Root/drivers/spi/spi-pl022.c

1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
38#include <linux/slab.h>
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
42#include <linux/pm_runtime.h>
43
44/*
45 * This macro is used to define some register default values.
46 * reg is masked with mask, the OR:ed with an (again masked)
47 * val shifted sb steps to the left.
48 */
49#define SSP_WRITE_BITS(reg, val, mask, sb) \
50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
51
52/*
53 * This macro is also used to define some default values.
54 * It will just shift val by sb steps to the left and mask
55 * the result with mask.
56 */
57#define GEN_MASK_BITS(val, mask, sb) \
58 (((val)<<(sb)) & (mask))
59
60#define DRIVE_TX 0
61#define DO_NOT_DRIVE_TX 1
62
63#define DO_NOT_QUEUE_DMA 0
64#define QUEUE_DMA 1
65
66#define RX_TRANSFER 1
67#define TX_TRANSFER 2
68
69/*
70 * Macros to access SSP Registers with their offsets
71 */
72#define SSP_CR0(r) (r + 0x000)
73#define SSP_CR1(r) (r + 0x004)
74#define SSP_DR(r) (r + 0x008)
75#define SSP_SR(r) (r + 0x00C)
76#define SSP_CPSR(r) (r + 0x010)
77#define SSP_IMSC(r) (r + 0x014)
78#define SSP_RIS(r) (r + 0x018)
79#define SSP_MIS(r) (r + 0x01C)
80#define SSP_ICR(r) (r + 0x020)
81#define SSP_DMACR(r) (r + 0x024)
82#define SSP_ITCR(r) (r + 0x080)
83#define SSP_ITIP(r) (r + 0x084)
84#define SSP_ITOP(r) (r + 0x088)
85#define SSP_TDR(r) (r + 0x08C)
86
87#define SSP_PID0(r) (r + 0xFE0)
88#define SSP_PID1(r) (r + 0xFE4)
89#define SSP_PID2(r) (r + 0xFE8)
90#define SSP_PID3(r) (r + 0xFEC)
91
92#define SSP_CID0(r) (r + 0xFF0)
93#define SSP_CID1(r) (r + 0xFF4)
94#define SSP_CID2(r) (r + 0xFF8)
95#define SSP_CID3(r) (r + 0xFFC)
96
97/*
98 * SSP Control Register 0 - SSP_CR0
99 */
100#define SSP_CR0_MASK_DSS (0x0FUL << 0)
101#define SSP_CR0_MASK_FRF (0x3UL << 4)
102#define SSP_CR0_MASK_SPO (0x1UL << 6)
103#define SSP_CR0_MASK_SPH (0x1UL << 7)
104#define SSP_CR0_MASK_SCR (0xFFUL << 8)
105
106/*
107 * The ST version of this block moves som bits
108 * in SSP_CR0 and extends it to 32 bits
109 */
110#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
111#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
112#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
113#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
114
115/*
116 * SSP Control Register 0 - SSP_CR1
117 */
118#define SSP_CR1_MASK_LBM (0x1UL << 0)
119#define SSP_CR1_MASK_SSE (0x1UL << 1)
120#define SSP_CR1_MASK_MS (0x1UL << 2)
121#define SSP_CR1_MASK_SOD (0x1UL << 3)
122
123/*
124 * The ST version of this block adds some bits
125 * in SSP_CR1
126 */
127#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
128#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
129#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
130#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132/* This one is only in the PL023 variant */
133#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
134
135/*
136 * SSP Status Register - SSP_SR
137 */
138#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
139#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
140#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
141#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
142#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
143
144/*
145 * SSP Clock Prescale Register - SSP_CPSR
146 */
147#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
148
149/*
150 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
151 */
152#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
154#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
155#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
156
157/*
158 * SSP Raw Interrupt Status Register - SSP_RIS
159 */
160/* Receive Overrun Raw Interrupt status */
161#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
162/* Receive Timeout Raw Interrupt status */
163#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
164/* Receive FIFO Raw Interrupt status */
165#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
166/* Transmit FIFO Raw Interrupt status */
167#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
168
169/*
170 * SSP Masked Interrupt Status Register - SSP_MIS
171 */
172/* Receive Overrun Masked Interrupt status */
173#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
174/* Receive Timeout Masked Interrupt status */
175#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
176/* Receive FIFO Masked Interrupt status */
177#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
178/* Transmit FIFO Masked Interrupt status */
179#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
180
181/*
182 * SSP Interrupt Clear Register - SSP_ICR
183 */
184/* Receive Overrun Raw Clear Interrupt bit */
185#define SSP_ICR_MASK_RORIC (0x1UL << 0)
186/* Receive Timeout Clear Interrupt bit */
187#define SSP_ICR_MASK_RTIC (0x1UL << 1)
188
189/*
190 * SSP DMA Control Register - SSP_DMACR
191 */
192/* Receive DMA Enable bit */
193#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
194/* Transmit DMA Enable bit */
195#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246
247/*
248 * SSP State - Whether Enabled or Disabled
249 */
250#define SSP_DISABLED (0)
251#define SSP_ENABLED (1)
252
253/*
254 * SSP DMA State - Whether DMA Enabled or Disabled
255 */
256#define SSP_DMA_DISABLED (0)
257#define SSP_DMA_ENABLED (1)
258
259/*
260 * SSP Clock Defaults
261 */
262#define SSP_DEFAULT_CLKRATE 0x2
263#define SSP_DEFAULT_PRESCALE 0x40
264
265/*
266 * SSP Clock Parameter ranges
267 */
268#define CPSDVR_MIN 0x02
269#define CPSDVR_MAX 0xFE
270#define SCR_MIN 0x00
271#define SCR_MAX 0xFF
272
273/*
274 * SSP Interrupt related Macros
275 */
276#define DEFAULT_SSP_REG_IMSC 0x0UL
277#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
279
280#define CLEAR_ALL_INTERRUPTS 0x3
281
282#define SPI_POLLING_TIMEOUT 1000
283
284/*
285 * The type of reading going on on this chip
286 */
287enum ssp_reading {
288    READING_NULL,
289    READING_U8,
290    READING_U16,
291    READING_U32
292};
293
294/**
295 * The type of writing going on on this chip
296 */
297enum ssp_writing {
298    WRITING_NULL,
299    WRITING_U8,
300    WRITING_U16,
301    WRITING_U32
302};
303
304/**
305 * struct vendor_data - vendor-specific config parameters
306 * for PL022 derivates
307 * @fifodepth: depth of FIFOs (both)
308 * @max_bpw: maximum number of bits per word
309 * @unidir: supports unidirection transfers
310 * @extended_cr: 32 bit wide control register 0 with extra
311 * features and extra features in CR1 as found in the ST variants
312 * @pl023: supports a subset of the ST extensions called "PL023"
313 */
314struct vendor_data {
315    int fifodepth;
316    int max_bpw;
317    bool unidir;
318    bool extended_cr;
319    bool pl023;
320    bool loopback;
321};
322
323/**
324 * struct pl022 - This is the private SSP driver data structure
325 * @adev: AMBA device model hookup
326 * @vendor: vendor data for the IP block
327 * @phybase: the physical memory where the SSP device resides
328 * @virtbase: the virtual memory where the SSP is mapped
329 * @clk: outgoing clock "SPICLK" for the SPI bus
330 * @master: SPI framework hookup
331 * @master_info: controller-specific data from machine setup
332 * @kworker: thread struct for message pump
333 * @kworker_task: pointer to task for message pump kworker thread
334 * @pump_messages: work struct for scheduling work to the message pump
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: message pump is busy
338 * @running: message pump is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @next_msg_cs_active: the next message in the queue has been examined
344 * and it was found that it uses the same chip select as the previous
345 * message, so we left it active after the previous transfer, and it's
346 * active already.
