Root/
1 | /* |
2 | * Driver for Atmel AT32 and AT91 SPI Controllers |
3 | * |
4 | * Copyright (C) 2006 Atmel Corporation |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU General Public License version 2 as |
8 | * published by the Free Software Foundation. |
9 | */ |
10 | |
11 | #include <linux/kernel.h> |
12 | #include <linux/init.h> |
13 | #include <linux/clk.h> |
14 | #include <linux/module.h> |
15 | #include <linux/platform_device.h> |
16 | #include <linux/delay.h> |
17 | #include <linux/dma-mapping.h> |
18 | #include <linux/err.h> |
19 | #include <linux/interrupt.h> |
20 | #include <linux/spi/spi.h> |
21 | #include <linux/slab.h> |
22 | |
23 | #include <asm/io.h> |
24 | #include <mach/board.h> |
25 | #include <asm/gpio.h> |
26 | #include <mach/cpu.h> |
27 | |
28 | /* SPI register offsets */ |
29 | #define SPI_CR 0x0000 |
30 | #define SPI_MR 0x0004 |
31 | #define SPI_RDR 0x0008 |
32 | #define SPI_TDR 0x000c |
33 | #define SPI_SR 0x0010 |
34 | #define SPI_IER 0x0014 |
35 | #define SPI_IDR 0x0018 |
36 | #define SPI_IMR 0x001c |
37 | #define SPI_CSR0 0x0030 |
38 | #define SPI_CSR1 0x0034 |
39 | #define SPI_CSR2 0x0038 |
40 | #define SPI_CSR3 0x003c |
41 | #define SPI_RPR 0x0100 |
42 | #define SPI_RCR 0x0104 |
43 | #define SPI_TPR 0x0108 |
44 | #define SPI_TCR 0x010c |
45 | #define SPI_RNPR 0x0110 |
46 | #define SPI_RNCR 0x0114 |
47 | #define SPI_TNPR 0x0118 |
48 | #define SPI_TNCR 0x011c |
49 | #define SPI_PTCR 0x0120 |
50 | #define SPI_PTSR 0x0124 |
51 | |
52 | /* Bitfields in CR */ |
53 | #define SPI_SPIEN_OFFSET 0 |
54 | #define SPI_SPIEN_SIZE 1 |
55 | #define SPI_SPIDIS_OFFSET 1 |
56 | #define SPI_SPIDIS_SIZE 1 |
57 | #define SPI_SWRST_OFFSET 7 |
58 | #define SPI_SWRST_SIZE 1 |
59 | #define SPI_LASTXFER_OFFSET 24 |
60 | #define SPI_LASTXFER_SIZE 1 |
61 | |
62 | /* Bitfields in MR */ |
63 | #define SPI_MSTR_OFFSET 0 |
64 | #define SPI_MSTR_SIZE 1 |
65 | #define SPI_PS_OFFSET 1 |
66 | #define SPI_PS_SIZE 1 |
67 | #define SPI_PCSDEC_OFFSET 2 |
68 | #define SPI_PCSDEC_SIZE 1 |
69 | #define SPI_FDIV_OFFSET 3 |
70 | #define SPI_FDIV_SIZE 1 |
71 | #define SPI_MODFDIS_OFFSET 4 |
72 | #define SPI_MODFDIS_SIZE 1 |
73 | #define SPI_LLB_OFFSET 7 |
74 | #define SPI_LLB_SIZE 1 |
75 | #define SPI_PCS_OFFSET 16 |
76 | #define SPI_PCS_SIZE 4 |
77 | #define SPI_DLYBCS_OFFSET 24 |
78 | #define SPI_DLYBCS_SIZE 8 |
79 | |
80 | /* Bitfields in RDR */ |
81 | #define SPI_RD_OFFSET 0 |
82 | #define SPI_RD_SIZE 16 |
83 | |
84 | /* Bitfields in TDR */ |
85 | #define SPI_TD_OFFSET 0 |
86 | #define SPI_TD_SIZE 16 |
87 | |
88 | /* Bitfields in SR */ |
89 | #define SPI_RDRF_OFFSET 0 |
90 | #define SPI_RDRF_SIZE 1 |
91 | #define SPI_TDRE_OFFSET 1 |
92 | #define SPI_TDRE_SIZE 1 |
93 | #define SPI_MODF_OFFSET 2 |
94 | #define SPI_MODF_SIZE 1 |
95 | #define SPI_OVRES_OFFSET 3 |
96 | #define SPI_OVRES_SIZE 1 |
97 | #define SPI_ENDRX_OFFSET 4 |
98 | #define SPI_ENDRX_SIZE 1 |
99 | #define SPI_ENDTX_OFFSET 5 |
100 | #define SPI_ENDTX_SIZE 1 |
101 | #define SPI_RXBUFF_OFFSET 6 |
102 | #define SPI_RXBUFF_SIZE 1 |
103 | #define SPI_TXBUFE_OFFSET 7 |
104 | #define SPI_TXBUFE_SIZE 1 |
105 | #define SPI_NSSR_OFFSET 8 |
106 | #define SPI_NSSR_SIZE 1 |
107 | #define SPI_TXEMPTY_OFFSET 9 |
108 | #define SPI_TXEMPTY_SIZE 1 |
109 | #define SPI_SPIENS_OFFSET 16 |
110 | #define SPI_SPIENS_SIZE 1 |
111 | |
112 | /* Bitfields in CSR0 */ |
113 | #define SPI_CPOL_OFFSET 0 |
114 | #define SPI_CPOL_SIZE 1 |
115 | #define SPI_NCPHA_OFFSET 1 |
116 | #define SPI_NCPHA_SIZE 1 |
117 | #define SPI_CSAAT_OFFSET 3 |
118 | #define SPI_CSAAT_SIZE 1 |
119 | #define SPI_BITS_OFFSET 4 |
120 | #define SPI_BITS_SIZE 4 |
121 | #define SPI_SCBR_OFFSET 8 |
122 | #define SPI_SCBR_SIZE 8 |
123 | #define SPI_DLYBS_OFFSET 16 |
124 | #define SPI_DLYBS_SIZE 8 |
125 | #define SPI_DLYBCT_OFFSET 24 |
126 | #define SPI_DLYBCT_SIZE 8 |
127 | |
128 | /* Bitfields in RCR */ |
129 | #define SPI_RXCTR_OFFSET 0 |
130 | #define SPI_RXCTR_SIZE 16 |
131 | |
132 | /* Bitfields in TCR */ |
133 | #define SPI_TXCTR_OFFSET 0 |
134 | #define SPI_TXCTR_SIZE 16 |
135 | |
136 | /* Bitfields in RNCR */ |
137 | #define SPI_RXNCR_OFFSET 0 |
138 | #define SPI_RXNCR_SIZE 16 |
139 | |
140 | /* Bitfields in TNCR */ |
141 | #define SPI_TXNCR_OFFSET 0 |
142 | #define SPI_TXNCR_SIZE 16 |
143 | |
144 | /* Bitfields in PTCR */ |
145 | #define SPI_RXTEN_OFFSET 0 |
