Root/drivers/spi/spi-ep93xx.c

1/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/bitops.h>
26#include <linux/interrupt.h>
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
31#include <linux/scatterlist.h>
32#include <linux/spi/spi.h>
33
34#include <mach/dma.h>
35#include <mach/ep93xx_spi.h>
36
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
99 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111    spinlock_t lock;
112    const struct platform_device *pdev;
113    struct clk *clk;
114    void __iomem *regs_base;
115    unsigned long sspdr_phys;
116    unsigned long min_rate;
117    unsigned long max_rate;
118    bool running;
119    struct workqueue_struct *wq;
120    struct work_struct msg_work;
121    struct completion wait;
122    struct list_head msg_queue;
123    struct spi_message *current_msg;
124    size_t tx;
125    size_t rx;
126    size_t fifo_level;
127    struct dma_chan *dma_rx;
128    struct dma_chan *dma_tx;
129    struct ep93xx_dma_data dma_rx_data;
130    struct ep93xx_dma_data dma_tx_data;
131    struct sg_table rx_sgt;
132    struct sg_table tx_sgt;
133    void *zeropage;
134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149struct ep93xx_spi_chip {
150    const struct spi_device *spi;
151    unsigned long rate;
152    u8 div_cpsr;
153    u8 div_scr;
154    u8 dss;
155    struct ep93xx_spi_chip_ops *ops;
156};
157
158/* converts bits per word to CR0.DSS value */
159#define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
161static inline void
162ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163{
164    __raw_writeb(value, espi->regs_base + reg);
165}
166
167static inline u8
168ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169{
170    return __raw_readb(spi->regs_base + reg);
171}
172
173static inline void
174ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175{
176    __raw_writew(value, espi->regs_base + reg);
177}
178
179static inline u16
180ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181{
182    return __raw_readw(spi->regs_base + reg);
183}
184
185static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186{
187    u8 regval;
188    int err;
189
190    err = clk_enable(espi->clk);
191    if (err)
192        return err;
193
194    regval = ep93xx_spi_read_u8(espi, SSPCR1);
195    regval |= SSPCR1_SSE;
196    ep93xx_spi_write_u8(espi, SSPCR1, regval);
197
198    return 0;
199}
200
201static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202{
203    u8 regval;
204
205    regval = ep93xx_spi_read_u8(espi, SSPCR1);
206    regval &= ~SSPCR1_SSE;
207    ep93xx_spi_write_u8(espi, SSPCR1, regval);
208
209    clk_disable(espi->clk);
210}
211
212static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213{
214    u8 regval;
215
216    regval = ep93xx_spi_read_u8(espi, SSPCR1);
217    regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218    ep93xx_spi_write_u8(espi, SSPCR1, regval);
219}
220
221static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222{
223    u8 regval;
224
225    regval = ep93xx_spi_read_u8(espi, SSPCR1);
226    regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227    ep93xx_spi_write_u8(espi, SSPCR1, regval);
228}
229
230/**
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
235 *
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
240 */
241static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242                    struct ep93xx_spi_chip *chip,
243                    unsigned long rate)
244{
245    unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246    int cpsr, scr;
247
248    /*
249     * Make sure that max value is between values supported by the
250     * controller. Note that minimum value is already checked in
251     * ep93xx_spi_transfer().
252     */
253    rate = clamp(rate, espi->min_rate, espi->max_rate);
254
255    /*
256     * Calculate divisors so that we can get speed according the
257     * following formula:
258     * rate = spi_clock_rate / (cpsr * (1 + scr))
259     *
260     * cpsr must be even number and starts from 2, scr can be any number
261     * between 0 and 255.
262     */
263    for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264        for (scr = 0; scr <= 255; scr++) {
265            if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266                chip->div_scr = (u8)scr;
267                chip->div_cpsr = (u8)cpsr;
268                return 0;
269            }
270        }
271    }
272
273    return -EINVAL;
274}
275
276static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277{
278    struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279    int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280
281    if (chip->ops && chip->ops->cs_control)
282        chip->ops->cs_control(spi, value);
283}
284
285/**
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
288 *
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
292 * deselected.
