Root/
1 | /* |
2 | * Blackfin On-Chip Real Time Clock Driver |
3 | * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x |
4 | * |
5 | * Copyright 2004-2010 Analog Devices Inc. |
6 | * |
7 | * Enter bugs at http://blackfin.uclinux.org/ |
8 | * |
9 | * Licensed under the GPL-2 or later. |
10 | */ |
11 | |
12 | /* The biggest issue we deal with in this driver is that register writes are |
13 | * synced to the RTC frequency of 1Hz. So if you write to a register and |
14 | * attempt to write again before the first write has completed, the new write |
15 | * is simply discarded. This can easily be troublesome if userspace disables |
16 | * one event (say periodic) and then right after enables an event (say alarm). |
17 | * Since all events are maintained in the same interrupt mask register, if |
18 | * we wrote to it to disable the first event and then wrote to it again to |
19 | * enable the second event, that second event would not be enabled as the |
20 | * write would be discarded and things quickly fall apart. |
21 | * |
22 | * To keep this delay from significantly degrading performance (we, in theory, |
23 | * would have to sleep for up to 1 second every time we wanted to write a |
24 | * register), we only check the write pending status before we start to issue |
25 | * a new write. We bank on the idea that it doesn't matter when the sync |
26 | * happens so long as we don't attempt another write before it does. The only |
27 | * time userspace would take this penalty is when they try and do multiple |
28 | * operations right after another ... but in this case, they need to take the |
29 | * sync penalty, so we should be OK. |
30 | * |
31 | * Also note that the RTC_ISTAT register does not suffer this penalty; its |
32 | * writes to clear status registers complete immediately. |
33 | */ |
34 | |
35 | /* It may seem odd that there is no SWCNT code in here (which would be exposed |
36 | * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral |
37 | * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ |
38 | * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs. |
39 | * The same exact behavior can be accomplished by using the update interrupt |
40 | * event (UIE). Maybe down the line the RTC peripheral will suck less in which |
41 | * case we can re-introduce PIE support. |
42 | */ |
43 | |
44 | #include <linux/bcd.h> |
45 | #include <linux/completion.h> |
46 | #include <linux/delay.h> |
47 | #include <linux/init.h> |
48 | #include <linux/interrupt.h> |
49 | #include <linux/kernel.h> |
50 | #include <linux/module.h> |
51 | #include <linux/platform_device.h> |
52 | #include <linux/rtc.h> |
53 | #include <linux/seq_file.h> |
54 | #include <linux/slab.h> |
55 | |
56 | #include <asm/blackfin.h> |
57 | |
58 | #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__) |
59 | |
60 | struct bfin_rtc { |
61 | struct rtc_device *rtc_dev; |
62 | struct rtc_time rtc_alarm; |
63 | u16 rtc_wrote_regs; |
64 | }; |
65 | |
66 | /* Bit values for the ISTAT / ICTL registers */ |
67 | #define RTC_ISTAT_WRITE_COMPLETE 0x8000 |
68 | #define RTC_ISTAT_WRITE_PENDING 0x4000 |
69 | #define RTC_ISTAT_ALARM_DAY 0x0040 |
70 | #define RTC_ISTAT_24HR 0x0020 |
71 | #define RTC_ISTAT_HOUR 0x0010 |
72 | #define RTC_ISTAT_MIN 0x0008 |
73 | #define RTC_ISTAT_SEC 0x0004 |
74 | #define RTC_ISTAT_ALARM 0x0002 |
75 | #define RTC_ISTAT_STOPWATCH 0x0001 |
76 | |
77 | /* Shift values for RTC_STAT register */ |
78 | #define DAY_BITS_OFF 17 |
79 | #define HOUR_BITS_OFF 12 |
80 | #define MIN_BITS_OFF 6 |
81 | #define SEC_BITS_OFF 0 |
82 | |
83 | /* Some helper functions to convert between the common RTC notion of time |
84 | * and the internal Blackfin notion that is encoded in 32bits. |
85 | */ |
86 | static inline u32 rtc_time_to_bfin(unsigned long now) |
87 | { |
88 | u32 sec = (now % 60); |
89 | u32 min = (now % (60 * 60)) / 60; |
90 | u32 hour = (now % (60 * 60 * 24)) / (60 * 60); |
91 | u32 days = (now / (60 * 60 * 24)); |
92 | return (sec << SEC_BITS_OFF) + |
93 | (min << MIN_BITS_OFF) + |
94 | (hour << HOUR_BITS_OFF) + |
95 | (days << DAY_BITS_OFF); |
96 | } |
