Root/drivers/spi/spi-bitbang.c

1/*
2 * polling/bitbanging SPI master controller driver utilities
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/workqueue.h>
22#include <linux/interrupt.h>
23#include <linux/module.h>
24#include <linux/delay.h>
25#include <linux/errno.h>
26#include <linux/platform_device.h>
27#include <linux/slab.h>
28
29#include <linux/spi/spi.h>
30#include <linux/spi/spi_bitbang.h>
31
32
33/*----------------------------------------------------------------------*/
34
35/*
36 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
37 * Use this for GPIO or shift-register level hardware APIs.
38 *
39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
40 * to glue code. These bitbang setup() and cleanup() routines are always
41 * used, though maybe they're called from controller-aware code.
42 *
43 * chipselect() and friends may use use spi_device->controller_data and
44 * controller registers as appropriate.
45 *
46 *
47 * NOTE: SPI controller pins can often be used as GPIO pins instead,
48 * which means you could use a bitbang driver either to get hardware
49 * working quickly, or testing for differences that aren't speed related.
50 */
51
52struct spi_bitbang_cs {
53    unsigned nsecs; /* (clock cycle time)/2 */
54    u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
55                    u32 word, u8 bits);
56    unsigned (*txrx_bufs)(struct spi_device *,
57                    u32 (*txrx_word)(
58                        struct spi_device *spi,
59                        unsigned nsecs,
60                        u32 word, u8 bits),
61                    unsigned, struct spi_transfer *);
62};
63
64static unsigned bitbang_txrx_8(
65    struct spi_device *spi,
66    u32 (*txrx_word)(struct spi_device *spi,
67                    unsigned nsecs,
68                    u32 word, u8 bits),
69    unsigned ns,
70    struct spi_transfer *t
71) {
72    unsigned bits = t->bits_per_word ? : spi->bits_per_word;
73    unsigned count = t->len;
74    const u8 *tx = t->tx_buf;
75    u8 *rx = t->rx_buf;
76
77    while (likely(count > 0)) {
78        u8 word = 0;
79
80        if (tx)
81            word = *tx++;
82        word = txrx_word(spi, ns, word, bits);
83        if (rx)
84            *rx++ = word;
85        count -= 1;
86    }
87    return t->len - count;
88}
89
90static unsigned bitbang_txrx_16(
91    struct spi_device *spi,
92    u32 (*txrx_word)(struct spi_device *spi,
93                    unsigned nsecs,
94                    u32 word, u8 bits),
95    unsigned ns,
96    struct spi_transfer *t
97) {
98    unsigned bits = t->bits_per_word ? : spi->bits_per_word;
99    unsigned count = t->len;
100    const u16 *tx = t->tx_buf;
101    u16 *rx = t->rx_buf;
102
103    while (likely(count > 1)) {
104        u16 word = 0;
105
106        if (tx)
107            word = *tx++;
108        word = txrx_word(spi, ns, word, bits);
109        if (rx)
110            *rx++ = word;
111        count -= 2;
112    }
113    return t->len - count;
114}
115
116static unsigned bitbang_txrx_32(
117    struct spi_device *spi,
118    u32 (*txrx_word)(struct spi_device *spi,
119                    unsigned nsecs,
120                    u32 word, u8 bits),
121    unsigned ns,
122    struct spi_transfer *t
123) {
124    unsigned bits = t->bits_per_word ? : spi->bits_per_word;
125    unsigned count = t->len;
126    const u32 *tx = t->tx_buf;
127    u32 *rx = t->rx_buf;
128
129    while (likely(count > 3)) {
130        u32 word = 0;
131
132        if (tx)
133            word = *tx++;
134        word = txrx_word(spi, ns, word, bits);
135        if (rx)
136            *rx++ = word;
137        count -= 4;
138    }
139    return t->len - count;
140}
141
142int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143{
144    struct spi_bitbang_cs *cs = spi->controller_state;
145    u8 bits_per_word;
146    u32 hz;
147
148    if (t) {
149        bits_per_word = t->bits_per_word;
150        hz = t->speed_hz;
151    } else {
152        bits_per_word = 0;
153        hz = 0;
154    }
155
156    /* spi_transfer level calls that work per-word */
157    if (!bits_per_word)
158        bits_per_word = spi->bits_per_word;
159    if (bits_per_word <= 8)
160        cs->txrx_bufs = bitbang_txrx_8;
161    else if (bits_per_word <= 16)
162        cs->txrx_bufs = bitbang_txrx_16;
163    else if (bits_per_word <= 32)
164        cs->txrx_bufs = bitbang_txrx_32;
165    else
166        return -EINVAL;
167
168    /* nsecs = (clock period)/2 */
169    if (!hz)
170        hz = spi->max_speed_hz;
171    if (hz) {
172        cs->nsecs = (1000000000/2) / hz;
173        if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174            return -EINVAL;
175    }
176
177    return 0;
178}
179EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
180
181/**
182 * spi_bitbang_setup - default setup for per-word I/O loops
183 */
184int spi_bitbang_setup(struct spi_device *spi)
185{
186    struct spi_bitbang_cs *cs = spi->controller_state;
187    struct spi_bitbang *bitbang;
188    int retval;
189    unsigned long flags;
190
191    bitbang = spi_master_get_devdata(spi->master);
192
193    if (!cs) {
194        cs = kzalloc(sizeof *cs, GFP_KERNEL);
195        if (!cs)
196            return -ENOMEM;
197        spi->controller_state = cs;
198    }
199
200    /* per-word shift register access, in hardware or bitbanging */
201    cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202    if (!cs->txrx_word)
203        return -EINVAL;
204
205    retval = bitbang->setup_transfer(spi, NULL);
206    if (retval < 0)
207        return retval;
208
209    dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
210
211    /* NOTE we _need_ to call chipselect() early, ideally with adapter
212     * setup, unless the hardware defaults cooperate to avoid confusion
213     * between normal (active low) and inverted chipselects.