293 */
294static int ep93xx_spi_setup(struct spi_device *spi)
295{
296    struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297    struct ep93xx_spi_chip *chip;
298
299    if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
300        dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
301            spi->bits_per_word);
302        return -EINVAL;
303    }
304
305    chip = spi_get_ctldata(spi);
306    if (!chip) {
307        dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
308            spi->modalias);
309
310        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
311        if (!chip)
312            return -ENOMEM;
313
314        chip->spi = spi;
315        chip->ops = spi->controller_data;
316
317        if (chip->ops && chip->ops->setup) {
318            int ret = chip->ops->setup(spi);
319            if (ret) {
320                kfree(chip);
321                return ret;
322            }
323        }
324
325        spi_set_ctldata(spi, chip);
326    }
327
328    if (spi->max_speed_hz != chip->rate) {
329        int err;
330
331        err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
332        if (err != 0) {
333            spi_set_ctldata(spi, NULL);
334            kfree(chip);
335            return err;
336        }
337        chip->rate = spi->max_speed_hz;
338    }
339
340    chip->dss = bits_per_word_to_dss(spi->bits_per_word);
341
342    ep93xx_spi_cs_control(spi, false);
343    return 0;
344}
345
346/**
347 * ep93xx_spi_transfer() - queue message to be transferred
348 * @spi: target SPI device
349 * @msg: message to be transferred
350 *
351 * This function is called by SPI device drivers when they are going to transfer
352 * a new message. It simply puts the message in the queue and schedules
353 * workqueue to perform the actual transfer later on.
354 *
355 * Returns %0 on success and negative error in case of failure.
356 */
357static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
358{
359    struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
360    struct spi_transfer *t;
361    unsigned long flags;
362
363    if (!msg || !msg->complete)
364        return -EINVAL;
365
366    /* first validate each transfer */
367    list_for_each_entry(t, &msg->transfers, transfer_list) {
368        if (t->bits_per_word) {
369            if (t->bits_per_word < 4 || t->bits_per_word > 16)
370                return -EINVAL;
371        }
372        if (t->speed_hz && t->speed_hz < espi->min_rate)
373                return -EINVAL;
374    }
375
376    /*
377     * Now that we own the message, let's initialize it so that it is
378     * suitable for us. We use @msg->status to signal whether there was
379     * error in transfer and @msg->state is used to hold pointer to the
380     * current transfer (or %NULL if no active current transfer).
381     */
382    msg->state = NULL;
383    msg->status = 0;
384    msg->actual_length = 0;
385
386    spin_lock_irqsave(&espi->lock, flags);
387    if (!espi->running) {
388        spin_unlock_irqrestore(&espi->lock, flags);
389        return -ESHUTDOWN;
390    }
391    list_add_tail(&msg->queue, &espi->msg_queue);
392    queue_work(espi->wq, &espi->msg_work);
393    spin_unlock_irqrestore(&espi->lock, flags);
394
395    return 0;
396}
397
398/**
399 * ep93xx_spi_cleanup() - cleans up master controller specific state
400 * @spi: SPI device to cleanup
401 *
402 * This function releases master controller specific state for given @spi
403 * device.
404 */
405static void ep93xx_spi_cleanup(struct spi_device *spi)
406{
407    struct ep93xx_spi_chip *chip;
408
409    chip = spi_get_ctldata(spi);
410    if (chip) {
411        if (chip->ops && chip->ops->cleanup)
412            chip->ops->cleanup(spi);
413        spi_set_ctldata(spi, NULL);
414        kfree(chip);
415    }
416}
417
418/**
419 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
420 * @espi: ep93xx SPI controller struct
421 * @chip: chip specific settings
422 *
423 * This function sets up the actual hardware registers with settings given in
424 * @chip. Note that no validation is done so make sure that callers validate
425 * settings before calling this.
