Root/drivers/remoteproc/remoteproc_core.c

1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/idr.h>
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
42#include <asm/byteorder.h>
43
44#include "remoteproc_internal.h"
45
46typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47                struct resource_table *table, int len);
48typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49
50/* Unique indices for remoteproc devices */
51static DEFINE_IDA(rproc_dev_index);
52
53/*
54 * This is the IOMMU fault handler we register with the IOMMU API
55 * (when relevant; not all remote processors access memory through
56 * an IOMMU).
57 *
58 * IOMMU core will invoke this handler whenever the remote processor
59 * will try to access an unmapped device address.
60 *
61 * Currently this is mostly a stub, but it will be later used to trigger
62 * the recovery of the remote processor.
63 */
64static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
65        unsigned long iova, int flags, void *token)
66{
67    dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
68
69    /*
70     * Let the iommu core know we're not really handling this fault;
71     * we just plan to use this as a recovery trigger.
72     */
73    return -ENOSYS;
74}
75
76static int rproc_enable_iommu(struct rproc *rproc)
77{
78    struct iommu_domain *domain;
79    struct device *dev = rproc->dev.parent;
80    int ret;
81
82    /*
83     * We currently use iommu_present() to decide if an IOMMU
84     * setup is needed.
85     *
86     * This works for simple cases, but will easily fail with
87     * platforms that do have an IOMMU, but not for this specific
88     * rproc.
89     *
90     * This will be easily solved by introducing hw capabilities
91     * that will be set by the remoteproc driver.
92     */
93    if (!iommu_present(dev->bus)) {
94        dev_dbg(dev, "iommu not found\n");
95        return 0;
96    }
97
98    domain = iommu_domain_alloc(dev->bus);
99    if (!domain) {
100        dev_err(dev, "can't alloc iommu domain\n");
101        return -ENOMEM;
102    }
103
104    iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
105
106    ret = iommu_attach_device(domain, dev);
107    if (ret) {
108        dev_err(dev, "can't attach iommu device: %d\n", ret);
109        goto free_domain;
110    }
111
112    rproc->domain = domain;
113
114    return 0;
115
116free_domain:
117    iommu_domain_free(domain);
118    return ret;
119}
120
121static void rproc_disable_iommu(struct rproc *rproc)
122{
123    struct iommu_domain *domain = rproc->domain;
124    struct device *dev = rproc->dev.parent;
125
126    if (!domain)
127        return;
128
129    iommu_detach_device(domain, dev);
130    iommu_domain_free(domain);
131
132    return;
133}
134
135/*
136 * Some remote processors will ask us to allocate them physically contiguous
137 * memory regions (which we call "carveouts"), and map them to specific
138 * device addresses (which are hardcoded in the firmware).
139 *
140 * They may then ask us to copy objects into specific device addresses (e.g.
141 * code/data sections) or expose us certain symbols in other device address
142 * (e.g. their trace buffer).
143 *
144 * This function is an internal helper with which we can go over the allocated
145 * carveouts and translate specific device address to kernel virtual addresses
146 * so we can access the referenced memory.
147 *
148 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
149 * but only on kernel direct mapped RAM memory. Instead, we're just using
150 * here the output of the DMA API, which should be more correct.