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @read: the type of read currently going on
352 * @write: the type of write currently going on
353 * @exp_fifo_level: expected FIFO level
354 * @dma_rx_channel: optional channel for RX DMA
355 * @dma_tx_channel: optional channel for TX DMA
356 * @sgt_rx: scattertable for the RX transfer
357 * @sgt_tx: scattertable for the TX transfer
358 * @dummypage: a dummy page used for driving data on the bus with DMA
359 */
360struct pl022 {
361    struct amba_device *adev;
362    struct vendor_data *vendor;
363    resource_size_t phybase;
364    void __iomem *virtbase;
365    struct clk *clk;
366    struct spi_master *master;
367    struct pl022_ssp_controller *master_info;
368    /* Message per-transfer pump */
369    struct tasklet_struct pump_transfers;
370    struct spi_message *cur_msg;
371    struct spi_transfer *cur_transfer;
372    struct chip_data *cur_chip;
373    bool next_msg_cs_active;
374    void *tx;
375    void *tx_end;
376    void *rx;
377    void *rx_end;
378    enum ssp_reading read;
379    enum ssp_writing write;
380    u32 exp_fifo_level;
381    enum ssp_rx_level_trig rx_lev_trig;
382    enum ssp_tx_level_trig tx_lev_trig;
383    /* DMA settings */
384#ifdef CONFIG_DMA_ENGINE
385    struct dma_chan *dma_rx_channel;
386    struct dma_chan *dma_tx_channel;
387    struct sg_table sgt_rx;
388    struct sg_table sgt_tx;
389    char *dummypage;
390    bool dma_running;
391#endif
392};
393
394/**
395 * struct chip_data - To maintain runtime state of SSP for each client chip
396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
397 * register is 32 bits wide rather than just 16
398 * @cr1: Value of control register CR1 of SSP
399 * @dmacr: Value of DMA control Register of SSP
400 * @cpsr: Value of Clock prescale register
401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402 * @enable_dma: Whether to enable DMA or not
403 * @read: function ptr to be used to read when doing xfer for this chip
404 * @write: function ptr to be used to write when doing xfer for this chip
405 * @cs_control: chip select callback provided by chip
406 * @xfer_type: polling/interrupt/DMA
407 *
408 * Runtime state of the SSP controller, maintained per chip,
409 * This would be set according to the current message that would be served
410 */
411struct chip_data {
412    u32 cr0;
413    u16 cr1;
414    u16 dmacr;
415    u16 cpsr;
416    u8 n_bytes;
417    bool enable_dma;
418    enum ssp_reading read;
419    enum ssp_writing write;
420    void (*cs_control) (u32 command);
421    int xfer_type;
422};
423
424/**
425 * null_cs_control - Dummy chip select function
426 * @command: select/delect the chip
427 *
428 * If no chip select function is provided by client this is used as dummy
429 * chip select
430 */
431static void null_cs_control(u32 command)
432{
433    pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
434}
435
436/**
437 * giveback - current spi_message is over, schedule next message and call
438 * callback of this message. Assumes that caller already
439 * set message->status; dma and pio irqs are blocked
440 * @pl022: SSP driver private data structure
441 */
442static void giveback(struct pl022 *pl022)
443{
444    struct spi_transfer *last_transfer;
445    pl022->next_msg_cs_active = false;
446
447    last_transfer = list_entry(pl022->cur_msg->transfers.prev,
448                    struct spi_transfer,
449                    transfer_list);
450
451    /* Delay if requested before any change in chip select */
452    if (last_transfer->delay_usecs)
453        /*
454         * FIXME: This runs in interrupt context.
455         * Is this really smart?
456         */
457        udelay(last_transfer->delay_usecs);
458
459    if (!last_transfer->cs_change) {
460        struct spi_message *next_msg;
461
462        /*
463         * cs_change was not set. We can keep the chip select
464         * enabled if there is message in the queue and it is
465         * for the same spi device.
466         *
467         * We cannot postpone this until pump_messages, because
468         * after calling msg->complete (below) the driver that
469         * sent the current message could be unloaded, which
470         * could invalidate the cs_control() callback...
471         */
472        /* get a pointer to the next message, if any */
473        next_msg = spi_get_next_queued_message(pl022->master);
474
475        /*
476         * see if the next and current messages point
477         * to the same spi device.
478         */
479        if (next_msg && next_msg->spi != pl022->cur_msg->spi)
480            next_msg = NULL;
481        if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
482            pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
483        else
484            pl022->next_msg_cs_active = true;
485
486    }
487
488    pl022->cur_msg = NULL;
489    pl022->cur_transfer = NULL;
490    pl022->cur_chip = NULL;
491    spi_finalize_current_message(pl022->master);
492
493    /* disable the SPI/SSP operation */
494    writew((readw(SSP_CR1(pl022->virtbase)) &
495        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
496
497}
498
499/**
500 * flush - flush the FIFO to reach a clean state
501 * @pl022: SSP driver private data structure
502 */
503static int flush(struct pl022 *pl022)
504{
505    unsigned long limit = loops_per_jiffy << 1;
506
507    dev_dbg(&pl022->adev->dev, "flush\n");
508    do {
509        while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
510            readw(SSP_DR(pl022->virtbase));
511    } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
512
513    pl022->exp_fifo_level = 0;
514
515    return limit;
516}
517
518/**
519 * restore_state - Load configuration of current chip
520 * @pl022: SSP driver private data structure
521 */
522static void restore_state(struct pl022 *pl022)
523{
524    struct chip_data *chip = pl022->cur_chip;
525
526    if (pl022->vendor->extended_cr)
527        writel(chip->cr0, SSP_CR0(pl022->virtbase));
528    else
529        writew(chip->cr0, SSP_CR0(pl022->virtbase));
530    writew(chip->cr1, SSP_CR1(pl022->virtbase));
531    writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
532    writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
533    writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
534    writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
535}
536
537/*
538 * Default SSP Register Values
539 */
540#define DEFAULT_SSP_REG_CR0 ( \
541    GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
542    GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
543    GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
544    GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
545    GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
546)
547
548/* ST versions have slightly different bit layout */
549#define DEFAULT_SSP_REG_CR0_ST ( \
550    GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
551    GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
552    GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
553    GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
554    GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
555    GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
556    GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
557)
558
559/* The PL023 version is slightly different again */
560#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
561    GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
562    GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563    GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564    GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
565)
566
567#define DEFAULT_SSP_REG_CR1 ( \
568    GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
569    GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
570    GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
571    GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
572)
573
574/* ST versions extend this register to use all 16 bits */
575#define DEFAULT_SSP_REG_CR1_ST ( \
576    DEFAULT_SSP_REG_CR1 | \
577    GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
578    GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
579    GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
580    GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
581    GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
582)
583
584/*
585 * The PL023 variant has further differences: no loopback mode, no microwire
586 * support, and a new clock feedback delay setting.
587 */
588#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
589    GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590    GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591    GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
592    GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593    GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594    GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595    GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
596    GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
597)
598
599#define DEFAULT_SSP_REG_CPSR ( \
600    GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
601)
602
603#define DEFAULT_SSP_REG_DMACR (\
604    GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
605    GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
606)
607
608/**
609 * load_ssp_default_config - Load default configuration for SSP
610 * @pl022: SSP driver private data structure
611 */
612static void load_ssp_default_config(struct pl022 *pl022)
613{
614    if (pl022->vendor->pl023) {
615        writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
616        writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
617    } else if (pl022->vendor->extended_cr) {
618        writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
619        writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
620    } else {
621        writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
622        writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
623    }
624    writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
625    writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
626    writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
627    writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
628}
629
630/**
631 * This will write to TX and read from RX according to the parameters
632 * set in pl022.
633 */
634static void readwriter(struct pl022 *pl022)
635{
636
637    /*
638     * The FIFO depth is different between primecell variants.
639     * I believe filling in too much in the FIFO might cause
640     * errons in 8bit wide transfers on ARM variants (just 8 words
641     * FIFO, means only 8x8 = 64 bits in FIFO) at least.
642     *
643     * To prevent this issue, the TX FIFO is only filled to the
644     * unused RX FIFO fill length, regardless of what the TX
645     * FIFO status flag indicates.
646     */
647    dev_dbg(&pl022->adev->dev,
648        "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
649        __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
650
651    /* Read as much as you can */
652    while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
653           && (pl022->rx < pl022->rx_end)) {
654        switch (pl022->read) {
655        case READING_NULL:
656            readw(SSP_DR(pl022->virtbase));
657            break;
658        case READING_U8:
659            *(u8 *) (pl022->rx) =
660                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
661            break;
662        case READING_U16:
663            *(u16 *) (pl022->rx) =
664                (u16) readw(SSP_DR(pl022->virtbase));
665            break;
666        case READING_U32:
667            *(u32 *) (pl022->rx) =
668                readl(SSP_DR(pl022->virtbase));
669            break;
670        }
671        pl022->rx += (pl022->cur_chip->n_bytes);
672        pl022->exp_fifo_level--;
673    }
674    /*
675     * Write as much as possible up to the RX FIFO size
676     */
677    while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
678           && (pl022->tx < pl022->tx_end)) {
679        switch (pl022->write) {
680        case WRITING_NULL:
681            writew(0x0, SSP_DR(pl022->virtbase));
682            break;
683        case WRITING_U8:
684            writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
685            break;
686        case WRITING_U16:
687            writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
688            break;
689        case WRITING_U32:
690            writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
691            break;
692        }
693        pl022->tx += (pl022->cur_chip->n_bytes);
694        pl022->exp_fifo_level++;
695        /*
696         * This inner reader takes care of things appearing in the RX
697         * FIFO as we're transmitting. This will happen a lot since the
698         * clock starts running when you put things into the TX FIFO,
699         * and then things are continuously clocked into the RX FIFO.
