876 * set_machine_constraints - sets regulator constraints
877 * @rdev: regulator source
878 * @constraints: constraints to apply
879 *
880 * Allows platform initialisation code to define and constrain
881 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
882 * Constraints *must* be set by platform code in order for some
883 * regulator operations to proceed i.e. set_voltage, set_current_limit,
884 * set_mode.
885 */
886static int set_machine_constraints(struct regulator_dev *rdev,
887    const struct regulation_constraints *constraints)
888{
889    int ret = 0;
890    struct regulator_ops *ops = rdev->desc->ops;
891
892    if (constraints)
893        rdev->constraints = kmemdup(constraints, sizeof(*constraints),
894                        GFP_KERNEL);
895    else
896        rdev->constraints = kzalloc(sizeof(*constraints),
897                        GFP_KERNEL);
898    if (!rdev->constraints)
899        return -ENOMEM;
900
901    ret = machine_constraints_voltage(rdev, rdev->constraints);
902    if (ret != 0)
903        goto out;
904
905    /* do we need to setup our suspend state */
906    if (rdev->constraints->initial_state) {
907        ret = suspend_prepare(rdev, rdev->constraints->initial_state);
908        if (ret < 0) {
909            rdev_err(rdev, "failed to set suspend state\n");
910            goto out;
911        }
912    }
913
914    if (rdev->constraints->initial_mode) {
915        if (!ops->set_mode) {
916            rdev_err(rdev, "no set_mode operation\n");
917            ret = -EINVAL;
918            goto out;
919        }
920
921        ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
922        if (ret < 0) {
923            rdev_err(rdev, "failed to set initial mode: %d\n", ret);
924            goto out;
925        }
926    }
927
928    /* If the constraints say the regulator should be on at this point
929     * and we have control then make sure it is enabled.
930     */
931    if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
932        ops->enable) {
933        ret = ops->enable(rdev);
934        if (ret < 0) {
935            rdev_err(rdev, "failed to enable\n");
936            goto out;
937        }
938    }
939
940    if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
941        ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
942        if (ret < 0) {
943            rdev_err(rdev, "failed to set ramp_delay\n");
944            goto out;
945        }
946    }
947
948    print_constraints(rdev);
949    return 0;
950out:
951    kfree(rdev->constraints);
952    rdev->constraints = NULL;
953    return ret;
954}
955
956/**
957 * set_supply - set regulator supply regulator
958 * @rdev: regulator name
959 * @supply_rdev: supply regulator name
960 *
961 * Called by platform initialisation code to set the supply regulator for this
962 * regulator. This ensures that a regulators supply will also be enabled by the
963 * core if it's child is enabled.
964 */
965static int set_supply(struct regulator_dev *rdev,
966              struct regulator_dev *supply_rdev)
967{
968    int err;
969
970    rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
971
972    rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
973    if (rdev->supply == NULL) {
974        err = -ENOMEM;
975        return err;
976    }
977
978    return 0;
979}
980
981/**
982 * set_consumer_device_supply - Bind a regulator to a symbolic supply
983 * @rdev: regulator source
984 * @consumer_dev_name: dev_name() string for device supply applies to
985 * @supply: symbolic name for supply
986 *
987 * Allows platform initialisation code to map physical regulator
988 * sources to symbolic names for supplies for use by devices. Devices
989 * should use these symbolic names to request regulators, avoiding the
990 * need to provide board-specific regulator names as platform data.
991 */
992static int set_consumer_device_supply(struct regulator_dev *rdev,
993                      const char *consumer_dev_name,
994                      const char *supply)
995{
996    struct regulator_map *node;
997    int has_dev;
998
999    if (supply == NULL)
1000        return -EINVAL;
1001
1002    if (consumer_dev_name != NULL)
1003        has_dev = 1;
1004    else
1005        has_dev = 0;
1006
1007    list_for_each_entry(node, &regulator_map_list, list) {
1008        if (node->dev_name && consumer_dev_name) {
1009            if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010                continue;
1011        } else if (node->dev_name || consumer_dev_name) {
1012            continue;
1013        }
1014
1015        if (strcmp(node->supply, supply) != 0)
1016            continue;
1017
1018        pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019             consumer_dev_name,
1020             dev_name(&node->regulator->dev),
1021             node->regulator->desc->name,
1022             supply,
1023             dev_name(&rdev->dev), rdev_get_name(rdev));
1024        return -EBUSY;
1025    }
1026
1027    node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028    if (node == NULL)
1029        return -ENOMEM;
1030
1031    node->regulator = rdev;
1032    node->supply = supply;
1033
1034    if (has_dev) {
1035        node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036        if (node->dev_name == NULL) {
1037            kfree(node);
1038            return -ENOMEM;
1039        }
1040    }
1041
1042    list_add(&node->list, &regulator_map_list);
1043    return 0;
1044}
1045
1046static void unset_regulator_supplies(struct regulator_dev *rdev)
1047{
1048    struct regulator_map *node, *n;
1049
1050    list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051        if (rdev == node->regulator) {
1052            list_del(&node->list);
1053            kfree(node->dev_name);
1054            kfree(node);
1055        }
1056    }
1057}
1058
1059#define REG_STR_SIZE 64
1060
1061static struct regulator *create_regulator(struct regulator_dev *rdev,
1062                      struct device *dev,
1063                      const char *supply_name)
1064{
1065    struct regulator *regulator;
1066    char buf[REG_STR_SIZE];
1067    int err, size;
1068
1069    regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070    if (regulator == NULL)
1071        return NULL;
1072
1073    mutex_lock(&rdev->mutex);
1074    regulator->rdev = rdev;
1075    list_add(&regulator->list, &rdev->consumer_list);
1076
1077    if (dev) {
1078        regulator->dev = dev;
1079
1080        /* Add a link to the device sysfs entry */
1081        size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082                 dev->kobj.name, supply_name);
1083        if (size >= REG_STR_SIZE)
1084            goto overflow_err;
1085
1086        regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087        if (regulator->supply_name == NULL)
1088            goto overflow_err;
1089
1090        err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091                    buf);
1092        if (err) {
1093            rdev_warn(rdev, "could not add device link %s err %d\n",
1094                  dev->kobj.name, err);
1095            /* non-fatal */
1096        }
1097    } else {
1098        regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099        if (regulator->supply_name == NULL)
1100            goto overflow_err;
1101    }
1102
1103    regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104                        rdev->debugfs);
1105    if (!regulator->debugfs) {
1106        rdev_warn(rdev, "Failed to create debugfs directory\n");
1107    } else {
1108        debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109                   &regulator->uA_load);
1110        debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111                   &regulator->min_uV);
1112        debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113                   &regulator->max_uV);
1114    }
1115
1116    /*
1117     * Check now if the regulator is an always on regulator - if
1118     * it is then we don't need to do nearly so much work for
1119     * enable/disable calls.
1120     */
1121    if (!_regulator_can_change_status(rdev) &&
1122        _regulator_is_enabled(rdev))
1123        regulator->always_on = true;
1124
1125    mutex_unlock(&rdev->mutex);
1126    return regulator;
1127overflow_err:
1128    list_del(&regulator->list);
1129    kfree(regulator);
1130    mutex_unlock(&rdev->mutex);
1131    return NULL;
1132}
1133
1134static int _regulator_get_enable_time(struct regulator_dev *rdev)
1135{
1136    if (!rdev->desc->ops->enable_time)
1137        return rdev->desc->enable_time;
1138    return rdev->desc->ops->enable_time(rdev);
1139}
1140
1141static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142                          const char *supply,
1143                          int *ret)
1144{
1145    struct regulator_dev *r;
1146    struct device_node *node;
1147    struct regulator_map *map;
1148    const char *devname = NULL;
1149
1150    /* first do a dt based lookup */
1151    if (dev && dev->of_node) {
1152        node = of_get_regulator(dev, supply);
1153        if (node) {
1154            list_for_each_entry(r, &regulator_list, list)
1155                if (r->dev.parent &&
1156                    node == r->dev.of_node)
1157                    return r;
1158        } else {
1159            /*
1160             * If we couldn't even get the node then it's
1161             * not just that the device didn't register
1162             * yet, there's no node and we'll never
1163             * succeed.
1164             */
1165            *ret = -ENODEV;
1166        }
1167    }
1168
1169    /* if not found, try doing it non-dt way */
1170    if (dev)
1171        devname = dev_name(dev);
1172
1173    list_for_each_entry(r, &regulator_list, list)
1174        if (strcmp(rdev_get_name(r), supply) == 0)
1175            return r;
1176
1177    list_for_each_entry(map, &regulator_map_list, list) {
1178        /* If the mapping has a device set up it must match */
1179        if (map->dev_name &&
1180            (!devname || strcmp(map->dev_name, devname)))
1181            continue;
1182
1183        if (strcmp(map->supply, supply) == 0)
1184            return map->regulator;
1185    }
1186
1187
1188    return NULL;
1189}
1190
1191/* Internal regulator request function */
1192static struct regulator *_regulator_get(struct device *dev, const char *id,
1193                    int exclusive)
1194{
1195    struct regulator_dev *rdev;
1196    struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197    const char *devname = NULL;
1198    int ret;
1199
1200    if (id == NULL) {
1201        pr_err("get() with no identifier\n");
1202        return regulator;
1203    }
1204
1205    if (dev)
1206        devname = dev_name(dev);
1207
1208    mutex_lock(&regulator_list_mutex);
1209
1210    rdev = regulator_dev_lookup(dev, id, &ret);
1211    if (rdev)
1212        goto found;
1213
1214    if (board_wants_dummy_regulator) {
1215        rdev = dummy_regulator_rdev;
1216        goto found;
1217    }
1218
1219#ifdef CONFIG_REGULATOR_DUMMY
1220    if (!devname)
1221        devname = "deviceless";
1222
1223    /* If the board didn't flag that it was fully constrained then
1224     * substitute in a dummy regulator so consumers can continue.
