Root/
1 | /* |
2 | * Driver for Cirrus Logic EP93xx SPI controller. |
3 | * |
4 | * Copyright (C) 2010-2011 Mika Westerberg |
5 | * |
6 | * Explicit FIFO handling code was inspired by amba-pl022 driver. |
7 | * |
8 | * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. |
9 | * |
10 | * For more information about the SPI controller see documentation on Cirrus |
11 | * Logic web site: |
12 | * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf |
13 | * |
14 | * This program is free software; you can redistribute it and/or modify |
15 | * it under the terms of the GNU General Public License version 2 as |
16 | * published by the Free Software Foundation. |
17 | */ |
18 | |
19 | #include <linux/io.h> |
20 | #include <linux/clk.h> |
21 | #include <linux/err.h> |
22 | #include <linux/delay.h> |
23 | #include <linux/device.h> |
24 | #include <linux/dmaengine.h> |
25 | #include <linux/bitops.h> |
26 | #include <linux/interrupt.h> |
27 | #include <linux/module.h> |
28 | #include <linux/platform_device.h> |
29 | #include <linux/workqueue.h> |
30 | #include <linux/sched.h> |
31 | #include <linux/scatterlist.h> |
32 | #include <linux/spi/spi.h> |
33 | |
34 | #include <mach/dma.h> |
35 | #include <mach/ep93xx_spi.h> |
36 | |
37 | #define SSPCR0 0x0000 |
38 | #define SSPCR0_MODE_SHIFT 6 |
39 | #define SSPCR0_SCR_SHIFT 8 |
40 | |
41 | #define SSPCR1 0x0004 |
42 | #define SSPCR1_RIE BIT(0) |
43 | #define SSPCR1_TIE BIT(1) |
44 | #define SSPCR1_RORIE BIT(2) |
45 | #define SSPCR1_LBM BIT(3) |
46 | #define SSPCR1_SSE BIT(4) |
47 | #define SSPCR1_MS BIT(5) |
48 | #define SSPCR1_SOD BIT(6) |
49 | |
50 | #define SSPDR 0x0008 |
51 | |
52 | #define SSPSR 0x000c |
53 | #define SSPSR_TFE BIT(0) |
54 | #define SSPSR_TNF BIT(1) |
55 | #define SSPSR_RNE BIT(2) |
56 | #define SSPSR_RFF BIT(3) |
57 | #define SSPSR_BSY BIT(4) |
58 | #define SSPCPSR 0x0010 |
59 | |
60 | #define SSPIIR 0x0014 |
61 | #define SSPIIR_RIS BIT(0) |
62 | #define SSPIIR_TIS BIT(1) |
63 | #define SSPIIR_RORIS BIT(2) |
64 | #define SSPICR SSPIIR |
65 | |
66 | /* timeout in milliseconds */ |
67 | #define SPI_TIMEOUT 5 |
68 | /* maximum depth of RX/TX FIFO */ |
69 | #define SPI_FIFO_SIZE 8 |
70 | |
71 | /** |
72 | * struct ep93xx_spi - EP93xx SPI controller structure |
73 | * @lock: spinlock that protects concurrent accesses to fields @running, |
74 | * @current_msg and @msg_queue |
75 | * @pdev: pointer to platform device |
76 | * @clk: clock for the controller |
77 | * @regs_base: pointer to ioremap()'d registers |
78 | * @sspdr_phys: physical address of the SSPDR register |
79 | * @min_rate: minimum clock rate (in Hz) supported by the controller |
80 | * @max_rate: maximum clock rate (in Hz) supported by the controller |
81 | * @running: is the queue running |
82 | * @wq: workqueue used by the driver |
83 | * @msg_work: work that is queued for the driver |
84 | * @wait: wait here until given transfer is completed |
85 | * @msg_queue: queue for the messages |
86 | * @current_msg: message that is currently processed (or %NULL if none) |
87 | * @tx: current byte in transfer to transmit |
88 | * @rx: current byte in transfer to receive |
89 | * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one |
90 | * frame decreases this level and sending one frame increases it. |
91 | * @dma_rx: RX DMA channel |
92 | * @dma_tx: TX DMA channel |
93 | * @dma_rx_data: RX parameters passed to the DMA engine |
94 | * @dma_tx_data: TX parameters passed to the DMA engine |
95 | * @rx_sgt: sg table for RX transfers |
96 | * @tx_sgt: sg table for TX transfers |
97 | * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by |
98 | * the client |
99 | * |
100 | * This structure holds EP93xx SPI controller specific information. When |
101 | * @running is %true, driver accepts transfer requests from protocol drivers. |
102 | * @current_msg is used to hold pointer to the message that is currently |
103 | * processed. If @current_msg is %NULL, it means that no processing is going |
104 | * on. |
105 | * |
106 | * Most of the fields are only written once and they can be accessed without |
107 | * taking the @lock. Fields that are accessed concurrently are: @current_msg, |
108 | * @running, and @msg_queue. |
109 | */ |
110 | struct ep93xx_spi { |
111 | spinlock_t lock; |
112 | const struct platform_device *pdev; |
113 | struct clk *clk; |
114 | void __iomem *regs_base; |
115 | unsigned long sspdr_phys; |
116 | unsigned long min_rate; |
117 | unsigned long max_rate; |
118 | bool running; |
119 | struct workqueue_struct *wq; |
120 | struct work_struct msg_work; |
121 | struct completion wait; |
122 | struct list_head msg_queue; |
123 | struct spi_message *current_msg; |
124 | size_t tx; |
125 | size_t rx; |
126 | size_t fifo_level; |
127 | struct dma_chan *dma_rx; |
128 | struct dma_chan *dma_tx; |
129 | struct ep93xx_dma_data dma_rx_data; |
130 | struct ep93xx_dma_data dma_tx_data; |
131 | struct sg_table rx_sgt; |