700         */
701        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
702               && (pl022->rx < pl022->rx_end)) {
703            switch (pl022->read) {
704            case READING_NULL:
705                readw(SSP_DR(pl022->virtbase));
706                break;
707            case READING_U8:
708                *(u8 *) (pl022->rx) =
709                    readw(SSP_DR(pl022->virtbase)) & 0xFFU;
710                break;
711            case READING_U16:
712                *(u16 *) (pl022->rx) =
713                    (u16) readw(SSP_DR(pl022->virtbase));
714                break;
715            case READING_U32:
716                *(u32 *) (pl022->rx) =
717                    readl(SSP_DR(pl022->virtbase));
718                break;
719            }
720            pl022->rx += (pl022->cur_chip->n_bytes);
721            pl022->exp_fifo_level--;
722        }
723    }
724    /*
725     * When we exit here the TX FIFO should be full and the RX FIFO
726     * should be empty
727     */
728}
729
730/**
731 * next_transfer - Move to the Next transfer in the current spi message
732 * @pl022: SSP driver private data structure
733 *
734 * This function moves though the linked list of spi transfers in the
735 * current spi message and returns with the state of current spi
736 * message i.e whether its last transfer is done(STATE_DONE) or
737 * Next transfer is ready(STATE_RUNNING)
738 */
739static void *next_transfer(struct pl022 *pl022)
740{
741    struct spi_message *msg = pl022->cur_msg;
742    struct spi_transfer *trans = pl022->cur_transfer;
743
744    /* Move to next transfer */
745    if (trans->transfer_list.next != &msg->transfers) {
746        pl022->cur_transfer =
747            list_entry(trans->transfer_list.next,
748                   struct spi_transfer, transfer_list);
749        return STATE_RUNNING;
750    }
751    return STATE_DONE;
752}
753
754/*
755 * This DMA functionality is only compiled in if we have
756 * access to the generic DMA devices/DMA engine.
757 */
758#ifdef CONFIG_DMA_ENGINE
759static void unmap_free_dma_scatter(struct pl022 *pl022)
760{
761    /* Unmap and free the SG tables */
762    dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
763             pl022->sgt_tx.nents, DMA_TO_DEVICE);
764    dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
765             pl022->sgt_rx.nents, DMA_FROM_DEVICE);
766    sg_free_table(&pl022->sgt_rx);
767    sg_free_table(&pl022->sgt_tx);
768}
769
770static void dma_callback(void *data)
771{
772    struct pl022 *pl022 = data;
773    struct spi_message *msg = pl022->cur_msg;
774
775    BUG_ON(!pl022->sgt_rx.sgl);
776
777#ifdef VERBOSE_DEBUG
778    /*
779     * Optionally dump out buffers to inspect contents, this is
780     * good if you want to convince yourself that the loopback
781     * read/write contents are the same, when adopting to a new
782     * DMA engine.
783     */
784    {
785        struct scatterlist *sg;
786        unsigned int i;
787
788        dma_sync_sg_for_cpu(&pl022->adev->dev,
789                    pl022->sgt_rx.sgl,
790                    pl022->sgt_rx.nents,
791                    DMA_FROM_DEVICE);
792
793        for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
794            dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
795            print_hex_dump(KERN_ERR, "SPI RX: ",
796                       DUMP_PREFIX_OFFSET,
797                       16,
798                       1,
799                       sg_virt(sg),
800                       sg_dma_len(sg),
801                       1);
802        }
803        for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
804            dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
805            print_hex_dump(KERN_ERR, "SPI TX: ",
806                       DUMP_PREFIX_OFFSET,
807                       16,
808                       1,
809                       sg_virt(sg),
810                       sg_dma_len(sg),
811                       1);
812        }
813    }
814#endif
815
816    unmap_free_dma_scatter(pl022);
817
818    /* Update total bytes transferred */
819    msg->actual_length += pl022->cur_transfer->len;
820    if (pl022->cur_transfer->cs_change)
821        pl022->cur_chip->
822            cs_control(SSP_CHIP_DESELECT);
823
824    /* Move to next transfer */
825    msg->state = next_transfer(pl022);
826    tasklet_schedule(&pl022->pump_transfers);
827}
828
829static void setup_dma_scatter(struct pl022 *pl022,
830                  void *buffer,
831                  unsigned int length,
832                  struct sg_table *sgtab)
833{
834    struct scatterlist *sg;
835    int bytesleft = length;
836    void *bufp = buffer;
837    int mapbytes;
838    int i;
839
840    if (buffer) {
841        for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
842            /*
843             * If there are less bytes left than what fits
844             * in the current page (plus page alignment offset)
845             * we just feed in this, else we stuff in as much
846             * as we can.
847             */
848            if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
849                mapbytes = bytesleft;
850            else
851                mapbytes = PAGE_SIZE - offset_in_page(bufp);
852            sg_set_page(sg, virt_to_page(bufp),
853                    mapbytes, offset_in_page(bufp));
854            bufp += mapbytes;
855            bytesleft -= mapbytes;
856            dev_dbg(&pl022->adev->dev,
857                "set RX/TX target page @ %p, %d bytes, %d left\n",
858                bufp, mapbytes, bytesleft);
859        }
860    } else {
861        /* Map the dummy buffer on every page */
862        for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
863            if (bytesleft < PAGE_SIZE)
864                mapbytes = bytesleft;
865            else
866                mapbytes = PAGE_SIZE;
867            sg_set_page(sg, virt_to_page(pl022->dummypage),
868                    mapbytes, 0);
869            bytesleft -= mapbytes;
870            dev_dbg(&pl022->adev->dev,
871                "set RX/TX to dummy page %d bytes, %d left\n",
872                mapbytes, bytesleft);
873
874        }
875    }
876    BUG_ON(bytesleft);
877}
878
879/**
880 * configure_dma - configures the channels for the next transfer
881 * @pl022: SSP driver's private data structure
882 */
883static int configure_dma(struct pl022 *pl022)
884{
885    struct dma_slave_config rx_conf = {
886        .src_addr = SSP_DR(pl022->phybase),
887        .direction = DMA_DEV_TO_MEM,
888        .device_fc = false,
889    };
890    struct dma_slave_config tx_conf = {
891        .dst_addr = SSP_DR(pl022->phybase),
892        .direction = DMA_MEM_TO_DEV,
893        .device_fc = false,
894    };
895    unsigned int pages;
896    int ret;
897    int rx_sglen, tx_sglen;
898    struct dma_chan *rxchan = pl022->dma_rx_channel;
899    struct dma_chan *txchan = pl022->dma_tx_channel;
900    struct dma_async_tx_descriptor *rxdesc;
901    struct dma_async_tx_descriptor *txdesc;
902
903    /* Check that the channels are available */
904    if (!rxchan || !txchan)
905        return -ENODEV;
906
907    /*
908     * If supplied, the DMA burstsize should equal the FIFO trigger level.
909     * Notice that the DMA engine uses one-to-one mapping. Since we can
910     * not trigger on 2 elements this needs explicit mapping rather than
911     * calculation.
