Root/drivers/spi/spi-atmel.c

1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22
23#include <asm/io.h>
24#include <mach/board.h>
25#include <asm/gpio.h>
26#include <mach/cpu.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_RPR 0x0100
42#define SPI_RCR 0x0104
43#define SPI_TPR 0x0108
44#define SPI_TCR 0x010c
45#define SPI_RNPR 0x0110
46#define SPI_RNCR 0x0114
47#define SPI_TNPR 0x0118
48#define SPI_TNCR 0x011c
49#define SPI_PTCR 0x0120
50#define SPI_PTSR 0x0124
51
52/* Bitfields in CR */
53#define SPI_SPIEN_OFFSET 0
54#define SPI_SPIEN_SIZE 1
55#define SPI_SPIDIS_OFFSET 1
56#define SPI_SPIDIS_SIZE 1
57#define SPI_SWRST_OFFSET 7
58#define SPI_SWRST_SIZE 1
59#define SPI_LASTXFER_OFFSET 24
60#define SPI_LASTXFER_SIZE 1
61
62/* Bitfields in MR */
63#define SPI_MSTR_OFFSET 0
64#define SPI_MSTR_SIZE 1
65#define SPI_PS_OFFSET 1
66#define SPI_PS_SIZE 1
67#define SPI_PCSDEC_OFFSET 2
68#define SPI_PCSDEC_SIZE 1
69#define SPI_FDIV_OFFSET 3
70#define SPI_FDIV_SIZE 1
71#define SPI_MODFDIS_OFFSET 4
72#define SPI_MODFDIS_SIZE 1
73#define SPI_LLB_OFFSET 7
74#define SPI_LLB_SIZE 1
75#define SPI_PCS_OFFSET 16
76#define SPI_PCS_SIZE 4
77#define SPI_DLYBCS_OFFSET 24
78#define SPI_DLYBCS_SIZE 8
79
80/* Bitfields in RDR */
81#define SPI_RD_OFFSET 0
82#define SPI_RD_SIZE 16
83
84/* Bitfields in TDR */
85#define SPI_TD_OFFSET 0
86#define SPI_TD_SIZE 16
87
88/* Bitfields in SR */
89#define SPI_RDRF_OFFSET 0
90#define SPI_RDRF_SIZE 1
91#define SPI_TDRE_OFFSET 1
92#define SPI_TDRE_SIZE 1
93#define SPI_MODF_OFFSET 2
94#define SPI_MODF_SIZE 1
95#define SPI_OVRES_OFFSET 3
96#define SPI_OVRES_SIZE 1
97#define SPI_ENDRX_OFFSET 4
98#define SPI_ENDRX_SIZE 1
99#define SPI_ENDTX_OFFSET 5
100#define SPI_ENDTX_SIZE 1
101#define SPI_RXBUFF_OFFSET 6
102#define SPI_RXBUFF_SIZE 1
103#define SPI_TXBUFE_OFFSET 7
104#define SPI_TXBUFE_SIZE 1
105#define SPI_NSSR_OFFSET 8
106#define SPI_NSSR_SIZE 1
107#define SPI_TXEMPTY_OFFSET 9
108#define SPI_TXEMPTY_SIZE 1
109#define SPI_SPIENS_OFFSET 16
110#define SPI_SPIENS_SIZE 1
111
112/* Bitfields in CSR0 */
113#define SPI_CPOL_OFFSET 0
114#define SPI_CPOL_SIZE 1
115#define SPI_NCPHA_OFFSET 1
116#define SPI_NCPHA_SIZE 1
117#define SPI_CSAAT_OFFSET 3
118#define SPI_CSAAT_SIZE 1
119#define SPI_BITS_OFFSET 4
120#define SPI_BITS_SIZE 4
121#define SPI_SCBR_OFFSET 8
122#define SPI_SCBR_SIZE 8
123#define SPI_DLYBS_OFFSET 16
124#define SPI_DLYBS_SIZE 8
125#define SPI_DLYBCT_OFFSET 24
126#define SPI_DLYBCT_SIZE 8
127
128/* Bitfields in RCR */
129#define SPI_RXCTR_OFFSET 0
130#define SPI_RXCTR_SIZE 16
131
132/* Bitfields in TCR */
133#define SPI_TXCTR_OFFSET 0
134#define SPI_TXCTR_SIZE 16
135
136/* Bitfields in RNCR */
137#define SPI_RXNCR_OFFSET 0
138#define SPI_RXNCR_SIZE 16
139
140/* Bitfields in TNCR */
141#define SPI_TXNCR_OFFSET 0
142#define SPI_TXNCR_SIZE 16
143
144/* Bitfields in PTCR */
145#define SPI_RXTEN_OFFSET 0
146#define SPI_RXTEN_SIZE 1
147#define SPI_RXTDIS_OFFSET 1
148#define SPI_RXTDIS_SIZE 1
149#define SPI_TXTEN_OFFSET 8
150#define SPI_TXTEN_SIZE 1
151#define SPI_TXTDIS_OFFSET 9
152#define SPI_TXTDIS_SIZE 1
153
154/* Constants for BITS */
155#define SPI_BITS_8_BPT 0
156#define SPI_BITS_9_BPT 1
157#define SPI_BITS_10_BPT 2