132 | struct sg_table tx_sgt; |
133 | void *zeropage; |
134 | }; |
135 | |
136 | /** |
137 | * struct ep93xx_spi_chip - SPI device hardware settings |
138 | * @spi: back pointer to the SPI device |
139 | * @rate: max rate in hz this chip supports |
140 | * @div_cpsr: cpsr (pre-scaler) divider |
141 | * @div_scr: scr divider |
142 | * @dss: bits per word (4 - 16 bits) |
143 | * @ops: private chip operations |
144 | * |
145 | * This structure is used to store hardware register specific settings for each |
146 | * SPI device. Settings are written to hardware by function |
147 | * ep93xx_spi_chip_setup(). |
148 | */ |
149 | struct ep93xx_spi_chip { |
150 | const struct spi_device *spi; |
151 | unsigned long rate; |
152 | u8 div_cpsr; |
153 | u8 div_scr; |
154 | u8 dss; |
155 | struct ep93xx_spi_chip_ops *ops; |
156 | }; |
157 | |
158 | /* converts bits per word to CR0.DSS value */ |
159 | #define bits_per_word_to_dss(bpw) ((bpw) - 1) |
160 | |
161 | static inline void |
162 | ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value) |
163 | { |
164 | __raw_writeb(value, espi->regs_base + reg); |
165 | } |
166 | |
167 | static inline u8 |
168 | ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) |
169 | { |
170 | return __raw_readb(spi->regs_base + reg); |
171 | } |
172 | |
173 | static inline void |
174 | ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value) |
175 | { |
176 | __raw_writew(value, espi->regs_base + reg); |
177 | } |
178 | |
179 | static inline u16 |
180 | ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) |
181 | { |
182 | return __raw_readw(spi->regs_base + reg); |
183 | } |
184 | |
185 | static int ep93xx_spi_enable(const struct ep93xx_spi *espi) |
186 | { |
187 | u8 regval; |
188 | int err; |
189 | |
190 | err = clk_enable(espi->clk); |
191 | if (err) |
192 | return err; |
193 | |
194 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
195 | regval |= SSPCR1_SSE; |
196 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
197 | |
198 | return 0; |
199 | } |
200 | |
201 | static void ep93xx_spi_disable(const struct ep93xx_spi *espi) |
202 | { |
203 | u8 regval; |
204 | |
205 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
206 | regval &= ~SSPCR1_SSE; |
207 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
208 | |
209 | clk_disable(espi->clk); |
210 | } |
211 | |
212 | static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) |
213 | { |
214 | u8 regval; |
215 | |
216 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
217 | regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
218 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
219 | } |
220 | |
221 | static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) |
222 | { |
223 | u8 regval; |
224 | |
225 | regval = ep93xx_spi_read_u8(espi, SSPCR1); |
226 | regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
227 | ep93xx_spi_write_u8(espi, SSPCR1, regval); |
228 | } |
229 | |
230 | /** |
231 | * ep93xx_spi_calc_divisors() - calculates SPI clock divisors |
232 | * @espi: ep93xx SPI controller struct |
233 | * @chip: divisors are calculated for this chip |
234 | * @rate: desired SPI output clock rate |
235 | * |
236 | * Function calculates cpsr (clock pre-scaler) and scr divisors based on |
237 | * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If, |
238 | * for some reason, divisors cannot be calculated nothing is stored and |
239 | * %-EINVAL is returned. |
240 | */ |
241 | static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, |
242 | struct ep93xx_spi_chip *chip, |
243 | unsigned long rate) |
244 | { |
245 | unsigned long spi_clk_rate = clk_get_rate(espi->clk); |
246 | int cpsr, scr; |
247 | |
248 | /* |
249 | * Make sure that max value is between values supported by the |
250 | * controller. Note that minimum value is already checked in |
251 | * ep93xx_spi_transfer(). |
252 | */ |
253 | rate = clamp(rate, espi->min_rate, espi->max_rate); |
254 | |
255 | /* |
256 | * Calculate divisors so that we can get speed according the |
257 | * following formula: |
258 | * rate = spi_clock_rate / (cpsr * (1 + scr)) |
259 | * |
260 | * cpsr must be even number and starts from 2, scr can be any number |
261 | * between 0 and 255. |
262 | */ |
263 | for (cpsr = 2; cpsr <= 254; cpsr += 2) { |
264 | for (scr = 0; scr <= 255; scr++) { |
265 | if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { |
266 | chip->div_scr = (u8)scr; |
267 | chip->div_cpsr = (u8)cpsr; |
268 | return 0; |
269 | } |
270 | } |
271 | } |
272 | |
273 | return -EINVAL; |
274 | } |
275 | |
276 | static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) |
277 | { |
278 | struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); |
279 | int value = (spi->mode & SPI_CS_HIGH) ? control : !control; |
280 | |
281 | if (chip->ops && chip->ops->cs_control) |
282 | chip->ops->cs_control(spi, value); |
283 | } |
284 | |
285 | /** |