912     */
913    switch (pl022->rx_lev_trig) {
914    case SSP_RX_1_OR_MORE_ELEM:
915        rx_conf.src_maxburst = 1;
916        break;
917    case SSP_RX_4_OR_MORE_ELEM:
918        rx_conf.src_maxburst = 4;
919        break;
920    case SSP_RX_8_OR_MORE_ELEM:
921        rx_conf.src_maxburst = 8;
922        break;
923    case SSP_RX_16_OR_MORE_ELEM:
924        rx_conf.src_maxburst = 16;
925        break;
926    case SSP_RX_32_OR_MORE_ELEM:
927        rx_conf.src_maxburst = 32;
928        break;
929    default:
930        rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
931        break;
932    }
933
934    switch (pl022->tx_lev_trig) {
935    case SSP_TX_1_OR_MORE_EMPTY_LOC:
936        tx_conf.dst_maxburst = 1;
937        break;
938    case SSP_TX_4_OR_MORE_EMPTY_LOC:
939        tx_conf.dst_maxburst = 4;
940        break;
941    case SSP_TX_8_OR_MORE_EMPTY_LOC:
942        tx_conf.dst_maxburst = 8;
943        break;
944    case SSP_TX_16_OR_MORE_EMPTY_LOC:
945        tx_conf.dst_maxburst = 16;
946        break;
947    case SSP_TX_32_OR_MORE_EMPTY_LOC:
948        tx_conf.dst_maxburst = 32;
949        break;
950    default:
951        tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
952        break;
953    }
954
955    switch (pl022->read) {
956    case READING_NULL:
957        /* Use the same as for writing */
958        rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
959        break;
960    case READING_U8:
961        rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
962        break;
963    case READING_U16:
964        rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
965        break;
966    case READING_U32:
967        rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
968        break;
969    }
970
971    switch (pl022->write) {
972    case WRITING_NULL:
973        /* Use the same as for reading */
974        tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
975        break;
976    case WRITING_U8:
977        tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
978        break;
979    case WRITING_U16:
980        tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
981        break;
982    case WRITING_U32:
983        tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
984        break;
985    }
986
987    /* SPI pecularity: we need to read and write the same width */
988    if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
989        rx_conf.src_addr_width = tx_conf.dst_addr_width;
990    if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
991        tx_conf.dst_addr_width = rx_conf.src_addr_width;
992    BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
993
994    dmaengine_slave_config(rxchan, &rx_conf);
995    dmaengine_slave_config(txchan, &tx_conf);
996
997    /* Create sglists for the transfers */
998    pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
999    dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1000
1001    ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1002    if (ret)
1003        goto err_alloc_rx_sg;
1004
1005    ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1006    if (ret)
1007        goto err_alloc_tx_sg;
1008
1009    /* Fill in the scatterlists for the RX+TX buffers */
1010    setup_dma_scatter(pl022, pl022->rx,
1011              pl022->cur_transfer->len, &pl022->sgt_rx);
1012    setup_dma_scatter(pl022, pl022->tx,
1013              pl022->cur_transfer->len, &pl022->sgt_tx);
1014
1015    /* Map DMA buffers */
1016    rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1017               pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1018    if (!rx_sglen)
1019        goto err_rx_sgmap;
1020
1021    tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1022               pl022->sgt_tx.nents, DMA_TO_DEVICE);
1023    if (!tx_sglen)
1024        goto err_tx_sgmap;
1025
1026    /* Send both scatterlists */
1027    rxdesc = dmaengine_prep_slave_sg(rxchan,
1028                      pl022->sgt_rx.sgl,
1029                      rx_sglen,
1030                      DMA_DEV_TO_MEM,
1031                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1032    if (!rxdesc)
1033        goto err_rxdesc;
1034
1035    txdesc = dmaengine_prep_slave_sg(txchan,
1036                      pl022->sgt_tx.sgl,
1037                      tx_sglen,
1038                      DMA_MEM_TO_DEV,
1039                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040    if (!txdesc)
1041        goto err_txdesc;
1042
1043    /* Put the callback on the RX transfer only, that should finish last */
1044    rxdesc->callback = dma_callback;
1045    rxdesc->callback_param = pl022;
1046
1047    /* Submit and fire RX and TX with TX last so we're ready to read! */
1048    dmaengine_submit(rxdesc);
1049    dmaengine_submit(txdesc);
1050    dma_async_issue_pending(rxchan);
1051    dma_async_issue_pending(txchan);
1052    pl022->dma_running = true;
1053
1054    return 0;
1055
1056err_txdesc:
1057    dmaengine_terminate_all(txchan);
1058err_rxdesc:
1059    dmaengine_terminate_all(rxchan);
1060    dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1061             pl022->sgt_tx.nents, DMA_TO_DEVICE);
1062err_tx_sgmap:
1063    dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1064             pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1065err_rx_sgmap:
1066    sg_free_table(&pl022->sgt_tx);
1067err_alloc_tx_sg:
1068    sg_free_table(&pl022->sgt_rx);
1069err_alloc_rx_sg:
1070    return -ENOMEM;
1071}
1072
1073static int __devinit pl022_dma_probe(struct pl022 *pl022)
1074{
1075    dma_cap_mask_t mask;
1076
1077    /* Try to acquire a generic DMA engine slave channel */
1078    dma_cap_zero(mask);
1079    dma_cap_set(DMA_SLAVE, mask);
1080    /*
1081     * We need both RX and TX channels to do DMA, else do none
1082     * of them.
1083     */
1084    pl022->dma_rx_channel = dma_request_channel(mask,
1085                        pl022->master_info->dma_filter,
1086                        pl022->master_info->dma_rx_param);
1087    if (!pl022->dma_rx_channel) {
1088        dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1089        goto err_no_rxchan;
1090    }
1091
1092    pl022->dma_tx_channel = dma_request_channel(mask,
1093                        pl022->master_info->dma_filter,
1094                        pl022->master_info->dma_tx_param);
1095    if (!pl022->dma_tx_channel) {
1096        dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1097        goto err_no_txchan;
1098    }
1099
1100    pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1101    if (!pl022->dummypage) {
1102        dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1103        goto err_no_dummypage;
1104    }
1105
1106    dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1107         dma_chan_name(pl022->dma_rx_channel),
1108         dma_chan_name(pl022->dma_tx_channel));
1109
1110    return 0;
1111
1112err_no_dummypage:
1113    dma_release_channel(pl022->dma_tx_channel);
1114err_no_txchan:
1115    dma_release_channel(pl022->dma_rx_channel);
1116    pl022->dma_rx_channel = NULL;
1117err_no_rxchan:
1118    dev_err(&pl022->adev->dev,
1119            "Failed to work in dma mode, work without dma!\n");
1120    return -ENODEV;
1121}
1122
1123static void terminate_dma(struct pl022 *pl022)
1124{
1125    struct dma_chan *rxchan = pl022->dma_rx_channel;
1126    struct dma_chan *txchan = pl022->dma_tx_channel;
1127
1128    dmaengine_terminate_all(rxchan);
1129    dmaengine_terminate_all(txchan);
1130    unmap_free_dma_scatter(pl022);
1131    pl022->dma_running = false;
1132}
1133
1134static void pl022_dma_remove(struct pl022 *pl022)
1135{
1136    if (pl022->dma_running)
1137        terminate_dma(pl022);
1138    if (pl022->dma_tx_channel)
1139        dma_release_channel(pl022->dma_tx_channel);
1140    if (pl022->dma_rx_channel)
1141        dma_release_channel(pl022->dma_rx_channel);
1142    kfree(pl022->dummypage);
1143}
1144
1145#else
1146static inline int configure_dma(struct pl022 *pl022)
1147{
1148    return -ENODEV;
1149}
1150
1151static inline int pl022_dma_probe(struct pl022 *pl022)
1152{
1153    return 0;
1154}
1155
1156static inline void pl022_dma_remove(struct pl022 *pl022)
1157{
1158}
1159#endif
1160
1161/**
1162 * pl022_interrupt_handler - Interrupt handler for SSP controller
1163 *
1164 * This function handles interrupts generated for an interrupt based transfer.
1165 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1166 * current message's state as STATE_ERROR and schedule the tasklet
1167 * pump_transfers which will do the postprocessing of the current message by
1168 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1169 * more data, and writes data in TX FIFO till it is not full. If we complete
1170 * the transfer we move to the next transfer and schedule the tasklet.
1171 */
1172static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1173{
1174    struct pl022 *pl022 = dev_id;
1175    struct spi_message *msg = pl022->cur_msg;
1176    u16 irq_status = 0;
1177    u16 flag = 0;
1178
1179    if (unlikely(!msg)) {
1180        dev_err(&pl022->adev->dev,
1181            "bad message state in interrupt handler");
1182        /* Never fail */
1183        return IRQ_HANDLED;
1184    }
1185
1186    /* Read the Interrupt Status Register */
1187    irq_status = readw(SSP_MIS(pl022->virtbase));
1188
1189    if (unlikely(!irq_status))
1190        return IRQ_NONE;
1191
1192    /*
1193     * This handles the FIFO interrupts, the timeout
1194     * interrupts are flatly ignored, they cannot be
1195     * trusted.
1196     */
1197    if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1198        /*
1199         * Overrun interrupt - bail out since our Data has been
1200         * corrupted
1201         */
1202        dev_err(&pl022->adev->dev, "FIFO overrun\n");
1203        if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1204            dev_err(&pl022->adev->dev,
1205                "RXFIFO is full\n");
1206        if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1207            dev_err(&pl022->adev->dev,
1208                "TXFIFO is full\n");
1209
1210        /*
1211         * Disable and clear interrupts, disable SSP,
1212         * mark message with bad status so it can be
1213         * retried.
1214         */
1215        writew(DISABLE_ALL_INTERRUPTS,
1216               SSP_IMSC(pl022->virtbase));
1217        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218        writew((readw(SSP_CR1(pl022->virtbase)) &
1219            (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1220        msg->state = STATE_ERROR;
1221
1222        /* Schedule message queue handler */
1223        tasklet_schedule(&pl022->pump_transfers);
1224        return IRQ_HANDLED;
1225    }
1226
1227    readwriter(pl022);
1228
1229    if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1230        flag = 1;
1231        /* Disable Transmit interrupt, enable receive interrupt */
1232        writew((readw(SSP_IMSC(pl022->virtbase)) &
1233               ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1234               SSP_IMSC(pl022->virtbase));
1235    }
1236
1237    /*
1238     * Since all transactions must write as much as shall be read,
1239     * we can conclude the entire transaction once RX is complete.
1240     * At this point, all TX will always be finished.