158#define SPI_BITS_11_BPT 3
159#define SPI_BITS_12_BPT 4
160#define SPI_BITS_13_BPT 5
161#define SPI_BITS_14_BPT 6
162#define SPI_BITS_15_BPT 7
163#define SPI_BITS_16_BPT 8
164
165/* Bit manipulation macros */
166#define SPI_BIT(name) \
167    (1 << SPI_##name##_OFFSET)
168#define SPI_BF(name,value) \
169    (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170#define SPI_BFEXT(name,value) \
171    (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172#define SPI_BFINS(name,value,old) \
173    ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174      | SPI_BF(name,value))
175
176/* Register access macros */
177#define spi_readl(port,reg) \
178    __raw_readl((port)->regs + SPI_##reg)
179#define spi_writel(port,reg,value) \
180    __raw_writel((value), (port)->regs + SPI_##reg)
181
182
183/*
184 * The core SPI transfer engine just talks to a register bank to set up
185 * DMA transfers; transfer queue progress is driven by IRQs. The clock
186 * framework provides the base clock, subdivided for each spi_device.
187 */
188struct atmel_spi {
189    spinlock_t lock;
190
191    void __iomem *regs;
192    int irq;
193    struct clk *clk;
194    struct platform_device *pdev;
195    struct spi_device *stay;
196
197    u8 stopping;
198    struct list_head queue;
199    struct spi_transfer *current_transfer;
200    unsigned long current_remaining_bytes;
201    struct spi_transfer *next_transfer;
202    unsigned long next_remaining_bytes;
203
204    void *buffer;
205    dma_addr_t buffer_dma;
206};
207
208/* Controller-specific per-slave state */
209struct atmel_spi_device {
210    unsigned int npcs_pin;
211    u32 csr;
212};
213
214#define BUFFER_SIZE PAGE_SIZE
215#define INVALID_DMA_ADDRESS 0xffffffff
216
217/*
218 * Version 2 of the SPI controller has
219 * - CR.LASTXFER
220 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222 * - SPI_CSRx.CSAAT
223 * - SPI_CSRx.SBCR allows faster clocking
224 *
225 * We can determine the controller version by reading the VERSION
226 * register, but I haven't checked that it exists on all chips, and
227 * this is cheaper anyway.
228 */
229static bool atmel_spi_is_v2(void)
230{
231    return !cpu_is_at91rm9200();
232}
233
234/*
235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236 * they assume that spi slave device state will not change on deselect, so
237 * that automagic deselection is OK. ("NPCSx rises if no data is to be
238 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
239 * controllers have CSAAT and friends.
240 *
241 * Since the CSAAT functionality is a bit weird on newer controllers as
242 * well, we use GPIO to control nCSx pins on all controllers, updating
243 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
244 * support active-high chipselects despite the controller's belief that
245 * only active-low devices/systems exists.
246 *
247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248 * right when driven with GPIO. ("Mode Fault does not allow more than one
249 * Master on Chip Select 0.") No workaround exists for that ... so for
250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251 * and (c) will trigger that first erratum in some cases.