151 */
152void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
153{
154    struct rproc_mem_entry *carveout;
155    void *ptr = NULL;
156
157    list_for_each_entry(carveout, &rproc->carveouts, node) {
158        int offset = da - carveout->da;
159
160        /* try next carveout if da is too small */
161        if (offset < 0)
162            continue;
163
164        /* try next carveout if da is too large */
165        if (offset + len > carveout->len)
166            continue;
167
168        ptr = carveout->va + offset;
169
170        break;
171    }
172
173    return ptr;
174}
175EXPORT_SYMBOL(rproc_da_to_va);
176
177int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
178{
179    struct rproc *rproc = rvdev->rproc;
180    struct device *dev = &rproc->dev;
181    struct rproc_vring *rvring = &rvdev->vring[i];
182    dma_addr_t dma;
183    void *va;
184    int ret, size, notifyid;
185
186    /* actual size of vring (in bytes) */
187    size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
188
189    if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
190        dev_err(dev, "idr_pre_get failed\n");
191        return -ENOMEM;
192    }
193
194    /*
195     * Allocate non-cacheable memory for the vring. In the future
196     * this call will also configure the IOMMU for us
197     * TODO: let the rproc know the da of this vring
198     */
199    va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
200    if (!va) {
201        dev_err(dev->parent, "dma_alloc_coherent failed\n");
202        return -EINVAL;
203    }
204
205    /*
206     * Assign an rproc-wide unique index for this vring
207     * TODO: assign a notifyid for rvdev updates as well
208     * TODO: let the rproc know the notifyid of this vring
209     * TODO: support predefined notifyids (via resource table)
210     */
211    ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
212    if (ret) {
213        dev_err(dev, "idr_get_new failed: %d\n", ret);
214        dma_free_coherent(dev->parent, size, va, dma);
215        return ret;
216    }
217
218    dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
219                    dma, size, notifyid);
220
221    rvring->va = va;
222    rvring->dma = dma;
223    rvring->notifyid = notifyid;
224
225    return 0;
226}
227
228static int
229rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
230{
231    struct rproc *rproc = rvdev->rproc;
232    struct device *dev = &rproc->dev;
233    struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
234    struct rproc_vring *rvring = &rvdev->vring[i];
235
236    dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
237                i, vring->da, vring->num, vring->align);
238
239    /* make sure reserved bytes are zeroes */
240    if (vring->reserved) {
241        dev_err(dev, "vring rsc has non zero reserved bytes\n");
242        return -EINVAL;
243    }
244
245    /* verify queue size and vring alignment are sane */
246    if (!vring->num || !vring->align) {
247        dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
248                        vring->num, vring->align);
249        return -EINVAL;
250    }
251
252    rvring->len = vring->num;
253    rvring->align = vring->align;
254    rvring->rvdev = rvdev;
255
256    return 0;
257}
258
259void rproc_free_vring(struct rproc_vring *rvring)
260{
261    int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
262    struct rproc *rproc = rvring->rvdev->rproc;
263
264    dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
265    idr_remove(&rproc->notifyids, rvring->notifyid);
266}
267
268/**
269 * rproc_handle_vdev() - handle a vdev fw resource
270 * @rproc: the remote processor
271 * @rsc: the vring resource descriptor
272 * @avail: size of available data (for sanity checking the image)
273 *
274 * This resource entry requests the host to statically register a virtio
275 * device (vdev), and setup everything needed to support it. It contains
276 * everything needed to make it possible: the virtio device id, virtio
277 * device features, vrings information, virtio config space, etc...
278 *
279 * Before registering the vdev, the vrings are allocated from non-cacheable
280 * physically contiguous memory. Currently we only support two vrings per
281 * remote processor (temporary limitation). We might also want to consider
282 * doing the vring allocation only later when ->find_vqs() is invoked, and
283 * then release them upon ->del_vqs().
284 *
285 * Note: @da is currently not really handled correctly: we dynamically
286 * allocate it using the DMA API, ignoring requested hard coded addresses,
287 * and we don't take care of any required IOMMU programming. This is all
288 * going to be taken care of when the generic iommu-based DMA API will be
289 * merged. Meanwhile, statically-addressed iommu-based firmware images should
290 * use RSC_DEVMEM resource entries to map their required @da to the physical
291 * address of their base CMA region (ouch, hacky!).
292 *
293 * Returns 0 on success, or an appropriate error code otherwise
294 */
295static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
296                                int avail)
297{
298    struct device *dev = &rproc->dev;
299    struct rproc_vdev *rvdev;
300    int i, ret;
301
302    /* make sure resource isn't truncated */
303    if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
304            + rsc->config_len > avail) {
305        dev_err(dev, "vdev rsc is truncated\n");
306        return -EINVAL;
307    }
308
309    /* make sure reserved bytes are zeroes */
310    if (rsc->reserved[0] || rsc->reserved[1]) {
311        dev_err(dev, "vdev rsc has non zero reserved bytes\n");
312        return -EINVAL;
313    }
314
315    dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
316        rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
317
318    /* we currently support only two vrings per rvdev */
319    if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
320        dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
321        return -EINVAL;
322    }
323
324    rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
325    if (!rvdev)
326        return -ENOMEM;
327
328    rvdev->rproc = rproc;
329
330    /* parse the vrings */
331    for (i = 0; i < rsc->num_of_vrings; i++) {
332        ret = rproc_parse_vring(rvdev, rsc, i);
333        if (ret)
334            goto free_rvdev;
335    }
336
337    /* remember the device features */
338    rvdev->dfeatures = rsc->dfeatures;
339
340    list_add_tail(&rvdev->node, &rproc->rvdevs);
341
342    /* it is now safe to add the virtio device */
343    ret = rproc_add_virtio_dev(rvdev, rsc->id);
344    if (ret)
345        goto free_rvdev;
346
347    return 0;
348
349free_rvdev:
350    kfree(rvdev);
351    return ret;
352}
353
354/**
355 * rproc_handle_trace() - handle a shared trace buffer resource
356 * @rproc: the remote processor
357 * @rsc: the trace resource descriptor
358 * @avail: size of available data (for sanity checking the image)
359 *
360 * In case the remote processor dumps trace logs into memory,
361 * export it via debugfs.