1225     */
1226    if (!has_full_constraints) {
1227        pr_warn("%s supply %s not found, using dummy regulator\n",
1228            devname, id);
1229        rdev = dummy_regulator_rdev;
1230        goto found;
1231    }
1232#endif
1233
1234    mutex_unlock(&regulator_list_mutex);
1235    return regulator;
1236
1237found:
1238    if (rdev->exclusive) {
1239        regulator = ERR_PTR(-EPERM);
1240        goto out;
1241    }
1242
1243    if (exclusive && rdev->open_count) {
1244        regulator = ERR_PTR(-EBUSY);
1245        goto out;
1246    }
1247
1248    if (!try_module_get(rdev->owner))
1249        goto out;
1250
1251    regulator = create_regulator(rdev, dev, id);
1252    if (regulator == NULL) {
1253        regulator = ERR_PTR(-ENOMEM);
1254        module_put(rdev->owner);
1255        goto out;
1256    }
1257
1258    rdev->open_count++;
1259    if (exclusive) {
1260        rdev->exclusive = 1;
1261
1262        ret = _regulator_is_enabled(rdev);
1263        if (ret > 0)
1264            rdev->use_count = 1;
1265        else
1266            rdev->use_count = 0;
1267    }
1268
1269out:
1270    mutex_unlock(&regulator_list_mutex);
1271
1272    return regulator;
1273}
1274
1275/**
1276 * regulator_get - lookup and obtain a reference to a regulator.
1277 * @dev: device for regulator "consumer"
1278 * @id: Supply name or regulator ID.
1279 *
1280 * Returns a struct regulator corresponding to the regulator producer,
1281 * or IS_ERR() condition containing errno.
1282 *
1283 * Use of supply names configured via regulator_set_device_supply() is
1284 * strongly encouraged. It is recommended that the supply name used
1285 * should match the name used for the supply and/or the relevant
1286 * device pins in the datasheet.
1287 */
1288struct regulator *regulator_get(struct device *dev, const char *id)
1289{
1290    return _regulator_get(dev, id, 0);
1291}
1292EXPORT_SYMBOL_GPL(regulator_get);
1293
1294static void devm_regulator_release(struct device *dev, void *res)
1295{
1296    regulator_put(*(struct regulator **)res);
1297}
1298
1299/**
1300 * devm_regulator_get - Resource managed regulator_get()
1301 * @dev: device for regulator "consumer"
1302 * @id: Supply name or regulator ID.
1303 *
1304 * Managed regulator_get(). Regulators returned from this function are
1305 * automatically regulator_put() on driver detach. See regulator_get() for more
1306 * information.
1307 */
1308struct regulator *devm_regulator_get(struct device *dev, const char *id)
1309{
1310    struct regulator **ptr, *regulator;
1311
1312    ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313    if (!ptr)
1314        return ERR_PTR(-ENOMEM);
1315
1316    regulator = regulator_get(dev, id);
1317    if (!IS_ERR(regulator)) {
1318        *ptr = regulator;
1319        devres_add(dev, ptr);
1320    } else {
1321        devres_free(ptr);
1322    }
1323
1324    return regulator;
1325}
1326EXPORT_SYMBOL_GPL(devm_regulator_get);
1327
1328/**
1329 * regulator_get_exclusive - obtain exclusive access to a regulator.
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Returns a struct regulator corresponding to the regulator producer,
1334 * or IS_ERR() condition containing errno. Other consumers will be
1335 * unable to obtain this reference is held and the use count for the
1336 * regulator will be initialised to reflect the current state of the
1337 * regulator.
1338 *
1339 * This is intended for use by consumers which cannot tolerate shared
1340 * use of the regulator such as those which need to force the
1341 * regulator off for correct operation of the hardware they are
1342 * controlling.
1343 *
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged. It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1348 */
1349struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1350{
1351    return _regulator_get(dev, id, 1);
1352}
1353EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1354
1355/**
1356 * regulator_put - "free" the regulator source
1357 * @regulator: regulator source
1358 *
1359 * Note: drivers must ensure that all regulator_enable calls made on this
1360 * regulator source are balanced by regulator_disable calls prior to calling
1361 * this function.
1362 */
1363void regulator_put(struct regulator *regulator)
1364{
1365    struct regulator_dev *rdev;
1366
1367    if (regulator == NULL || IS_ERR(regulator))
1368        return;
1369
1370    mutex_lock(&regulator_list_mutex);
1371    rdev = regulator->rdev;
1372
1373    debugfs_remove_recursive(regulator->debugfs);
1374
1375    /* remove any sysfs entries */
1376    if (regulator->dev)
1377        sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378    kfree(regulator->supply_name);
1379    list_del(&regulator->list);
1380    kfree(regulator);
1381
1382    rdev->open_count--;
1383    rdev->exclusive = 0;
1384
1385    module_put(rdev->owner);
1386    mutex_unlock(&regulator_list_mutex);
1387}
1388EXPORT_SYMBOL_GPL(regulator_put);
1389
1390static int devm_regulator_match(struct device *dev, void *res, void *data)
1391{
1392    struct regulator **r = res;
1393    if (!r || !*r) {
1394        WARN_ON(!r || !*r);
1395        return 0;
1396    }
1397    return *r == data;
1398}
1399
1400/**
1401 * devm_regulator_put - Resource managed regulator_put()
1402 * @regulator: regulator to free
1403 *
1404 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405 * this function will not need to be called and the resource management
1406 * code will ensure that the resource is freed.
1407 */
1408void devm_regulator_put(struct regulator *regulator)
1409{
1410    int rc;
1411
1412    rc = devres_release(regulator->dev, devm_regulator_release,
1413                devm_regulator_match, regulator);
1414    if (rc != 0)
1415        WARN_ON(rc);
1416}
1417EXPORT_SYMBOL_GPL(devm_regulator_put);
1418
1419static int _regulator_do_enable(struct regulator_dev *rdev)
1420{
1421    int ret, delay;
1422
1423    /* Query before enabling in case configuration dependent. */
1424    ret = _regulator_get_enable_time(rdev);
1425    if (ret >= 0) {
1426        delay = ret;
1427    } else {
1428        rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429        delay = 0;
1430    }
1431
1432    trace_regulator_enable(rdev_get_name(rdev));
1433
1434    if (rdev->ena_gpio) {
1435        gpio_set_value_cansleep(rdev->ena_gpio,
1436                    !rdev->ena_gpio_invert);
1437        rdev->ena_gpio_state = 1;
1438    } else if (rdev->desc->ops->enable) {
1439        ret = rdev->desc->ops->enable(rdev);
1440        if (ret < 0)
1441            return ret;
1442    } else {
1443        return -EINVAL;
1444    }
1445
1446    /* Allow the regulator to ramp; it would be useful to extend
1447     * this for bulk operations so that the regulators can ramp
1448     * together. */
1449    trace_regulator_enable_delay(rdev_get_name(rdev));
1450
1451    if (delay >= 1000) {
1452        mdelay(delay / 1000);
1453        udelay(delay % 1000);
1454    } else if (delay) {
1455        udelay(delay);
1456    }
1457
1458    trace_regulator_enable_complete(rdev_get_name(rdev));
1459
1460    return 0;
1461}
1462
1463/* locks held by regulator_enable() */
1464static int _regulator_enable(struct regulator_dev *rdev)
1465{
1466    int ret;
1467
1468    /* check voltage and requested load before enabling */
1469    if (rdev->constraints &&
1470        (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471        drms_uA_update(rdev);
1472
1473    if (rdev->use_count == 0) {
1474        /* The regulator may on if it's not switchable or left on */
1475        ret = _regulator_is_enabled(rdev);
1476        if (ret == -EINVAL || ret == 0) {
1477            if (!_regulator_can_change_status(rdev))
1478                return -EPERM;
1479
1480            ret = _regulator_do_enable(rdev);
1481            if (ret < 0)
1482                return ret;
1483
1484        } else if (ret < 0) {
1485            rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486            return ret;
1487        }
1488        /* Fallthrough on positive return values - already enabled */
1489    }
1490
1491    rdev->use_count++;
1492
1493    return 0;
1494}
1495
1496/**
1497 * regulator_enable - enable regulator output
1498 * @regulator: regulator source
1499 *
1500 * Request that the regulator be enabled with the regulator output at
1501 * the predefined voltage or current value. Calls to regulator_enable()
1502 * must be balanced with calls to regulator_disable().
1503 *
1504 * NOTE: the output value can be set by other drivers, boot loader or may be
1505 * hardwired in the regulator.
1506 */
1507int regulator_enable(struct regulator *regulator)
1508{
1509    struct regulator_dev *rdev = regulator->rdev;
1510    int ret = 0;
1511
1512    if (regulator->always_on)
1513        return 0;
1514
1515    if (rdev->supply) {
1516        ret = regulator_enable(rdev->supply);
1517        if (ret != 0)
1518            return ret;
1519    }
1520
1521    mutex_lock(&rdev->mutex);
1522    ret = _regulator_enable(rdev);
1523    mutex_unlock(&rdev->mutex);
1524
1525    if (ret != 0 && rdev->supply)
1526        regulator_disable(rdev->supply);
1527
1528    return ret;
1529}
1530EXPORT_SYMBOL_GPL(regulator_enable);
1531
1532static int _regulator_do_disable(struct regulator_dev *rdev)
1533{
1534    int ret;
1535
1536    trace_regulator_disable(rdev_get_name(rdev));
1537
1538    if (rdev->ena_gpio) {
1539        gpio_set_value_cansleep(rdev->ena_gpio,
1540                    rdev->ena_gpio_invert);
1541        rdev->ena_gpio_state = 0;
1542
1543    } else if (rdev->desc->ops->disable) {
1544        ret = rdev->desc->ops->disable(rdev);
1545        if (ret != 0)
1546            return ret;
1547    }
1548
1549    trace_regulator_disable_complete(rdev_get_name(rdev));
1550
1551    _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552                 NULL);
1553    return 0;
1554}
1555
1556/* locks held by regulator_disable() */
1557static int _regulator_disable(struct regulator_dev *rdev)
1558{
1559    int ret = 0;
1560
1561    if (WARN(rdev->use_count <= 0,
1562         "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563        return -EIO;
1564
1565    /* are we the last user and permitted to disable ? */
1566    if (rdev->use_count == 1 &&
1567        (rdev->constraints && !rdev->constraints->always_on)) {
1568
1569        /* we are last user */
1570        if (_regulator_can_change_status(rdev)) {
1571            ret = _regulator_do_disable(rdev);
1572            if (ret < 0) {
1573                rdev_err(rdev, "failed to disable\n");
1574                return ret;
1575            }
1576        }
1577
1578        rdev->use_count = 0;
1579    } else if (rdev->use_count > 1) {
1580
1581        if (rdev->constraints &&
1582            (rdev->constraints->valid_ops_mask &
1583            REGULATOR_CHANGE_DRMS))
1584            drms_uA_update(rdev);
1585
1586        rdev->use_count--;
1587    }
1588
1589    return ret;
1590}
1591
1592/**
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1595 *
1596 * Disable the regulator output voltage or current. Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1599 *
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1603 */
1604int regulator_disable(struct regulator *regulator)
1605{
1606    struct regulator_dev *rdev = regulator->rdev;
1607    int ret = 0;
1608
1609    if (regulator->always_on)
1610        return 0;
1611
1612    mutex_lock(&rdev->mutex);
1613    ret = _regulator_disable(rdev);
1614    mutex_unlock(&rdev->mutex);
1615
1616    if (ret == 0 && rdev->supply)
1617        regulator_disable(rdev->supply);
1618
1619    return ret;
1620}
1621EXPORT_SYMBOL_GPL(regulator_disable);
1622
1623/* locks held by regulator_force_disable() */
1624static int _regulator_force_disable(struct regulator_dev *rdev)
1625{
1626    int ret = 0;
1627
1628    /* force disable */
1629    if (rdev->desc->ops->disable) {
1630        /* ah well, who wants to live forever... */
1631        ret = rdev->desc->ops->disable(rdev);
1632        if (ret < 0) {
1633            rdev_err(rdev, "failed to force disable\n");
1634            return ret;
1635        }
1636        /* notify other consumers that power has been forced off */
1637        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638            REGULATOR_EVENT_DISABLE, NULL);
1639    }
1640
1641    return ret;
1642}
1643
1644/**
1645 * regulator_force_disable - force disable regulator output
1646 * @regulator: regulator source
1647 *
1648 * Forcibly disable the regulator output voltage or current.