146 | #define SPI_RXTEN_SIZE 1 |
147 | #define SPI_RXTDIS_OFFSET 1 |
148 | #define SPI_RXTDIS_SIZE 1 |
149 | #define SPI_TXTEN_OFFSET 8 |
150 | #define SPI_TXTEN_SIZE 1 |
151 | #define SPI_TXTDIS_OFFSET 9 |
152 | #define SPI_TXTDIS_SIZE 1 |
153 | |
154 | /* Constants for BITS */ |
155 | #define SPI_BITS_8_BPT 0 |
156 | #define SPI_BITS_9_BPT 1 |
157 | #define SPI_BITS_10_BPT 2 |
158 | #define SPI_BITS_11_BPT 3 |
159 | #define SPI_BITS_12_BPT 4 |
160 | #define SPI_BITS_13_BPT 5 |
161 | #define SPI_BITS_14_BPT 6 |
162 | #define SPI_BITS_15_BPT 7 |
163 | #define SPI_BITS_16_BPT 8 |
164 | |
165 | /* Bit manipulation macros */ |
166 | #define SPI_BIT(name) \ |
167 | (1 << SPI_##name##_OFFSET) |
168 | #define SPI_BF(name,value) \ |
169 | (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) |
170 | #define SPI_BFEXT(name,value) \ |
171 | (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) |
172 | #define SPI_BFINS(name,value,old) \ |
173 | ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ |
174 | | SPI_BF(name,value)) |
175 | |
176 | /* Register access macros */ |
177 | #define spi_readl(port,reg) \ |
178 | __raw_readl((port)->regs + SPI_##reg) |
179 | #define spi_writel(port,reg,value) \ |
180 | __raw_writel((value), (port)->regs + SPI_##reg) |
181 | |
182 | |
183 | /* |
184 | * The core SPI transfer engine just talks to a register bank to set up |
185 | * DMA transfers; transfer queue progress is driven by IRQs. The clock |
186 | * framework provides the base clock, subdivided for each spi_device. |
187 | */ |
188 | struct atmel_spi { |
189 | spinlock_t lock; |
190 | |
191 | void __iomem *regs; |
192 | int irq; |
193 | struct clk *clk; |
194 | struct platform_device *pdev; |
195 | struct spi_device *stay; |
196 | |
197 | u8 stopping; |
198 | struct list_head queue; |
199 | struct spi_transfer *current_transfer; |
200 | unsigned long current_remaining_bytes; |
201 | struct spi_transfer *next_transfer; |
202 | unsigned long next_remaining_bytes; |
203 | |
204 | void *buffer; |
205 | dma_addr_t buffer_dma; |
206 | }; |
207 | |
208 | /* Controller-specific per-slave state */ |
209 | struct atmel_spi_device { |
210 | unsigned int npcs_pin; |
211 | u32 csr; |
212 | }; |
213 | |
214 | #define BUFFER_SIZE PAGE_SIZE |
215 | #define INVALID_DMA_ADDRESS 0xffffffff |
216 | |
217 | /* |
218 | * Version 2 of the SPI controller has |
219 | * - CR.LASTXFER |
220 | * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) |
221 | * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) |
222 | * - SPI_CSRx.CSAAT |
223 | * - SPI_CSRx.SBCR allows faster clocking |
224 | * |
225 | * We can determine the controller version by reading the VERSION |
226 | * register, but I haven't checked that it exists on all chips, and |
227 | * this is cheaper anyway. |
228 | */ |
229 | static bool atmel_spi_is_v2(void) |
230 | { |
231 | return !cpu_is_at91rm9200(); |
232 | } |
233 | |
234 | /* |
235 | * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby |
236 | * they assume that spi slave device state will not change on deselect, so |
237 | * that automagic deselection is OK. ("NPCSx rises if no data is to be |
238 | * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer |
239 | * controllers have CSAAT and friends. |
240 | * |
241 | * Since the CSAAT functionality is a bit weird on newer controllers as |
242 | * well, we use GPIO to control nCSx pins on all controllers, updating |
243 | * MR.PCS to avoid confusing the controller. Using GPIOs also lets us |
244 | * support active-high chipselects despite the controller's belief that |
245 | * only active-low devices/systems exists. |
246 | * |
247 | * However, at91rm9200 has a second erratum whereby nCS0 doesn't work |
248 | * right when driven with GPIO. ("Mode Fault does not allow more than one |
249 | * Master on Chip Select 0.") No workaround exists for that ... so for |
250 | * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, |
251 | * and (c) will trigger that first erratum in some cases. |
252 | * |
253 | * TODO: Test if the atmel_spi_is_v2() branch below works on |
254 | * AT91RM9200 if we use some other register than CSR0. However, don't |
255 | * do this unconditionally since AP7000 has an errata where the BITS |
256 | * field in CSR0 overrides all other CSRs. |
257 | */ |
258 | |
259 | static void cs_activate(struct atmel_spi *as, struct spi_device *spi) |