362 *
363 * Currently, the 'da' member of @rsc should contain the device address
364 * where the remote processor is dumping the traces. Later we could also
365 * support dynamically allocating this address using the generic
366 * DMA API (but currently there isn't a use case for that).
367 *
368 * Returns 0 on success, or an appropriate error code otherwise
369 */
370static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
371                                int avail)
372{
373    struct rproc_mem_entry *trace;
374    struct device *dev = &rproc->dev;
375    void *ptr;
376    char name[15];
377
378    if (sizeof(*rsc) > avail) {
379        dev_err(dev, "trace rsc is truncated\n");
380        return -EINVAL;
381    }
382
383    /* make sure reserved bytes are zeroes */
384    if (rsc->reserved) {
385        dev_err(dev, "trace rsc has non zero reserved bytes\n");
386        return -EINVAL;
387    }
388
389    /* what's the kernel address of this resource ? */
390    ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
391    if (!ptr) {
392        dev_err(dev, "erroneous trace resource entry\n");
393        return -EINVAL;
394    }
395
396    trace = kzalloc(sizeof(*trace), GFP_KERNEL);
397    if (!trace) {
398        dev_err(dev, "kzalloc trace failed\n");
399        return -ENOMEM;
400    }
401
402    /* set the trace buffer dma properties */
403    trace->len = rsc->len;
404    trace->va = ptr;
405
406    /* make sure snprintf always null terminates, even if truncating */
407    snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
408
409    /* create the debugfs entry */
410    trace->priv = rproc_create_trace_file(name, rproc, trace);
411    if (!trace->priv) {
412        trace->va = NULL;
413        kfree(trace);
414        return -EINVAL;
415    }
416
417    list_add_tail(&trace->node, &rproc->traces);
418
419    rproc->num_traces++;
420
421    dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
422                        rsc->da, rsc->len);
423
424    return 0;
425}
426
427/**
428 * rproc_handle_devmem() - handle devmem resource entry
429 * @rproc: remote processor handle
430 * @rsc: the devmem resource entry
431 * @avail: size of available data (for sanity checking the image)
432 *
433 * Remote processors commonly need to access certain on-chip peripherals.
434 *
435 * Some of these remote processors access memory via an iommu device,
436 * and might require us to configure their iommu before they can access
437 * the on-chip peripherals they need.
438 *
439 * This resource entry is a request to map such a peripheral device.
440 *
441 * These devmem entries will contain the physical address of the device in
442 * the 'pa' member. If a specific device address is expected, then 'da' will
443 * contain it (currently this is the only use case supported). 'len' will
444 * contain the size of the physical region we need to map.
445 *
446 * Currently we just "trust" those devmem entries to contain valid physical
447 * addresses, but this is going to change: we want the implementations to
448 * tell us ranges of physical addresses the firmware is allowed to request,
449 * and not allow firmwares to request access to physical addresses that
450 * are outside those ranges.
451 */
452static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
453                                int avail)
454{
455    struct rproc_mem_entry *mapping;
456    struct device *dev = &rproc->dev;
457    int ret;
458
459    /* no point in handling this resource without a valid iommu domain */
460    if (!rproc->domain)
461        return -EINVAL;
462
463    if (sizeof(*rsc) > avail) {
464        dev_err(dev, "devmem rsc is truncated\n");
465        return -EINVAL;
466    }
467
468    /* make sure reserved bytes are zeroes */
469    if (rsc->reserved) {
470        dev_err(dev, "devmem rsc has non zero reserved bytes\n");
471        return -EINVAL;
472    }
473
474    mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
475    if (!mapping) {
476        dev_err(dev, "kzalloc mapping failed\n");
477        return -ENOMEM;
478    }
479
480    ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
481    if (ret) {
482        dev_err(dev, "failed to map devmem: %d\n", ret);
483        goto out;
484    }
485
486    /*
487     * We'll need this info later when we'll want to unmap everything
488     * (e.g. on shutdown).