286 | * ep93xx_spi_setup() - setup an SPI device |
287 | * @spi: SPI device to setup |
288 | * |
289 | * This function sets up SPI device mode, speed etc. Can be called multiple |
290 | * times for a single device. Returns %0 in case of success, negative error in |
291 | * case of failure. When this function returns success, the device is |
292 | * deselected. |
293 | */ |
294 | static int ep93xx_spi_setup(struct spi_device *spi) |
295 | { |
296 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
297 | struct ep93xx_spi_chip *chip; |
298 | |
299 | if (spi->bits_per_word < 4 || spi->bits_per_word > 16) { |
300 | dev_err(&espi->pdev->dev, "invalid bits per word %d\n", |
301 | spi->bits_per_word); |
302 | return -EINVAL; |
303 | } |
304 | |
305 | chip = spi_get_ctldata(spi); |
306 | if (!chip) { |
307 | dev_dbg(&espi->pdev->dev, "initial setup for %s\n", |
308 | spi->modalias); |
309 | |
310 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); |
311 | if (!chip) |
312 | return -ENOMEM; |
313 | |
314 | chip->spi = spi; |
315 | chip->ops = spi->controller_data; |
316 | |
317 | if (chip->ops && chip->ops->setup) { |
318 | int ret = chip->ops->setup(spi); |
319 | if (ret) { |
320 | kfree(chip); |
321 | return ret; |
322 | } |
323 | } |
324 | |
325 | spi_set_ctldata(spi, chip); |
326 | } |
327 | |
328 | if (spi->max_speed_hz != chip->rate) { |
329 | int err; |
330 | |
331 | err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz); |
332 | if (err != 0) { |
333 | spi_set_ctldata(spi, NULL); |
334 | kfree(chip); |
335 | return err; |
336 | } |
337 | chip->rate = spi->max_speed_hz; |
338 | } |
339 | |
340 | chip->dss = bits_per_word_to_dss(spi->bits_per_word); |
341 | |
342 | ep93xx_spi_cs_control(spi, false); |
343 | return 0; |
344 | } |
345 | |
346 | /** |
347 | * ep93xx_spi_transfer() - queue message to be transferred |
348 | * @spi: target SPI device |
349 | * @msg: message to be transferred |
350 | * |
351 | * This function is called by SPI device drivers when they are going to transfer |
352 | * a new message. It simply puts the message in the queue and schedules |
353 | * workqueue to perform the actual transfer later on. |
354 | * |
355 | * Returns %0 on success and negative error in case of failure. |
356 | */ |
357 | static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
358 | { |
359 | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
360 | struct spi_transfer *t; |
361 | unsigned long flags; |
362 | |
363 | if (!msg || !msg->complete) |
364 | return -EINVAL; |
365 | |
366 | /* first validate each transfer */ |
367 | list_for_each_entry(t, &msg->transfers, transfer_list) { |
368 | if (t->bits_per_word) { |
369 | if (t->bits_per_word < 4 || t->bits_per_word > 16) |
370 | return -EINVAL; |
371 | } |
372 | if (t->speed_hz && t->speed_hz < espi->min_rate) |
373 | return -EINVAL; |
374 | } |
375 | |
376 | /* |
377 | * Now that we own the message, let's initialize it so that it is |
378 | * suitable for us. We use @msg->status to signal whether there was |
379 | * error in transfer and @msg->state is used to hold pointer to the |
380 | * current transfer (or %NULL if no active current transfer). |
381 | */ |
382 | msg->state = NULL; |
383 | msg->status = 0; |
384 | msg->actual_length = 0; |
385 | |
386 | spin_lock_irqsave(&espi->lock, flags); |
387 | if (!espi->running) { |
388 | spin_unlock_irqrestore(&espi->lock, flags); |
389 | return -ESHUTDOWN; |
390 | } |
391 | list_add_tail(&msg->queue, &espi->msg_queue); |
392 | queue_work(espi->wq, &espi->msg_work); |
393 | spin_unlock_irqrestore(&espi->lock, flags); |
394 | |
395 | return 0; |
396 | } |
397 | |
398 | /** |
399 | * ep93xx_spi_cleanup() - cleans up master controller specific state |
400 | * @spi: SPI device to cleanup |
401 | * |
402 | * This function releases master controller specific state for given @spi |
403 | * device. |
404 | */ |
405 | static void ep93xx_spi_cleanup(struct spi_device *spi) |
406 | { |
407 | struct ep93xx_spi_chip *chip; |
408 | |
409 | chip = spi_get_ctldata(spi); |
410 | if (chip) { |
411 | if (chip->ops && chip->ops->cleanup) |
412 | chip->ops->cleanup(spi); |
413 | spi_set_ctldata(spi, NULL); |
414 | kfree(chip); |
415 | } |
416 | } |
417 | |
418 | /** |
419 | * ep93xx_spi_chip_setup() - configures hardware according to given @chip |
420 | * @espi: ep93xx SPI controller struct |
421 | * @chip: chip specific settings |
422 | * |
423 | * This function sets up the actual hardware registers with settings given in |
424 | * @chip. Note that no validation is done so make sure that callers validate |
425 | * settings before calling this. |
426 | */ |
427 | static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, |
428 | const struct ep93xx_spi_chip *chip) |
429 | { |
430 | u16 cr0; |
431 | |
432 | cr0 = chip->div_scr << SSPCR0_SCR_SHIFT; |
433 | cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; |
434 | cr0 |= chip->dss; |