1649 * NOTE: this *will* disable the regulator output even if other consumer
1650 * devices have it enabled. This should be used for situations when device
1651 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1652 */
1653int regulator_force_disable(struct regulator *regulator)
1654{
1655    struct regulator_dev *rdev = regulator->rdev;
1656    int ret;
1657
1658    mutex_lock(&rdev->mutex);
1659    regulator->uA_load = 0;
1660    ret = _regulator_force_disable(regulator->rdev);
1661    mutex_unlock(&rdev->mutex);
1662
1663    if (rdev->supply)
1664        while (rdev->open_count--)
1665            regulator_disable(rdev->supply);
1666
1667    return ret;
1668}
1669EXPORT_SYMBOL_GPL(regulator_force_disable);
1670
1671static void regulator_disable_work(struct work_struct *work)
1672{
1673    struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674                          disable_work.work);
1675    int count, i, ret;
1676
1677    mutex_lock(&rdev->mutex);
1678
1679    BUG_ON(!rdev->deferred_disables);
1680
1681    count = rdev->deferred_disables;
1682    rdev->deferred_disables = 0;
1683
1684    for (i = 0; i < count; i++) {
1685        ret = _regulator_disable(rdev);
1686        if (ret != 0)
1687            rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1688    }
1689
1690    mutex_unlock(&rdev->mutex);
1691
1692    if (rdev->supply) {
1693        for (i = 0; i < count; i++) {
1694            ret = regulator_disable(rdev->supply);
1695            if (ret != 0) {
1696                rdev_err(rdev,
1697                     "Supply disable failed: %d\n", ret);
1698            }
1699        }
1700    }
1701}
1702
1703/**
1704 * regulator_disable_deferred - disable regulator output with delay
1705 * @regulator: regulator source
1706 * @ms: miliseconds until the regulator is disabled
1707 *
1708 * Execute regulator_disable() on the regulator after a delay. This
1709 * is intended for use with devices that require some time to quiesce.
1710 *
1711 * NOTE: this will only disable the regulator output if no other consumer
1712 * devices have it enabled, the regulator device supports disabling and
1713 * machine constraints permit this operation.
1714 */
1715int regulator_disable_deferred(struct regulator *regulator, int ms)
1716{
1717    struct regulator_dev *rdev = regulator->rdev;
1718    int ret;
1719
1720    if (regulator->always_on)
1721        return 0;
1722
1723    mutex_lock(&rdev->mutex);
1724    rdev->deferred_disables++;
1725    mutex_unlock(&rdev->mutex);
1726
1727    ret = schedule_delayed_work(&rdev->disable_work,
1728                    msecs_to_jiffies(ms));
1729    if (ret < 0)
1730        return ret;
1731    else
1732        return 0;
1733}
1734EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1735
1736/**
1737 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1738 *
1739 * @rdev: regulator to operate on
1740 *
1741 * Regulators that use regmap for their register I/O can set the
1742 * enable_reg and enable_mask fields in their descriptor and then use
1743 * this as their is_enabled operation, saving some code.
1744 */
1745int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1746{
1747    unsigned int val;
1748    int ret;
1749
1750    ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751    if (ret != 0)
1752        return ret;
1753
1754    return (val & rdev->desc->enable_mask) != 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1757
1758/**
1759 * regulator_enable_regmap - standard enable() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their enable() operation, saving some code.
1766 */
1767int regulator_enable_regmap(struct regulator_dev *rdev)
1768{
1769    return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770                  rdev->desc->enable_mask,
1771                  rdev->desc->enable_mask);
1772}
1773EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1774
1775/**
1776 * regulator_disable_regmap - standard disable() for regmap users
1777 *
1778 * @rdev: regulator to operate on
1779 *
1780 * Regulators that use regmap for their register I/O can set the
1781 * enable_reg and enable_mask fields in their descriptor and then use
1782 * this as their disable() operation, saving some code.
1783 */
1784int regulator_disable_regmap(struct regulator_dev *rdev)
1785{
1786    return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787                  rdev->desc->enable_mask, 0);
1788}
1789EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1790
1791static int _regulator_is_enabled(struct regulator_dev *rdev)
1792{
1793    /* A GPIO control always takes precedence */
1794    if (rdev->ena_gpio)
1795        return rdev->ena_gpio_state;
1796
1797    /* If we don't know then assume that the regulator is always on */
1798    if (!rdev->desc->ops->is_enabled)
1799        return 1;
1800
1801    return rdev->desc->ops->is_enabled(rdev);
1802}
1803
1804/**
1805 * regulator_is_enabled - is the regulator output enabled
1806 * @regulator: regulator source
1807 *
1808 * Returns positive if the regulator driver backing the source/client
1809 * has requested that the device be enabled, zero if it hasn't, else a
1810 * negative errno code.
1811 *
1812 * Note that the device backing this regulator handle can have multiple
1813 * users, so it might be enabled even if regulator_enable() was never
1814 * called for this particular source.
1815 */
1816int regulator_is_enabled(struct regulator *regulator)
1817{
1818    int ret;
1819
1820    if (regulator->always_on)
1821        return 1;
1822
1823    mutex_lock(&regulator->rdev->mutex);
1824    ret = _regulator_is_enabled(regulator->rdev);
1825    mutex_unlock(&regulator->rdev->mutex);
1826
1827    return ret;
1828}
1829EXPORT_SYMBOL_GPL(regulator_is_enabled);
1830
1831/**
1832 * regulator_count_voltages - count regulator_list_voltage() selectors
1833 * @regulator: regulator source
1834 *
1835 * Returns number of selectors, or negative errno. Selectors are
1836 * numbered starting at zero, and typically correspond to bitfields
1837 * in hardware registers.
1838 */
1839int regulator_count_voltages(struct regulator *regulator)
1840{
1841    struct regulator_dev *rdev = regulator->rdev;
1842
1843    return rdev->desc->n_voltages ? : -EINVAL;
1844}
1845EXPORT_SYMBOL_GPL(regulator_count_voltages);
1846
1847/**
1848 * regulator_list_voltage_linear - List voltages with simple calculation
1849 *
1850 * @rdev: Regulator device
1851 * @selector: Selector to convert into a voltage
1852 *
1853 * Regulators with a simple linear mapping between voltages and
1854 * selectors can set min_uV and uV_step in the regulator descriptor
1855 * and then use this function as their list_voltage() operation,
1856 */
1857int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858                  unsigned int selector)
1859{
1860    if (selector >= rdev->desc->n_voltages)
1861        return -EINVAL;
1862
1863    return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1864}
1865EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1866
1867/**
1868 * regulator_list_voltage_table - List voltages with table based mapping
1869 *
1870 * @rdev: Regulator device
1871 * @selector: Selector to convert into a voltage
1872 *
1873 * Regulators with table based mapping between voltages and
1874 * selectors can set volt_table in the regulator descriptor
1875 * and then use this function as their list_voltage() operation.
1876 */
1877int regulator_list_voltage_table(struct regulator_dev *rdev,
1878                 unsigned int selector)
1879{
1880    if (!rdev->desc->volt_table) {
1881        BUG_ON(!rdev->desc->volt_table);
1882        return -EINVAL;
1883    }
1884
1885    if (selector >= rdev->desc->n_voltages)
1886        return -EINVAL;
1887
1888    return rdev->desc->volt_table[selector];
1889}
1890EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1891
1892/**
1893 * regulator_list_voltage - enumerate supported voltages
1894 * @regulator: regulator source
1895 * @selector: identify voltage to list
1896 * Context: can sleep
1897 *
1898 * Returns a voltage that can be passed to @regulator_set_voltage(),
1899 * zero if this selector code can't be used on this system, or a
1900 * negative errno.
1901 */
1902int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1903{
1904    struct regulator_dev *rdev = regulator->rdev;
1905    struct regulator_ops *ops = rdev->desc->ops;
1906    int ret;
1907
1908    if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909        return -EINVAL;
1910
1911    mutex_lock(&rdev->mutex);
1912    ret = ops->list_voltage(rdev, selector);
1913    mutex_unlock(&rdev->mutex);
1914
1915    if (ret > 0) {
1916        if (ret < rdev->constraints->min_uV)
1917            ret = 0;
1918        else if (ret > rdev->constraints->max_uV)
1919            ret = 0;
1920    }
1921
1922    return ret;
1923}
1924EXPORT_SYMBOL_GPL(regulator_list_voltage);
1925
1926/**
1927 * regulator_is_supported_voltage - check if a voltage range can be supported
1928 *
1929 * @regulator: Regulator to check.
1930 * @min_uV: Minimum required voltage in uV.
1931 * @max_uV: Maximum required voltage in uV.