489     *
490     * We can't trust the remote processor not to change the resource
491     * table, so we must maintain this info independently.
492     */
493    mapping->da = rsc->da;
494    mapping->len = rsc->len;
495    list_add_tail(&mapping->node, &rproc->mappings);
496
497    dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
498                    rsc->pa, rsc->da, rsc->len);
499
500    return 0;
501
502out:
503    kfree(mapping);
504    return ret;
505}
506
507/**
508 * rproc_handle_carveout() - handle phys contig memory allocation requests
509 * @rproc: rproc handle
510 * @rsc: the resource entry
511 * @avail: size of available data (for image validation)
512 *
513 * This function will handle firmware requests for allocation of physically
514 * contiguous memory regions.
515 *
516 * These request entries should come first in the firmware's resource table,
517 * as other firmware entries might request placing other data objects inside
518 * these memory regions (e.g. data/code segments, trace resource entries, ...).
519 *
520 * Allocating memory this way helps utilizing the reserved physical memory
521 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
522 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
523 * pressure is important; it may have a substantial impact on performance.
524 */
525static int rproc_handle_carveout(struct rproc *rproc,
526                struct fw_rsc_carveout *rsc, int avail)
527{
528    struct rproc_mem_entry *carveout, *mapping;
529    struct device *dev = &rproc->dev;
530    dma_addr_t dma;
531    void *va;
532    int ret;
533
534    if (sizeof(*rsc) > avail) {
535        dev_err(dev, "carveout rsc is truncated\n");
536        return -EINVAL;
537    }
538
539    /* make sure reserved bytes are zeroes */
540    if (rsc->reserved) {
541        dev_err(dev, "carveout rsc has non zero reserved bytes\n");
542        return -EINVAL;
543    }
544
545    dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
546            rsc->da, rsc->pa, rsc->len, rsc->flags);
547
548    mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
549    if (!mapping) {
550        dev_err(dev, "kzalloc mapping failed\n");
551        return -ENOMEM;
552    }
553
554    carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
555    if (!carveout) {
556        dev_err(dev, "kzalloc carveout failed\n");
557        ret = -ENOMEM;
558        goto free_mapping;
559    }
560
561    va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
562    if (!va) {
563        dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
564        ret = -ENOMEM;
565        goto free_carv;
566    }
567
568    dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
569
570    /*
571     * Ok, this is non-standard.
572     *
573     * Sometimes we can't rely on the generic iommu-based DMA API
574     * to dynamically allocate the device address and then set the IOMMU
575     * tables accordingly, because some remote processors might
576     * _require_ us to use hard coded device addresses that their
577     * firmware was compiled with.
578     *
579     * In this case, we must use the IOMMU API directly and map
580     * the memory to the device address as expected by the remote
581     * processor.
582     *
583     * Obviously such remote processor devices should not be configured
584     * to use the iommu-based DMA API: we expect 'dma' to contain the
585     * physical address in this case.
586     */
587    if (rproc->domain) {
588        ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
589                                rsc->flags);
590        if (ret) {
591            dev_err(dev, "iommu_map failed: %d\n", ret);
592            goto dma_free;
593        }
594
595        /*
596         * We'll need this info later when we'll want to unmap
597         * everything (e.g. on shutdown).
598         *
599         * We can't trust the remote processor not to change the
600         * resource table, so we must maintain this info independently.
601         */
602        mapping->da = rsc->da;
603        mapping->len = rsc->len;
604        list_add_tail(&mapping->node, &rproc->mappings);
605
606        dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
607    }
608
609    /*
610     * Some remote processors might need to know the pa
611     * even though they are behind an IOMMU. E.g., OMAP4's
612     * remote M3 processor needs this so it can control
613     * on-chip hardware accelerators that are not behind
614     * the IOMMU, and therefor must know the pa.
615     *
616     * Generally we don't want to expose physical addresses
617     * if we don't have to (remote processors are generally
618     * _not_ trusted), so we might want to do this only for
619     * remote processor that _must_ have this (e.g. OMAP4's
620     * dual M3 subsystem).
621     *
622     * Non-IOMMU processors might also want to have this info.
623     * In this case, the device address and the physical address
624     * are the same.
625     */
626    rsc->pa = dma;
627
628    carveout->va = va;
629    carveout->len = rsc->len;
630    carveout->dma = dma;
631    carveout->da = rsc->da;
632
633    list_add_tail(&carveout->node, &rproc->carveouts);
634
635    return 0;
636
637dma_free:
638    dma_free_coherent(dev->parent, rsc->len, va, dma);
639free_carv:
640    kfree(carveout);
641free_mapping:
642    kfree(mapping);
643    return ret;
644}
645
646/*
647 * A lookup table for resource handlers. The indices are defined in
648 * enum fw_resource_type.