426 */
427static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
428                  const struct ep93xx_spi_chip *chip)
429{
430    u16 cr0;
431
432    cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
433    cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
434    cr0 |= chip->dss;
435
436    dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
437        chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
438    dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
439
440    ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
441    ep93xx_spi_write_u16(espi, SSPCR0, cr0);
442}
443
444static inline int bits_per_word(const struct ep93xx_spi *espi)
445{
446    struct spi_message *msg = espi->current_msg;
447    struct spi_transfer *t = msg->state;
448
449    return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
450}
451
452static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
453{
454    if (bits_per_word(espi) > 8) {
455        u16 tx_val = 0;
456
457        if (t->tx_buf)
458            tx_val = ((u16 *)t->tx_buf)[espi->tx];
459        ep93xx_spi_write_u16(espi, SSPDR, tx_val);
460        espi->tx += sizeof(tx_val);
461    } else {
462        u8 tx_val = 0;
463
464        if (t->tx_buf)
465            tx_val = ((u8 *)t->tx_buf)[espi->tx];
466        ep93xx_spi_write_u8(espi, SSPDR, tx_val);
467        espi->tx += sizeof(tx_val);
468    }
469}
470
471static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
472{
473    if (bits_per_word(espi) > 8) {
474        u16 rx_val;
475
476        rx_val = ep93xx_spi_read_u16(espi, SSPDR);
477        if (t->rx_buf)
478            ((u16 *)t->rx_buf)[espi->rx] = rx_val;
479        espi->rx += sizeof(rx_val);
480    } else {
481        u8 rx_val;
482
483        rx_val = ep93xx_spi_read_u8(espi, SSPDR);
484        if (t->rx_buf)
485            ((u8 *)t->rx_buf)[espi->rx] = rx_val;
486        espi->rx += sizeof(rx_val);
487    }
488}
489
490/**
491 * ep93xx_spi_read_write() - perform next RX/TX transfer
492 * @espi: ep93xx SPI controller struct
493 *
494 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
495 * called several times, the whole transfer will be completed. Returns
496 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
497 *
498 * When this function is finished, RX FIFO should be empty and TX FIFO should be
499 * full.
500 */
501static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
502{
503    struct spi_message *msg = espi->current_msg;
504    struct spi_transfer *t = msg->state;
505
506    /* read as long as RX FIFO has frames in it */
507    while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
508        ep93xx_do_read(espi, t);
509        espi->fifo_level--;
510    }
511
512    /* write as long as TX FIFO has room */
513    while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
514        ep93xx_do_write(espi, t);
515        espi->fifo_level++;
516    }
517
518    if (espi->rx == t->len)
519        return 0;
520
521    return -EINPROGRESS;
522}
523
524static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
525{
526    /*
527     * Now everything is set up for the current transfer. We prime the TX
528     * FIFO, enable interrupts, and wait for the transfer to complete.
529     */
530    if (ep93xx_spi_read_write(espi)) {
531        ep93xx_spi_enable_interrupts(espi);
532        wait_for_completion(&espi->wait);
533    }
534}
535
536/**
537 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
538 * @espi: ep93xx SPI controller struct
539 * @dir: DMA transfer direction
540 *
541 * Function configures the DMA, maps the buffer and prepares the DMA
542 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
543 * in case of failure.
544 */
545static struct dma_async_tx_descriptor *
546ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
547{
548    struct spi_transfer *t = espi->current_msg->state;
549    struct dma_async_tx_descriptor *txd;
550    enum dma_slave_buswidth buswidth;
551    struct dma_slave_config conf;
552    struct scatterlist *sg;
553    struct sg_table *sgt;
554    struct dma_chan *chan;
555    const void *buf, *pbuf;
556    size_t len = t->len;
557    int i, ret, nents;
558
559    if (bits_per_word(espi) > 8)
560        buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
561    else
562        buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
563
564    memset(&conf, 0, sizeof(conf));
565    conf.direction = dir;
566
567    if (dir == DMA_DEV_TO_MEM) {
568        chan = espi->dma_rx;
569        buf = t->rx_buf;
570        sgt = &espi->rx_sgt;
571
572        conf.src_addr = espi->sspdr_phys;
573        conf.src_addr_width = buswidth;
574    } else {
575        chan = espi->dma_tx;
576        buf = t->tx_buf;
577        sgt = &espi->tx_sgt;
578
579        conf.dst_addr = espi->sspdr_phys;
580        conf.dst_addr_width = buswidth;
581    }
582
583    ret = dmaengine_slave_config(chan, &conf);
584    if (ret)
585        return ERR_PTR(ret);
586
587    /*
588     * We need to split the transfer into PAGE_SIZE'd chunks. This is
589     * because we are using @espi->zeropage to provide a zero RX buffer
590     * for the TX transfers and we have only allocated one page for that.
591     *
592     * For performance reasons we allocate a new sg_table only when
593     * needed. Otherwise we will re-use the current one. Eventually the
594     * last sg_table is released in ep93xx_spi_release_dma().