1932 *
1933 * Returns a boolean or a negative error code.
1934 */
1935int regulator_is_supported_voltage(struct regulator *regulator,
1936                   int min_uV, int max_uV)
1937{
1938    struct regulator_dev *rdev = regulator->rdev;
1939    int i, voltages, ret;
1940
1941    /* If we can't change voltage check the current voltage */
1942    if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943        ret = regulator_get_voltage(regulator);
1944        if (ret >= 0)
1945            return (min_uV >= ret && ret <= max_uV);
1946        else
1947            return ret;
1948    }
1949
1950    ret = regulator_count_voltages(regulator);
1951    if (ret < 0)
1952        return ret;
1953    voltages = ret;
1954
1955    for (i = 0; i < voltages; i++) {
1956        ret = regulator_list_voltage(regulator, i);
1957
1958        if (ret >= min_uV && ret <= max_uV)
1959            return 1;
1960    }
1961
1962    return 0;
1963}
1964EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1965
1966/**
1967 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1968 *
1969 * @rdev: regulator to operate on
1970 *
1971 * Regulators that use regmap for their register I/O can set the
1972 * vsel_reg and vsel_mask fields in their descriptor and then use this
1973 * as their get_voltage_vsel operation, saving some code.
1974 */
1975int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1976{
1977    unsigned int val;
1978    int ret;
1979
1980    ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981    if (ret != 0)
1982        return ret;
1983
1984    val &= rdev->desc->vsel_mask;
1985    val >>= ffs(rdev->desc->vsel_mask) - 1;
1986
1987    return val;
1988}
1989EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1990
1991/**
1992 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1993 *
1994 * @rdev: regulator to operate on
1995 * @sel: Selector to set
1996 *
1997 * Regulators that use regmap for their register I/O can set the
1998 * vsel_reg and vsel_mask fields in their descriptor and then use this
1999 * as their set_voltage_vsel operation, saving some code.
2000 */
2001int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2002{
2003    sel <<= ffs(rdev->desc->vsel_mask) - 1;
2004
2005    return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006                  rdev->desc->vsel_mask, sel);
2007}
2008EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2009
2010/**
2011 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2012 *
2013 * @rdev: Regulator to operate on
2014 * @min_uV: Lower bound for voltage
2015 * @max_uV: Upper bound for voltage
2016 *
2017 * Drivers implementing set_voltage_sel() and list_voltage() can use
2018 * this as their map_voltage() operation. It will find a suitable
2019 * voltage by calling list_voltage() until it gets something in bounds
2020 * for the requested voltages.
2021 */
2022int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023                  int min_uV, int max_uV)
2024{
2025    int best_val = INT_MAX;
2026    int selector = 0;
2027    int i, ret;
2028
2029    /* Find the smallest voltage that falls within the specified
2030     * range.
2031     */
2032    for (i = 0; i < rdev->desc->n_voltages; i++) {
2033        ret = rdev->desc->ops->list_voltage(rdev, i);
2034        if (ret < 0)
2035            continue;
2036
2037        if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038            best_val = ret;
2039            selector = i;
2040        }
2041    }
2042
2043    if (best_val != INT_MAX)
2044        return selector;
2045    else
2046        return -EINVAL;
2047}
2048EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2049
2050/**
2051 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2052 *
2053 * @rdev: Regulator to operate on
2054 * @min_uV: Lower bound for voltage
2055 * @max_uV: Upper bound for voltage
2056 *
2057 * Drivers providing min_uV and uV_step in their regulator_desc can
2058 * use this as their map_voltage() operation.
2059 */
2060int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061                 int min_uV, int max_uV)
2062{
2063    int ret, voltage;
2064
2065    /* Allow uV_step to be 0 for fixed voltage */
2066    if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067        if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068            return 0;
2069        else
2070            return -EINVAL;
2071    }
2072
2073    if (!rdev->desc->uV_step) {
2074        BUG_ON(!rdev->desc->uV_step);
2075        return -EINVAL;
2076    }
2077
2078    if (min_uV < rdev->desc->min_uV)
2079        min_uV = rdev->desc->min_uV;
2080
2081    ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082    if (ret < 0)
2083        return ret;
2084
2085    /* Map back into a voltage to verify we're still in bounds */
2086    voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087    if (voltage < min_uV || voltage > max_uV)
2088        return -EINVAL;
2089
2090    return ret;
2091}
2092EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2093
2094static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095                     int min_uV, int max_uV)
2096{
2097    int ret;
2098    int delay = 0;
2099    int best_val = 0;
2100    unsigned int selector;
2101    int old_selector = -1;
2102
2103    trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2104
2105    min_uV += rdev->constraints->uV_offset;
2106    max_uV += rdev->constraints->uV_offset;
2107
2108    /*
2109     * If we can't obtain the old selector there is not enough
2110     * info to call set_voltage_time_sel().
2111     */
2112    if (_regulator_is_enabled(rdev) &&
2113        rdev->desc->ops->set_voltage_time_sel &&
2114        rdev->desc->ops->get_voltage_sel) {
2115        old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116        if (old_selector < 0)
2117            return old_selector;
2118    }
2119
2120    if (rdev->desc->ops->set_voltage) {
2121        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122                           &selector);
2123
2124        if (ret >= 0) {
2125            if (rdev->desc->ops->list_voltage)
2126                best_val = rdev->desc->ops->list_voltage(rdev,
2127                                     selector);
2128            else
2129                best_val = _regulator_get_voltage(rdev);
2130        }
2131
2132    } else if (rdev->desc->ops->set_voltage_sel) {
2133        if (rdev->desc->ops->map_voltage) {
2134            ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135                               max_uV);
2136        } else {
2137            if (rdev->desc->ops->list_voltage ==
2138                regulator_list_voltage_linear)
2139                ret = regulator_map_voltage_linear(rdev,
2140                                min_uV, max_uV);
2141            else
2142                ret = regulator_map_voltage_iterate(rdev,
2143                                min_uV, max_uV);
2144        }
2145
2146        if (ret >= 0) {
2147            best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148            if (min_uV <= best_val && max_uV >= best_val) {
2149                selector = ret;
2150                ret = rdev->desc->ops->set_voltage_sel(rdev,
2151                                       ret);
2152            } else {
2153                ret = -EINVAL;
2154            }
2155        }
2156    } else {
2157        ret = -EINVAL;
2158    }
2159
2160    /* Call set_voltage_time_sel if successfully obtained old_selector */
2161    if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162        rdev->desc->ops->set_voltage_time_sel) {
2163
2164        delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165                        old_selector, selector);
2166        if (delay < 0) {
2167            rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168                  delay);
2169            delay = 0;
2170        }
2171
2172        /* Insert any necessary delays */
2173        if (delay >= 1000) {
2174            mdelay(delay / 1000);
2175            udelay(delay % 1000);
2176        } else if (delay) {
2177            udelay(delay);
2178        }
2179    }
2180
2181    if (ret == 0 && best_val >= 0)
2182        _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183                     (void *)best_val);
2184
2185    trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186
2187    return ret;
2188}
2189
2190/**
2191 * regulator_set_voltage - set regulator output voltage
2192 * @regulator: regulator source
2193 * @min_uV: Minimum required voltage in uV
2194 * @max_uV: Maximum acceptable voltage in uV
2195 *
2196 * Sets a voltage regulator to the desired output voltage. This can be set
2197 * during any regulator state. IOW, regulator can be disabled or enabled.
2198 *
2199 * If the regulator is enabled then the voltage will change to the new value
2200 * immediately otherwise if the regulator is disabled the regulator will
2201 * output at the new voltage when enabled.
2202 *
2203 * NOTE: If the regulator is shared between several devices then the lowest
2204 * request voltage that meets the system constraints will be used.
2205 * Regulator system constraints must be set for this regulator before
2206 * calling this function otherwise this call will fail.
2207 */
2208int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209{
2210    struct regulator_dev *rdev = regulator->rdev;
2211    int ret = 0;
2212
2213    mutex_lock(&rdev->mutex);
2214
2215    /* If we're setting the same range as last time the change
2216     * should be a noop (some cpufreq implementations use the same
2217     * voltage for multiple frequencies, for example).
2218     */
2219    if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220        goto out;
2221
2222    /* sanity check */
2223    if (!rdev->desc->ops->set_voltage &&
2224        !rdev->desc->ops->set_voltage_sel) {
2225        ret = -EINVAL;
2226        goto out;
2227    }
2228
2229    /* constraints check */
2230    ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231    if (ret < 0)
2232        goto out;
2233    regulator->min_uV = min_uV;
2234    regulator->max_uV = max_uV;
2235
2236    ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237    if (ret < 0)
2238        goto out;
2239
2240    ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241
2242out:
2243    mutex_unlock(&rdev->mutex);
2244    return ret;
2245}
2246EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247
2248/**
2249 * regulator_set_voltage_time - get raise/fall time
2250 * @regulator: regulator source
2251 * @old_uV: starting voltage in microvolts
2252 * @new_uV: target voltage in microvolts
2253 *
2254 * Provided with the starting and ending voltage, this function attempts to
2255 * calculate the time in microseconds required to rise or fall to this new
2256 * voltage.
2257 */
2258int regulator_set_voltage_time(struct regulator *regulator,
2259                   int old_uV, int new_uV)
2260{
2261    struct regulator_dev *rdev = regulator->rdev;
2262    struct regulator_ops *ops = rdev->desc->ops;
2263    int old_sel = -1;
2264    int new_sel = -1;
2265    int voltage;
2266    int i;
2267
2268    /* Currently requires operations to do this */
2269    if (!ops->list_voltage || !ops->set_voltage_time_sel
2270        || !rdev->desc->n_voltages)
2271        return -EINVAL;
2272
2273    for (i = 0; i < rdev->desc->n_voltages; i++) {
2274        /* We only look for exact voltage matches here */
2275        voltage = regulator_list_voltage(regulator, i);
2276        if (voltage < 0)
2277            return -EINVAL;
2278        if (voltage == 0)
2279            continue;
2280        if (voltage == old_uV)
2281            old_sel = i;
2282        if (voltage == new_uV)
2283            new_sel = i;
2284    }
2285
2286    if (old_sel < 0 || new_sel < 0)
2287        return -EINVAL;
2288
2289    return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290}
2291EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292
2293/**
2294 *regulator_set_voltage_time_sel - get raise/fall time
2295 * @regulator: regulator source
2296 * @old_selector: selector for starting voltage
2297 * @new_selector: selector for target voltage
2298 *
2299 * Provided with the starting and target voltage selectors, this function
2300 * returns time in microseconds required to rise or fall to this new voltage
2301 *
2302 * Drivers providing ramp_delay in regulation_constraints can use this as their
2303 * set_voltage_time_sel() operation.