649 */
650static rproc_handle_resource_t rproc_handle_rsc[] = {
651    [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
652    [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
653    [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
654    [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
655};
656
657/* handle firmware resource entries before booting the remote processor */
658static int
659rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
660{
661    struct device *dev = &rproc->dev;
662    rproc_handle_resource_t handler;
663    int ret = 0, i;
664
665    for (i = 0; i < table->num; i++) {
666        int offset = table->offset[i];
667        struct fw_rsc_hdr *hdr = (void *)table + offset;
668        int avail = len - offset - sizeof(*hdr);
669        void *rsc = (void *)hdr + sizeof(*hdr);
670
671        /* make sure table isn't truncated */
672        if (avail < 0) {
673            dev_err(dev, "rsc table is truncated\n");
674            return -EINVAL;
675        }
676
677        dev_dbg(dev, "rsc: type %d\n", hdr->type);
678
679        if (hdr->type >= RSC_LAST) {
680            dev_warn(dev, "unsupported resource %d\n", hdr->type);
681            continue;
682        }
683
684        handler = rproc_handle_rsc[hdr->type];
685        if (!handler)
686            continue;
687
688        ret = handler(rproc, rsc, avail);
689        if (ret)
690            break;
691    }
692
693    return ret;
694}
695
696/* handle firmware resource entries while registering the remote processor */
697static int
698rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
699{
700    struct device *dev = &rproc->dev;
701    int ret = 0, i;
702
703    for (i = 0; i < table->num; i++) {
704        int offset = table->offset[i];
705        struct fw_rsc_hdr *hdr = (void *)table + offset;
706        int avail = len - offset - sizeof(*hdr);
707        struct fw_rsc_vdev *vrsc;
708
709        /* make sure table isn't truncated */
710        if (avail < 0) {
711            dev_err(dev, "rsc table is truncated\n");
712            return -EINVAL;
713        }
714
715        dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
716
717        if (hdr->type != RSC_VDEV)
718            continue;
719
720        vrsc = (struct fw_rsc_vdev *)hdr->data;
721
722        ret = rproc_handle_vdev(rproc, vrsc, avail);
723        if (ret)
724            break;
725    }
726
727    return ret;
728}
729
730/**
731 * rproc_resource_cleanup() - clean up and free all acquired resources
732 * @rproc: rproc handle
733 *
734 * This function will free all resources acquired for @rproc, and it
735 * is called whenever @rproc either shuts down or fails to boot.
736 */
737static void rproc_resource_cleanup(struct rproc *rproc)
738{
739    struct rproc_mem_entry *entry, *tmp;
740    struct device *dev = &rproc->dev;
741
742    /* clean up debugfs trace entries */
743    list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
744        rproc_remove_trace_file(entry->priv);
745        rproc->num_traces--;
746        list_del(&entry->node);
747        kfree(entry);
748    }
749
750    /* clean up carveout allocations */
751    list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
752        dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
753        list_del(&entry->node);
754        kfree(entry);
755    }
756
757    /* clean up iommu mapping entries */
758    list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
759        size_t unmapped;
760
761        unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
762        if (unmapped != entry->len) {
763            /* nothing much to do besides complaining */
764            dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
765                                unmapped);
766        }
767
768        list_del(&entry->node);
769        kfree(entry);
770    }
771}
772
773/*
774 * take a firmware and boot a remote processor with it.