97 | static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin) |
98 | { |
99 | return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) + |
100 | (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) + |
101 | (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) + |
102 | (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24); |
103 | } |
104 | static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm) |
105 | { |
106 | rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm); |
107 | } |
108 | |
109 | /** |
110 | * bfin_rtc_sync_pending - make sure pending writes have complete |
111 | * |
112 | * Wait for the previous write to a RTC register to complete. |
113 | * Unfortunately, we can't sleep here as that introduces a race condition when |
114 | * turning on interrupt events. Consider this: |
115 | * - process sets alarm |
116 | * - process enables alarm |
117 | * - process sleeps while waiting for rtc write to sync |
118 | * - interrupt fires while process is sleeping |
119 | * - interrupt acks the event by writing to ISTAT |
120 | * - interrupt sets the WRITE PENDING bit |
121 | * - interrupt handler finishes |
122 | * - process wakes up, sees WRITE PENDING bit set, goes to sleep |
123 | * - interrupt fires while process is sleeping |
124 | * If anyone can point out the obvious solution here, i'm listening :). This |
125 | * shouldn't be an issue on an SMP or preempt system as this function should |
126 | * only be called with the rtc lock held. |
127 | * |
128 | * Other options: |
129 | * - disable PREN so the sync happens at 32.768kHZ ... but this changes the |
130 | * inc rate for all RTC registers from 1HZ to 32.768kHZ ... |
131 | * - use the write complete IRQ |
132 | */ |
133 | /* |
134 | static void bfin_rtc_sync_pending_polled(void) |
135 | { |
136 | while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) |
137 | if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)) |
138 | break; |
139 | bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE); |
140 | } |
141 | */ |
142 | static DECLARE_COMPLETION(bfin_write_complete); |
143 | static void bfin_rtc_sync_pending(struct device *dev) |
144 | { |
145 | dev_dbg_stamp(dev); |
146 | while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) |
147 | wait_for_completion_timeout(&bfin_write_complete, HZ * 5); |
148 | dev_dbg_stamp(dev); |
149 | } |
150 | |
151 | /** |
152 | * bfin_rtc_reset - set RTC to sane/known state |
153 | * |
154 | * Initialize the RTC. Enable pre-scaler to scale RTC clock |
155 | * to 1Hz and clear interrupt/status registers. |
156 | */ |
157 | static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl) |
158 | { |
159 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
160 | dev_dbg_stamp(dev); |
161 | bfin_rtc_sync_pending(dev); |
162 | bfin_write_RTC_PREN(0x1); |
163 | bfin_write_RTC_ICTL(rtc_ictl); |
164 | bfin_write_RTC_ALARM(0); |
165 | bfin_write_RTC_ISTAT(0xFFFF); |
166 | rtc->rtc_wrote_regs = 0; |
167 | } |
168 | |
169 | /** |
170 | * bfin_rtc_interrupt - handle interrupt from RTC |
171 | * |
172 | * Since we handle all RTC events here, we have to make sure the requested |
173 | * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT) |
174 | * always gets updated regardless of the interrupt being enabled. So when one |
175 | * even we care about (e.g. stopwatch) goes off, we don't want to turn around |
176 | * and say that other events have happened as well (e.g. second). We do not |
177 | * have to worry about pending writes to the RTC_ICTL register as interrupts |
178 | * only fire if they are enabled in the RTC_ICTL register. |
179 | */ |
180 | static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id) |
181 | { |
182 | struct device *dev = dev_id; |
183 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
184 | unsigned long events = 0; |
185 | bool write_complete = false; |
186 | u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits; |
187 | |
188 | dev_dbg_stamp(dev); |
189 | |
190 | rtc_istat = bfin_read_RTC_ISTAT(); |
191 | rtc_ictl = bfin_read_RTC_ICTL(); |
192 | rtc_istat_clear = 0; |
193 | |