2304 */
2305int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306                   unsigned int old_selector,
2307                   unsigned int new_selector)
2308{
2309    unsigned int ramp_delay = 0;
2310    int old_volt, new_volt;
2311
2312    if (rdev->constraints->ramp_delay)
2313        ramp_delay = rdev->constraints->ramp_delay;
2314    else if (rdev->desc->ramp_delay)
2315        ramp_delay = rdev->desc->ramp_delay;
2316
2317    if (ramp_delay == 0) {
2318        rdev_warn(rdev, "ramp_delay not set\n");
2319        return 0;
2320    }
2321
2322    /* sanity check */
2323    if (!rdev->desc->ops->list_voltage)
2324        return -EINVAL;
2325
2326    old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327    new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328
2329    return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330}
2331EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332
2333/**
2334 * regulator_sync_voltage - re-apply last regulator output voltage
2335 * @regulator: regulator source
2336 *
2337 * Re-apply the last configured voltage. This is intended to be used
2338 * where some external control source the consumer is cooperating with
2339 * has caused the configured voltage to change.
2340 */
2341int regulator_sync_voltage(struct regulator *regulator)
2342{
2343    struct regulator_dev *rdev = regulator->rdev;
2344    int ret, min_uV, max_uV;
2345
2346    mutex_lock(&rdev->mutex);
2347
2348    if (!rdev->desc->ops->set_voltage &&
2349        !rdev->desc->ops->set_voltage_sel) {
2350        ret = -EINVAL;
2351        goto out;
2352    }
2353
2354    /* This is only going to work if we've had a voltage configured. */
2355    if (!regulator->min_uV && !regulator->max_uV) {
2356        ret = -EINVAL;
2357        goto out;
2358    }
2359
2360    min_uV = regulator->min_uV;
2361    max_uV = regulator->max_uV;
2362
2363    /* This should be a paranoia check... */
2364    ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365    if (ret < 0)
2366        goto out;
2367
2368    ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369    if (ret < 0)
2370        goto out;
2371
2372    ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373
2374out:
2375    mutex_unlock(&rdev->mutex);
2376    return ret;
2377}
2378EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379
2380static int _regulator_get_voltage(struct regulator_dev *rdev)
2381{
2382    int sel, ret;
2383
2384    if (rdev->desc->ops->get_voltage_sel) {
2385        sel = rdev->desc->ops->get_voltage_sel(rdev);
2386        if (sel < 0)
2387            return sel;
2388        ret = rdev->desc->ops->list_voltage(rdev, sel);
2389    } else if (rdev->desc->ops->get_voltage) {
2390        ret = rdev->desc->ops->get_voltage(rdev);
2391    } else {
2392        return -EINVAL;
2393    }
2394
2395    if (ret < 0)
2396        return ret;
2397    return ret - rdev->constraints->uV_offset;
2398}
2399
2400/**
2401 * regulator_get_voltage - get regulator output voltage
2402 * @regulator: regulator source
2403 *
2404 * This returns the current regulator voltage in uV.
2405 *
2406 * NOTE: If the regulator is disabled it will return the voltage value. This
2407 * function should not be used to determine regulator state.
2408 */
2409int regulator_get_voltage(struct regulator *regulator)
2410{
2411    int ret;
2412
2413    mutex_lock(&regulator->rdev->mutex);
2414
2415    ret = _regulator_get_voltage(regulator->rdev);
2416
2417    mutex_unlock(&regulator->rdev->mutex);
2418
2419    return ret;
2420}
2421EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422
2423/**
2424 * regulator_set_current_limit - set regulator output current limit
2425 * @regulator: regulator source
2426 * @min_uA: Minimuum supported current in uA
2427 * @max_uA: Maximum supported current in uA
2428 *
2429 * Sets current sink to the desired output current. This can be set during
2430 * any regulator state. IOW, regulator can be disabled or enabled.
2431 *
2432 * If the regulator is enabled then the current will change to the new value
2433 * immediately otherwise if the regulator is disabled the regulator will
2434 * output at the new current when enabled.
2435 *
2436 * NOTE: Regulator system constraints must be set for this regulator before
2437 * calling this function otherwise this call will fail.
2438 */
2439int regulator_set_current_limit(struct regulator *regulator,
2440                   int min_uA, int max_uA)
2441{
2442    struct regulator_dev *rdev = regulator->rdev;
2443    int ret;
2444
2445    mutex_lock(&rdev->mutex);
2446
2447    /* sanity check */
2448    if (!rdev->desc->ops->set_current_limit) {
2449        ret = -EINVAL;
2450        goto out;
2451    }
2452
2453    /* constraints check */
2454    ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455    if (ret < 0)
2456        goto out;
2457
2458    ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459out:
2460    mutex_unlock(&rdev->mutex);
2461    return ret;
2462}
2463EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464
2465static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466{
2467    int ret;
2468
2469    mutex_lock(&rdev->mutex);
2470
2471    /* sanity check */
2472    if (!rdev->desc->ops->get_current_limit) {
2473        ret = -EINVAL;
2474        goto out;
2475    }
2476
2477    ret = rdev->desc->ops->get_current_limit(rdev);
2478out:
2479    mutex_unlock(&rdev->mutex);
2480    return ret;
2481}
2482
2483/**
2484 * regulator_get_current_limit - get regulator output current
2485 * @regulator: regulator source
2486 *
2487 * This returns the current supplied by the specified current sink in uA.
2488 *
2489 * NOTE: If the regulator is disabled it will return the current value. This
2490 * function should not be used to determine regulator state.
2491 */
2492int regulator_get_current_limit(struct regulator *regulator)
2493{
2494    return _regulator_get_current_limit(regulator->rdev);
2495}
2496EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497
2498/**
2499 * regulator_set_mode - set regulator operating mode
2500 * @regulator: regulator source
2501 * @mode: operating mode - one of the REGULATOR_MODE constants
2502 *
2503 * Set regulator operating mode to increase regulator efficiency or improve
2504 * regulation performance.
2505 *
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2508 */
2509int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510{
2511    struct regulator_dev *rdev = regulator->rdev;
2512    int ret;
2513    int regulator_curr_mode;
2514
2515    mutex_lock(&rdev->mutex);
2516
2517    /* sanity check */
2518    if (!rdev->desc->ops->set_mode) {
2519        ret = -EINVAL;
2520        goto out;
2521    }
2522
2523    /* return if the same mode is requested */
2524    if (rdev->desc->ops->get_mode) {
2525        regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526        if (regulator_curr_mode == mode) {
2527            ret = 0;
2528            goto out;
2529        }
2530    }
2531
2532    /* constraints check */
2533    ret = regulator_mode_constrain(rdev, &mode);
2534    if (ret < 0)
2535        goto out;
2536
2537    ret = rdev->desc->ops->set_mode(rdev, mode);
2538out:
2539    mutex_unlock(&rdev->mutex);
2540    return ret;
2541}
2542EXPORT_SYMBOL_GPL(regulator_set_mode);
2543
2544static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545{
2546    int ret;
2547
2548    mutex_lock(&rdev->mutex);
2549
2550    /* sanity check */
2551    if (!rdev->desc->ops->get_mode) {
2552        ret = -EINVAL;
2553        goto out;
2554    }
2555
2556    ret = rdev->desc->ops->get_mode(rdev);
2557out:
2558    mutex_unlock(&rdev->mutex);
2559    return ret;
2560}
2561
2562/**
2563 * regulator_get_mode - get regulator operating mode
2564 * @regulator: regulator source
2565 *
2566 * Get the current regulator operating mode.
2567 */
2568unsigned int regulator_get_mode(struct regulator *regulator)
2569{
2570    return _regulator_get_mode(regulator->rdev);
2571}
2572EXPORT_SYMBOL_GPL(regulator_get_mode);
2573
2574/**
2575 * regulator_set_optimum_mode - set regulator optimum operating mode
2576 * @regulator: regulator source
2577 * @uA_load: load current
2578 *
2579 * Notifies the regulator core of a new device load. This is then used by
2580 * DRMS (if enabled by constraints) to set the most efficient regulator
2581 * operating mode for the new regulator loading.
2582 *
2583 * Consumer devices notify their supply regulator of the maximum power
2584 * they will require (can be taken from device datasheet in the power
2585 * consumption tables) when they change operational status and hence power
2586 * state. Examples of operational state changes that can affect power
2587 * consumption are :-
2588 *
2589 * o Device is opened / closed.
2590 * o Device I/O is about to begin or has just finished.
2591 * o Device is idling in between work.
2592 *
2593 * This information is also exported via sysfs to userspace.
2594 *
2595 * DRMS will sum the total requested load on the regulator and change
2596 * to the most efficient operating mode if platform constraints allow.
2597 *
2598 * Returns the new regulator mode or error.
2599 */
2600int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601{
2602    struct regulator_dev *rdev = regulator->rdev;
2603    struct regulator *consumer;
2604    int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605    unsigned int mode;
2606
2607    if (rdev->supply)
2608        input_uV = regulator_get_voltage(rdev->supply);
2609
2610    mutex_lock(&rdev->mutex);
2611
2612    /*
2613     * first check to see if we can set modes at all, otherwise just
2614     * tell the consumer everything is OK.
2615     */
2616    regulator->uA_load = uA_load;
2617    ret = regulator_check_drms(rdev);
2618    if (ret < 0) {
2619        ret = 0;
2620        goto out;
2621    }
2622
2623    if (!rdev->desc->ops->get_optimum_mode)
2624        goto out;
2625
2626    /*
2627     * we can actually do this so any errors are indicators of
2628     * potential real failure.