775 */
776static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
777{
778    struct device *dev = &rproc->dev;
779    const char *name = rproc->firmware;
780    struct resource_table *table;
781    int ret, tablesz;
782
783    ret = rproc_fw_sanity_check(rproc, fw);
784    if (ret)
785        return ret;
786
787    dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
788
789    /*
790     * if enabling an IOMMU isn't relevant for this rproc, this is
791     * just a nop
792     */
793    ret = rproc_enable_iommu(rproc);
794    if (ret) {
795        dev_err(dev, "can't enable iommu: %d\n", ret);
796        return ret;
797    }
798
799    rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
800
801    /* look for the resource table */
802    table = rproc_find_rsc_table(rproc, fw, &tablesz);
803    if (!table) {
804        ret = -EINVAL;
805        goto clean_up;
806    }
807
808    /* handle fw resources which are required to boot rproc */
809    ret = rproc_handle_boot_rsc(rproc, table, tablesz);
810    if (ret) {
811        dev_err(dev, "Failed to process resources: %d\n", ret);
812        goto clean_up;
813    }
814
815    /* load the ELF segments to memory */
816    ret = rproc_load_segments(rproc, fw);
817    if (ret) {
818        dev_err(dev, "Failed to load program segments: %d\n", ret);
819        goto clean_up;
820    }
821
822    /* power up the remote processor */
823    ret = rproc->ops->start(rproc);
824    if (ret) {
825        dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
826        goto clean_up;
827    }
828
829    rproc->state = RPROC_RUNNING;
830
831    dev_info(dev, "remote processor %s is now up\n", rproc->name);
832
833    return 0;
834
835clean_up:
836    rproc_resource_cleanup(rproc);
837    rproc_disable_iommu(rproc);
838    return ret;
839}
840
841/*
842 * take a firmware and look for virtio devices to register.
843 *
844 * Note: this function is called asynchronously upon registration of the
845 * remote processor (so we must wait until it completes before we try
846 * to unregister the device. one other option is just to use kref here,
847 * that might be cleaner).
848 */
849static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
850{
851    struct rproc *rproc = context;
852    struct resource_table *table;
853    int ret, tablesz;
854
855    if (rproc_fw_sanity_check(rproc, fw) < 0)
856        goto out;
857
858    /* look for the resource table */
859    table = rproc_find_rsc_table(rproc, fw, &tablesz);
860    if (!table)
861        goto out;
862
863    /* look for virtio devices and register them */
864    ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
865    if (ret)
866        goto out;
867
868out:
869    release_firmware(fw);
870    /* allow rproc_del() contexts, if any, to proceed */
871    complete_all(&rproc->firmware_loading_complete);
872}
873
874/**
875 * rproc_boot() - boot a remote processor
876 * @rproc: handle of a remote processor
877 *
878 * Boot a remote processor (i.e. load its firmware, power it on, ...).
879 *
880 * If the remote processor is already powered on, this function immediately
881 * returns (successfully).
882 *
883 * Returns 0 on success, and an appropriate error value otherwise.
884 */
885int rproc_boot(struct rproc *rproc)
886{
887    const struct firmware *firmware_p;
888    struct device *dev;
889    int ret;
890
891    if (!rproc) {
892        pr_err("invalid rproc handle\n");
893        return -EINVAL;
894    }
895
896    dev = &rproc->dev;
897
898    ret = mutex_lock_interruptible(&rproc->lock);
899    if (ret) {
900        dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
901        return ret;
902    }
903
904    /* loading a firmware is required */
905    if (!rproc->firmware) {
906        dev_err(dev, "%s: no firmware to load\n", __func__);
907        ret = -EINVAL;
908        goto unlock_mutex;
909    }
910
911    /* prevent underlying implementation from being removed */
912    if (!try_module_get(dev->parent->driver->owner)) {
913        dev_err(dev, "%s: can't get owner\n", __func__);
914        ret = -EINVAL;
915        goto unlock_mutex;
916    }
917
918    /* skip the boot process if rproc is already powered up */
919    if (atomic_inc_return(&rproc->power) > 1) {
920        ret = 0;
921        goto unlock_mutex;
922    }
923
924    dev_info(dev, "powering up %s\n", rproc->name);
925
926    /* load firmware */
927    ret = request_firmware(&firmware_p, rproc->firmware, dev);
928    if (ret < 0) {
929        dev_err(dev, "request_firmware failed: %d\n", ret);
930        goto downref_rproc;
931    }
932
933    ret = rproc_fw_boot(rproc, firmware_p);
934
935    release_firmware(firmware_p);
936
937downref_rproc:
938    if (ret) {
939        module_put(dev->parent->driver->owner);
940        atomic_dec(&rproc->power);
941    }
942unlock_mutex:
943    mutex_unlock(&rproc->lock);
944    return ret;
945}
946EXPORT_SYMBOL(rproc_boot);
947
948/**
949 * rproc_shutdown() - power off the remote processor
950 * @rproc: the remote processor
951 *
952 * Power off a remote processor (previously booted with rproc_boot()).
953 *
954 * In case @rproc is still being used by an additional user(s), then
955 * this function will just decrement the power refcount and exit,
956 * without really powering off the device.
957 *
958 * Every call to rproc_boot() must (eventually) be accompanied by a call
959 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
960 *
961 * Notes:
962 * - we're not decrementing the rproc's refcount, only the power refcount.