194 | bits = RTC_ISTAT_WRITE_COMPLETE; |
195 | if (rtc_istat & bits) { |
196 | rtc_istat_clear |= bits; |
197 | write_complete = true; |
198 | complete(&bfin_write_complete); |
199 | } |
200 | |
201 | bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY); |
202 | if (rtc_ictl & bits) { |
203 | if (rtc_istat & bits) { |
204 | rtc_istat_clear |= bits; |
205 | events |= RTC_AF | RTC_IRQF; |
206 | } |
207 | } |
208 | |
209 | bits = RTC_ISTAT_SEC; |
210 | if (rtc_ictl & bits) { |
211 | if (rtc_istat & bits) { |
212 | rtc_istat_clear |= bits; |
213 | events |= RTC_UF | RTC_IRQF; |
214 | } |
215 | } |
216 | |
217 | if (events) |
218 | rtc_update_irq(rtc->rtc_dev, 1, events); |
219 | |
220 | if (write_complete || events) { |
221 | bfin_write_RTC_ISTAT(rtc_istat_clear); |
222 | return IRQ_HANDLED; |
223 | } else |
224 | return IRQ_NONE; |
225 | } |
226 | |
227 | static void bfin_rtc_int_set(u16 rtc_int) |
228 | { |
229 | bfin_write_RTC_ISTAT(rtc_int); |
230 | bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int); |
231 | } |
232 | static void bfin_rtc_int_clear(u16 rtc_int) |
233 | { |
234 | bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int); |
235 | } |
236 | static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc) |
237 | { |
238 | /* Blackfin has different bits for whether the alarm is |
239 | * more than 24 hours away. |
240 | */ |
241 | bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY); |
242 | } |
243 | |
244 | static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
245 | { |
246 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
247 | |
248 | dev_dbg_stamp(dev); |
249 | if (enabled) |
250 | bfin_rtc_int_set_alarm(rtc); |
251 | else |
252 | bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
253 | |
254 | return 0; |
255 | } |
256 | |
257 | static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm) |
258 | { |
259 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
260 | |
261 | dev_dbg_stamp(dev); |
262 | |
263 | if (rtc->rtc_wrote_regs & 0x1) |
264 | bfin_rtc_sync_pending(dev); |
265 | |
266 | rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm); |
267 | |
268 | return 0; |
269 | } |
270 | |
271 | static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm) |
272 | { |
273 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
274 | int ret; |
275 | unsigned long now; |
276 | |
277 | dev_dbg_stamp(dev); |
278 | |
279 | ret = rtc_tm_to_time(tm, &now); |
280 | if (ret == 0) { |
281 | if (rtc->rtc_wrote_regs & 0x1) |
282 | bfin_rtc_sync_pending(dev); |
283 | bfin_write_RTC_STAT(rtc_time_to_bfin(now)); |
284 | rtc->rtc_wrote_regs = 0x1; |
285 | } |
286 | |
287 | return ret; |
288 | } |
289 | |
290 | static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
291 | { |
292 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
293 | dev_dbg_stamp(dev); |
294 | alrm->time = rtc->rtc_alarm; |
295 | bfin_rtc_sync_pending(dev); |
296 | alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
297 | return 0; |
298 | } |
299 | |
300 | static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
301 | { |
302 | struct bfin_rtc *rtc = dev_get_drvdata(dev); |
303 | unsigned long rtc_alarm; |
304 | |
305 | dev_dbg_stamp(dev); |
306 | |
307 | if (rtc_tm_to_time(&alrm->time, &rtc_alarm)) |
308 | return -EINVAL; |
309 | |
310 | rtc->rtc_alarm = alrm->time; |
311 | |
312 | bfin_rtc_sync_pending(dev); |
313 | bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm)); |
314 | if (alrm->enabled) |
315 | bfin_rtc_int_set_alarm(rtc); |
316 | |
317 | return 0; |
318 | } |
319 | |
320 | static int bfin_rtc_proc(struct device *dev, struct seq_file *seq) |
321 | { |
322 | #define yesno(x) ((x) ? "yes" : "no") |
323 | u16 ictl = bfin_read_RTC_ICTL(); |
324 | dev_dbg_stamp(dev); |
325 | seq_printf(seq, |
326 | "alarm_IRQ\t: %s\n" |
327 | "wkalarm_IRQ\t: %s\n" |
328 | "seconds_IRQ\t: %s\n", |
329 | yesno(ictl & RTC_ISTAT_ALARM), |
330 | yesno(ictl & RTC_ISTAT_ALARM_DAY), |
331 | yesno(ictl & RTC_ISTAT_SEC)); |
332 | return 0; |
333 | #undef yesno |
334 | } |
335 | |
336 | static struct rtc_class_ops bfin_rtc_ops = { |