260 | { |
261 | struct atmel_spi_device *asd = spi->controller_state; |
262 | unsigned active = spi->mode & SPI_CS_HIGH; |
263 | u32 mr; |
264 | |
265 | if (atmel_spi_is_v2()) { |
266 | /* |
267 | * Always use CSR0. This ensures that the clock |
268 | * switches to the correct idle polarity before we |
269 | * toggle the CS. |
270 | */ |
271 | spi_writel(as, CSR0, asd->csr); |
272 | spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS) |
273 | | SPI_BIT(MSTR)); |
274 | mr = spi_readl(as, MR); |
275 | gpio_set_value(asd->npcs_pin, active); |
276 | } else { |
277 | u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; |
278 | int i; |
279 | u32 csr; |
280 | |
281 | /* Make sure clock polarity is correct */ |
282 | for (i = 0; i < spi->master->num_chipselect; i++) { |
283 | csr = spi_readl(as, CSR0 + 4 * i); |
284 | if ((csr ^ cpol) & SPI_BIT(CPOL)) |
285 | spi_writel(as, CSR0 + 4 * i, |
286 | csr ^ SPI_BIT(CPOL)); |
287 | } |
288 | |
289 | mr = spi_readl(as, MR); |
290 | mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); |
291 | if (spi->chip_select != 0) |
292 | gpio_set_value(asd->npcs_pin, active); |
293 | spi_writel(as, MR, mr); |
294 | } |
295 | |
296 | dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", |
297 | asd->npcs_pin, active ? " (high)" : "", |
298 | mr); |
299 | } |
300 | |
301 | static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) |
302 | { |
303 | struct atmel_spi_device *asd = spi->controller_state; |
304 | unsigned active = spi->mode & SPI_CS_HIGH; |
305 | u32 mr; |
306 | |
307 | /* only deactivate *this* device; sometimes transfers to |
308 | * another device may be active when this routine is called. |
309 | */ |
310 | mr = spi_readl(as, MR); |
311 | if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { |
312 | mr = SPI_BFINS(PCS, 0xf, mr); |
313 | spi_writel(as, MR, mr); |
314 | } |
315 | |
316 | dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", |
317 | asd->npcs_pin, active ? " (low)" : "", |
318 | mr); |
319 | |
320 | if (atmel_spi_is_v2() || spi->chip_select != 0) |
321 | gpio_set_value(asd->npcs_pin, !active); |
322 | } |
323 | |
324 | static inline int atmel_spi_xfer_is_last(struct spi_message *msg, |
325 | struct spi_transfer *xfer) |
326 | { |
327 | return msg->transfers.prev == &xfer->transfer_list; |
328 | } |
329 | |
330 | static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) |
331 | { |
332 | return xfer->delay_usecs == 0 && !xfer->cs_change; |
333 | } |
334 | |
335 | static void atmel_spi_next_xfer_data(struct spi_master *master, |
336 | struct spi_transfer *xfer, |
337 | dma_addr_t *tx_dma, |
338 | dma_addr_t *rx_dma, |
339 | u32 *plen) |
340 | { |
341 | struct atmel_spi *as = spi_master_get_devdata(master); |
342 | u32 len = *plen; |
343 | |
344 | /* use scratch buffer only when rx or tx data is unspecified */ |
345 | if (xfer->rx_buf) |
346 | *rx_dma = xfer->rx_dma + xfer->len - *plen; |
347 | else { |
348 | *rx_dma = as->buffer_dma; |
349 | if (len > BUFFER_SIZE) |
350 | len = BUFFER_SIZE; |
351 | } |
352 | if (xfer->tx_buf) |
353 | *tx_dma = xfer->tx_dma + xfer->len - *plen; |
354 | else { |
355 | *tx_dma = as->buffer_dma; |
356 | if (len > BUFFER_SIZE) |
357 | len = BUFFER_SIZE; |
358 | memset(as->buffer, 0, len); |
359 | dma_sync_single_for_device(&as->pdev->dev, |
360 | as->buffer_dma, len, DMA_TO_DEVICE); |
361 | } |
362 | |
363 | *plen = len; |
364 | } |
365 | |
366 | /* |
367 | * Submit next transfer for DMA. |
368 | * lock is held, spi irq is blocked |
369 | */ |
370 | static void atmel_spi_next_xfer(struct spi_master *master, |
371 | struct spi_message *msg) |
372 | { |
373 | struct atmel_spi *as = spi_master_get_devdata(master); |
374 | struct spi_transfer *xfer; |
375 | u32 len, remaining; |
376 | u32 ieval; |
377 | dma_addr_t tx_dma, rx_dma; |
378 | |
379 | if (!as->current_transfer) |
380 | xfer = list_entry(msg->transfers.next, |
381 | struct spi_transfer, transfer_list); |
382 | else if (!as->next_transfer) |
383 | xfer = list_entry(as->current_transfer->transfer_list.next, |
384 | struct spi_transfer, transfer_list); |
385 | else |
386 | xfer = NULL; |
387 | |
388 | if (xfer) { |
389 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
390 | |
391 | len = xfer->len; |
392 | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); |