595     */
596
597    nents = DIV_ROUND_UP(len, PAGE_SIZE);
598    if (nents != sgt->nents) {
599        sg_free_table(sgt);
600
601        ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
602        if (ret)
603            return ERR_PTR(ret);
604    }
605
606    pbuf = buf;
607    for_each_sg(sgt->sgl, sg, sgt->nents, i) {
608        size_t bytes = min_t(size_t, len, PAGE_SIZE);
609
610        if (buf) {
611            sg_set_page(sg, virt_to_page(pbuf), bytes,
612                    offset_in_page(pbuf));
613        } else {
614            sg_set_page(sg, virt_to_page(espi->zeropage),
615                    bytes, 0);
616        }
617
618        pbuf += bytes;
619        len -= bytes;
620    }
621
622    if (WARN_ON(len)) {
623        dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
624        return ERR_PTR(-EINVAL);
625    }
626
627    nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
628    if (!nents)
629        return ERR_PTR(-ENOMEM);
630
631    txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
632    if (!txd) {
633        dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
634        return ERR_PTR(-ENOMEM);
635    }
636    return txd;
637}
638
639/**
640 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
641 * @espi: ep93xx SPI controller struct
642 * @dir: DMA transfer direction
643 *
644 * Function finishes with the DMA transfer. After this, the DMA buffer is
645 * unmapped.
646 */
647static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
648                  enum dma_transfer_direction dir)
649{
650    struct dma_chan *chan;
651    struct sg_table *sgt;
652
653    if (dir == DMA_DEV_TO_MEM) {
654        chan = espi->dma_rx;
655        sgt = &espi->rx_sgt;
656    } else {
657        chan = espi->dma_tx;
658        sgt = &espi->tx_sgt;
659    }
660
661    dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
662}
663
664static void ep93xx_spi_dma_callback(void *callback_param)
665{
666    complete(callback_param);
667}
668
669static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
670{
671    struct spi_message *msg = espi->current_msg;
672    struct dma_async_tx_descriptor *rxd, *txd;
673
674    rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
675    if (IS_ERR(rxd)) {
676        dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
677        msg->status = PTR_ERR(rxd);
678        return;
679    }
680
681    txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
682    if (IS_ERR(txd)) {
683        ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
684        dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
685        msg->status = PTR_ERR(txd);
686        return;
687    }
688
689    /* We are ready when RX is done */
690    rxd->callback = ep93xx_spi_dma_callback;
691    rxd->callback_param = &espi->wait;
692
693    /* Now submit both descriptors and wait while they finish */
694    dmaengine_submit(rxd);
695    dmaengine_submit(txd);
696
697    dma_async_issue_pending(espi->dma_rx);
698    dma_async_issue_pending(espi->dma_tx);
699
700    wait_for_completion(&espi->wait);
701
702    ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
703    ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
704}
705
706/**
707 * ep93xx_spi_process_transfer() - processes one SPI transfer
708 * @espi: ep93xx SPI controller struct
709 * @msg: current message
710 * @t: transfer to process
711 *
712 * This function processes one SPI transfer given in @t. Function waits until
713 * transfer is complete (may sleep) and updates @msg->status based on whether
714 * transfer was successfully processed or not.
715 */
716static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
717                    struct spi_message *msg,
718                    struct spi_transfer *t)
719{
720    struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
721
722    msg->state = t;
723
724    /*
725     * Handle any transfer specific settings if needed. We use
726     * temporary chip settings here and restore original later when
727     * the transfer is finished.
728     */
729    if (t->speed_hz || t->bits_per_word) {
730        struct ep93xx_spi_chip tmp_chip = *chip;
731
732        if (t->speed_hz) {
733            int err;
734
735            err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
736                               t->speed_hz);
737            if (err) {
738                dev_err(&espi->pdev->dev,
739                    "failed to adjust speed\n");
740                msg->status = err;
741                return;
742            }
743        }
744
745        if (t->bits_per_word)
746            tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
747
748        /*
749         * Set up temporary new hw settings for this transfer.
750         */
751        ep93xx_spi_chip_setup(espi, &tmp_chip);
752    }
753
754    espi->rx = 0;
755    espi->tx = 0;
756
757    /*
758     * There is no point of setting up DMA for the transfers which will
759     * fit into the FIFO and can be transferred with a single interrupt.
760     * So in these cases we will be using PIO and don't bother for DMA.
761     */
762    if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
763        ep93xx_spi_dma_transfer(espi);
764    else
765        ep93xx_spi_pio_transfer(espi);
766
767    /*
768     * In case of error during transmit, we bail out from processing
769     * the message.