435 | |
436 | dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", |
437 | chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss); |
438 | dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0); |
439 | |
440 | ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr); |
441 | ep93xx_spi_write_u16(espi, SSPCR0, cr0); |
442 | } |
443 | |
444 | static inline int bits_per_word(const struct ep93xx_spi *espi) |
445 | { |
446 | struct spi_message *msg = espi->current_msg; |
447 | struct spi_transfer *t = msg->state; |
448 | |
449 | return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word; |
450 | } |
451 | |
452 | static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) |
453 | { |
454 | if (bits_per_word(espi) > 8) { |
455 | u16 tx_val = 0; |
456 | |
457 | if (t->tx_buf) |
458 | tx_val = ((u16 *)t->tx_buf)[espi->tx]; |
459 | ep93xx_spi_write_u16(espi, SSPDR, tx_val); |
460 | espi->tx += sizeof(tx_val); |
461 | } else { |
462 | u8 tx_val = 0; |
463 | |
464 | if (t->tx_buf) |
465 | tx_val = ((u8 *)t->tx_buf)[espi->tx]; |
466 | ep93xx_spi_write_u8(espi, SSPDR, tx_val); |
467 | espi->tx += sizeof(tx_val); |
468 | } |
469 | } |
470 | |
471 | static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) |
472 | { |
473 | if (bits_per_word(espi) > 8) { |
474 | u16 rx_val; |
475 | |
476 | rx_val = ep93xx_spi_read_u16(espi, SSPDR); |
477 | if (t->rx_buf) |
478 | ((u16 *)t->rx_buf)[espi->rx] = rx_val; |
479 | espi->rx += sizeof(rx_val); |
480 | } else { |
481 | u8 rx_val; |
482 | |
483 | rx_val = ep93xx_spi_read_u8(espi, SSPDR); |
484 | if (t->rx_buf) |
485 | ((u8 *)t->rx_buf)[espi->rx] = rx_val; |
486 | espi->rx += sizeof(rx_val); |
487 | } |
488 | } |
489 | |
490 | /** |
491 | * ep93xx_spi_read_write() - perform next RX/TX transfer |
492 | * @espi: ep93xx SPI controller struct |
493 | * |
494 | * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If |
495 | * called several times, the whole transfer will be completed. Returns |
496 | * %-EINPROGRESS when current transfer was not yet completed otherwise %0. |
497 | * |
498 | * When this function is finished, RX FIFO should be empty and TX FIFO should be |
499 | * full. |
500 | */ |
501 | static int ep93xx_spi_read_write(struct ep93xx_spi *espi) |
502 | { |
503 | struct spi_message *msg = espi->current_msg; |
504 | struct spi_transfer *t = msg->state; |
505 | |
506 | /* read as long as RX FIFO has frames in it */ |
507 | while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { |
508 | ep93xx_do_read(espi, t); |
509 | espi->fifo_level--; |
510 | } |
511 | |
512 | /* write as long as TX FIFO has room */ |
513 | while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { |
514 | ep93xx_do_write(espi, t); |
515 | espi->fifo_level++; |
516 | } |
517 | |
518 | if (espi->rx == t->len) |
519 | return 0; |
520 | |
521 | return -EINPROGRESS; |
522 | } |
523 | |
524 | static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) |
525 | { |
526 | /* |
527 | * Now everything is set up for the current transfer. We prime the TX |
528 | * FIFO, enable interrupts, and wait for the transfer to complete. |
529 | */ |
530 | if (ep93xx_spi_read_write(espi)) { |
531 | ep93xx_spi_enable_interrupts(espi); |
532 | wait_for_completion(&espi->wait); |
533 | } |
534 | } |
535 | |
536 | /** |
537 | * ep93xx_spi_dma_prepare() - prepares a DMA transfer |
538 | * @espi: ep93xx SPI controller struct |
539 | * @dir: DMA transfer direction |
540 | * |
541 | * Function configures the DMA, maps the buffer and prepares the DMA |
542 | * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR |
543 | * in case of failure. |
544 | */ |
545 | static struct dma_async_tx_descriptor * |
546 | ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir) |
547 | { |
548 | struct spi_transfer *t = espi->current_msg->state; |
549 | struct dma_async_tx_descriptor *txd; |
550 | enum dma_slave_buswidth buswidth; |
551 | struct dma_slave_config conf; |
552 | struct scatterlist *sg; |
553 | struct sg_table *sgt; |
554 | struct dma_chan *chan; |
555 | const void *buf, *pbuf; |
556 | size_t len = t->len; |
557 | int i, ret, nents; |
558 | |
559 | if (bits_per_word(espi) > 8) |
560 | buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; |
561 | else |
562 | buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; |
563 | |
564 | memset(&conf, 0, sizeof(conf)); |
565 | conf.direction = dir; |
566 | |
567 | if (dir == DMA_DEV_TO_MEM) { |
568 | chan = espi->dma_rx; |
569 | buf = t->rx_buf; |
570 | sgt = &espi->rx_sgt; |
571 | |
572 | conf.src_addr = espi->sspdr_phys; |
573 | conf.src_addr_width = buswidth; |
574 | } else { |
575 | chan = espi->dma_tx; |
576 | buf = t->tx_buf; |
577 | sgt = &espi->tx_sgt; |
578 | |
579 | conf.dst_addr = espi->sspdr_phys; |
580 | conf.dst_addr_width = buswidth; |
581 | } |
582 | |
583 | ret = dmaengine_slave_config(chan, &conf); |
584 | if (ret) |
585 | return ERR_PTR(ret); |
586 | |
587 | /* |