214     */
215
216    /* deselect chip (low or high) */
217    spin_lock_irqsave(&bitbang->lock, flags);
218    if (!bitbang->busy) {
219        bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220        ndelay(cs->nsecs);
221    }
222    spin_unlock_irqrestore(&bitbang->lock, flags);
223
224    return 0;
225}
226EXPORT_SYMBOL_GPL(spi_bitbang_setup);
227
228/**
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
230 */
231void spi_bitbang_cleanup(struct spi_device *spi)
232{
233    kfree(spi->controller_state);
234}
235EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
236
237static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
238{
239    struct spi_bitbang_cs *cs = spi->controller_state;
240    unsigned nsecs = cs->nsecs;
241
242    return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
243}
244
245/*----------------------------------------------------------------------*/
246
247/*
248 * SECOND PART ... simple transfer queue runner.
249 *
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence. Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
254 *
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
257 */
258static void bitbang_work(struct work_struct *work)
259{
260    struct spi_bitbang *bitbang =
261        container_of(work, struct spi_bitbang, work);
262    unsigned long flags;
263
264    spin_lock_irqsave(&bitbang->lock, flags);
265    bitbang->busy = 1;
266    while (!list_empty(&bitbang->queue)) {
267        struct spi_message *m;
268        struct spi_device *spi;
269        unsigned nsecs;
270        struct spi_transfer *t = NULL;
271        unsigned tmp;
272        unsigned cs_change;
273        int status;
274        int do_setup = -1;
275
276        m = container_of(bitbang->queue.next, struct spi_message,
277                queue);
278        list_del_init(&m->queue);
279        spin_unlock_irqrestore(&bitbang->lock, flags);
280
281        /* FIXME this is made-up ... the correct value is known to
282         * word-at-a-time bitbang code, and presumably chipselect()
283         * should enforce these requirements too?
284         */
285        nsecs = 100;
286
287        spi = m->spi;
288        tmp = 0;
289        cs_change = 1;
290        status = 0;
291
292        list_for_each_entry (t, &m->transfers, transfer_list) {
293
294            /* override speed or wordsize? */
295            if (t->speed_hz || t->bits_per_word)
296                do_setup = 1;
297
298            /* init (-1) or override (1) transfer params */
299            if (do_setup != 0) {
300                status = bitbang->setup_transfer(spi, t);
301                if (status < 0)
302                    break;
303                if (do_setup == -1)
304                    do_setup = 0;
305            }
306
307            /* set up default clock polarity, and activate chip;
308             * this implicitly updates clock and spi modes as
309             * previously recorded for this device via setup().
310             * (and also deselects any other chip that might be
311             * selected ...)
312             */
313            if (cs_change) {
314                bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315                ndelay(nsecs);
316            }
317            cs_change = t->cs_change;
318            if (!t->tx_buf && !t->rx_buf && t->len) {
319                status = -EINVAL;
320                break;
321            }
322
323            /* transfer data. the lower level code handles any
324             * new dma mappings it needs. our caller always gave
325             * us dma-safe buffers.
326             */
327            if (t->len) {
328                /* REVISIT dma API still needs a designated
329                 * DMA_ADDR_INVALID; ~0 might be better.
330                 */
331                if (!m->is_dma_mapped)
332                    t->rx_dma = t->tx_dma = 0;
333                status = bitbang->txrx_bufs(spi, t);
334            }
335            if (status > 0)
336                m->actual_length += status;
337            if (status != t->len) {
338                /* always report some kind of error */
339                if (status >= 0)
340                    status = -EREMOTEIO;
341                break;
342            }
343            status = 0;
344
345            /* protocol tweaks before next transfer */
346            if (t->delay_usecs)
347                udelay(t->delay_usecs);
348
349            if (!cs_change)
350                continue;
351            if (t->transfer_list.next == &m->transfers)
352                break;
353
354            /* sometimes a short mid-message deselect of the chip
355             * may be needed to terminate a mode or command
356             */
357            ndelay(nsecs);
358            bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359            ndelay(nsecs);
360        }
361
362        m->status = status;
363        m->complete(m->context);
364
365        /* normally deactivate chipselect ... unless no error and
366         * cs_change has hinted that the next message will probably
367         * be for this chip too.