963 * which means that the @rproc handle stays valid even after rproc_shutdown()
964 * returns, and users can still use it with a subsequent rproc_boot(), if
965 * needed.
966 */
967void rproc_shutdown(struct rproc *rproc)
968{
969    struct device *dev = &rproc->dev;
970    int ret;
971
972    ret = mutex_lock_interruptible(&rproc->lock);
973    if (ret) {
974        dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
975        return;
976    }
977
978    /* if the remote proc is still needed, bail out */
979    if (!atomic_dec_and_test(&rproc->power))
980        goto out;
981
982    /* power off the remote processor */
983    ret = rproc->ops->stop(rproc);
984    if (ret) {
985        atomic_inc(&rproc->power);
986        dev_err(dev, "can't stop rproc: %d\n", ret);
987        goto out;
988    }
989
990    /* clean up all acquired resources */
991    rproc_resource_cleanup(rproc);
992
993    rproc_disable_iommu(rproc);
994
995    rproc->state = RPROC_OFFLINE;
996
997    dev_info(dev, "stopped remote processor %s\n", rproc->name);
998
999out:
1000    mutex_unlock(&rproc->lock);
1001    if (!ret)
1002        module_put(dev->parent->driver->owner);
1003}
1004EXPORT_SYMBOL(rproc_shutdown);
1005
1006/**
1007 * rproc_add() - register a remote processor
1008 * @rproc: the remote processor handle to register
1009 *
1010 * Registers @rproc with the remoteproc framework, after it has been
1011 * allocated with rproc_alloc().
1012 *
1013 * This is called by the platform-specific rproc implementation, whenever
1014 * a new remote processor device is probed.
1015 *
1016 * Returns 0 on success and an appropriate error code otherwise.
1017 *
1018 * Note: this function initiates an asynchronous firmware loading
1019 * context, which will look for virtio devices supported by the rproc's
1020 * firmware.
1021 *
1022 * If found, those virtio devices will be created and added, so as a result
1023 * of registering this remote processor, additional virtio drivers might be
1024 * probed.
1025 */
1026int rproc_add(struct rproc *rproc)
1027{
1028    struct device *dev = &rproc->dev;
1029    int ret = 0;
1030
1031    ret = device_add(dev);
1032    if (ret < 0)
1033        return ret;
1034
1035    dev_info(dev, "%s is available\n", rproc->name);
1036
1037    dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1038    dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1039
1040    /* create debugfs entries */
1041    rproc_create_debug_dir(rproc);
1042
1043    /* rproc_del() calls must wait until async loader completes */
1044    init_completion(&rproc->firmware_loading_complete);
1045
1046    /*
1047     * We must retrieve early virtio configuration info from
1048     * the firmware (e.g. whether to register a virtio device,
1049     * what virtio features does it support, ...).
1050     *
1051     * We're initiating an asynchronous firmware loading, so we can
1052     * be built-in kernel code, without hanging the boot process.
1053     */
1054    ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1055                    rproc->firmware, dev, GFP_KERNEL,
1056                    rproc, rproc_fw_config_virtio);
1057    if (ret < 0) {
1058        dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1059        complete_all(&rproc->firmware_loading_complete);
1060    }
1061
1062    return ret;
1063}
1064EXPORT_SYMBOL(rproc_add);
1065
1066/**
1067 * rproc_type_release() - release a remote processor instance
1068 * @dev: the rproc's device
1069 *
1070 * This function should _never_ be called directly.
1071 *
1072 * It will be called by the driver core when no one holds a valid pointer
1073 * to @dev anymore.
1074 */
1075static void rproc_type_release(struct device *dev)
1076{
1077    struct rproc *rproc = container_of(dev, struct rproc, dev);
1078
1079    dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1080
1081    rproc_delete_debug_dir(rproc);
1082
1083    idr_remove_all(&rproc->notifyids);
1084    idr_destroy(&rproc->notifyids);
1085
1086    if (rproc->index >= 0)
1087        ida_simple_remove(&rproc_dev_index, rproc->index);
1088
1089    kfree(rproc);
1090}
1091
1092static struct device_type rproc_type = {
1093    .name = "remoteproc",
1094    .release = rproc_type_release,
1095};
1096
1097/**
1098 * rproc_alloc() - allocate a remote processor handle
1099 * @dev: the underlying device
1100 * @name: name of this remote processor
1101 * @ops: platform-specific handlers (mainly start/stop)
1102 * @firmware: name of firmware file to load
1103 * @len: length of private data needed by the rproc driver (in bytes)
1104 *
1105 * Allocates a new remote processor handle, but does not register
1106 * it yet.