252 *
253 * TODO: Test if the atmel_spi_is_v2() branch below works on
254 * AT91RM9200 if we use some other register than CSR0. However, don't
255 * do this unconditionally since AP7000 has an errata where the BITS
256 * field in CSR0 overrides all other CSRs.
257 */
258
259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
260{
261    struct atmel_spi_device *asd = spi->controller_state;
262    unsigned active = spi->mode & SPI_CS_HIGH;
263    u32 mr;
264
265    if (atmel_spi_is_v2()) {
266        /*
267         * Always use CSR0. This ensures that the clock
268         * switches to the correct idle polarity before we
269         * toggle the CS.
270         */
271        spi_writel(as, CSR0, asd->csr);
272        spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273                | SPI_BIT(MSTR));
274        mr = spi_readl(as, MR);
275        gpio_set_value(asd->npcs_pin, active);
276    } else {
277        u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278        int i;
279        u32 csr;
280
281        /* Make sure clock polarity is correct */
282        for (i = 0; i < spi->master->num_chipselect; i++) {
283            csr = spi_readl(as, CSR0 + 4 * i);
284            if ((csr ^ cpol) & SPI_BIT(CPOL))
285                spi_writel(as, CSR0 + 4 * i,
286                        csr ^ SPI_BIT(CPOL));
287        }
288
289        mr = spi_readl(as, MR);
290        mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291        if (spi->chip_select != 0)
292            gpio_set_value(asd->npcs_pin, active);
293        spi_writel(as, MR, mr);
294    }
295
296    dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297            asd->npcs_pin, active ? " (high)" : "",
298            mr);
299}
300
301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
302{
303    struct atmel_spi_device *asd = spi->controller_state;
304    unsigned active = spi->mode & SPI_CS_HIGH;
305    u32 mr;
306
307    /* only deactivate *this* device; sometimes transfers to
308     * another device may be active when this routine is called.
309     */
310    mr = spi_readl(as, MR);
311    if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312        mr = SPI_BFINS(PCS, 0xf, mr);
313        spi_writel(as, MR, mr);
314    }
315
316    dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317            asd->npcs_pin, active ? " (low)" : "",
318            mr);
319
320    if (atmel_spi_is_v2() || spi->chip_select != 0)
321        gpio_set_value(asd->npcs_pin, !active);
322}
323
324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325                    struct spi_transfer *xfer)
326{
327    return msg->transfers.prev == &xfer->transfer_list;
328}
329
330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
331{
332    return xfer->delay_usecs == 0 && !xfer->cs_change;
333}
334
335static void atmel_spi_next_xfer_data(struct spi_master *master,
336                struct spi_transfer *xfer,
337                dma_addr_t *tx_dma,
338                dma_addr_t *rx_dma,
339                u32 *plen)
340{
341    struct atmel_spi *as = spi_master_get_devdata(master);
342    u32 len = *plen;
343
344    /* use scratch buffer only when rx or tx data is unspecified */
345    if (xfer->rx_buf)
346        *rx_dma = xfer->rx_dma + xfer->len - *plen;
347    else {
348        *rx_dma = as->buffer_dma;
349        if (len > BUFFER_SIZE)
350            len = BUFFER_SIZE;
351    }
352    if (xfer->tx_buf)
353        *tx_dma = xfer->tx_dma + xfer->len - *plen;
354    else {
355        *tx_dma = as->buffer_dma;
356        if (len > BUFFER_SIZE)
357            len = BUFFER_SIZE;
358        memset(as->buffer, 0, len);
359        dma_sync_single_for_device(&as->pdev->dev,
360                as->buffer_dma, len, DMA_TO_DEVICE);
361    }
362
363    *plen = len;
364}
365
366/*
367 * Submit next transfer for DMA.