393 | remaining = xfer->len - len; |
394 | |
395 | spi_writel(as, RPR, rx_dma); |
396 | spi_writel(as, TPR, tx_dma); |
397 | |
398 | if (msg->spi->bits_per_word > 8) |
399 | len >>= 1; |
400 | spi_writel(as, RCR, len); |
401 | spi_writel(as, TCR, len); |
402 | |
403 | dev_dbg(&msg->spi->dev, |
404 | " start xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
405 | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, |
406 | xfer->rx_buf, xfer->rx_dma); |
407 | } else { |
408 | xfer = as->next_transfer; |
409 | remaining = as->next_remaining_bytes; |
410 | } |
411 | |
412 | as->current_transfer = xfer; |
413 | as->current_remaining_bytes = remaining; |
414 | |
415 | if (remaining > 0) |
416 | len = remaining; |
417 | else if (!atmel_spi_xfer_is_last(msg, xfer) |
418 | && atmel_spi_xfer_can_be_chained(xfer)) { |
419 | xfer = list_entry(xfer->transfer_list.next, |
420 | struct spi_transfer, transfer_list); |
421 | len = xfer->len; |
422 | } else |
423 | xfer = NULL; |
424 | |
425 | as->next_transfer = xfer; |
426 | |
427 | if (xfer) { |
428 | u32 total; |
429 | |
430 | total = len; |
431 | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); |
432 | as->next_remaining_bytes = total - len; |
433 | |
434 | spi_writel(as, RNPR, rx_dma); |
435 | spi_writel(as, TNPR, tx_dma); |
436 | |
437 | if (msg->spi->bits_per_word > 8) |
438 | len >>= 1; |
439 | spi_writel(as, RNCR, len); |
440 | spi_writel(as, TNCR, len); |
441 | |
442 | dev_dbg(&msg->spi->dev, |
443 | " next xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
444 | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, |
445 | xfer->rx_buf, xfer->rx_dma); |
446 | ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); |
447 | } else { |
448 | spi_writel(as, RNCR, 0); |
449 | spi_writel(as, TNCR, 0); |
450 | ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); |
451 | } |
452 | |
453 | /* REVISIT: We're waiting for ENDRX before we start the next |
454 | * transfer because we need to handle some difficult timing |
455 | * issues otherwise. If we wait for ENDTX in one transfer and |
456 | * then starts waiting for ENDRX in the next, it's difficult |
457 | * to tell the difference between the ENDRX interrupt we're |
458 | * actually waiting for and the ENDRX interrupt of the |
459 | * previous transfer. |
460 | * |
461 | * It should be doable, though. Just not now... |
462 | */ |
463 | spi_writel(as, IER, ieval); |
464 | spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); |
465 | } |
466 | |
467 | static void atmel_spi_next_message(struct spi_master *master) |
468 | { |
469 | struct atmel_spi *as = spi_master_get_devdata(master); |
470 | struct spi_message *msg; |
471 | struct spi_device *spi; |
472 | |
473 | BUG_ON(as->current_transfer); |
474 | |
475 | msg = list_entry(as->queue.next, struct spi_message, queue); |
476 | spi = msg->spi; |
477 | |
478 | dev_dbg(master->dev.parent, "start message %p for %s\n", |
479 | msg, dev_name(&spi->dev)); |
480 | |
481 | /* select chip if it's not still active */ |
482 | if (as->stay) { |
483 | if (as->stay != spi) { |
484 | cs_deactivate(as, as->stay); |
485 | cs_activate(as, spi); |
486 | } |
487 | as->stay = NULL; |
488 | } else |
489 | cs_activate(as, spi); |
490 | |
491 | atmel_spi_next_xfer(master, msg); |
492 | } |
493 | |
494 | /* |
495 | * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: |
496 | * - The buffer is either valid for CPU access, else NULL |
497 | * - If the buffer is valid, so is its DMA address |
498 | * |
499 | * This driver manages the dma address unless message->is_dma_mapped. |
500 | */ |
501 | static int |
502 | atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) |
503 | { |
504 | struct device *dev = &as->pdev->dev; |
505 | |
506 | xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; |
507 | if (xfer->tx_buf) { |
508 | /* tx_buf is a const void* where we need a void * for the dma |
509 | * mapping */ |
510 | void *nonconst_tx = (void *)xfer->tx_buf; |
511 | |
512 | xfer->tx_dma = dma_map_single(dev, |
513 | nonconst_tx, xfer->len, |
514 | DMA_TO_DEVICE); |
515 | if (dma_mapping_error(dev, xfer->tx_dma)) |
516 | return -ENOMEM; |
517 | } |
518 | if (xfer->rx_buf) { |
519 | xfer->rx_dma = dma_map_single(dev, |
520 | xfer->rx_buf, xfer->len, |
521 | DMA_FROM_DEVICE); |
522 | if (dma_mapping_error(dev, xfer->rx_dma)) { |
523 | if (xfer->tx_buf) |