1107 *
1108 * This function should be used by rproc implementations during initialization
1109 * of the remote processor.
1110 *
1111 * After creating an rproc handle using this function, and when ready,
1112 * implementations should then call rproc_add() to complete
1113 * the registration of the remote processor.
1114 *
1115 * On success the new rproc is returned, and on failure, NULL.
1116 *
1117 * Note: _never_ directly deallocate @rproc, even if it was not registered
1118 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1119 */
1120struct rproc *rproc_alloc(struct device *dev, const char *name,
1121                const struct rproc_ops *ops,
1122                const char *firmware, int len)
1123{
1124    struct rproc *rproc;
1125
1126    if (!dev || !name || !ops)
1127        return NULL;
1128
1129    rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1130    if (!rproc) {
1131        dev_err(dev, "%s: kzalloc failed\n", __func__);
1132        return NULL;
1133    }
1134
1135    rproc->name = name;
1136    rproc->ops = ops;
1137    rproc->firmware = firmware;
1138    rproc->priv = &rproc[1];
1139
1140    device_initialize(&rproc->dev);
1141    rproc->dev.parent = dev;
1142    rproc->dev.type = &rproc_type;
1143
1144    /* Assign a unique device index and name */
1145    rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1146    if (rproc->index < 0) {
1147        dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1148        put_device(&rproc->dev);
1149        return NULL;
1150    }
1151
1152    dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1153
1154    atomic_set(&rproc->power, 0);
1155
1156    /* Set ELF as the default fw_ops handler */
1157    rproc->fw_ops = &rproc_elf_fw_ops;
1158
1159    mutex_init(&rproc->lock);
1160
1161    idr_init(&rproc->notifyids);
1162
1163    INIT_LIST_HEAD(&rproc->carveouts);
1164    INIT_LIST_HEAD(&rproc->mappings);
1165    INIT_LIST_HEAD(&rproc->traces);
1166    INIT_LIST_HEAD(&rproc->rvdevs);
1167
1168    rproc->state = RPROC_OFFLINE;
1169
1170    return rproc;
1171}
1172EXPORT_SYMBOL(rproc_alloc);
1173
1174/**
1175 * rproc_put() - unroll rproc_alloc()
1176 * @rproc: the remote processor handle
1177 *
1178 * This function decrements the rproc dev refcount.
1179 *
1180 * If no one holds any reference to rproc anymore, then its refcount would
1181 * now drop to zero, and it would be freed.
1182 */
1183void rproc_put(struct rproc *rproc)
1184{
1185    put_device(&rproc->dev);
1186}
1187EXPORT_SYMBOL(rproc_put);
1188
1189/**
1190 * rproc_del() - unregister a remote processor
1191 * @rproc: rproc handle to unregister
1192 *
1193 * This function should be called when the platform specific rproc
1194 * implementation decides to remove the rproc device. it should
1195 * _only_ be called if a previous invocation of rproc_add()
1196 * has completed successfully.
1197 *
1198 * After rproc_del() returns, @rproc isn't freed yet, because
1199 * of the outstanding reference created by rproc_alloc. To decrement that
1200 * one last refcount, one still needs to call rproc_put().
1201 *
1202 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1203 */
1204int rproc_del(struct rproc *rproc)
1205{
1206    struct rproc_vdev *rvdev, *tmp;
1207
1208    if (!rproc)
1209        return -EINVAL;
1210
1211    /* if rproc is just being registered, wait */
1212    wait_for_completion(&rproc->firmware_loading_complete);
1213
1214    /* clean up remote vdev entries */
1215    list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1216        rproc_remove_virtio_dev(rvdev);
1217
1218    device_del(&rproc->dev);
1219
1220    return 0;
1221}
1222EXPORT_SYMBOL(rproc_del);
1223
1224static int __init remoteproc_init(void)
1225{
1226    rproc_init_debugfs();
1227
1228    return 0;
1229}
1230module_init(remoteproc_init);
1231
1232static void __exit remoteproc_exit(void)
1233{
1234    rproc_exit_debugfs();
1235}
1236module_exit(remoteproc_exit);
1237
1238MODULE_LICENSE("GPL v2");
1239MODULE_DESCRIPTION("Generic Remote Processor Framework");
1240

Archive Download this file



interactive