588 | * We need to split the transfer into PAGE_SIZE'd chunks. This is |
589 | * because we are using @espi->zeropage to provide a zero RX buffer |
590 | * for the TX transfers and we have only allocated one page for that. |
591 | * |
592 | * For performance reasons we allocate a new sg_table only when |
593 | * needed. Otherwise we will re-use the current one. Eventually the |
594 | * last sg_table is released in ep93xx_spi_release_dma(). |
595 | */ |
596 | |
597 | nents = DIV_ROUND_UP(len, PAGE_SIZE); |
598 | if (nents != sgt->nents) { |
599 | sg_free_table(sgt); |
600 | |
601 | ret = sg_alloc_table(sgt, nents, GFP_KERNEL); |
602 | if (ret) |
603 | return ERR_PTR(ret); |
604 | } |
605 | |
606 | pbuf = buf; |
607 | for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
608 | size_t bytes = min_t(size_t, len, PAGE_SIZE); |
609 | |
610 | if (buf) { |
611 | sg_set_page(sg, virt_to_page(pbuf), bytes, |
612 | offset_in_page(pbuf)); |
613 | } else { |
614 | sg_set_page(sg, virt_to_page(espi->zeropage), |
615 | bytes, 0); |
616 | } |
617 | |
618 | pbuf += bytes; |
619 | len -= bytes; |
620 | } |
621 | |
622 | if (WARN_ON(len)) { |
623 | dev_warn(&espi->pdev->dev, "len = %d expected 0!", len); |
624 | return ERR_PTR(-EINVAL); |
625 | } |
626 | |
627 | nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
628 | if (!nents) |
629 | return ERR_PTR(-ENOMEM); |
630 | |
631 | txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK); |
632 | if (!txd) { |
633 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
634 | return ERR_PTR(-ENOMEM); |
635 | } |
636 | return txd; |
637 | } |
638 | |
639 | /** |
640 | * ep93xx_spi_dma_finish() - finishes with a DMA transfer |
641 | * @espi: ep93xx SPI controller struct |
642 | * @dir: DMA transfer direction |
643 | * |
644 | * Function finishes with the DMA transfer. After this, the DMA buffer is |
645 | * unmapped. |
646 | */ |
647 | static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, |
648 | enum dma_transfer_direction dir) |
649 | { |
650 | struct dma_chan *chan; |
651 | struct sg_table *sgt; |
652 | |
653 | if (dir == DMA_DEV_TO_MEM) { |
654 | chan = espi->dma_rx; |
655 | sgt = &espi->rx_sgt; |
656 | } else { |
657 | chan = espi->dma_tx; |
658 | sgt = &espi->tx_sgt; |
659 | } |
660 | |
661 | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
662 | } |
663 | |
664 | static void ep93xx_spi_dma_callback(void *callback_param) |
665 | { |
666 | complete(callback_param); |
667 | } |
668 | |
669 | static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) |
670 | { |
671 | struct spi_message *msg = espi->current_msg; |
672 | struct dma_async_tx_descriptor *rxd, *txd; |
673 | |
674 | rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM); |
675 | if (IS_ERR(rxd)) { |
676 | dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); |
677 | msg->status = PTR_ERR(rxd); |
678 | return; |
679 | } |
680 | |
681 | txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV); |
682 | if (IS_ERR(txd)) { |
683 | ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); |
684 | dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); |
685 | msg->status = PTR_ERR(txd); |
686 | return; |
687 | } |
688 | |
689 | /* We are ready when RX is done */ |
690 | rxd->callback = ep93xx_spi_dma_callback; |
691 | rxd->callback_param = &espi->wait; |
692 | |
693 | /* Now submit both descriptors and wait while they finish */ |
694 | dmaengine_submit(rxd); |
695 | dmaengine_submit(txd); |
696 | |
697 | dma_async_issue_pending(espi->dma_rx); |
698 | dma_async_issue_pending(espi->dma_tx); |
699 | |
700 | wait_for_completion(&espi->wait); |
701 | |
702 | ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV); |
703 | ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); |
704 | } |
705 | |
706 | /** |
707 | * ep93xx_spi_process_transfer() - processes one SPI transfer |
708 | * @espi: ep93xx SPI controller struct |
709 | * @msg: current message |
710 | * @t: transfer to process |
711 | * |
712 | * This function processes one SPI transfer given in @t. Function waits until |
713 | * transfer is complete (may sleep) and updates @msg->status based on whether |
714 | * transfer was successfully processed or not. |
715 | */ |
716 | static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, |
717 | struct spi_message *msg, |
718 | struct spi_transfer *t) |
719 | { |
720 | struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); |
721 | |
722 | msg->state = t; |
723 | |
724 | /* |
725 | * Handle any transfer specific settings if needed. We use |
726 | * temporary chip settings here and restore original later when |
727 | * the transfer is finished. |
728 | */ |
729 | if (t->speed_hz || t->bits_per_word) { |
730 | struct ep93xx_spi_chip tmp_chip = *chip; |
731 | |
732 | if (t->speed_hz) { |
733 | int err; |
734 | |
735 | err = ep93xx_spi_calc_divisors(espi, &tmp_chip, |
736 | t->speed_hz); |
737 | if (err) { |