368         */
369        if (!(status == 0 && cs_change)) {
370            ndelay(nsecs);
371            bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372            ndelay(nsecs);
373        }
374
375        spin_lock_irqsave(&bitbang->lock, flags);
376    }
377    bitbang->busy = 0;
378    spin_unlock_irqrestore(&bitbang->lock, flags);
379}
380
381/**
382 * spi_bitbang_transfer - default submit to transfer queue
383 */
384int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
385{
386    struct spi_bitbang *bitbang;
387    unsigned long flags;
388    int status = 0;
389
390    m->actual_length = 0;
391    m->status = -EINPROGRESS;
392
393    bitbang = spi_master_get_devdata(spi->master);
394
395    spin_lock_irqsave(&bitbang->lock, flags);
396    if (!spi->max_speed_hz)
397        status = -ENETDOWN;
398    else {
399        list_add_tail(&m->queue, &bitbang->queue);
400        queue_work(bitbang->workqueue, &bitbang->work);
401    }
402    spin_unlock_irqrestore(&bitbang->lock, flags);
403
404    return status;
405}
406EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
407
408/*----------------------------------------------------------------------*/
409
410/**
411 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412 * @bitbang: driver handle
413 *
414 * Caller should have zero-initialized all parts of the structure, and then
415 * provided callbacks for chip selection and I/O loops. If the master has
416 * a transfer method, its final step should call spi_bitbang_transfer; or,
417 * that's the default if the transfer routine is not initialized. It should
418 * also set up the bus number and number of chipselects.
419 *
420 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421 * hardware that basically exposes a shift register) or per-spi_transfer
422 * (which takes better advantage of hardware like fifos or DMA engines).
423 *
424 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
427 * routine isn't initialized.
428 *
429 * This routine registers the spi_master, which will process requests in a
430 * dedicated task, keeping IRQs unblocked most of the time. To stop
431 * processing those requests, call spi_bitbang_stop().
432 */
433int spi_bitbang_start(struct spi_bitbang *bitbang)
434{
435    int status;
436
437    if (!bitbang->master || !bitbang->chipselect)
438        return -EINVAL;
439
440    INIT_WORK(&bitbang->work, bitbang_work);
441    spin_lock_init(&bitbang->lock);
442    INIT_LIST_HEAD(&bitbang->queue);
443
444    if (!bitbang->master->mode_bits)
445        bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
446
447    if (!bitbang->master->transfer)
448        bitbang->master->transfer = spi_bitbang_transfer;
449    if (!bitbang->txrx_bufs) {
450        bitbang->use_dma = 0;
451        bitbang->txrx_bufs = spi_bitbang_bufs;
452        if (!bitbang->master->setup) {
453            if (!bitbang->setup_transfer)
454                bitbang->setup_transfer =
455                     spi_bitbang_setup_transfer;
456            bitbang->master->setup = spi_bitbang_setup;
457            bitbang->master->cleanup = spi_bitbang_cleanup;
458        }
459    } else if (!bitbang->master->setup)
460        return -EINVAL;
461    if (bitbang->master->transfer == spi_bitbang_transfer &&
462            !bitbang->setup_transfer)
463        return -EINVAL;
464
465    /* this task is the only thing to touch the SPI bits */
466    bitbang->busy = 0;
467    bitbang->workqueue = create_singlethread_workqueue(
468            dev_name(bitbang->master->dev.parent));
469    if (bitbang->workqueue == NULL) {
470        status = -EBUSY;
471        goto err1;
472    }
473
474    /* driver may get busy before register() returns, especially
475     * if someone registered boardinfo for devices
476     */
477    status = spi_register_master(bitbang->master);
478    if (status < 0)
479        goto err2;
480
481    return status;
482
483err2:
484    destroy_workqueue(bitbang->workqueue);
485err1:
486    return status;
487}
488EXPORT_SYMBOL_GPL(spi_bitbang_start);
489
490/**
491 * spi_bitbang_stop - stops the task providing spi communication
492 */
493int spi_bitbang_stop(struct spi_bitbang *bitbang)
494{
495    spi_unregister_master(bitbang->master);
496
497    WARN_ON(!list_empty(&bitbang->queue));
498
499    destroy_workqueue(bitbang->workqueue);
500
501    return 0;
502}
503EXPORT_SYMBOL_GPL(spi_bitbang_stop);
504
505MODULE_LICENSE("GPL");
506
507

Archive Download this file



interactive