770     */
771    if (msg->status)
772        return;
773
774    msg->actual_length += t->len;
775
776    /*
777     * After this transfer is finished, perform any possible
778     * post-transfer actions requested by the protocol driver.
779     */
780    if (t->delay_usecs) {
781        set_current_state(TASK_UNINTERRUPTIBLE);
782        schedule_timeout(usecs_to_jiffies(t->delay_usecs));
783    }
784    if (t->cs_change) {
785        if (!list_is_last(&t->transfer_list, &msg->transfers)) {
786            /*
787             * In case protocol driver is asking us to drop the
788             * chipselect briefly, we let the scheduler to handle
789             * any "delay" here.
790             */
791            ep93xx_spi_cs_control(msg->spi, false);
792            cond_resched();
793            ep93xx_spi_cs_control(msg->spi, true);
794        }
795    }
796
797    if (t->speed_hz || t->bits_per_word)
798        ep93xx_spi_chip_setup(espi, chip);
799}
800
801/*
802 * ep93xx_spi_process_message() - process one SPI message
803 * @espi: ep93xx SPI controller struct
804 * @msg: message to process
805 *
806 * This function processes a single SPI message. We go through all transfers in
807 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
808 * asserted during the whole message (unless per transfer cs_change is set).
809 *
810 * @msg->status contains %0 in case of success or negative error code in case of
811 * failure.
812 */
813static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
814                       struct spi_message *msg)
815{
816    unsigned long timeout;
817    struct spi_transfer *t;
818    int err;
819
820    /*
821     * Enable the SPI controller and its clock.
822     */
823    err = ep93xx_spi_enable(espi);
824    if (err) {
825        dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
826        msg->status = err;
827        return;
828    }
829
830    /*
831     * Just to be sure: flush any data from RX FIFO.
832     */
833    timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
834    while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
835        if (time_after(jiffies, timeout)) {
836            dev_warn(&espi->pdev->dev,
837                 "timeout while flushing RX FIFO\n");
838            msg->status = -ETIMEDOUT;
839            return;
840        }
841        ep93xx_spi_read_u16(espi, SSPDR);
842    }
843
844    /*
845     * We explicitly handle FIFO level. This way we don't have to check TX
846     * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
847     */
848    espi->fifo_level = 0;
849
850    /*
851     * Update SPI controller registers according to spi device and assert
852     * the chipselect.
853     */
854    ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
855    ep93xx_spi_cs_control(msg->spi, true);
856
857    list_for_each_entry(t, &msg->transfers, transfer_list) {
858        ep93xx_spi_process_transfer(espi, msg, t);
859        if (msg->status)
860            break;
861    }
862
863    /*
864     * Now the whole message is transferred (or failed for some reason). We
865     * deselect the device and disable the SPI controller.
866     */
867    ep93xx_spi_cs_control(msg->spi, false);
868    ep93xx_spi_disable(espi);
869}
870
871#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
872
873/**
874 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
875 * @work: work struct
876 *
877 * Workqueue worker function. This function is called when there are new
878 * SPI messages to be processed. Message is taken out from the queue and then
879 * passed to ep93xx_spi_process_message().
880 *
881 * After message is transferred, protocol driver is notified by calling
882 * @msg->complete(). In case of error, @msg->status is set to negative error
883 * number, otherwise it contains zero (and @msg->actual_length is updated).
884 */
885static void ep93xx_spi_work(struct work_struct *work)
886{
887    struct ep93xx_spi *espi = work_to_espi(work);
888    struct spi_message *msg;
889
890    spin_lock_irq(&espi->lock);
891    if (!espi->running || espi->current_msg ||
892        list_empty(&espi->msg_queue)) {
893        spin_unlock_irq(&espi->lock);
894        return;
895    }
896    msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
897    list_del_init(&msg->queue);
898    espi->current_msg = msg;
899    spin_unlock_irq(&espi->lock);
900
901    ep93xx_spi_process_message(espi, msg);
902
903    /*
904     * Update the current message and re-schedule ourselves if there are
905     * more messages in the queue.