524 | dma_unmap_single(dev, |
525 | xfer->tx_dma, xfer->len, |
526 | DMA_TO_DEVICE); |
527 | return -ENOMEM; |
528 | } |
529 | } |
530 | return 0; |
531 | } |
532 | |
533 | static void atmel_spi_dma_unmap_xfer(struct spi_master *master, |
534 | struct spi_transfer *xfer) |
535 | { |
536 | if (xfer->tx_dma != INVALID_DMA_ADDRESS) |
537 | dma_unmap_single(master->dev.parent, xfer->tx_dma, |
538 | xfer->len, DMA_TO_DEVICE); |
539 | if (xfer->rx_dma != INVALID_DMA_ADDRESS) |
540 | dma_unmap_single(master->dev.parent, xfer->rx_dma, |
541 | xfer->len, DMA_FROM_DEVICE); |
542 | } |
543 | |
544 | static void |
545 | atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, |
546 | struct spi_message *msg, int status, int stay) |
547 | { |
548 | if (!stay || status < 0) |
549 | cs_deactivate(as, msg->spi); |
550 | else |
551 | as->stay = msg->spi; |
552 | |
553 | list_del(&msg->queue); |
554 | msg->status = status; |
555 | |
556 | dev_dbg(master->dev.parent, |
557 | "xfer complete: %u bytes transferred\n", |
558 | msg->actual_length); |
559 | |
560 | spin_unlock(&as->lock); |
561 | msg->complete(msg->context); |
562 | spin_lock(&as->lock); |
563 | |
564 | as->current_transfer = NULL; |
565 | as->next_transfer = NULL; |
566 | |
567 | /* continue if needed */ |
568 | if (list_empty(&as->queue) || as->stopping) |
569 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
570 | else |
571 | atmel_spi_next_message(master); |
572 | } |
573 | |
574 | static irqreturn_t |
575 | atmel_spi_interrupt(int irq, void *dev_id) |
576 | { |
577 | struct spi_master *master = dev_id; |
578 | struct atmel_spi *as = spi_master_get_devdata(master); |
579 | struct spi_message *msg; |
580 | struct spi_transfer *xfer; |
581 | u32 status, pending, imr; |
582 | int ret = IRQ_NONE; |
583 | |
584 | spin_lock(&as->lock); |
585 | |
586 | xfer = as->current_transfer; |
587 | msg = list_entry(as->queue.next, struct spi_message, queue); |
588 | |
589 | imr = spi_readl(as, IMR); |
590 | status = spi_readl(as, SR); |
591 | pending = status & imr; |
592 | |
593 | if (pending & SPI_BIT(OVRES)) { |
594 | int timeout; |
595 | |
596 | ret = IRQ_HANDLED; |
597 | |
598 | spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) |
599 | | SPI_BIT(OVRES))); |
600 | |
601 | /* |
602 | * When we get an overrun, we disregard the current |
603 | * transfer. Data will not be copied back from any |
604 | * bounce buffer and msg->actual_len will not be |
605 | * updated with the last xfer. |
606 | * |
607 | * We will also not process any remaning transfers in |
608 | * the message. |
609 | * |
610 | * First, stop the transfer and unmap the DMA buffers. |
611 | */ |
612 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
613 | if (!msg->is_dma_mapped) |
614 | atmel_spi_dma_unmap_xfer(master, xfer); |
615 | |
616 | /* REVISIT: udelay in irq is unfriendly */ |
617 | if (xfer->delay_usecs) |
618 | udelay(xfer->delay_usecs); |
619 | |
620 | dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", |
621 | spi_readl(as, TCR), spi_readl(as, RCR)); |
622 | |
623 | /* |
624 | * Clean up DMA registers and make sure the data |
625 | * registers are empty. |
626 | */ |
627 | spi_writel(as, RNCR, 0); |
628 | spi_writel(as, TNCR, 0); |
629 | spi_writel(as, RCR, 0); |
630 | spi_writel(as, TCR, 0); |
631 | for (timeout = 1000; timeout; timeout--) |
632 | if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) |
633 | break; |
634 | if (!timeout) |
635 | dev_warn(master->dev.parent, |
636 | "timeout waiting for TXEMPTY"); |
637 | while (spi_readl(as, SR) & SPI_BIT(RDRF)) |
638 | spi_readl(as, RDR); |
639 | |
640 | /* Clear any overrun happening while cleaning up */ |
641 | spi_readl(as, SR); |
642 | |
643 | atmel_spi_msg_done(master, as, msg, -EIO, 0); |
644 | } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { |
645 | ret = IRQ_HANDLED; |
646 | |
647 | spi_writel(as, IDR, pending); |
648 | |
649 | if (as->current_remaining_bytes == 0) { |
650 | msg->actual_length += xfer->len; |
651 | |
652 | if (!msg->is_dma_mapped) |
653 | atmel_spi_dma_unmap_xfer(master, xfer); |
654 | |
655 | /* REVISIT: udelay in irq is unfriendly */ |
656 | if (xfer->delay_usecs) |
657 | udelay(xfer->delay_usecs); |
658 | |
659 | if (atmel_spi_xfer_is_last(msg, xfer)) { |
660 | /* report completed message */ |
661 | atmel_spi_msg_done(master, as, msg, 0, |