2629     */
2630    ret = -EINVAL;
2631
2632    if (!rdev->desc->ops->set_mode)
2633        goto out;
2634
2635    /* get output voltage */
2636    output_uV = _regulator_get_voltage(rdev);
2637    if (output_uV <= 0) {
2638        rdev_err(rdev, "invalid output voltage found\n");
2639        goto out;
2640    }
2641
2642    /* No supply? Use constraint voltage */
2643    if (input_uV <= 0)
2644        input_uV = rdev->constraints->input_uV;
2645    if (input_uV <= 0) {
2646        rdev_err(rdev, "invalid input voltage found\n");
2647        goto out;
2648    }
2649
2650    /* calc total requested load for this regulator */
2651    list_for_each_entry(consumer, &rdev->consumer_list, list)
2652        total_uA_load += consumer->uA_load;
2653
2654    mode = rdev->desc->ops->get_optimum_mode(rdev,
2655                         input_uV, output_uV,
2656                         total_uA_load);
2657    ret = regulator_mode_constrain(rdev, &mode);
2658    if (ret < 0) {
2659        rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660             total_uA_load, input_uV, output_uV);
2661        goto out;
2662    }
2663
2664    ret = rdev->desc->ops->set_mode(rdev, mode);
2665    if (ret < 0) {
2666        rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667        goto out;
2668    }
2669    ret = mode;
2670out:
2671    mutex_unlock(&rdev->mutex);
2672    return ret;
2673}
2674EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675
2676/**
2677 * regulator_register_notifier - register regulator event notifier
2678 * @regulator: regulator source
2679 * @nb: notifier block
2680 *
2681 * Register notifier block to receive regulator events.
2682 */
2683int regulator_register_notifier(struct regulator *regulator,
2684                  struct notifier_block *nb)
2685{
2686    return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687                        nb);
2688}
2689EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690
2691/**
2692 * regulator_unregister_notifier - unregister regulator event notifier
2693 * @regulator: regulator source
2694 * @nb: notifier block
2695 *
2696 * Unregister regulator event notifier block.
2697 */
2698int regulator_unregister_notifier(struct regulator *regulator,
2699                struct notifier_block *nb)
2700{
2701    return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702                          nb);
2703}
2704EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705
2706/* notify regulator consumers and downstream regulator consumers.
2707 * Note mutex must be held by caller.
2708 */
2709static void _notifier_call_chain(struct regulator_dev *rdev,
2710                  unsigned long event, void *data)
2711{
2712    /* call rdev chain first */
2713    blocking_notifier_call_chain(&rdev->notifier, event, data);
2714}
2715
2716/**
2717 * regulator_bulk_get - get multiple regulator consumers
2718 *
2719 * @dev: Device to supply
2720 * @num_consumers: Number of consumers to register
2721 * @consumers: Configuration of consumers; clients are stored here.
2722 *
2723 * @return 0 on success, an errno on failure.
2724 *
2725 * This helper function allows drivers to get several regulator
2726 * consumers in one operation. If any of the regulators cannot be
2727 * acquired then any regulators that were allocated will be freed
2728 * before returning to the caller.
2729 */
2730int regulator_bulk_get(struct device *dev, int num_consumers,
2731               struct regulator_bulk_data *consumers)
2732{
2733    int i;
2734    int ret;
2735
2736    for (i = 0; i < num_consumers; i++)
2737        consumers[i].consumer = NULL;
2738
2739    for (i = 0; i < num_consumers; i++) {
2740        consumers[i].consumer = regulator_get(dev,
2741                              consumers[i].supply);
2742        if (IS_ERR(consumers[i].consumer)) {
2743            ret = PTR_ERR(consumers[i].consumer);
2744            dev_err(dev, "Failed to get supply '%s': %d\n",
2745                consumers[i].supply, ret);
2746            consumers[i].consumer = NULL;
2747            goto err;
2748        }
2749    }
2750
2751    return 0;
2752
2753err:
2754    while (--i >= 0)
2755        regulator_put(consumers[i].consumer);
2756
2757    return ret;
2758}
2759EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760
2761/**
2762 * devm_regulator_bulk_get - managed get multiple regulator consumers
2763 *
2764 * @dev: Device to supply
2765 * @num_consumers: Number of consumers to register
2766 * @consumers: Configuration of consumers; clients are stored here.
2767 *
2768 * @return 0 on success, an errno on failure.
2769 *
2770 * This helper function allows drivers to get several regulator
2771 * consumers in one operation with management, the regulators will
2772 * automatically be freed when the device is unbound. If any of the
2773 * regulators cannot be acquired then any regulators that were
2774 * allocated will be freed before returning to the caller.
2775 */
2776int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777                struct regulator_bulk_data *consumers)
2778{
2779    int i;
2780    int ret;
2781
2782    for (i = 0; i < num_consumers; i++)
2783        consumers[i].consumer = NULL;
2784
2785    for (i = 0; i < num_consumers; i++) {
2786        consumers[i].consumer = devm_regulator_get(dev,
2787                               consumers[i].supply);
2788        if (IS_ERR(consumers[i].consumer)) {
2789            ret = PTR_ERR(consumers[i].consumer);
2790            dev_err(dev, "Failed to get supply '%s': %d\n",
2791                consumers[i].supply, ret);
2792            consumers[i].consumer = NULL;
2793            goto err;
2794        }
2795    }
2796
2797    return 0;
2798
2799err:
2800    for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801        devm_regulator_put(consumers[i].consumer);
2802
2803    return ret;
2804}
2805EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806
2807static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808{
2809    struct regulator_bulk_data *bulk = data;
2810
2811    bulk->ret = regulator_enable(bulk->consumer);
2812}
2813
2814/**
2815 * regulator_bulk_enable - enable multiple regulator consumers
2816 *
2817 * @num_consumers: Number of consumers
2818 * @consumers: Consumer data; clients are stored here.
2819 * @return 0 on success, an errno on failure
2820 *
2821 * This convenience API allows consumers to enable multiple regulator
2822 * clients in a single API call. If any consumers cannot be enabled
2823 * then any others that were enabled will be disabled again prior to
2824 * return.
2825 */
2826int regulator_bulk_enable(int num_consumers,
2827              struct regulator_bulk_data *consumers)
2828{
2829    ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830    int i;
2831    int ret = 0;
2832
2833    for (i = 0; i < num_consumers; i++) {
2834        if (consumers[i].consumer->always_on)
2835            consumers[i].ret = 0;
2836        else
2837            async_schedule_domain(regulator_bulk_enable_async,
2838                          &consumers[i], &async_domain);
2839    }
2840
2841    async_synchronize_full_domain(&async_domain);
2842
2843    /* If any consumer failed we need to unwind any that succeeded */
2844    for (i = 0; i < num_consumers; i++) {
2845        if (consumers[i].ret != 0) {
2846            ret = consumers[i].ret;
2847            goto err;
2848        }
2849    }
2850
2851    return 0;
2852
2853err:
2854    pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855    while (--i >= 0)
2856        regulator_disable(consumers[i].consumer);
2857
2858    return ret;
2859}
2860EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861
2862/**
2863 * regulator_bulk_disable - disable multiple regulator consumers
2864 *
2865 * @num_consumers: Number of consumers
2866 * @consumers: Consumer data; clients are stored here.
2867 * @return 0 on success, an errno on failure
2868 *
2869 * This convenience API allows consumers to disable multiple regulator
2870 * clients in a single API call. If any consumers cannot be disabled
2871 * then any others that were disabled will be enabled again prior to
2872 * return.
2873 */
2874int regulator_bulk_disable(int num_consumers,
2875               struct regulator_bulk_data *consumers)
2876{
2877    int i;
2878    int ret, r;
2879
2880    for (i = num_consumers - 1; i >= 0; --i) {
2881        ret = regulator_disable(consumers[i].consumer);
2882        if (ret != 0)
2883            goto err;
2884    }
2885
2886    return 0;
2887
2888err:
2889    pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890    for (++i; i < num_consumers; ++i) {
2891        r = regulator_enable(consumers[i].consumer);
2892        if (r != 0)
2893            pr_err("Failed to reename %s: %d\n",
2894                   consumers[i].supply, r);
2895    }
2896
2897    return ret;
2898}
2899EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900
2901/**
2902 * regulator_bulk_force_disable - force disable multiple regulator consumers
2903 *
2904 * @num_consumers: Number of consumers
2905 * @consumers: Consumer data; clients are stored here.
2906 * @return 0 on success, an errno on failure
2907 *
2908 * This convenience API allows consumers to forcibly disable multiple regulator
2909 * clients in a single API call.
2910 * NOTE: This should be used for situations when device damage will
2911 * likely occur if the regulators are not disabled (e.g. over temp).
2912 * Although regulator_force_disable function call for some consumers can
2913 * return error numbers, the function is called for all consumers.
2914 */
2915int regulator_bulk_force_disable(int num_consumers,
2916               struct regulator_bulk_data *consumers)
2917{
2918    int i;
2919    int ret;
2920
2921    for (i = 0; i < num_consumers; i++)
2922        consumers[i].ret =
2923                regulator_force_disable(consumers[i].consumer);
2924
2925    for (i = 0; i < num_consumers; i++) {
2926        if (consumers[i].ret != 0) {
2927            ret = consumers[i].ret;
2928            goto out;
2929        }
2930    }
2931
2932    return 0;
2933out:
2934    return ret;
2935}
2936EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937
2938/**
2939 * regulator_bulk_free - free multiple regulator consumers
2940 *
2941 * @num_consumers: Number of consumers
2942 * @consumers: Consumer data; clients are stored here.
2943 *
2944 * This convenience API allows consumers to free multiple regulator
2945 * clients in a single API call.
2946 */
2947void regulator_bulk_free(int num_consumers,
2948             struct regulator_bulk_data *consumers)
2949{
2950    int i;
2951
2952    for (i = 0; i < num_consumers; i++) {
2953        regulator_put(consumers[i].consumer);
2954        consumers[i].consumer = NULL;
2955    }
2956}
2957EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958
2959/**
2960 * regulator_notifier_call_chain - call regulator event notifier
2961 * @rdev: regulator source
2962 * @event: notifier block
2963 * @data: callback-specific data.
2964 *
2965 * Called by regulator drivers to notify clients a regulator event has
2966 * occurred. We also notify regulator clients downstream.
2967 * Note lock must be held by caller.
2968 */
2969int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970                  unsigned long event, void *data)
2971{
2972    _notifier_call_chain(rdev, event, data);
2973    return NOTIFY_DONE;
2974
2975}
2976EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977
2978/**
2979 * regulator_mode_to_status - convert a regulator mode into a status
2980 *
2981 * @mode: Mode to convert
2982 *
2983 * Convert a regulator mode into a status.