368 * lock is held, spi irq is blocked
369 */
370static void atmel_spi_next_xfer(struct spi_master *master,
371                struct spi_message *msg)
372{
373    struct atmel_spi *as = spi_master_get_devdata(master);
374    struct spi_transfer *xfer;
375    u32 len, remaining;
376    u32 ieval;
377    dma_addr_t tx_dma, rx_dma;
378
379    if (!as->current_transfer)
380        xfer = list_entry(msg->transfers.next,
381                struct spi_transfer, transfer_list);
382    else if (!as->next_transfer)
383        xfer = list_entry(as->current_transfer->transfer_list.next,
384                struct spi_transfer, transfer_list);
385    else
386        xfer = NULL;
387
388    if (xfer) {
389        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
390
391        len = xfer->len;
392        atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393        remaining = xfer->len - len;
394
395        spi_writel(as, RPR, rx_dma);
396        spi_writel(as, TPR, tx_dma);
397
398        if (msg->spi->bits_per_word > 8)
399            len >>= 1;
400        spi_writel(as, RCR, len);
401        spi_writel(as, TCR, len);
402
403        dev_dbg(&msg->spi->dev,
404            " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405            xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406            xfer->rx_buf, xfer->rx_dma);
407    } else {
408        xfer = as->next_transfer;
409        remaining = as->next_remaining_bytes;
410    }
411
412    as->current_transfer = xfer;
413    as->current_remaining_bytes = remaining;
414
415    if (remaining > 0)
416        len = remaining;
417    else if (!atmel_spi_xfer_is_last(msg, xfer)
418            && atmel_spi_xfer_can_be_chained(xfer)) {
419        xfer = list_entry(xfer->transfer_list.next,
420                struct spi_transfer, transfer_list);
421        len = xfer->len;
422    } else
423        xfer = NULL;
424
425    as->next_transfer = xfer;
426
427    if (xfer) {
428        u32 total;
429
430        total = len;
431        atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432        as->next_remaining_bytes = total - len;
433
434        spi_writel(as, RNPR, rx_dma);
435        spi_writel(as, TNPR, tx_dma);
436
437        if (msg->spi->bits_per_word > 8)
438            len >>= 1;
439        spi_writel(as, RNCR, len);
440        spi_writel(as, TNCR, len);
441
442        dev_dbg(&msg->spi->dev,
443            " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444            xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445            xfer->rx_buf, xfer->rx_dma);
446        ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447    } else {
448        spi_writel(as, RNCR, 0);
449        spi_writel(as, TNCR, 0);
450        ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
451    }
452
453    /* REVISIT: We're waiting for ENDRX before we start the next
454     * transfer because we need to handle some difficult timing
455     * issues otherwise. If we wait for ENDTX in one transfer and
456     * then starts waiting for ENDRX in the next, it's difficult
457     * to tell the difference between the ENDRX interrupt we're
458     * actually waiting for and the ENDRX interrupt of the
459     * previous transfer.
460     *
461     * It should be doable, though. Just not now...
462     */
463    spi_writel(as, IER, ieval);
464    spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
465}
466
467static void atmel_spi_next_message(struct spi_master *master)
468{
469    struct atmel_spi *as = spi_master_get_devdata(master);
470    struct spi_message *msg;
471    struct spi_device *spi;
472
473    BUG_ON(as->current_transfer);
474
475    msg = list_entry(as->queue.next, struct spi_message, queue);
476    spi = msg->spi;
477
478    dev_dbg(master->dev.parent, "start message %p for %s\n",
479            msg, dev_name(&spi->dev));
480
481    /* select chip if it's not still active */
482    if (as->stay) {
483        if (as->stay != spi) {
484            cs_deactivate(as, as->stay);
485            cs_activate(as, spi);
486        }
487        as->stay = NULL;
488    } else
489        cs_activate(as, spi);
490
491    atmel_spi_next_xfer(master, msg);
492}
493
494/*
495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496 * - The buffer is either valid for CPU access, else NULL
497 * - If the buffer is valid, so is its DMA address
498 *
499 * This driver manages the dma address unless message->is_dma_mapped.