662 | xfer->cs_change); |
663 | } else { |
664 | if (xfer->cs_change) { |
665 | cs_deactivate(as, msg->spi); |
666 | udelay(1); |
667 | cs_activate(as, msg->spi); |
668 | } |
669 | |
670 | /* |
671 | * Not done yet. Submit the next transfer. |
672 | * |
673 | * FIXME handle protocol options for xfer |
674 | */ |
675 | atmel_spi_next_xfer(master, msg); |
676 | } |
677 | } else { |
678 | /* |
679 | * Keep going, we still have data to send in |
680 | * the current transfer. |
681 | */ |
682 | atmel_spi_next_xfer(master, msg); |
683 | } |
684 | } |
685 | |
686 | spin_unlock(&as->lock); |
687 | |
688 | return ret; |
689 | } |
690 | |
691 | static int atmel_spi_setup(struct spi_device *spi) |
692 | { |
693 | struct atmel_spi *as; |
694 | struct atmel_spi_device *asd; |
695 | u32 scbr, csr; |
696 | unsigned int bits = spi->bits_per_word; |
697 | unsigned long bus_hz; |
698 | unsigned int npcs_pin; |
699 | int ret; |
700 | |
701 | as = spi_master_get_devdata(spi->master); |
702 | |
703 | if (as->stopping) |
704 | return -ESHUTDOWN; |
705 | |
706 | if (spi->chip_select > spi->master->num_chipselect) { |
707 | dev_dbg(&spi->dev, |
708 | "setup: invalid chipselect %u (%u defined)\n", |
709 | spi->chip_select, spi->master->num_chipselect); |
710 | return -EINVAL; |
711 | } |
712 | |
713 | if (bits < 8 || bits > 16) { |
714 | dev_dbg(&spi->dev, |
715 | "setup: invalid bits_per_word %u (8 to 16)\n", |
716 | bits); |
717 | return -EINVAL; |
718 | } |
719 | |
720 | /* see notes above re chipselect */ |
721 | if (!atmel_spi_is_v2() |
722 | && spi->chip_select == 0 |
723 | && (spi->mode & SPI_CS_HIGH)) { |
724 | dev_dbg(&spi->dev, "setup: can't be active-high\n"); |
725 | return -EINVAL; |
726 | } |
727 | |
728 | /* v1 chips start out at half the peripheral bus speed. */ |
729 | bus_hz = clk_get_rate(as->clk); |
730 | if (!atmel_spi_is_v2()) |
731 | bus_hz /= 2; |
732 | |
733 | if (spi->max_speed_hz) { |
734 | /* |
735 | * Calculate the lowest divider that satisfies the |
736 | * constraint, assuming div32/fdiv/mbz == 0. |
737 | */ |
738 | scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); |
739 | |
740 | /* |
741 | * If the resulting divider doesn't fit into the |
742 | * register bitfield, we can't satisfy the constraint. |
743 | */ |
744 | if (scbr >= (1 << SPI_SCBR_SIZE)) { |
745 | dev_dbg(&spi->dev, |
746 | "setup: %d Hz too slow, scbr %u; min %ld Hz\n", |
747 | spi->max_speed_hz, scbr, bus_hz/255); |
748 | return -EINVAL; |
749 | } |
750 | } else |
751 | /* speed zero means "as slow as possible" */ |
752 | scbr = 0xff; |
753 | |
754 | csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); |
755 | if (spi->mode & SPI_CPOL) |
756 | csr |= SPI_BIT(CPOL); |
757 | if (!(spi->mode & SPI_CPHA)) |
758 | csr |= SPI_BIT(NCPHA); |
759 | |
760 | /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. |
761 | * |
762 | * DLYBCT would add delays between words, slowing down transfers. |
763 | * It could potentially be useful to cope with DMA bottlenecks, but |
764 | * in those cases it's probably best to just use a lower bitrate. |
765 | */ |
766 | csr |= SPI_BF(DLYBS, 0); |
767 | csr |= SPI_BF(DLYBCT, 0); |
768 | |
769 | /* chipselect must have been muxed as GPIO (e.g. in board setup) */ |
770 | npcs_pin = (unsigned int)spi->controller_data; |
771 | asd = spi->controller_state; |
772 | if (!asd) { |
773 | asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); |
774 | if (!asd) |
775 | return -ENOMEM; |
776 | |
777 | ret = gpio_request(npcs_pin, dev_name(&spi->dev)); |
778 | if (ret) { |
779 | kfree(asd); |
780 | return ret; |
781 | } |
782 | |
783 | asd->npcs_pin = npcs_pin; |
784 | spi->controller_state = asd; |
785 | gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); |
786 | } else { |
787 | unsigned long flags; |
788 | |
789 | spin_lock_irqsave(&as->lock, flags); |
790 | if (as->stay == spi) |
791 | as->stay = NULL; |
792 | cs_deactivate(as, spi); |
793 | spin_unlock_irqrestore(&as->lock, flags); |
794 | } |
795 | |
796 | asd->csr = csr; |
797 | |
798 | dev_dbg(&spi->dev, |
799 | "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", |
800 | bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); |
801 | |
802 | if (!atmel_spi_is_v2()) |
803 | spi_writel(as, CSR0 + 4 * spi->chip_select, csr); |
804 | |
805 | return 0; |
806 | } |
807 | |
808 | static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