2984 */
2985int regulator_mode_to_status(unsigned int mode)
2986{
2987    switch (mode) {
2988    case REGULATOR_MODE_FAST:
2989        return REGULATOR_STATUS_FAST;
2990    case REGULATOR_MODE_NORMAL:
2991        return REGULATOR_STATUS_NORMAL;
2992    case REGULATOR_MODE_IDLE:
2993        return REGULATOR_STATUS_IDLE;
2994    case REGULATOR_MODE_STANDBY:
2995        return REGULATOR_STATUS_STANDBY;
2996    default:
2997        return REGULATOR_STATUS_UNDEFINED;
2998    }
2999}
3000EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001
3002/*
3003 * To avoid cluttering sysfs (and memory) with useless state, only
3004 * create attributes that can be meaningfully displayed.
3005 */
3006static int add_regulator_attributes(struct regulator_dev *rdev)
3007{
3008    struct device *dev = &rdev->dev;
3009    struct regulator_ops *ops = rdev->desc->ops;
3010    int status = 0;
3011
3012    /* some attributes need specific methods to be displayed */
3013    if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014        (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015        status = device_create_file(dev, &dev_attr_microvolts);
3016        if (status < 0)
3017            return status;
3018    }
3019    if (ops->get_current_limit) {
3020        status = device_create_file(dev, &dev_attr_microamps);
3021        if (status < 0)
3022            return status;
3023    }
3024    if (ops->get_mode) {
3025        status = device_create_file(dev, &dev_attr_opmode);
3026        if (status < 0)
3027            return status;
3028    }
3029    if (ops->is_enabled) {
3030        status = device_create_file(dev, &dev_attr_state);
3031        if (status < 0)
3032            return status;
3033    }
3034    if (ops->get_status) {
3035        status = device_create_file(dev, &dev_attr_status);
3036        if (status < 0)
3037            return status;
3038    }
3039
3040    /* some attributes are type-specific */
3041    if (rdev->desc->type == REGULATOR_CURRENT) {
3042        status = device_create_file(dev, &dev_attr_requested_microamps);
3043        if (status < 0)
3044            return status;
3045    }
3046
3047    /* all the other attributes exist to support constraints;
3048     * don't show them if there are no constraints, or if the
3049     * relevant supporting methods are missing.
3050     */
3051    if (!rdev->constraints)
3052        return status;
3053
3054    /* constraints need specific supporting methods */
3055    if (ops->set_voltage || ops->set_voltage_sel) {
3056        status = device_create_file(dev, &dev_attr_min_microvolts);
3057        if (status < 0)
3058            return status;
3059        status = device_create_file(dev, &dev_attr_max_microvolts);
3060        if (status < 0)
3061            return status;
3062    }
3063    if (ops->set_current_limit) {
3064        status = device_create_file(dev, &dev_attr_min_microamps);
3065        if (status < 0)
3066            return status;
3067        status = device_create_file(dev, &dev_attr_max_microamps);
3068        if (status < 0)
3069            return status;
3070    }
3071
3072    status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073    if (status < 0)
3074        return status;
3075    status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076    if (status < 0)
3077        return status;
3078    status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079    if (status < 0)
3080        return status;
3081
3082    if (ops->set_suspend_voltage) {
3083        status = device_create_file(dev,
3084                &dev_attr_suspend_standby_microvolts);
3085        if (status < 0)
3086            return status;
3087        status = device_create_file(dev,
3088                &dev_attr_suspend_mem_microvolts);
3089        if (status < 0)
3090            return status;
3091        status = device_create_file(dev,
3092                &dev_attr_suspend_disk_microvolts);
3093        if (status < 0)
3094            return status;
3095    }
3096
3097    if (ops->set_suspend_mode) {
3098        status = device_create_file(dev,
3099                &dev_attr_suspend_standby_mode);
3100        if (status < 0)
3101            return status;
3102        status = device_create_file(dev,
3103                &dev_attr_suspend_mem_mode);
3104        if (status < 0)
3105            return status;
3106        status = device_create_file(dev,
3107                &dev_attr_suspend_disk_mode);
3108        if (status < 0)
3109            return status;
3110    }
3111
3112    return status;
3113}
3114
3115static void rdev_init_debugfs(struct regulator_dev *rdev)
3116{
3117    rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118    if (!rdev->debugfs) {
3119        rdev_warn(rdev, "Failed to create debugfs directory\n");
3120        return;
3121    }
3122
3123    debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124               &rdev->use_count);
3125    debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126               &rdev->open_count);
3127}
3128
3129/**
3130 * regulator_register - register regulator
3131 * @regulator_desc: regulator to register
3132 * @config: runtime configuration for regulator
3133 *
3134 * Called by regulator drivers to register a regulator.
3135 * Returns 0 on success.
3136 */
3137struct regulator_dev *
3138regulator_register(const struct regulator_desc *regulator_desc,
3139           const struct regulator_config *config)
3140{
3141    const struct regulation_constraints *constraints = NULL;
3142    const struct regulator_init_data *init_data;
3143    static atomic_t regulator_no = ATOMIC_INIT(0);
3144    struct regulator_dev *rdev;
3145    struct device *dev;
3146    int ret, i;
3147    const char *supply = NULL;
3148
3149    if (regulator_desc == NULL || config == NULL)
3150        return ERR_PTR(-EINVAL);
3151
3152    dev = config->dev;
3153    WARN_ON(!dev);
3154
3155    if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156        return ERR_PTR(-EINVAL);
3157
3158    if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159        regulator_desc->type != REGULATOR_CURRENT)
3160        return ERR_PTR(-EINVAL);
3161
3162    /* Only one of each should be implemented */
3163    WARN_ON(regulator_desc->ops->get_voltage &&
3164        regulator_desc->ops->get_voltage_sel);
3165    WARN_ON(regulator_desc->ops->set_voltage &&
3166        regulator_desc->ops->set_voltage_sel);
3167
3168    /* If we're using selectors we must implement list_voltage. */
3169    if (regulator_desc->ops->get_voltage_sel &&
3170        !regulator_desc->ops->list_voltage) {
3171        return ERR_PTR(-EINVAL);
3172    }
3173    if (regulator_desc->ops->set_voltage_sel &&
3174        !regulator_desc->ops->list_voltage) {
3175        return ERR_PTR(-EINVAL);
3176    }
3177
3178    init_data = config->init_data;
3179
3180    rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181    if (rdev == NULL)
3182        return ERR_PTR(-ENOMEM);
3183
3184    mutex_lock(&regulator_list_mutex);
3185
3186    mutex_init(&rdev->mutex);
3187    rdev->reg_data = config->driver_data;
3188    rdev->owner = regulator_desc->owner;
3189    rdev->desc = regulator_desc;
3190    if (config->regmap)
3191        rdev->regmap = config->regmap;
3192    else
3193        rdev->regmap = dev_get_regmap(dev, NULL);
3194    INIT_LIST_HEAD(&rdev->consumer_list);
3195    INIT_LIST_HEAD(&rdev->list);
3196    BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197    INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198
3199    /* preform any regulator specific init */
3200    if (init_data && init_data->regulator_init) {
3201        ret = init_data->regulator_init(rdev->reg_data);
3202        if (ret < 0)
3203            goto clean;
3204    }
3205
3206    /* register with sysfs */
3207    rdev->dev.class = &regulator_class;
3208    rdev->dev.of_node = config->of_node;
3209    rdev->dev.parent = dev;
3210    dev_set_name(&rdev->dev, "regulator.%d",
3211             atomic_inc_return(&regulator_no) - 1);
3212    ret = device_register(&rdev->dev);
3213    if (ret != 0) {
3214        put_device(&rdev->dev);
3215        goto clean;
3216    }
3217
3218    dev_set_drvdata(&rdev->dev, rdev);
3219
3220    if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3221        ret = gpio_request_one(config->ena_gpio,
3222                       GPIOF_DIR_OUT | config->ena_gpio_flags,
3223                       rdev_get_name(rdev));
3224        if (ret != 0) {
3225            rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226                 config->ena_gpio, ret);
3227            goto clean;
3228        }
3229
3230        rdev->ena_gpio = config->ena_gpio;
3231        rdev->ena_gpio_invert = config->ena_gpio_invert;
3232
3233        if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234            rdev->ena_gpio_state = 1;
3235
3236        if (rdev->ena_gpio_invert)
3237            rdev->ena_gpio_state = !rdev->ena_gpio_state;
3238    }
3239
3240    /* set regulator constraints */
3241    if (init_data)
3242        constraints = &init_data->constraints;
3243
3244    ret = set_machine_constraints(rdev, constraints);
3245    if (ret < 0)
3246        goto scrub;
3247
3248    /* add attributes supported by this regulator */
3249    ret = add_regulator_attributes(rdev);
3250    if (ret < 0)
3251        goto scrub;
3252
3253    if (init_data && init_data->supply_regulator)
3254        supply = init_data->supply_regulator;
3255    else if (regulator_desc->supply_name)
3256        supply = regulator_desc->supply_name;
3257
3258    if (supply) {
3259        struct regulator_dev *r;
3260
3261        r = regulator_dev_lookup(dev, supply, &ret);
3262
3263        if (!r) {
3264            dev_err(dev, "Failed to find supply %s\n", supply);
3265            ret = -EPROBE_DEFER;
3266            goto scrub;
3267        }
3268
3269        ret = set_supply(rdev, r);
3270        if (ret < 0)
3271            goto scrub;
3272
3273        /* Enable supply if rail is enabled */
3274        if (_regulator_is_enabled(rdev)) {
3275            ret = regulator_enable(rdev->supply);
3276            if (ret < 0)
3277                goto scrub;
3278        }
3279    }
3280
3281    /* add consumers devices */
3282    if (init_data) {
3283        for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284            ret = set_consumer_device_supply(rdev,
3285                init_data->consumer_supplies[i].dev_name,
3286                init_data->consumer_supplies[i].supply);
3287            if (ret < 0) {
3288                dev_err(dev, "Failed to set supply %s\n",
3289                    init_data->consumer_supplies[i].supply);
3290                goto unset_supplies;
3291            }
3292        }
3293    }
3294
3295    list_add(&rdev->list, &regulator_list);
3296
3297    rdev_init_debugfs(rdev);
3298out:
3299    mutex_unlock(&regulator_list_mutex);
3300    return rdev;
3301
3302unset_supplies:
3303    unset_regulator_supplies(rdev);
3304
3305scrub:
3306    if (rdev->supply)
3307        regulator_put(rdev->supply);
3308    if (rdev->ena_gpio)
3309        gpio_free(rdev->ena_gpio);
3310    kfree(rdev->constraints);
3311    device_unregister(&rdev->dev);
3312    /* device core frees rdev */
3313    rdev = ERR_PTR(ret);
3314    goto out;
3315
3316clean:
3317    kfree(rdev);
3318    rdev = ERR_PTR(ret);
3319    goto out;
3320}
3321EXPORT_SYMBOL_GPL(regulator_register);
3322
3323/**
3324 * regulator_unregister - unregister regulator
3325 * @rdev: regulator to unregister
3326 *
3327 * Called by regulator drivers to unregister a regulator.