500 */
501static int
502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
503{
504    struct device *dev = &as->pdev->dev;
505
506    xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507    if (xfer->tx_buf) {
508        /* tx_buf is a const void* where we need a void * for the dma
509         * mapping */
510        void *nonconst_tx = (void *)xfer->tx_buf;
511
512        xfer->tx_dma = dma_map_single(dev,
513                nonconst_tx, xfer->len,
514                DMA_TO_DEVICE);
515        if (dma_mapping_error(dev, xfer->tx_dma))
516            return -ENOMEM;
517    }
518    if (xfer->rx_buf) {
519        xfer->rx_dma = dma_map_single(dev,
520                xfer->rx_buf, xfer->len,
521                DMA_FROM_DEVICE);
522        if (dma_mapping_error(dev, xfer->rx_dma)) {
523            if (xfer->tx_buf)
524                dma_unmap_single(dev,
525                        xfer->tx_dma, xfer->len,
526                        DMA_TO_DEVICE);
527            return -ENOMEM;
528        }
529    }
530    return 0;
531}
532
533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534                     struct spi_transfer *xfer)
535{
536    if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537        dma_unmap_single(master->dev.parent, xfer->tx_dma,
538                 xfer->len, DMA_TO_DEVICE);
539    if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540        dma_unmap_single(master->dev.parent, xfer->rx_dma,
541                 xfer->len, DMA_FROM_DEVICE);
542}
543
544static void
545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546        struct spi_message *msg, int status, int stay)
547{
548    if (!stay || status < 0)
549        cs_deactivate(as, msg->spi);
550    else
551        as->stay = msg->spi;
552
553    list_del(&msg->queue);
554    msg->status = status;
555
556    dev_dbg(master->dev.parent,
557        "xfer complete: %u bytes transferred\n",
558        msg->actual_length);
559
560    spin_unlock(&as->lock);
561    msg->complete(msg->context);
562    spin_lock(&as->lock);
563
564    as->current_transfer = NULL;
565    as->next_transfer = NULL;
566
567    /* continue if needed */
568    if (list_empty(&as->queue) || as->stopping)
569        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570    else
571        atmel_spi_next_message(master);
572}
573
574static irqreturn_t
575atmel_spi_interrupt(int irq, void *dev_id)
576{
577    struct spi_master *master = dev_id;
578    struct atmel_spi *as = spi_master_get_devdata(master);
579    struct spi_message *msg;
580    struct spi_transfer *xfer;
581    u32 status, pending, imr;
582    int ret = IRQ_NONE;
583
584    spin_lock(&as->lock);
585
586    xfer = as->current_transfer;
587    msg = list_entry(as->queue.next, struct spi_message, queue);
588
589    imr = spi_readl(as, IMR);
590    status = spi_readl(as, SR);
591    pending = status & imr;
592
593    if (pending & SPI_BIT(OVRES)) {
594        int timeout;
595
596        ret = IRQ_HANDLED;
597
598        spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599                     | SPI_BIT(OVRES)));
600
601        /*
602         * When we get an overrun, we disregard the current
603         * transfer. Data will not be copied back from any
604         * bounce buffer and msg->actual_len will not be
605         * updated with the last xfer.
606         *
607         * We will also not process any remaning transfers in
608         * the message.
609         *
610         * First, stop the transfer and unmap the DMA buffers.
611         */
612        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613        if (!msg->is_dma_mapped)
614            atmel_spi_dma_unmap_xfer(master, xfer);
615
616        /* REVISIT: udelay in irq is unfriendly */
617        if (xfer->delay_usecs)
618            udelay(xfer->delay_usecs);
619
620        dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621             spi_readl(as, TCR), spi_readl(as, RCR));
622
623        /*
624         * Clean up DMA registers and make sure the data
625         * registers are empty.
626         */
627        spi_writel(as, RNCR, 0);
628        spi_writel(as, TNCR, 0);
629        spi_writel(as, RCR, 0);
630        spi_writel(as, TCR, 0);
631        for (timeout = 1000; timeout; timeout--)
632            if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633                break;
634        if (!timeout)
635            dev_warn(master->dev.parent,
636                 "timeout waiting for TXEMPTY");
637        while (spi_readl(as, SR) & SPI_BIT(RDRF))
638            spi_readl(as, RDR);
639
640        /* Clear any overrun happening while cleaning up */
641        spi_readl(as, SR);
642
643        atmel_spi_msg_done(master, as, msg, -EIO, 0);
644    } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645        ret = IRQ_HANDLED;
646
647        spi_writel(as, IDR, pending);
648
649        if (as->current_remaining_bytes == 0) {
650            msg->actual_length += xfer->len;
651
652            if (!msg->is_dma_mapped)
653                atmel_spi_dma_unmap_xfer(master, xfer);
654
655            /* REVISIT: udelay in irq is unfriendly */
656            if (xfer->delay_usecs)
657                udelay(xfer->delay_usecs);
658
659            if (atmel_spi_xfer_is_last(msg, xfer)) {
660                /* report completed message */
661                atmel_spi_msg_done(master, as, msg, 0,
662                        xfer->cs_change);
663            } else {
664                if (xfer->cs_change) {
665                    cs_deactivate(as, msg->spi);
666                    udelay(1);
667                    cs_activate(as, msg->spi);
668                }
669
670                /*
671                 * Not done yet. Submit the next transfer.