809 | { |
810 | struct atmel_spi *as; |
811 | struct spi_transfer *xfer; |
812 | unsigned long flags; |
813 | struct device *controller = spi->master->dev.parent; |
814 | u8 bits; |
815 | struct atmel_spi_device *asd; |
816 | |
817 | as = spi_master_get_devdata(spi->master); |
818 | |
819 | dev_dbg(controller, "new message %p submitted for %s\n", |
820 | msg, dev_name(&spi->dev)); |
821 | |
822 | if (unlikely(list_empty(&msg->transfers))) |
823 | return -EINVAL; |
824 | |
825 | if (as->stopping) |
826 | return -ESHUTDOWN; |
827 | |
828 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
829 | if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { |
830 | dev_dbg(&spi->dev, "missing rx or tx buf\n"); |
831 | return -EINVAL; |
832 | } |
833 | |
834 | if (xfer->bits_per_word) { |
835 | asd = spi->controller_state; |
836 | bits = (asd->csr >> 4) & 0xf; |
837 | if (bits != xfer->bits_per_word - 8) { |
838 | dev_dbg(&spi->dev, "you can't yet change " |
839 | "bits_per_word in transfers\n"); |
840 | return -ENOPROTOOPT; |
841 | } |
842 | } |
843 | |
844 | /* FIXME implement these protocol options!! */ |
845 | if (xfer->speed_hz) { |
846 | dev_dbg(&spi->dev, "no protocol options yet\n"); |
847 | return -ENOPROTOOPT; |
848 | } |
849 | |
850 | /* |
851 | * DMA map early, for performance (empties dcache ASAP) and |
852 | * better fault reporting. This is a DMA-only driver. |
853 | * |
854 | * NOTE that if dma_unmap_single() ever starts to do work on |
855 | * platforms supported by this driver, we would need to clean |
856 | * up mappings for previously-mapped transfers. |
857 | */ |
858 | if (!msg->is_dma_mapped) { |
859 | if (atmel_spi_dma_map_xfer(as, xfer) < 0) |
860 | return -ENOMEM; |
861 | } |
862 | } |
863 | |
864 | #ifdef VERBOSE |
865 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
866 | dev_dbg(controller, |
867 | " xfer %p: len %u tx %p/%08x rx %p/%08x\n", |
868 | xfer, xfer->len, |
869 | xfer->tx_buf, xfer->tx_dma, |
870 | xfer->rx_buf, xfer->rx_dma); |
871 | } |
872 | #endif |
873 | |
874 | msg->status = -EINPROGRESS; |
875 | msg->actual_length = 0; |
876 | |
877 | spin_lock_irqsave(&as->lock, flags); |
878 | list_add_tail(&msg->queue, &as->queue); |
879 | if (!as->current_transfer) |
880 | atmel_spi_next_message(spi->master); |
881 | spin_unlock_irqrestore(&as->lock, flags); |
882 | |
883 | return 0; |
884 | } |
885 | |
886 | static void atmel_spi_cleanup(struct spi_device *spi) |
887 | { |
888 | struct atmel_spi *as = spi_master_get_devdata(spi->master); |
889 | struct atmel_spi_device *asd = spi->controller_state; |
890 | unsigned gpio = (unsigned) spi->controller_data; |
891 | unsigned long flags; |
892 | |
893 | if (!asd) |
894 | return; |
895 | |
896 | spin_lock_irqsave(&as->lock, flags); |
897 | if (as->stay == spi) { |
898 | as->stay = NULL; |
899 | cs_deactivate(as, spi); |
900 | } |
901 | spin_unlock_irqrestore(&as->lock, flags); |
902 | |
903 | spi->controller_state = NULL; |
904 | gpio_free(gpio); |
905 | kfree(asd); |
906 | } |
907 | |
908 | /*-------------------------------------------------------------------------*/ |
909 | |
910 | static int __devinit atmel_spi_probe(struct platform_device *pdev) |
911 | { |
912 | struct resource *regs; |
913 | int irq; |
914 | struct clk *clk; |
915 | int ret; |
916 | struct spi_master *master; |
917 | struct atmel_spi *as; |
918 | |
919 | regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
920 | if (!regs) |
921 | return -ENXIO; |
922 | |
923 | irq = platform_get_irq(pdev, 0); |
924 | if (irq < 0) |
925 | return irq; |
926 | |
927 | clk = clk_get(&pdev->dev, "spi_clk"); |
928 | if (IS_ERR(clk)) |
929 | return PTR_ERR(clk); |
930 | |
931 | /* setup spi core then atmel-specific driver state */ |
932 | ret = -ENOMEM; |
933 | master = spi_alloc_master(&pdev->dev, sizeof *as); |
934 | if (!master) |
935 | goto out_free; |
936 | |
937 | /* the spi->mode bits understood by this driver: */ |
938 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
939 | |
940 | master->bus_num = pdev->id; |
941 | master->num_chipselect = 4; |
942 | master->setup = atmel_spi_setup; |
943 | master->transfer = atmel_spi_transfer; |
944 | master->cleanup = atmel_spi_cleanup; |
945 | platform_set_drvdata(pdev, master); |
946 | |
947 | as = spi_master_get_devdata(master); |
948 | |
949 | /* |