1241     */
1242    if (pl022->rx >= pl022->rx_end) {
1243        writew(DISABLE_ALL_INTERRUPTS,
1244               SSP_IMSC(pl022->virtbase));
1245        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1246        if (unlikely(pl022->rx > pl022->rx_end)) {
1247            dev_warn(&pl022->adev->dev, "read %u surplus "
1248                 "bytes (did you request an odd "
1249                 "number of bytes on a 16bit bus?)\n",
1250                 (u32) (pl022->rx - pl022->rx_end));
1251        }
1252        /* Update total bytes transferred */
1253        msg->actual_length += pl022->cur_transfer->len;
1254        if (pl022->cur_transfer->cs_change)
1255            pl022->cur_chip->
1256                cs_control(SSP_CHIP_DESELECT);
1257        /* Move to next transfer */
1258        msg->state = next_transfer(pl022);
1259        tasklet_schedule(&pl022->pump_transfers);
1260        return IRQ_HANDLED;
1261    }
1262
1263    return IRQ_HANDLED;
1264}
1265
1266/**
1267 * This sets up the pointers to memory for the next message to
1268 * send out on the SPI bus.
1269 */
1270static int set_up_next_transfer(struct pl022 *pl022,
1271                struct spi_transfer *transfer)
1272{
1273    int residue;
1274
1275    /* Sanity check the message for this bus width */
1276    residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1277    if (unlikely(residue != 0)) {
1278        dev_err(&pl022->adev->dev,
1279            "message of %u bytes to transmit but the current "
1280            "chip bus has a data width of %u bytes!\n",
1281            pl022->cur_transfer->len,
1282            pl022->cur_chip->n_bytes);
1283        dev_err(&pl022->adev->dev, "skipping this message\n");
1284        return -EIO;
1285    }
1286    pl022->tx = (void *)transfer->tx_buf;
1287    pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1288    pl022->rx = (void *)transfer->rx_buf;
1289    pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1290    pl022->write =
1291        pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1292    pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1293    return 0;
1294}
1295
1296/**
1297 * pump_transfers - Tasklet function which schedules next transfer
1298 * when running in interrupt or DMA transfer mode.
1299 * @data: SSP driver private data structure
1300 *
1301 */
1302static void pump_transfers(unsigned long data)
1303{
1304    struct pl022 *pl022 = (struct pl022 *) data;
1305    struct spi_message *message = NULL;
1306    struct spi_transfer *transfer = NULL;
1307    struct spi_transfer *previous = NULL;
1308
1309    /* Get current state information */
1310    message = pl022->cur_msg;
1311    transfer = pl022->cur_transfer;
1312
1313    /* Handle for abort */
1314    if (message->state == STATE_ERROR) {
1315        message->status = -EIO;
1316        giveback(pl022);
1317        return;
1318    }
1319
1320    /* Handle end of message */
1321    if (message->state == STATE_DONE) {
1322        message->status = 0;
1323        giveback(pl022);
1324        return;
1325    }
1326
1327    /* Delay if requested at end of transfer before CS change */
1328    if (message->state == STATE_RUNNING) {
1329        previous = list_entry(transfer->transfer_list.prev,
1330                    struct spi_transfer,
1331                    transfer_list);
1332        if (previous->delay_usecs)
1333            /*
1334             * FIXME: This runs in interrupt context.
1335             * Is this really smart?
1336             */
1337            udelay(previous->delay_usecs);
1338
1339        /* Reselect chip select only if cs_change was requested */
1340        if (previous->cs_change)
1341            pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1342    } else {
1343        /* STATE_START */
1344        message->state = STATE_RUNNING;
1345    }
1346
1347    if (set_up_next_transfer(pl022, transfer)) {
1348        message->state = STATE_ERROR;
1349        message->status = -EIO;
1350        giveback(pl022);
1351        return;
1352    }
1353    /* Flush the FIFOs and let's go! */
1354    flush(pl022);
1355
1356    if (pl022->cur_chip->enable_dma) {
1357        if (configure_dma(pl022)) {
1358            dev_dbg(&pl022->adev->dev,
1359                "configuration of DMA failed, fall back to interrupt mode\n");
1360            goto err_config_dma;
1361        }
1362        return;
1363    }
1364
1365err_config_dma:
1366    /* enable all interrupts except RX */
1367    writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1368}
1369
1370static void do_interrupt_dma_transfer(struct pl022 *pl022)
1371{
1372    /*
1373     * Default is to enable all interrupts except RX -
1374     * this will be enabled once TX is complete
1375     */
1376    u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1377
1378    /* Enable target chip, if not already active */
1379    if (!pl022->next_msg_cs_active)
1380        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1381
1382    if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1383        /* Error path */
1384        pl022->cur_msg->state = STATE_ERROR;
1385        pl022->cur_msg->status = -EIO;
1386        giveback(pl022);
1387        return;
1388    }
1389    /* If we're using DMA, set up DMA here */
1390    if (pl022->cur_chip->enable_dma) {
1391        /* Configure DMA transfer */
1392        if (configure_dma(pl022)) {
1393            dev_dbg(&pl022->adev->dev,
1394                "configuration of DMA failed, fall back to interrupt mode\n");
1395            goto err_config_dma;
1396        }
1397        /* Disable interrupts in DMA mode, IRQ from DMA controller */
1398        irqflags = DISABLE_ALL_INTERRUPTS;
1399    }
1400err_config_dma:
1401    /* Enable SSP, turn on interrupts */
1402    writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1403           SSP_CR1(pl022->virtbase));
1404    writew(irqflags, SSP_IMSC(pl022->virtbase));
1405}
1406
1407static void do_polling_transfer(struct pl022 *pl022)
1408{
1409    struct spi_message *message = NULL;
1410    struct spi_transfer *transfer = NULL;
1411    struct spi_transfer *previous = NULL;
1412    struct chip_data *chip;
1413    unsigned long time, timeout;
1414
1415    chip = pl022->cur_chip;
1416    message = pl022->cur_msg;
1417
1418    while (message->state != STATE_DONE) {
1419        /* Handle for abort */
1420        if (message->state == STATE_ERROR)
1421            break;
1422        transfer = pl022->cur_transfer;
1423
1424        /* Delay if requested at end of transfer */
1425        if (message->state == STATE_RUNNING) {
1426            previous =
1427                list_entry(transfer->transfer_list.prev,
1428                       struct spi_transfer, transfer_list);
1429            if (previous->delay_usecs)
1430                udelay(previous->delay_usecs);
1431            if (previous->cs_change)
1432                pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433        } else {
1434            /* STATE_START */
1435            message->state = STATE_RUNNING;
1436            if (!pl022->next_msg_cs_active)
1437                pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1438        }
1439
1440        /* Configuration Changing Per Transfer */
1441        if (set_up_next_transfer(pl022, transfer)) {
1442            /* Error path */
1443            message->state = STATE_ERROR;
1444            break;
1445        }
1446        /* Flush FIFOs and enable SSP */
1447        flush(pl022);
1448        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1449               SSP_CR1(pl022->virtbase));
1450
1451        dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1452
1453        timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1454        while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1455            time = jiffies;
1456            readwriter(pl022);
1457            if (time_after(time, timeout)) {
1458                dev_warn(&pl022->adev->dev,
1459                "%s: timeout!\n", __func__);
1460                message->state = STATE_ERROR;
1461                goto out;
1462            }
1463            cpu_relax();
1464        }
1465
1466        /* Update total byte transferred */
1467        message->actual_length += pl022->cur_transfer->len;
1468        if (pl022->cur_transfer->cs_change)
1469            pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1470        /* Move to next transfer */
1471        message->state = next_transfer(pl022);
1472    }
1473out:
1474    /* Handle end of message */
1475    if (message->state == STATE_DONE)
1476        message->status = 0;
1477    else
1478        message->status = -EIO;
1479
1480    giveback(pl022);
1481    return;
1482}
1483
1484static int pl022_transfer_one_message(struct spi_master *master,
1485                      struct spi_message *msg)
1486{
1487    struct pl022 *pl022 = spi_master_get_devdata(master);
1488
1489    /* Initial message state */
1490    pl022->cur_msg = msg;
1491    msg->state = STATE_START;
1492
1493    pl022->cur_transfer = list_entry(msg->transfers.next,
1494                     struct spi_transfer, transfer_list);
1495
1496    /* Setup the SPI using the per chip configuration */
1497    pl022->cur_chip = spi_get_ctldata(msg->spi);
1498
1499    restore_state(pl022);
1500    flush(pl022);
1501
1502    if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1503        do_polling_transfer(pl022);
1504    else
1505        do_interrupt_dma_transfer(pl022);
1506
1507    return 0;
1508}
1509
1510static int pl022_prepare_transfer_hardware(struct spi_master *master)
1511{
1512    struct pl022 *pl022 = spi_master_get_devdata(master);
1513
1514    /*
1515     * Just make sure we have all we need to run the transfer by syncing
1516     * with the runtime PM framework.