738 | dev_err(&espi->pdev->dev, |
739 | "failed to adjust speed\n"); |
740 | msg->status = err; |
741 | return; |
742 | } |
743 | } |
744 | |
745 | if (t->bits_per_word) |
746 | tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word); |
747 | |
748 | /* |
749 | * Set up temporary new hw settings for this transfer. |
750 | */ |
751 | ep93xx_spi_chip_setup(espi, &tmp_chip); |
752 | } |
753 | |
754 | espi->rx = 0; |
755 | espi->tx = 0; |
756 | |
757 | /* |
758 | * There is no point of setting up DMA for the transfers which will |
759 | * fit into the FIFO and can be transferred with a single interrupt. |
760 | * So in these cases we will be using PIO and don't bother for DMA. |
761 | */ |
762 | if (espi->dma_rx && t->len > SPI_FIFO_SIZE) |
763 | ep93xx_spi_dma_transfer(espi); |
764 | else |
765 | ep93xx_spi_pio_transfer(espi); |
766 | |
767 | /* |
768 | * In case of error during transmit, we bail out from processing |
769 | * the message. |
770 | */ |
771 | if (msg->status) |
772 | return; |
773 | |
774 | msg->actual_length += t->len; |
775 | |
776 | /* |
777 | * After this transfer is finished, perform any possible |
778 | * post-transfer actions requested by the protocol driver. |
779 | */ |
780 | if (t->delay_usecs) { |
781 | set_current_state(TASK_UNINTERRUPTIBLE); |
782 | schedule_timeout(usecs_to_jiffies(t->delay_usecs)); |
783 | } |
784 | if (t->cs_change) { |
785 | if (!list_is_last(&t->transfer_list, &msg->transfers)) { |
786 | /* |
787 | * In case protocol driver is asking us to drop the |
788 | * chipselect briefly, we let the scheduler to handle |
789 | * any "delay" here. |
790 | */ |
791 | ep93xx_spi_cs_control(msg->spi, false); |
792 | cond_resched(); |
793 | ep93xx_spi_cs_control(msg->spi, true); |
794 | } |
795 | } |
796 | |
797 | if (t->speed_hz || t->bits_per_word) |
798 | ep93xx_spi_chip_setup(espi, chip); |
799 | } |
800 | |
801 | /* |
802 | * ep93xx_spi_process_message() - process one SPI message |
803 | * @espi: ep93xx SPI controller struct |
804 | * @msg: message to process |
805 | * |
806 | * This function processes a single SPI message. We go through all transfers in |
807 | * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is |
808 | * asserted during the whole message (unless per transfer cs_change is set). |
809 | * |
810 | * @msg->status contains %0 in case of success or negative error code in case of |
811 | * failure. |
812 | */ |
813 | static void ep93xx_spi_process_message(struct ep93xx_spi *espi, |
814 | struct spi_message *msg) |
815 | { |
816 | unsigned long timeout; |
817 | struct spi_transfer *t; |
818 | int err; |
819 | |
820 | /* |
821 | * Enable the SPI controller and its clock. |
822 | */ |
823 | err = ep93xx_spi_enable(espi); |
824 | if (err) { |
825 | dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); |
826 | msg->status = err; |
827 | return; |
828 | } |
829 | |
830 | /* |
831 | * Just to be sure: flush any data from RX FIFO. |
832 | */ |
833 | timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); |
834 | while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { |
835 | if (time_after(jiffies, timeout)) { |
836 | dev_warn(&espi->pdev->dev, |
837 | "timeout while flushing RX FIFO\n"); |
838 | msg->status = -ETIMEDOUT; |
839 | return; |
840 | } |
841 | ep93xx_spi_read_u16(espi, SSPDR); |
842 | } |
843 | |
844 | /* |
845 | * We explicitly handle FIFO level. This way we don't have to check TX |
846 | * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. |
847 | */ |
848 | espi->fifo_level = 0; |
849 | |
850 | /* |
851 | * Update SPI controller registers according to spi device and assert |
852 | * the chipselect. |
853 | */ |
854 | ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi)); |
855 | ep93xx_spi_cs_control(msg->spi, true); |
856 | |
857 | list_for_each_entry(t, &msg->transfers, transfer_list) { |
858 | ep93xx_spi_process_transfer(espi, msg, t); |
859 | if (msg->status) |
860 | break; |
861 | } |
862 | |
863 | /* |
864 | * Now the whole message is transferred (or failed for some reason). We |
865 | * deselect the device and disable the SPI controller. |
866 | */ |
867 | ep93xx_spi_cs_control(msg->spi, false); |
868 | ep93xx_spi_disable(espi); |
869 | } |
870 | |
871 | #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work)) |
872 | |
873 | /** |
874 | * ep93xx_spi_work() - EP93xx SPI workqueue worker function |
875 | * @work: work struct |
876 | * |
877 | * Workqueue worker function. This function is called when there are new |
878 | * SPI messages to be processed. Message is taken out from the queue and then |
879 | * passed to ep93xx_spi_process_message(). |
880 | * |
881 | * After message is transferred, protocol driver is notified by calling |
882 | * @msg->complete(). In case of error, @msg->status is set to negative error |
883 | * number, otherwise it contains zero (and @msg->actual_length is updated). |
884 | */ |