950 | * Scratch buffer is used for throwaway rx and tx data. |
951 | * It's coherent to minimize dcache pollution. |
952 | */ |
953 | as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, |
954 | &as->buffer_dma, GFP_KERNEL); |
955 | if (!as->buffer) |
956 | goto out_free; |
957 | |
958 | spin_lock_init(&as->lock); |
959 | INIT_LIST_HEAD(&as->queue); |
960 | as->pdev = pdev; |
961 | as->regs = ioremap(regs->start, resource_size(regs)); |
962 | if (!as->regs) |
963 | goto out_free_buffer; |
964 | as->irq = irq; |
965 | as->clk = clk; |
966 | |
967 | ret = request_irq(irq, atmel_spi_interrupt, 0, |
968 | dev_name(&pdev->dev), master); |
969 | if (ret) |
970 | goto out_unmap_regs; |
971 | |
972 | /* Initialize the hardware */ |
973 | clk_enable(clk); |
974 | spi_writel(as, CR, SPI_BIT(SWRST)); |
975 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
976 | spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); |
977 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); |
978 | spi_writel(as, CR, SPI_BIT(SPIEN)); |
979 | |
980 | /* go! */ |
981 | dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", |
982 | (unsigned long)regs->start, irq); |
983 | |
984 | ret = spi_register_master(master); |
985 | if (ret) |
986 | goto out_reset_hw; |
987 | |
988 | return 0; |
989 | |
990 | out_reset_hw: |
991 | spi_writel(as, CR, SPI_BIT(SWRST)); |
992 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
993 | clk_disable(clk); |
994 | free_irq(irq, master); |
995 | out_unmap_regs: |
996 | iounmap(as->regs); |
997 | out_free_buffer: |
998 | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, |
999 | as->buffer_dma); |
1000 | out_free: |
1001 | clk_put(clk); |
1002 | spi_master_put(master); |
1003 | return ret; |
1004 | } |
1005 | |
1006 | static int __devexit atmel_spi_remove(struct platform_device *pdev) |
1007 | { |
1008 | struct spi_master *master = platform_get_drvdata(pdev); |
1009 | struct atmel_spi *as = spi_master_get_devdata(master); |
1010 | struct spi_message *msg; |
1011 | |
1012 | /* reset the hardware and block queue progress */ |
1013 | spin_lock_irq(&as->lock); |
1014 | as->stopping = 1; |
1015 | spi_writel(as, CR, SPI_BIT(SWRST)); |
1016 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ |
1017 | spi_readl(as, SR); |
1018 | spin_unlock_irq(&as->lock); |
1019 | |
1020 | /* Terminate remaining queued transfers */ |
1021 | list_for_each_entry(msg, &as->queue, queue) { |
1022 | /* REVISIT unmapping the dma is a NOP on ARM and AVR32 |
1023 | * but we shouldn't depend on that... |
1024 | */ |
1025 | msg->status = -ESHUTDOWN; |
1026 | msg->complete(msg->context); |
1027 | } |
1028 | |
1029 | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, |
1030 | as->buffer_dma); |
1031 | |
1032 | clk_disable(as->clk); |
1033 | clk_put(as->clk); |
1034 | free_irq(as->irq, master); |
1035 | iounmap(as->regs); |
1036 | |
1037 | spi_unregister_master(master); |
1038 | |
1039 | return 0; |
1040 | } |
1041 | |
1042 | #ifdef CONFIG_PM |
1043 | |
1044 | static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) |
1045 | { |
1046 | struct spi_master *master = platform_get_drvdata(pdev); |
1047 | struct atmel_spi *as = spi_master_get_devdata(master); |
1048 | |
1049 | clk_disable(as->clk); |
1050 | return 0; |
1051 | } |
1052 | |
1053 | static int atmel_spi_resume(struct platform_device *pdev) |
1054 | { |
1055 | struct spi_master *master = platform_get_drvdata(pdev); |
1056 | struct atmel_spi *as = spi_master_get_devdata(master); |
1057 | |
1058 | clk_enable(as->clk); |
1059 | return 0; |
1060 | } |
1061 | |
1062 | #else |
1063 | #define atmel_spi_suspend NULL |
1064 | #define atmel_spi_resume NULL |
1065 | #endif |
1066 | |
1067 | |
1068 | static struct platform_driver atmel_spi_driver = { |
1069 | .driver = { |
1070 | .name = "atmel_spi", |
1071 | .owner = THIS_MODULE, |
1072 | }, |
1073 | .suspend = atmel_spi_suspend, |
1074 | .resume = atmel_spi_resume, |
1075 | .probe = atmel_spi_probe, |
1076 | .remove = __exit_p(atmel_spi_remove), |
1077 | }; |
1078 | module_platform_driver(atmel_spi_driver); |
1079 | |
1080 | MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); |
1081 | MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); |
1082 | MODULE_LICENSE("GPL"); |
1083 | MODULE_ALIAS("platform:atmel_spi"); |
1084 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9