1517     */
1518    pm_runtime_get_sync(&pl022->adev->dev);
1519    return 0;
1520}
1521
1522static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1523{
1524    struct pl022 *pl022 = spi_master_get_devdata(master);
1525
1526    /* nothing more to do - disable spi/ssp and power off */
1527    writew((readw(SSP_CR1(pl022->virtbase)) &
1528        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1529
1530    if (pl022->master_info->autosuspend_delay > 0) {
1531        pm_runtime_mark_last_busy(&pl022->adev->dev);
1532        pm_runtime_put_autosuspend(&pl022->adev->dev);
1533    } else {
1534        pm_runtime_put(&pl022->adev->dev);
1535    }
1536
1537    return 0;
1538}
1539
1540static int verify_controller_parameters(struct pl022 *pl022,
1541                struct pl022_config_chip const *chip_info)
1542{
1543    if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1544        || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1545        dev_err(&pl022->adev->dev,
1546            "interface is configured incorrectly\n");
1547        return -EINVAL;
1548    }
1549    if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1550        (!pl022->vendor->unidir)) {
1551        dev_err(&pl022->adev->dev,
1552            "unidirectional mode not supported in this "
1553            "hardware version\n");
1554        return -EINVAL;
1555    }
1556    if ((chip_info->hierarchy != SSP_MASTER)
1557        && (chip_info->hierarchy != SSP_SLAVE)) {
1558        dev_err(&pl022->adev->dev,
1559            "hierarchy is configured incorrectly\n");
1560        return -EINVAL;
1561    }
1562    if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1563        && (chip_info->com_mode != DMA_TRANSFER)
1564        && (chip_info->com_mode != POLLING_TRANSFER)) {
1565        dev_err(&pl022->adev->dev,
1566            "Communication mode is configured incorrectly\n");
1567        return -EINVAL;
1568    }
1569    switch (chip_info->rx_lev_trig) {
1570    case SSP_RX_1_OR_MORE_ELEM:
1571    case SSP_RX_4_OR_MORE_ELEM:
1572    case SSP_RX_8_OR_MORE_ELEM:
1573        /* These are always OK, all variants can handle this */
1574        break;
1575    case SSP_RX_16_OR_MORE_ELEM:
1576        if (pl022->vendor->fifodepth < 16) {
1577            dev_err(&pl022->adev->dev,
1578            "RX FIFO Trigger Level is configured incorrectly\n");
1579            return -EINVAL;
1580        }
1581        break;
1582    case SSP_RX_32_OR_MORE_ELEM:
1583        if (pl022->vendor->fifodepth < 32) {
1584            dev_err(&pl022->adev->dev,
1585            "RX FIFO Trigger Level is configured incorrectly\n");
1586            return -EINVAL;
1587        }
1588        break;
1589    default:
1590        dev_err(&pl022->adev->dev,
1591            "RX FIFO Trigger Level is configured incorrectly\n");
1592        return -EINVAL;
1593        break;
1594    }
1595    switch (chip_info->tx_lev_trig) {
1596    case SSP_TX_1_OR_MORE_EMPTY_LOC:
1597    case SSP_TX_4_OR_MORE_EMPTY_LOC:
1598    case SSP_TX_8_OR_MORE_EMPTY_LOC:
1599        /* These are always OK, all variants can handle this */
1600        break;
1601    case SSP_TX_16_OR_MORE_EMPTY_LOC:
1602        if (pl022->vendor->fifodepth < 16) {
1603            dev_err(&pl022->adev->dev,
1604            "TX FIFO Trigger Level is configured incorrectly\n");
1605            return -EINVAL;
1606        }
1607        break;
1608    case SSP_TX_32_OR_MORE_EMPTY_LOC:
1609        if (pl022->vendor->fifodepth < 32) {
1610            dev_err(&pl022->adev->dev,
1611            "TX FIFO Trigger Level is configured incorrectly\n");
1612            return -EINVAL;
1613        }
1614        break;
1615    default:
1616        dev_err(&pl022->adev->dev,
1617            "TX FIFO Trigger Level is configured incorrectly\n");
1618        return -EINVAL;
1619        break;
1620    }
1621    if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1622        if ((chip_info->ctrl_len < SSP_BITS_4)
1623            || (chip_info->ctrl_len > SSP_BITS_32)) {
1624            dev_err(&pl022->adev->dev,
1625                "CTRL LEN is configured incorrectly\n");
1626            return -EINVAL;
1627        }
1628        if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1629            && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1630            dev_err(&pl022->adev->dev,
1631                "Wait State is configured incorrectly\n");
1632            return -EINVAL;
1633        }
1634        /* Half duplex is only available in the ST Micro version */
1635        if (pl022->vendor->extended_cr) {
1636            if ((chip_info->duplex !=
1637                 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1638                && (chip_info->duplex !=
1639                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1640                dev_err(&pl022->adev->dev,
1641                    "Microwire duplex mode is configured incorrectly\n");
1642                return -EINVAL;
1643            }
1644        } else {
1645            if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1646                dev_err(&pl022->adev->dev,
1647                    "Microwire half duplex mode requested,"
1648                    " but this is only available in the"
1649                    " ST version of PL022\n");
1650            return -EINVAL;
1651        }
1652    }
1653    return 0;
1654}
1655
1656static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1657{
1658    return rate / (cpsdvsr * (1 + scr));
1659}
1660
1661static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1662                    ssp_clock_params * clk_freq)
1663{
1664    /* Lets calculate the frequency parameters */
1665    u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1666    u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1667        best_scr = 0, tmp, found = 0;
1668
1669    rate = clk_get_rate(pl022->clk);
1670    /* cpsdvscr = 2 & scr 0 */
1671    max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1672    /* cpsdvsr = 254 & scr = 255 */
1673    min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1674
1675    if (freq > max_tclk)
1676        dev_warn(&pl022->adev->dev,
1677            "Max speed that can be programmed is %d Hz, you requested %d\n",
1678            max_tclk, freq);
1679
1680    if (freq < min_tclk) {
1681        dev_err(&pl022->adev->dev,
1682            "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1683            freq, min_tclk);
1684        return -EINVAL;
1685    }
1686
1687    /*
1688     * best_freq will give closest possible available rate (<= requested
1689     * freq) for all values of scr & cpsdvsr.
1690     */
1691    while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1692        while (scr <= SCR_MAX) {
1693            tmp = spi_rate(rate, cpsdvsr, scr);
1694
1695            if (tmp > freq) {
1696                /* we need lower freq */
1697                scr++;
1698                continue;
1699            }
1700
1701            /*
1702             * If found exact value, mark found and break.
1703             * If found more closer value, update and break.
1704             */
1705            if (tmp > best_freq) {
1706                best_freq = tmp;
1707                best_cpsdvsr = cpsdvsr;
1708                best_scr = scr;
1709
1710                if (tmp == freq)
1711                    found = 1;
1712            }
1713            /*
1714             * increased scr will give lower rates, which are not
1715             * required
1716             */
1717            break;
1718        }
1719        cpsdvsr += 2;
1720        scr = SCR_MIN;
1721    }
1722
1723    WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1724            freq);
1725
1726    clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1727    clk_freq->scr = (u8) (best_scr & 0xFF);
1728    dev_dbg(&pl022->adev->dev,
1729        "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1730        freq, best_freq);
1731    dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1732        clk_freq->cpsdvsr, clk_freq->scr);
1733
1734    return 0;
1735}
1736
1737/*
1738 * A piece of default chip info unless the platform
1739 * supplies it.
1740 */
1741static const struct pl022_config_chip pl022_default_chip_info = {
1742    .com_mode = POLLING_TRANSFER,
1743    .iface = SSP_INTERFACE_MOTOROLA_SPI,
1744    .hierarchy = SSP_SLAVE,
1745    .slave_tx_disable = DO_NOT_DRIVE_TX,
1746    .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1747    .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1748    .ctrl_len = SSP_BITS_8,
1749    .wait_state = SSP_MWIRE_WAIT_ZERO,
1750    .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1751    .cs_control = null_cs_control,
1752};
1753
1754/**
1755 * pl022_setup - setup function registered to SPI master framework
1756 * @spi: spi device which is requesting setup
1757 *
1758 * This function is registered to the SPI framework for this SPI master
1759 * controller. If it is the first time when setup is called by this device,
1760 * this function will initialize the runtime state for this chip and save
1761 * the same in the device structure. Else it will update the runtime info
1762 * with the updated chip info. Nothing is really being written to the
1763 * controller hardware here, that is not done until the actual transfer
1764 * commence.