906     */
907    spin_lock_irq(&espi->lock);
908    espi->current_msg = NULL;
909    if (espi->running && !list_empty(&espi->msg_queue))
910        queue_work(espi->wq, &espi->msg_work);
911    spin_unlock_irq(&espi->lock);
912
913    /* notify the protocol driver that we are done with this message */
914    msg->complete(msg->context);
915}
916
917static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
918{
919    struct ep93xx_spi *espi = dev_id;
920    u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
921
922    /*
923     * If we got ROR (receive overrun) interrupt we know that something is
924     * wrong. Just abort the message.
925     */
926    if (unlikely(irq_status & SSPIIR_RORIS)) {
927        /* clear the overrun interrupt */
928        ep93xx_spi_write_u8(espi, SSPICR, 0);
929        dev_warn(&espi->pdev->dev,
930             "receive overrun, aborting the message\n");
931        espi->current_msg->status = -EIO;
932    } else {
933        /*
934         * Interrupt is either RX (RIS) or TX (TIS). For both cases we
935         * simply execute next data transfer.
936         */
937        if (ep93xx_spi_read_write(espi)) {
938            /*
939             * In normal case, there still is some processing left
940             * for current transfer. Let's wait for the next
941             * interrupt then.
942             */
943            return IRQ_HANDLED;
944        }
945    }
946
947    /*
948     * Current transfer is finished, either with error or with success. In
949     * any case we disable interrupts and notify the worker to handle
950     * any post-processing of the message.
951     */
952    ep93xx_spi_disable_interrupts(espi);
953    complete(&espi->wait);
954    return IRQ_HANDLED;
955}
956
957static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
958{
959    if (ep93xx_dma_chan_is_m2p(chan))
960        return false;
961
962    chan->private = filter_param;
963    return true;
964}
965
966static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
967{
968    dma_cap_mask_t mask;
969    int ret;
970
971    espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
972    if (!espi->zeropage)
973        return -ENOMEM;
974
975    dma_cap_zero(mask);
976    dma_cap_set(DMA_SLAVE, mask);
977
978    espi->dma_rx_data.port = EP93XX_DMA_SSP;
979    espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
980    espi->dma_rx_data.name = "ep93xx-spi-rx";
981
982    espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
983                       &espi->dma_rx_data);
984    if (!espi->dma_rx) {
985        ret = -ENODEV;
986        goto fail_free_page;
987    }
988
989    espi->dma_tx_data.port = EP93XX_DMA_SSP;
990    espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
991    espi->dma_tx_data.name = "ep93xx-spi-tx";
992
993    espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
994                       &espi->dma_tx_data);
995    if (!espi->dma_tx) {
996        ret = -ENODEV;
997        goto fail_release_rx;
998    }
999
1000    return 0;
1001
1002fail_release_rx:
1003    dma_release_channel(espi->dma_rx);
1004    espi->dma_rx = NULL;
1005fail_free_page:
1006    free_page((unsigned long)espi->zeropage);
1007
1008    return ret;
1009}
1010
1011static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1012{
1013    if (espi->dma_rx) {
1014        dma_release_channel(espi->dma_rx);
1015        sg_free_table(&espi->rx_sgt);
1016    }
1017    if (espi->dma_tx) {
1018        dma_release_channel(espi->dma_tx);
1019        sg_free_table(&espi->tx_sgt);
1020    }
1021
1022    if (espi->zeropage)
1023        free_page((unsigned long)espi->zeropage);
1024}
1025
1026static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1027{
1028    struct spi_master *master;
1029    struct ep93xx_spi_info *info;
1030    struct ep93xx_spi *espi;
1031    struct resource *res;
1032    int irq;
1033    int error;
1034
1035    info = pdev->dev.platform_data;
1036
1037    master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1038    if (!master) {
1039        dev_err(&pdev->dev, "failed to allocate spi master\n");
1040        return -ENOMEM;
1041    }
1042
1043    master->setup = ep93xx_spi_setup;
1044    master->transfer = ep93xx_spi_transfer;
1045    master->cleanup = ep93xx_spi_cleanup;
1046    master->bus_num = pdev->id;
1047    master->num_chipselect = info->num_chipselect;
1048    master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1049
1050    platform_set_drvdata(pdev, master);
1051
1052    espi = spi_master_get_devdata(master);
1053
1054    espi->clk = clk_get(&pdev->dev, NULL);
1055    if (IS_ERR(espi->clk)) {
1056        dev_err(&pdev->dev, "unable to get spi clock\n");
1057        error = PTR_ERR(espi->clk);
1058        goto fail_release_master;
1059    }
1060
1061    spin_lock_init(&espi->lock);
1062    init_completion(&espi->wait);
1063
1064    /*
1065     * Calculate maximum and minimum supported clock rates
1066     * for the controller.