885 | static void ep93xx_spi_work(struct work_struct *work) |
886 | { |
887 | struct ep93xx_spi *espi = work_to_espi(work); |
888 | struct spi_message *msg; |
889 | |
890 | spin_lock_irq(&espi->lock); |
891 | if (!espi->running || espi->current_msg || |
892 | list_empty(&espi->msg_queue)) { |
893 | spin_unlock_irq(&espi->lock); |
894 | return; |
895 | } |
896 | msg = list_first_entry(&espi->msg_queue, struct spi_message, queue); |
897 | list_del_init(&msg->queue); |
898 | espi->current_msg = msg; |
899 | spin_unlock_irq(&espi->lock); |
900 | |
901 | ep93xx_spi_process_message(espi, msg); |
902 | |
903 | /* |
904 | * Update the current message and re-schedule ourselves if there are |
905 | * more messages in the queue. |
906 | */ |
907 | spin_lock_irq(&espi->lock); |
908 | espi->current_msg = NULL; |
909 | if (espi->running && !list_empty(&espi->msg_queue)) |
910 | queue_work(espi->wq, &espi->msg_work); |
911 | spin_unlock_irq(&espi->lock); |
912 | |
913 | /* notify the protocol driver that we are done with this message */ |
914 | msg->complete(msg->context); |
915 | } |
916 | |
917 | static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) |
918 | { |
919 | struct ep93xx_spi *espi = dev_id; |
920 | u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); |
921 | |
922 | /* |
923 | * If we got ROR (receive overrun) interrupt we know that something is |
924 | * wrong. Just abort the message. |
925 | */ |
926 | if (unlikely(irq_status & SSPIIR_RORIS)) { |
927 | /* clear the overrun interrupt */ |
928 | ep93xx_spi_write_u8(espi, SSPICR, 0); |
929 | dev_warn(&espi->pdev->dev, |
930 | "receive overrun, aborting the message\n"); |
931 | espi->current_msg->status = -EIO; |
932 | } else { |
933 | /* |
934 | * Interrupt is either RX (RIS) or TX (TIS). For both cases we |
935 | * simply execute next data transfer. |
936 | */ |
937 | if (ep93xx_spi_read_write(espi)) { |
938 | /* |
939 | * In normal case, there still is some processing left |
940 | * for current transfer. Let's wait for the next |
941 | * interrupt then. |
942 | */ |
943 | return IRQ_HANDLED; |
944 | } |
945 | } |
946 | |
947 | /* |
948 | * Current transfer is finished, either with error or with success. In |
949 | * any case we disable interrupts and notify the worker to handle |
950 | * any post-processing of the message. |
951 | */ |
952 | ep93xx_spi_disable_interrupts(espi); |
953 | complete(&espi->wait); |
954 | return IRQ_HANDLED; |
955 | } |
956 | |
957 | static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) |
958 | { |
959 | if (ep93xx_dma_chan_is_m2p(chan)) |
960 | return false; |
961 | |
962 | chan->private = filter_param; |
963 | return true; |
964 | } |
965 | |
966 | static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) |
967 | { |
968 | dma_cap_mask_t mask; |
969 | int ret; |
970 | |
971 | espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); |
972 | if (!espi->zeropage) |
973 | return -ENOMEM; |
974 | |
975 | dma_cap_zero(mask); |
976 | dma_cap_set(DMA_SLAVE, mask); |
977 | |
978 | espi->dma_rx_data.port = EP93XX_DMA_SSP; |
979 | espi->dma_rx_data.direction = DMA_DEV_TO_MEM; |
980 | espi->dma_rx_data.name = "ep93xx-spi-rx"; |
981 | |
982 | espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
983 | &espi->dma_rx_data); |
984 | if (!espi->dma_rx) { |
985 | ret = -ENODEV; |
986 | goto fail_free_page; |
987 | } |
988 | |
989 | espi->dma_tx_data.port = EP93XX_DMA_SSP; |
990 | espi->dma_tx_data.direction = DMA_MEM_TO_DEV; |
991 | espi->dma_tx_data.name = "ep93xx-spi-tx"; |
992 | |
993 | espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
994 | &espi->dma_tx_data); |
995 | if (!espi->dma_tx) { |
996 | ret = -ENODEV; |
997 | goto fail_release_rx; |
998 | } |
999 | |
1000 | return 0; |
1001 | |
1002 | fail_release_rx: |
1003 | dma_release_channel(espi->dma_rx); |
1004 | espi->dma_rx = NULL; |
1005 | fail_free_page: |
1006 | free_page((unsigned long)espi->zeropage); |
1007 | |
1008 | return ret; |
1009 | } |
1010 | |
1011 | static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) |
1012 | { |
1013 | if (espi->dma_rx) { |
1014 | dma_release_channel(espi->dma_rx); |
1015 | sg_free_table(&espi->rx_sgt); |
1016 | } |
1017 | if (espi->dma_tx) { |
1018 | dma_release_channel(espi->dma_tx); |
1019 | sg_free_table(&espi->tx_sgt); |
1020 | } |
1021 | |
1022 | if (espi->zeropage) |
1023 | free_page((unsigned long)espi->zeropage); |
1024 | } |
1025 | |
1026 | static int __devinit ep93xx_spi_probe(struct platform_device *pdev) |
1027 | { |
1028 | struct spi_master *master; |
1029 | struct ep93xx_spi_info *info; |
1030 | struct ep93xx_spi *espi; |
1031 | struct resource *res; |
1032 | int irq; |
1033 | int error; |
1034 | |
1035 | info = pdev->dev.platform_data; |
1036 | |
1037 | master = spi_alloc_master(&pdev->dev, sizeof(*espi)); |
1038 | if (!master) { |
1039 | dev_err(&pdev->dev, "failed to allocate spi master\n"); |
1040 | return -ENOMEM; |
1041 | } |
1042 | |