672                 *
673                 * FIXME handle protocol options for xfer
674                 */
675                atmel_spi_next_xfer(master, msg);
676            }
677        } else {
678            /*
679             * Keep going, we still have data to send in
680             * the current transfer.
681             */
682            atmel_spi_next_xfer(master, msg);
683        }
684    }
685
686    spin_unlock(&as->lock);
687
688    return ret;
689}
690
691static int atmel_spi_setup(struct spi_device *spi)
692{
693    struct atmel_spi *as;
694    struct atmel_spi_device *asd;
695    u32 scbr, csr;
696    unsigned int bits = spi->bits_per_word;
697    unsigned long bus_hz;
698    unsigned int npcs_pin;
699    int ret;
700
701    as = spi_master_get_devdata(spi->master);
702
703    if (as->stopping)
704        return -ESHUTDOWN;
705
706    if (spi->chip_select > spi->master->num_chipselect) {
707        dev_dbg(&spi->dev,
708                "setup: invalid chipselect %u (%u defined)\n",
709                spi->chip_select, spi->master->num_chipselect);
710        return -EINVAL;
711    }
712
713    if (bits < 8 || bits > 16) {
714        dev_dbg(&spi->dev,
715                "setup: invalid bits_per_word %u (8 to 16)\n",
716                bits);
717        return -EINVAL;
718    }
719
720    /* see notes above re chipselect */
721    if (!atmel_spi_is_v2()
722            && spi->chip_select == 0
723            && (spi->mode & SPI_CS_HIGH)) {
724        dev_dbg(&spi->dev, "setup: can't be active-high\n");
725        return -EINVAL;
726    }
727
728    /* v1 chips start out at half the peripheral bus speed. */
729    bus_hz = clk_get_rate(as->clk);
730    if (!atmel_spi_is_v2())
731        bus_hz /= 2;
732
733    if (spi->max_speed_hz) {
734        /*
735         * Calculate the lowest divider that satisfies the
736         * constraint, assuming div32/fdiv/mbz == 0.
737         */
738        scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
739
740        /*
741         * If the resulting divider doesn't fit into the
742         * register bitfield, we can't satisfy the constraint.
743         */
744        if (scbr >= (1 << SPI_SCBR_SIZE)) {
745            dev_dbg(&spi->dev,
746                "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747                spi->max_speed_hz, scbr, bus_hz/255);
748            return -EINVAL;
749        }
750    } else
751        /* speed zero means "as slow as possible" */
752        scbr = 0xff;
753
754    csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755    if (spi->mode & SPI_CPOL)
756        csr |= SPI_BIT(CPOL);
757    if (!(spi->mode & SPI_CPHA))
758        csr |= SPI_BIT(NCPHA);
759
760    /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
761     *
762     * DLYBCT would add delays between words, slowing down transfers.
763     * It could potentially be useful to cope with DMA bottlenecks, but
764     * in those cases it's probably best to just use a lower bitrate.