1067     */
1068    espi->max_rate = clk_get_rate(espi->clk) / 2;
1069    espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1070    espi->pdev = pdev;
1071
1072    irq = platform_get_irq(pdev, 0);
1073    if (irq < 0) {
1074        error = -EBUSY;
1075        dev_err(&pdev->dev, "failed to get irq resources\n");
1076        goto fail_put_clock;
1077    }
1078
1079    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080    if (!res) {
1081        dev_err(&pdev->dev, "unable to get iomem resource\n");
1082        error = -ENODEV;
1083        goto fail_put_clock;
1084    }
1085
1086    espi->sspdr_phys = res->start + SSPDR;
1087
1088    espi->regs_base = devm_request_and_ioremap(&pdev->dev, res);
1089    if (!espi->regs_base) {
1090        dev_err(&pdev->dev, "failed to map resources\n");
1091        error = -ENODEV;
1092        goto fail_put_clock;
1093    }
1094
1095    error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1096                0, "ep93xx-spi", espi);
1097    if (error) {
1098        dev_err(&pdev->dev, "failed to request irq\n");
1099        goto fail_put_clock;
1100    }
1101
1102    if (info->use_dma && ep93xx_spi_setup_dma(espi))
1103        dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1104
1105    espi->wq = create_singlethread_workqueue("ep93xx_spid");
1106    if (!espi->wq) {
1107        dev_err(&pdev->dev, "unable to create workqueue\n");
1108        goto fail_free_dma;
1109    }
1110    INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1111    INIT_LIST_HEAD(&espi->msg_queue);
1112    espi->running = true;
1113
1114    /* make sure that the hardware is disabled */
1115    ep93xx_spi_write_u8(espi, SSPCR1, 0);
1116
1117    error = spi_register_master(master);
1118    if (error) {
1119        dev_err(&pdev->dev, "failed to register SPI master\n");
1120        goto fail_free_queue;
1121    }
1122
1123    dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1124         (unsigned long)res->start, irq);
1125
1126    return 0;
1127
1128fail_free_queue:
1129    destroy_workqueue(espi->wq);
1130fail_free_dma:
1131    ep93xx_spi_release_dma(espi);
1132fail_put_clock:
1133    clk_put(espi->clk);
1134fail_release_master:
1135    spi_master_put(master);
1136    platform_set_drvdata(pdev, NULL);
1137
1138    return error;
1139}
1140
1141static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1142{
1143    struct spi_master *master = platform_get_drvdata(pdev);
1144    struct ep93xx_spi *espi = spi_master_get_devdata(master);
1145
1146    spin_lock_irq(&espi->lock);
1147    espi->running = false;
1148    spin_unlock_irq(&espi->lock);
1149
1150    destroy_workqueue(espi->wq);
1151
1152    /*
1153     * Complete remaining messages with %-ESHUTDOWN status.
1154     */
1155    spin_lock_irq(&espi->lock);
1156    while (!list_empty(&espi->msg_queue)) {
1157        struct spi_message *msg;
1158
1159        msg = list_first_entry(&espi->msg_queue,
1160                       struct spi_message, queue);
1161        list_del_init(&msg->queue);
1162        msg->status = -ESHUTDOWN;
1163        spin_unlock_irq(&espi->lock);
1164        msg->complete(msg->context);
1165        spin_lock_irq(&espi->lock);
1166    }
1167    spin_unlock_irq(&espi->lock);
1168
1169    ep93xx_spi_release_dma(espi);
1170    clk_put(espi->clk);
1171    platform_set_drvdata(pdev, NULL);
1172
1173    spi_unregister_master(master);
1174    return 0;
1175}
1176
1177static struct platform_driver ep93xx_spi_driver = {
1178    .driver = {
1179        .name = "ep93xx-spi",
1180        .owner = THIS_MODULE,
1181    },
1182    .probe = ep93xx_spi_probe,
1183    .remove = __devexit_p(ep93xx_spi_remove),
1184};
1185module_platform_driver(ep93xx_spi_driver);
1186
1187MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1188MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1189MODULE_LICENSE("GPL");
1190MODULE_ALIAS("platform:ep93xx-spi");
1191

Archive Download this file



interactive