1765 */
1766static int pl022_setup(struct spi_device *spi)
1767{
1768    struct pl022_config_chip const *chip_info;
1769    struct chip_data *chip;
1770    struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1771    int status = 0;
1772    struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773    unsigned int bits = spi->bits_per_word;
1774    u32 tmp;
1775
1776    if (!spi->max_speed_hz)
1777        return -EINVAL;
1778
1779    /* Get controller_state if one is supplied */
1780    chip = spi_get_ctldata(spi);
1781
1782    if (chip == NULL) {
1783        chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1784        if (!chip) {
1785            dev_err(&spi->dev,
1786                "cannot allocate controller state\n");
1787            return -ENOMEM;
1788        }
1789        dev_dbg(&spi->dev,
1790            "allocated memory for controller's runtime state\n");
1791    }
1792
1793    /* Get controller data if one is supplied */
1794    chip_info = spi->controller_data;
1795
1796    if (chip_info == NULL) {
1797        chip_info = &pl022_default_chip_info;
1798        /* spi_board_info.controller_data not is supplied */
1799        dev_dbg(&spi->dev,
1800            "using default controller_data settings\n");
1801    } else
1802        dev_dbg(&spi->dev,
1803            "using user supplied controller_data settings\n");
1804
1805    /*
1806     * We can override with custom divisors, else we use the board
1807     * frequency setting
1808     */
1809    if ((0 == chip_info->clk_freq.cpsdvsr)
1810        && (0 == chip_info->clk_freq.scr)) {
1811        status = calculate_effective_freq(pl022,
1812                          spi->max_speed_hz,
1813                          &clk_freq);
1814        if (status < 0)
1815            goto err_config_params;
1816    } else {
1817        memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1818        if ((clk_freq.cpsdvsr % 2) != 0)
1819            clk_freq.cpsdvsr =
1820                clk_freq.cpsdvsr - 1;
1821    }
1822    if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1823        || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1824        status = -EINVAL;
1825        dev_err(&spi->dev,
1826            "cpsdvsr is configured incorrectly\n");
1827        goto err_config_params;
1828    }
1829
1830    status = verify_controller_parameters(pl022, chip_info);
1831    if (status) {
1832        dev_err(&spi->dev, "controller data is incorrect");
1833        goto err_config_params;
1834    }
1835
1836    pl022->rx_lev_trig = chip_info->rx_lev_trig;
1837    pl022->tx_lev_trig = chip_info->tx_lev_trig;
1838
1839    /* Now set controller state based on controller data */
1840    chip->xfer_type = chip_info->com_mode;
1841    if (!chip_info->cs_control) {
1842        chip->cs_control = null_cs_control;
1843        dev_warn(&spi->dev,
1844             "chip select function is NULL for this chip\n");
1845    } else
1846        chip->cs_control = chip_info->cs_control;
1847
1848    /* Check bits per word with vendor specific range */
1849    if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1850        status = -ENOTSUPP;
1851        dev_err(&spi->dev, "illegal data size for this controller!\n");
1852        dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1853                pl022->vendor->max_bpw);
1854        goto err_config_params;
1855    } else if (bits <= 8) {
1856        dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1857        chip->n_bytes = 1;
1858        chip->read = READING_U8;
1859        chip->write = WRITING_U8;
1860    } else if (bits <= 16) {
1861        dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1862        chip->n_bytes = 2;
1863        chip->read = READING_U16;
1864        chip->write = WRITING_U16;
1865    } else {
1866        dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1867        chip->n_bytes = 4;
1868        chip->read = READING_U32;
1869        chip->write = WRITING_U32;
1870    }
1871
1872    /* Now Initialize all register settings required for this chip */
1873    chip->cr0 = 0;
1874    chip->cr1 = 0;
1875    chip->dmacr = 0;
1876    chip->cpsr = 0;
1877    if ((chip_info->com_mode == DMA_TRANSFER)
1878        && ((pl022->master_info)->enable_dma)) {
1879        chip->enable_dma = true;
1880        dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1881        SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1882                   SSP_DMACR_MASK_RXDMAE, 0);
1883        SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1884                   SSP_DMACR_MASK_TXDMAE, 1);
1885    } else {
1886        chip->enable_dma = false;
1887        dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1888        SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1889                   SSP_DMACR_MASK_RXDMAE, 0);
1890        SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1891                   SSP_DMACR_MASK_TXDMAE, 1);
1892    }
1893
1894    chip->cpsr = clk_freq.cpsdvsr;
1895
1896    /* Special setup for the ST micro extended control registers */
1897    if (pl022->vendor->extended_cr) {
1898        u32 etx;
1899
1900        if (pl022->vendor->pl023) {
1901            /* These bits are only in the PL023 */
1902            SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1903                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1904        } else {
1905            /* These bits are in the PL022 but not PL023 */
1906            SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1907                       SSP_CR0_MASK_HALFDUP_ST, 5);
1908            SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1909                       SSP_CR0_MASK_CSS_ST, 16);
1910            SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1911                       SSP_CR0_MASK_FRF_ST, 21);
1912            SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1913                       SSP_CR1_MASK_MWAIT_ST, 6);
1914        }
1915        SSP_WRITE_BITS(chip->cr0, bits - 1,
1916                   SSP_CR0_MASK_DSS_ST, 0);
1917
1918        if (spi->mode & SPI_LSB_FIRST) {
1919            tmp = SSP_RX_LSB;
1920            etx = SSP_TX_LSB;
1921        } else {
1922            tmp = SSP_RX_MSB;
1923            etx = SSP_TX_MSB;
1924        }
1925        SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1926        SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1927        SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1928                   SSP_CR1_MASK_RXIFLSEL_ST, 7);
1929        SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1930                   SSP_CR1_MASK_TXIFLSEL_ST, 10);
1931    } else {
1932        SSP_WRITE_BITS(chip->cr0, bits - 1,
1933                   SSP_CR0_MASK_DSS, 0);
1934        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1935                   SSP_CR0_MASK_FRF, 4);
1936    }
1937
1938    /* Stuff that is common for all versions */
1939    if (spi->mode & SPI_CPOL)
1940        tmp = SSP_CLK_POL_IDLE_HIGH;
1941    else
1942        tmp = SSP_CLK_POL_IDLE_LOW;
1943    SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1944
1945    if (spi->mode & SPI_CPHA)
1946        tmp = SSP_CLK_SECOND_EDGE;
1947    else
1948        tmp = SSP_CLK_FIRST_EDGE;
1949    SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1950
1951    SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1952    /* Loopback is available on all versions except PL023 */
1953    if (pl022->vendor->loopback) {
1954        if (spi->mode & SPI_LOOP)
1955            tmp = LOOPBACK_ENABLED;
1956        else
1957            tmp = LOOPBACK_DISABLED;
1958        SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1959    }
1960    SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1961    SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1962    SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1963        3);
1964
1965    /* Save controller_state */
1966    spi_set_ctldata(spi, chip);
1967    return status;
1968 err_config_params:
1969    spi_set_ctldata(spi, NULL);
1970    kfree(chip);
1971    return status;
1972}
1973
1974/**
1975 * pl022_cleanup - cleanup function registered to SPI master framework
1976 * @spi: spi device which is requesting cleanup
1977 *
1978 * This function is registered to the SPI framework for this SPI master
1979 * controller. It will free the runtime state of chip.
1980 */
1981static void pl022_cleanup(struct spi_device *spi)
1982{
1983    struct chip_data *chip = spi_get_ctldata(spi);
1984
1985    spi_set_ctldata(spi, NULL);
1986    kfree(chip);
1987}
1988
1989static int __devinit
1990pl022_probe(struct amba_device *adev, const struct amba_id *id)
1991{
1992    struct device *dev = &adev->dev;
1993    struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1994    struct spi_master *master;
1995    struct pl022 *pl022 = NULL; /*Data for this driver */
1996    int status = 0;
1997
1998    dev_info(&adev->dev,
1999         "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2000    if (platform_info == NULL) {
2001        dev_err(&adev->dev, "probe - no platform data supplied\n");
2002        status = -ENODEV;
2003        goto err_no_pdata;
2004    }
2005
2006    /* Allocate master with space for data */
2007    master = spi_alloc_master(dev, sizeof(struct pl022));
2008    if (master == NULL) {
2009        dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2010        status = -ENOMEM;
2011        goto err_no_master;
2012    }
2013
2014    pl022 = spi_master_get_devdata(master);
2015    pl022->master = master;
2016    pl022->master_info = platform_info;
2017    pl022->adev = adev;
2018    pl022->vendor = id->data;
2019
2020    /*
2021     * Bus Number Which has been Assigned to this SSP controller
2022     * on this board
2023     */
2024    master->bus_num = platform_info->bus_id;
2025    master->num_chipselect = platform_info->num_chipselect;
2026    master->cleanup = pl022_cleanup;
2027    master->setup = pl022_setup;
2028    master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2029    master->transfer_one_message = pl022_transfer_one_message;
2030    master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2031    master->rt = platform_info->rt;
2032
2033    /*
2034     * Supports mode 0-3, loopback, and active low CS. Transfers are
2035     * always MS bit first on the original pl022.