765     */
766    csr |= SPI_BF(DLYBS, 0);
767    csr |= SPI_BF(DLYBCT, 0);
768
769    /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770    npcs_pin = (unsigned int)spi->controller_data;
771    asd = spi->controller_state;
772    if (!asd) {
773        asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774        if (!asd)
775            return -ENOMEM;
776
777        ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778        if (ret) {
779            kfree(asd);
780            return ret;
781        }
782
783        asd->npcs_pin = npcs_pin;
784        spi->controller_state = asd;
785        gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786    } else {
787        unsigned long flags;
788
789        spin_lock_irqsave(&as->lock, flags);
790        if (as->stay == spi)
791            as->stay = NULL;
792        cs_deactivate(as, spi);
793        spin_unlock_irqrestore(&as->lock, flags);
794    }
795
796    asd->csr = csr;
797
798    dev_dbg(&spi->dev,
799        "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800        bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
801
802    if (!atmel_spi_is_v2())
803        spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
804
805    return 0;
806}
807
808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
809{
810    struct atmel_spi *as;
811    struct spi_transfer *xfer;
812    unsigned long flags;
813    struct device *controller = spi->master->dev.parent;
814    u8 bits;
815    struct atmel_spi_device *asd;
816
817    as = spi_master_get_devdata(spi->master);
818
819    dev_dbg(controller, "new message %p submitted for %s\n",
820            msg, dev_name(&spi->dev));
821
822    if (unlikely(list_empty(&msg->transfers)))
823        return -EINVAL;
824
825    if (as->stopping)
826        return -ESHUTDOWN;
827
828    list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829        if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830            dev_dbg(&spi->dev, "missing rx or tx buf\n");
831            return -EINVAL;
832        }
833
834        if (xfer->bits_per_word) {
835            asd = spi->controller_state;
836            bits = (asd->csr >> 4) & 0xf;
837            if (bits != xfer->bits_per_word - 8) {
838                dev_dbg(&spi->dev, "you can't yet change "
839                     "bits_per_word in transfers\n");
840                return -ENOPROTOOPT;
841            }
842        }
843
844        /* FIXME implement these protocol options!! */
845        if (xfer->speed_hz) {
846            dev_dbg(&spi->dev, "no protocol options yet\n");
847            return -ENOPROTOOPT;
848        }
849
850        /*
851         * DMA map early, for performance (empties dcache ASAP) and
852         * better fault reporting. This is a DMA-only driver.
853         *
854         * NOTE that if dma_unmap_single() ever starts to do work on
855         * platforms supported by this driver, we would need to clean
856         * up mappings for previously-mapped transfers.
857         */
858        if (!msg->is_dma_mapped) {
859            if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860                return -ENOMEM;
861        }
862    }
863
864#ifdef VERBOSE
865    list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866        dev_dbg(controller,
867            " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868            xfer, xfer->len,
869            xfer->tx_buf, xfer->tx_dma,
870            xfer->rx_buf, xfer->rx_dma);
871    }
872#endif
873
874    msg->status = -EINPROGRESS;
875    msg->actual_length = 0;
876
877    spin_lock_irqsave(&as->lock, flags);
878    list_add_tail(&msg->queue, &as->queue);
879    if (!as->current_transfer)
880        atmel_spi_next_message(spi->master);
881    spin_unlock_irqrestore(&as->lock, flags);
882
883    return 0;
884}
885
886static void atmel_spi_cleanup(struct spi_device *spi)
887{
888    struct atmel_spi *as = spi_master_get_devdata(spi->master);
889    struct atmel_spi_device *asd = spi->controller_state;
890    unsigned gpio = (unsigned) spi->controller_data;
891    unsigned long flags;
892
893    if (!asd)
894        return;
895
896    spin_lock_irqsave(&as->lock, flags);
897    if (as->stay == spi) {
898        as->stay = NULL;
899        cs_deactivate(as, spi);
900    }
901    spin_unlock_irqrestore(&as->lock, flags);
902
903    spi->controller_state = NULL;
904    gpio_free(gpio);
905    kfree(asd);
906}
907
908/*-------------------------------------------------------------------------*/
909
910static int __devinit atmel_spi_probe(struct platform_device *pdev)
911{
912    struct resource *regs;
913    int irq;
914    struct clk *clk;
915    int ret;
916    struct spi_master *master;
917    struct atmel_spi *as;
918
919    regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920    if (!regs)
921        return -ENXIO;
922
923    irq = platform_get_irq(pdev, 0);
924    if (irq < 0)
925        return irq;
926
927    clk = clk_get(&pdev->dev, "spi_clk");
928    if (IS_ERR(clk))
929        return PTR_ERR(clk);
930
931    /* setup spi core then atmel-specific driver state */
932    ret = -ENOMEM;
933    master = spi_alloc_master(&pdev->dev, sizeof *as);
934    if (!master)
935        goto out_free;
936
937    /* the spi->mode bits understood by this driver: */
938    master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
939
940    master->bus_num = pdev->id;
941    master->num_chipselect = 4;
942    master->setup = atmel_spi_setup;
943    master->transfer = atmel_spi_transfer;
944    master->cleanup = atmel_spi_cleanup;
945    platform_set_drvdata(pdev, master);
946
947    as = spi_master_get_devdata(master);
948
949    /*
950     * Scratch buffer is used for throwaway rx and tx data.