3328 */
3329void regulator_unregister(struct regulator_dev *rdev)
3330{
3331    if (rdev == NULL)
3332        return;
3333
3334    if (rdev->supply)
3335        regulator_put(rdev->supply);
3336    mutex_lock(&regulator_list_mutex);
3337    debugfs_remove_recursive(rdev->debugfs);
3338    flush_work_sync(&rdev->disable_work.work);
3339    WARN_ON(rdev->open_count);
3340    unset_regulator_supplies(rdev);
3341    list_del(&rdev->list);
3342    kfree(rdev->constraints);
3343    if (rdev->ena_gpio)
3344        gpio_free(rdev->ena_gpio);
3345    device_unregister(&rdev->dev);
3346    mutex_unlock(&regulator_list_mutex);
3347}
3348EXPORT_SYMBOL_GPL(regulator_unregister);
3349
3350/**
3351 * regulator_suspend_prepare - prepare regulators for system wide suspend
3352 * @state: system suspend state
3353 *
3354 * Configure each regulator with it's suspend operating parameters for state.
3355 * This will usually be called by machine suspend code prior to supending.
3356 */
3357int regulator_suspend_prepare(suspend_state_t state)
3358{
3359    struct regulator_dev *rdev;
3360    int ret = 0;
3361
3362    /* ON is handled by regulator active state */
3363    if (state == PM_SUSPEND_ON)
3364        return -EINVAL;
3365
3366    mutex_lock(&regulator_list_mutex);
3367    list_for_each_entry(rdev, &regulator_list, list) {
3368
3369        mutex_lock(&rdev->mutex);
3370        ret = suspend_prepare(rdev, state);
3371        mutex_unlock(&rdev->mutex);
3372
3373        if (ret < 0) {
3374            rdev_err(rdev, "failed to prepare\n");
3375            goto out;
3376        }
3377    }
3378out:
3379    mutex_unlock(&regulator_list_mutex);
3380    return ret;
3381}
3382EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3383
3384/**
3385 * regulator_suspend_finish - resume regulators from system wide suspend
3386 *
3387 * Turn on regulators that might be turned off by regulator_suspend_prepare
3388 * and that should be turned on according to the regulators properties.
3389 */
3390int regulator_suspend_finish(void)
3391{
3392    struct regulator_dev *rdev;
3393    int ret = 0, error;
3394
3395    mutex_lock(&regulator_list_mutex);
3396    list_for_each_entry(rdev, &regulator_list, list) {
3397        struct regulator_ops *ops = rdev->desc->ops;
3398
3399        mutex_lock(&rdev->mutex);
3400        if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3401                ops->enable) {
3402            error = ops->enable(rdev);
3403            if (error)
3404                ret = error;
3405        } else {
3406            if (!has_full_constraints)
3407                goto unlock;
3408            if (!ops->disable)
3409                goto unlock;
3410            if (!_regulator_is_enabled(rdev))
3411                goto unlock;
3412
3413            error = ops->disable(rdev);
3414            if (error)
3415                ret = error;
3416        }
3417unlock:
3418        mutex_unlock(&rdev->mutex);
3419    }
3420    mutex_unlock(&regulator_list_mutex);
3421    return ret;
3422}
3423EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3424
3425/**
3426 * regulator_has_full_constraints - the system has fully specified constraints
3427 *
3428 * Calling this function will cause the regulator API to disable all
3429 * regulators which have a zero use count and don't have an always_on
3430 * constraint in a late_initcall.
3431 *
3432 * The intention is that this will become the default behaviour in a
3433 * future kernel release so users are encouraged to use this facility
3434 * now.
3435 */
3436void regulator_has_full_constraints(void)
3437{
3438    has_full_constraints = 1;
3439}
3440EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3441
3442/**
3443 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3444 *
3445 * Calling this function will cause the regulator API to provide a
3446 * dummy regulator to consumers if no physical regulator is found,
3447 * allowing most consumers to proceed as though a regulator were
3448 * configured. This allows systems such as those with software
3449 * controllable regulators for the CPU core only to be brought up more
3450 * readily.
3451 */
3452void regulator_use_dummy_regulator(void)
3453{
3454    board_wants_dummy_regulator = true;
3455}
3456EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3457
3458/**
3459 * rdev_get_drvdata - get rdev regulator driver data
3460 * @rdev: regulator
3461 *
3462 * Get rdev regulator driver private data. This call can be used in the
3463 * regulator driver context.
3464 */
3465void *rdev_get_drvdata(struct regulator_dev *rdev)
3466{
3467    return rdev->reg_data;
3468}
3469EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3470
3471/**
3472 * regulator_get_drvdata - get regulator driver data
3473 * @regulator: regulator
3474 *
3475 * Get regulator driver private data. This call can be used in the consumer
3476 * driver context when non API regulator specific functions need to be called.
3477 */
3478void *regulator_get_drvdata(struct regulator *regulator)
3479{
3480    return regulator->rdev->reg_data;
3481}
3482EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3483
3484/**
3485 * regulator_set_drvdata - set regulator driver data
3486 * @regulator: regulator
3487 * @data: data
3488 */
3489void regulator_set_drvdata(struct regulator *regulator, void *data)
3490{
3491    regulator->rdev->reg_data = data;
3492}
3493EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3494
3495/**
3496 * regulator_get_id - get regulator ID
3497 * @rdev: regulator
3498 */
3499int rdev_get_id(struct regulator_dev *rdev)
3500{
3501    return rdev->desc->id;
3502}
3503EXPORT_SYMBOL_GPL(rdev_get_id);
3504
3505struct device *rdev_get_dev(struct regulator_dev *rdev)
3506{
3507    return &rdev->dev;
3508}
3509EXPORT_SYMBOL_GPL(rdev_get_dev);
3510
3511void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3512{
3513    return reg_init_data->driver_data;
3514}
3515EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3516
3517#ifdef CONFIG_DEBUG_FS
3518static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519                    size_t count, loff_t *ppos)
3520{
3521    char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522    ssize_t len, ret = 0;
3523    struct regulator_map *map;
3524
3525    if (!buf)
3526        return -ENOMEM;
3527
3528    list_for_each_entry(map, &regulator_map_list, list) {
3529        len = snprintf(buf + ret, PAGE_SIZE - ret,
3530                   "%s -> %s.%s\n",
3531                   rdev_get_name(map->regulator), map->dev_name,
3532                   map->supply);
3533        if (len >= 0)
3534            ret += len;
3535        if (ret > PAGE_SIZE) {
3536            ret = PAGE_SIZE;
3537            break;
3538        }
3539    }
3540
3541    ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3542
3543    kfree(buf);
3544
3545    return ret;
3546}
3547#endif
3548
3549static const struct file_operations supply_map_fops = {
3550#ifdef CONFIG_DEBUG_FS
3551    .read = supply_map_read_file,
3552    .llseek = default_llseek,
3553#endif
3554};
3555
3556static int __init regulator_init(void)
3557{
3558    int ret;
3559
3560    ret = class_register(&regulator_class);
3561
3562    debugfs_root = debugfs_create_dir("regulator", NULL);
3563    if (!debugfs_root)
3564        pr_warn("regulator: Failed to create debugfs directory\n");
3565
3566    debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567                &supply_map_fops);
3568
3569    regulator_dummy_init();
3570
3571    return ret;
3572}
3573
3574/* init early to allow our consumers to complete system booting */
3575core_initcall(regulator_init);
3576
3577static int __init regulator_init_complete(void)
3578{
3579    struct regulator_dev *rdev;
3580    struct regulator_ops *ops;
3581    struct regulation_constraints *c;
3582    int enabled, ret;
3583
3584    /*
3585     * Since DT doesn't provide an idiomatic mechanism for
3586     * enabling full constraints and since it's much more natural
3587     * with DT to provide them just assume that a DT enabled
3588     * system has full constraints.
3589     */
3590    if (of_have_populated_dt())
3591        has_full_constraints = true;
3592
3593    mutex_lock(&regulator_list_mutex);
3594
3595    /* If we have a full configuration then disable any regulators
3596     * which are not in use or always_on. This will become the
3597     * default behaviour in the future.
3598     */
3599    list_for_each_entry(rdev, &regulator_list, list) {
3600        ops = rdev->desc->ops;
3601        c = rdev->constraints;
3602
3603        if (!ops->disable || (c && c->always_on))
3604            continue;
3605
3606        mutex_lock(&rdev->mutex);
3607
3608        if (rdev->use_count)
3609            goto unlock;
3610
3611        /* If we can't read the status assume it's on. */
3612        if (ops->is_enabled)
3613            enabled = ops->is_enabled(rdev);
3614        else
3615            enabled = 1;
3616
3617        if (!enabled)
3618            goto unlock;
3619
3620        if (has_full_constraints) {
3621            /* We log since this may kill the system if it
3622             * goes wrong. */
3623            rdev_info(rdev, "disabling\n");
3624            ret = ops->disable(rdev);
3625            if (ret != 0) {
3626                rdev_err(rdev, "couldn't disable: %d\n", ret);
3627            }
3628        } else {
3629            /* The intention is that in future we will
3630             * assume that full constraints are provided
3631             * so warn even if we aren't going to do
3632             * anything here.
3633             */
3634            rdev_warn(rdev, "incomplete constraints, leaving on\n");
3635        }
3636
3637unlock:
3638        mutex_unlock(&rdev->mutex);
3639    }
3640
3641    mutex_unlock(&regulator_list_mutex);
3642
3643    return 0;
3644}
3645late_initcall(regulator_init_complete);
3646

Archive Download this file



interactive