1043 | master->setup = ep93xx_spi_setup; |
1044 | master->transfer = ep93xx_spi_transfer; |
1045 | master->cleanup = ep93xx_spi_cleanup; |
1046 | master->bus_num = pdev->id; |
1047 | master->num_chipselect = info->num_chipselect; |
1048 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
1049 | |
1050 | platform_set_drvdata(pdev, master); |
1051 | |
1052 | espi = spi_master_get_devdata(master); |
1053 | |
1054 | espi->clk = clk_get(&pdev->dev, NULL); |
1055 | if (IS_ERR(espi->clk)) { |
1056 | dev_err(&pdev->dev, "unable to get spi clock\n"); |
1057 | error = PTR_ERR(espi->clk); |
1058 | goto fail_release_master; |
1059 | } |
1060 | |
1061 | spin_lock_init(&espi->lock); |
1062 | init_completion(&espi->wait); |
1063 | |
1064 | /* |
1065 | * Calculate maximum and minimum supported clock rates |
1066 | * for the controller. |
1067 | */ |
1068 | espi->max_rate = clk_get_rate(espi->clk) / 2; |
1069 | espi->min_rate = clk_get_rate(espi->clk) / (254 * 256); |
1070 | espi->pdev = pdev; |
1071 | |
1072 | irq = platform_get_irq(pdev, 0); |
1073 | if (irq < 0) { |
1074 | error = -EBUSY; |
1075 | dev_err(&pdev->dev, "failed to get irq resources\n"); |
1076 | goto fail_put_clock; |
1077 | } |
1078 | |
1079 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
1080 | if (!res) { |
1081 | dev_err(&pdev->dev, "unable to get iomem resource\n"); |
1082 | error = -ENODEV; |
1083 | goto fail_put_clock; |
1084 | } |
1085 | |
1086 | espi->sspdr_phys = res->start + SSPDR; |
1087 | |
1088 | espi->regs_base = devm_request_and_ioremap(&pdev->dev, res); |
1089 | if (!espi->regs_base) { |
1090 | dev_err(&pdev->dev, "failed to map resources\n"); |
1091 | error = -ENODEV; |
1092 | goto fail_put_clock; |
1093 | } |
1094 | |
1095 | error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, |
1096 | 0, "ep93xx-spi", espi); |
1097 | if (error) { |
1098 | dev_err(&pdev->dev, "failed to request irq\n"); |
1099 | goto fail_put_clock; |
1100 | } |
1101 | |
1102 | if (info->use_dma && ep93xx_spi_setup_dma(espi)) |
1103 | dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); |
1104 | |
1105 | espi->wq = create_singlethread_workqueue("ep93xx_spid"); |
1106 | if (!espi->wq) { |
1107 | dev_err(&pdev->dev, "unable to create workqueue\n"); |
1108 | goto fail_free_dma; |
1109 | } |
1110 | INIT_WORK(&espi->msg_work, ep93xx_spi_work); |
1111 | INIT_LIST_HEAD(&espi->msg_queue); |
1112 | espi->running = true; |
1113 | |
1114 | /* make sure that the hardware is disabled */ |
1115 | ep93xx_spi_write_u8(espi, SSPCR1, 0); |
1116 | |
1117 | error = spi_register_master(master); |
1118 | if (error) { |
1119 | dev_err(&pdev->dev, "failed to register SPI master\n"); |
1120 | goto fail_free_queue; |
1121 | } |
1122 | |
1123 | dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", |
1124 | (unsigned long)res->start, irq); |
1125 | |
1126 | return 0; |
1127 | |
1128 | fail_free_queue: |
1129 | destroy_workqueue(espi->wq); |
1130 | fail_free_dma: |
1131 | ep93xx_spi_release_dma(espi); |
1132 | fail_put_clock: |
1133 | clk_put(espi->clk); |
1134 | fail_release_master: |
1135 | spi_master_put(master); |
1136 | platform_set_drvdata(pdev, NULL); |
1137 | |
1138 | return error; |
1139 | } |
1140 | |
1141 | static int __devexit ep93xx_spi_remove(struct platform_device *pdev) |
1142 | { |
1143 | struct spi_master *master = platform_get_drvdata(pdev); |
1144 | struct ep93xx_spi *espi = spi_master_get_devdata(master); |
1145 | |
1146 | spin_lock_irq(&espi->lock); |
1147 | espi->running = false; |
1148 | spin_unlock_irq(&espi->lock); |
1149 | |
1150 | destroy_workqueue(espi->wq); |
1151 | |
1152 | /* |
1153 | * Complete remaining messages with %-ESHUTDOWN status. |
1154 | */ |
1155 | spin_lock_irq(&espi->lock); |
1156 | while (!list_empty(&espi->msg_queue)) { |
1157 | struct spi_message *msg; |
1158 | |
1159 | msg = list_first_entry(&espi->msg_queue, |
1160 | struct spi_message, queue); |
1161 | list_del_init(&msg->queue); |
1162 | msg->status = -ESHUTDOWN; |
1163 | spin_unlock_irq(&espi->lock); |
1164 | msg->complete(msg->context); |
1165 | spin_lock_irq(&espi->lock); |
1166 | } |
1167 | spin_unlock_irq(&espi->lock); |
1168 | |
1169 | ep93xx_spi_release_dma(espi); |
1170 | clk_put(espi->clk); |
1171 | platform_set_drvdata(pdev, NULL); |
1172 | |
1173 | spi_unregister_master(master); |
1174 | return 0; |
1175 | } |
1176 | |
1177 | static struct platform_driver ep93xx_spi_driver = { |
1178 | .driver = { |
1179 | .name = "ep93xx-spi", |
1180 | .owner = THIS_MODULE, |
1181 | }, |
1182 | .probe = ep93xx_spi_probe, |
1183 | .remove = __devexit_p(ep93xx_spi_remove), |
1184 | }; |
1185 | module_platform_driver(ep93xx_spi_driver); |
1186 | |
1187 | MODULE_DESCRIPTION("EP93xx SPI Controller driver"); |
1188 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
1189 | MODULE_LICENSE("GPL"); |
1190 | MODULE_ALIAS("platform:ep93xx-spi"); |
1191 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9