2036     */
2037    master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2038    if (pl022->vendor->extended_cr)
2039        master->mode_bits |= SPI_LSB_FIRST;
2040
2041    dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2042
2043    status = amba_request_regions(adev, NULL);
2044    if (status)
2045        goto err_no_ioregion;
2046
2047    pl022->phybase = adev->res.start;
2048    pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2049    if (pl022->virtbase == NULL) {
2050        status = -ENOMEM;
2051        goto err_no_ioremap;
2052    }
2053    printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2054           adev->res.start, pl022->virtbase);
2055
2056    pm_runtime_resume(dev);
2057
2058    pl022->clk = clk_get(&adev->dev, NULL);
2059    if (IS_ERR(pl022->clk)) {
2060        status = PTR_ERR(pl022->clk);
2061        dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2062        goto err_no_clk;
2063    }
2064
2065    status = clk_prepare(pl022->clk);
2066    if (status) {
2067        dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2068        goto err_clk_prep;
2069    }
2070
2071    status = clk_enable(pl022->clk);
2072    if (status) {
2073        dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2074        goto err_no_clk_en;
2075    }
2076
2077    /* Initialize transfer pump */
2078    tasklet_init(&pl022->pump_transfers, pump_transfers,
2079             (unsigned long)pl022);
2080
2081    /* Disable SSP */
2082    writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2083           SSP_CR1(pl022->virtbase));
2084    load_ssp_default_config(pl022);
2085
2086    status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2087                 pl022);
2088    if (status < 0) {
2089        dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2090        goto err_no_irq;
2091    }
2092
2093    /* Get DMA channels */
2094    if (platform_info->enable_dma) {
2095        status = pl022_dma_probe(pl022);
2096        if (status != 0)
2097            platform_info->enable_dma = 0;
2098    }
2099
2100    /* Register with the SPI framework */
2101    amba_set_drvdata(adev, pl022);
2102    status = spi_register_master(master);
2103    if (status != 0) {
2104        dev_err(&adev->dev,
2105            "probe - problem registering spi master\n");
2106        goto err_spi_register;
2107    }
2108    dev_dbg(dev, "probe succeeded\n");
2109
2110    /* let runtime pm put suspend */
2111    if (platform_info->autosuspend_delay > 0) {
2112        dev_info(&adev->dev,
2113            "will use autosuspend for runtime pm, delay %dms\n",
2114            platform_info->autosuspend_delay);
2115        pm_runtime_set_autosuspend_delay(dev,
2116            platform_info->autosuspend_delay);
2117        pm_runtime_use_autosuspend(dev);
2118        pm_runtime_put_autosuspend(dev);
2119    } else {
2120        pm_runtime_put(dev);
2121    }
2122    return 0;
2123
2124 err_spi_register:
2125    if (platform_info->enable_dma)
2126        pl022_dma_remove(pl022);
2127
2128    free_irq(adev->irq[0], pl022);
2129 err_no_irq:
2130    clk_disable(pl022->clk);
2131 err_no_clk_en:
2132    clk_unprepare(pl022->clk);
2133 err_clk_prep:
2134    clk_put(pl022->clk);
2135 err_no_clk:
2136    iounmap(pl022->virtbase);
2137 err_no_ioremap:
2138    amba_release_regions(adev);
2139 err_no_ioregion:
2140    spi_master_put(master);
2141 err_no_master:
2142 err_no_pdata:
2143    return status;
2144}
2145
2146static int __devexit
2147pl022_remove(struct amba_device *adev)
2148{
2149    struct pl022 *pl022 = amba_get_drvdata(adev);
2150
2151    if (!pl022)
2152        return 0;
2153
2154    /*
2155     * undo pm_runtime_put() in probe. I assume that we're not
2156     * accessing the primecell here.
2157     */
2158    pm_runtime_get_noresume(&adev->dev);
2159
2160    load_ssp_default_config(pl022);
2161    if (pl022->master_info->enable_dma)
2162        pl022_dma_remove(pl022);
2163
2164    free_irq(adev->irq[0], pl022);
2165    clk_disable(pl022->clk);
2166    clk_unprepare(pl022->clk);
2167    clk_put(pl022->clk);
2168    pm_runtime_disable(&adev->dev);
2169    iounmap(pl022->virtbase);
2170    amba_release_regions(adev);
2171    tasklet_disable(&pl022->pump_transfers);
2172    spi_unregister_master(pl022->master);
2173    spi_master_put(pl022->master);
2174    amba_set_drvdata(adev, NULL);
2175    return 0;
2176}
2177
2178#ifdef CONFIG_SUSPEND
2179static int pl022_suspend(struct device *dev)
2180{
2181    struct pl022 *pl022 = dev_get_drvdata(dev);
2182    int ret;
2183
2184    ret = spi_master_suspend(pl022->master);
2185    if (ret) {
2186        dev_warn(dev, "cannot suspend master\n");
2187        return ret;
2188    }
2189
2190    dev_dbg(dev, "suspended\n");
2191    return 0;
2192}
2193
2194static int pl022_resume(struct device *dev)
2195{
2196    struct pl022 *pl022 = dev_get_drvdata(dev);
2197    int ret;
2198
2199    /* Start the queue running */
2200    ret = spi_master_resume(pl022->master);
2201    if (ret)
2202        dev_err(dev, "problem starting queue (%d)\n", ret);
2203    else
2204        dev_dbg(dev, "resumed\n");
2205
2206    return ret;
2207}
2208#endif /* CONFIG_PM */
2209
2210#ifdef CONFIG_PM_RUNTIME
2211static int pl022_runtime_suspend(struct device *dev)
2212{
2213    struct pl022 *pl022 = dev_get_drvdata(dev);
2214
2215    clk_disable(pl022->clk);
2216
2217    return 0;
2218}
2219
2220static int pl022_runtime_resume(struct device *dev)
2221{
2222    struct pl022 *pl022 = dev_get_drvdata(dev);
2223
2224    clk_enable(pl022->clk);
2225
2226    return 0;
2227}
2228#endif
2229
2230static const struct dev_pm_ops pl022_dev_pm_ops = {
2231    SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2232    SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2233};
2234
2235static struct vendor_data vendor_arm = {
2236    .fifodepth = 8,
2237    .max_bpw = 16,
2238    .unidir = false,
2239    .extended_cr = false,
2240    .pl023 = false,
2241    .loopback = true,
2242};
2243
2244static struct vendor_data vendor_st = {
2245    .fifodepth = 32,
2246    .max_bpw = 32,
2247    .unidir = false,
2248    .extended_cr = true,
2249    .pl023 = false,
2250    .loopback = true,
2251};
2252
2253static struct vendor_data vendor_st_pl023 = {
2254    .fifodepth = 32,
2255    .max_bpw = 32,
2256    .unidir = false,
2257    .extended_cr = true,
2258    .pl023 = true,
2259    .loopback = false,
2260};
2261
2262static struct amba_id pl022_ids[] = {
2263    {
2264        /*
2265         * ARM PL022 variant, this has a 16bit wide
2266         * and 8 locations deep TX/RX FIFO
2267         */
2268        .id = 0x00041022,
2269        .mask = 0x000fffff,
2270        .data = &vendor_arm,
2271    },
2272    {
2273        /*
2274         * ST Micro derivative, this has 32bit wide
2275         * and 32 locations deep TX/RX FIFO
2276         */
2277        .id = 0x01080022,
2278        .mask = 0xffffffff,
2279        .data = &vendor_st,
2280    },
2281    {
2282        /*
2283         * ST-Ericsson derivative "PL023" (this is not
2284         * an official ARM number), this is a PL022 SSP block
2285         * stripped to SPI mode only, it has 32bit wide
2286         * and 32 locations deep TX/RX FIFO but no extended
2287         * CR0/CR1 register
2288         */
2289        .id = 0x00080023,
2290        .mask = 0xffffffff,
2291        .data = &vendor_st_pl023,
2292    },
2293    { 0, 0 },
2294};
2295
2296MODULE_DEVICE_TABLE(amba, pl022_ids);
2297
2298static struct amba_driver pl022_driver = {
2299    .drv = {
2300        .name = "ssp-pl022",
2301        .pm = &pl022_dev_pm_ops,
2302    },
2303    .id_table = pl022_ids,
2304    .probe = pl022_probe,
2305    .remove = __devexit_p(pl022_remove),
2306};
2307
2308static int __init pl022_init(void)
2309{
2310    return amba_driver_register(&pl022_driver);
2311}
2312subsys_initcall(pl022_init);
2313
2314static void __exit pl022_exit(void)
2315{
2316    amba_driver_unregister(&pl022_driver);
2317}
2318module_exit(pl022_exit);
2319
2320MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2321MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2322MODULE_LICENSE("GPL");
2323

Archive Download this file



interactive