951     * It's coherent to minimize dcache pollution.
952     */
953    as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
954                    &as->buffer_dma, GFP_KERNEL);
955    if (!as->buffer)
956        goto out_free;
957
958    spin_lock_init(&as->lock);
959    INIT_LIST_HEAD(&as->queue);
960    as->pdev = pdev;
961    as->regs = ioremap(regs->start, resource_size(regs));
962    if (!as->regs)
963        goto out_free_buffer;
964    as->irq = irq;
965    as->clk = clk;
966
967    ret = request_irq(irq, atmel_spi_interrupt, 0,
968            dev_name(&pdev->dev), master);
969    if (ret)
970        goto out_unmap_regs;
971
972    /* Initialize the hardware */
973    clk_enable(clk);
974    spi_writel(as, CR, SPI_BIT(SWRST));
975    spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976    spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977    spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978    spi_writel(as, CR, SPI_BIT(SPIEN));
979
980    /* go! */
981    dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982            (unsigned long)regs->start, irq);
983
984    ret = spi_register_master(master);
985    if (ret)
986        goto out_reset_hw;
987
988    return 0;
989
990out_reset_hw:
991    spi_writel(as, CR, SPI_BIT(SWRST));
992    spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993    clk_disable(clk);
994    free_irq(irq, master);
995out_unmap_regs:
996    iounmap(as->regs);
997out_free_buffer:
998    dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
999            as->buffer_dma);
1000out_free:
1001    clk_put(clk);
1002    spi_master_put(master);
1003    return ret;
1004}
1005
1006static int __devexit atmel_spi_remove(struct platform_device *pdev)
1007{
1008    struct spi_master *master = platform_get_drvdata(pdev);
1009    struct atmel_spi *as = spi_master_get_devdata(master);
1010    struct spi_message *msg;
1011
1012    /* reset the hardware and block queue progress */
1013    spin_lock_irq(&as->lock);
1014    as->stopping = 1;
1015    spi_writel(as, CR, SPI_BIT(SWRST));
1016    spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017    spi_readl(as, SR);
1018    spin_unlock_irq(&as->lock);
1019
1020    /* Terminate remaining queued transfers */
1021    list_for_each_entry(msg, &as->queue, queue) {
1022        /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023         * but we shouldn't depend on that...
1024         */
1025        msg->status = -ESHUTDOWN;
1026        msg->complete(msg->context);
1027    }
1028
1029    dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030            as->buffer_dma);
1031
1032    clk_disable(as->clk);
1033    clk_put(as->clk);
1034    free_irq(as->irq, master);
1035    iounmap(as->regs);
1036
1037    spi_unregister_master(master);
1038
1039    return 0;
1040}
1041
1042#ifdef CONFIG_PM
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045{
1046    struct spi_master *master = platform_get_drvdata(pdev);
1047    struct atmel_spi *as = spi_master_get_devdata(master);
1048
1049    clk_disable(as->clk);
1050    return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055    struct spi_master *master = platform_get_drvdata(pdev);
1056    struct atmel_spi *as = spi_master_get_devdata(master);
1057
1058    clk_enable(as->clk);
1059    return 0;
1060}
1061
1062#else
1063#define atmel_spi_suspend NULL
1064#define atmel_spi_resume NULL
1065#endif
1066
1067
1068static struct platform_driver atmel_spi_driver = {
1069    .driver = {
1070        .name = "atmel_spi",
1071        .owner = THIS_MODULE,
1072    },
1073    .suspend = atmel_spi_suspend,
1074    .resume = atmel_spi_resume,
1075    .probe = atmel_spi_probe,
1076    .remove = __exit_p(atmel_spi_remove),
1077};
1078module_platform_driver(atmel_spi_driver);
1079
1080MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1081MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1082MODULE_LICENSE("GPL");
1083MODULE_ALIAS("platform:atmel_spi");
1084

Archive Download this file



interactive