337 | .read_time = bfin_rtc_read_time, |
338 | .set_time = bfin_rtc_set_time, |
339 | .read_alarm = bfin_rtc_read_alarm, |
340 | .set_alarm = bfin_rtc_set_alarm, |
341 | .proc = bfin_rtc_proc, |
342 | .alarm_irq_enable = bfin_rtc_alarm_irq_enable, |
343 | }; |
344 | |
345 | static int __devinit bfin_rtc_probe(struct platform_device *pdev) |
346 | { |
347 | struct bfin_rtc *rtc; |
348 | struct device *dev = &pdev->dev; |
349 | int ret = 0; |
350 | unsigned long timeout = jiffies + HZ; |
351 | |
352 | dev_dbg_stamp(dev); |
353 | |
354 | /* Allocate memory for our RTC struct */ |
355 | rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
356 | if (unlikely(!rtc)) |
357 | return -ENOMEM; |
358 | platform_set_drvdata(pdev, rtc); |
359 | device_init_wakeup(dev, 1); |
360 | |
361 | /* Register our RTC with the RTC framework */ |
362 | rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops, |
363 | THIS_MODULE); |
364 | if (unlikely(IS_ERR(rtc->rtc_dev))) { |
365 | ret = PTR_ERR(rtc->rtc_dev); |
366 | goto err; |
367 | } |
368 | |
369 | /* Grab the IRQ and init the hardware */ |
370 | ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev); |
371 | if (unlikely(ret)) |
372 | goto err_reg; |
373 | /* sometimes the bootloader touched things, but the write complete was not |
374 | * enabled, so let's just do a quick timeout here since the IRQ will not fire ... |
375 | */ |
376 | while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) |
377 | if (time_after(jiffies, timeout)) |
378 | break; |
379 | bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE); |
380 | bfin_write_RTC_SWCNT(0); |
381 | |
382 | return 0; |
383 | |
384 | err_reg: |
385 | rtc_device_unregister(rtc->rtc_dev); |
386 | err: |
387 | kfree(rtc); |
388 | return ret; |
389 | } |
390 | |
391 | static int __devexit bfin_rtc_remove(struct platform_device *pdev) |
392 | { |
393 | struct bfin_rtc *rtc = platform_get_drvdata(pdev); |
394 | struct device *dev = &pdev->dev; |
395 | |
396 | bfin_rtc_reset(dev, 0); |
397 | free_irq(IRQ_RTC, dev); |
398 | rtc_device_unregister(rtc->rtc_dev); |
399 | platform_set_drvdata(pdev, NULL); |
400 | kfree(rtc); |
401 | |
402 | return 0; |
403 | } |
404 | |
405 | #ifdef CONFIG_PM |
406 | static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state) |
407 | { |
408 | struct device *dev = &pdev->dev; |
409 | |
410 | dev_dbg_stamp(dev); |
411 | |
412 | if (device_may_wakeup(dev)) { |
413 | enable_irq_wake(IRQ_RTC); |
414 | bfin_rtc_sync_pending(dev); |
415 | } else |
416 | bfin_rtc_int_clear(0); |
417 | |
418 | return 0; |
419 | } |
420 | |
421 | static int bfin_rtc_resume(struct platform_device *pdev) |
422 | { |
423 | struct device *dev = &pdev->dev; |
424 | |
425 | dev_dbg_stamp(dev); |
426 | |
427 | if (device_may_wakeup(dev)) |
428 | disable_irq_wake(IRQ_RTC); |
429 | |
430 | /* |
431 | * Since only some of the RTC bits are maintained externally in the |
432 | * Vbat domain, we need to wait for the RTC MMRs to be synced into |
433 | * the core after waking up. This happens every RTC 1HZ. Once that |
434 | * has happened, we can go ahead and re-enable the important write |
435 | * complete interrupt event. |
436 | */ |
437 | while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC)) |
438 | continue; |
439 | bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE); |
440 | |
441 | return 0; |
442 | } |
443 | #else |
444 | # define bfin_rtc_suspend NULL |
445 | # define bfin_rtc_resume NULL |
446 | #endif |
447 | |
448 | static struct platform_driver bfin_rtc_driver = { |
449 | .driver = { |
450 | .name = "rtc-bfin", |
451 | .owner = THIS_MODULE, |
452 | }, |
453 | .probe = bfin_rtc_probe, |
454 | .remove = __devexit_p(bfin_rtc_remove), |
455 | .suspend = bfin_rtc_suspend, |
456 | .resume = bfin_rtc_resume, |
457 | }; |
458 | |
459 | module_platform_driver(bfin_rtc_driver); |
460 | |
461 | MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver"); |
462 | MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); |
463 | MODULE_LICENSE("GPL"); |
464 | MODULE_ALIAS("platform:rtc-bfin"); |
465 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9