Root/
1 | /* |
2 | * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify |
5 | * it under the terms of the GNU General Public License as published by |
6 | * the Free Software Foundation; either version 2 of the License, or |
7 | * (at your option) any later version. |
8 | * |
9 | * This program is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 | * GNU General Public License for more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write to the Free Software |
16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
17 | */ |
18 | |
19 | #include <linux/init.h> |
20 | #include <linux/module.h> |
21 | #include <linux/device.h> |
22 | #include <linux/ioport.h> |
23 | #include <linux/errno.h> |
24 | #include <linux/interrupt.h> |
25 | #include <linux/platform_device.h> |
26 | #include <linux/spi/pxa2xx_spi.h> |
27 | #include <linux/dma-mapping.h> |
28 | #include <linux/spi/spi.h> |
29 | #include <linux/workqueue.h> |
30 | #include <linux/delay.h> |
31 | #include <linux/gpio.h> |
32 | #include <linux/slab.h> |
33 | |
34 | #include <asm/io.h> |
35 | #include <asm/irq.h> |
36 | #include <asm/delay.h> |
37 | |
38 | |
39 | MODULE_AUTHOR("Stephen Street"); |
40 | MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); |
41 | MODULE_LICENSE("GPL"); |
42 | MODULE_ALIAS("platform:pxa2xx-spi"); |
43 | |
44 | #define MAX_BUSES 3 |
45 | |
46 | #define TIMOUT_DFLT 1000 |
47 | |
48 | #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) |
49 | #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) |
50 | #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0) |
51 | #define MAX_DMA_LEN 8191 |
52 | #define DMA_ALIGNMENT 8 |
53 | |
54 | /* |
55 | * for testing SSCR1 changes that require SSP restart, basically |
56 | * everything except the service and interrupt enables, the pxa270 developer |
57 | * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this |
58 | * list, but the PXA255 dev man says all bits without really meaning the |
59 | * service and interrupt enables |
60 | */ |
61 | #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
62 | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
63 | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
64 | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
65 | | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ |
66 | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
67 | |
68 | #define DEFINE_SSP_REG(reg, off) \ |
69 | static inline u32 read_##reg(void const __iomem *p) \ |
70 | { return __raw_readl(p + (off)); } \ |
71 | \ |
72 | static inline void write_##reg(u32 v, void __iomem *p) \ |
73 | { __raw_writel(v, p + (off)); } |
74 | |
75 | DEFINE_SSP_REG(SSCR0, 0x00) |
76 | DEFINE_SSP_REG(SSCR1, 0x04) |
77 | DEFINE_SSP_REG(SSSR, 0x08) |
78 | DEFINE_SSP_REG(SSITR, 0x0c) |
79 | DEFINE_SSP_REG(SSDR, 0x10) |
80 | DEFINE_SSP_REG(SSTO, 0x28) |
81 | DEFINE_SSP_REG(SSPSP, 0x2c) |
82 | |
83 | #define START_STATE ((void*)0) |
84 | #define RUNNING_STATE ((void*)1) |
85 | #define DONE_STATE ((void*)2) |
86 | #define ERROR_STATE ((void*)-1) |
87 | |
88 | #define QUEUE_RUNNING 0 |
89 | #define QUEUE_STOPPED 1 |
90 | |
91 | struct driver_data { |
92 | /* Driver model hookup */ |
93 | struct platform_device *pdev; |
94 | |
95 | /* SSP Info */ |
96 | struct ssp_device *ssp; |
97 | |
98 | /* SPI framework hookup */ |
99 | enum pxa_ssp_type ssp_type; |
100 | struct spi_master *master; |
101 | |
102 | /* PXA hookup */ |
103 | struct pxa2xx_spi_master *master_info; |
104 | |
105 | /* DMA setup stuff */ |
106 | int rx_channel; |
107 | int tx_channel; |
108 | u32 *null_dma_buf; |
109 | |
110 | /* SSP register addresses */ |
111 | void __iomem *ioaddr; |
112 | u32 ssdr_physical; |
113 | |
114 | /* SSP masks*/ |
115 | u32 dma_cr1; |
116 | u32 int_cr1; |
117 | u32 clear_sr; |
118 | u32 mask_sr; |
119 | |
120 | /* Driver message queue */ |
121 | struct workqueue_struct *workqueue; |
122 | struct work_struct pump_messages; |
123 | spinlock_t lock; |
124 | struct list_head queue; |
125 | int busy; |
126 | int run; |
127 | |
128 | /* Message Transfer pump */ |
129 | struct tasklet_struct pump_transfers; |
130 | |
131 | /* Current message transfer state info */ |
132 | struct spi_message* cur_msg; |
133 | struct spi_transfer* cur_transfer; |
134 | struct chip_data *cur_chip; |
135 | size_t len; |
136 | void *tx; |
137 | void *tx_end; |
138 | void *rx; |
139 | void *rx_end; |
140 | int dma_mapped; |
141 | dma_addr_t rx_dma; |
142 | dma_addr_t tx_dma; |
143 | size_t rx_map_len; |
144 | size_t tx_map_len; |
145 | u8 n_bytes; |
146 | u32 dma_width; |
147 | int (*write)(struct driver_data *drv_data); |
148 | int (*read)(struct driver_data *drv_data); |
149 | irqreturn_t (*transfer_handler)(struct driver_data *drv_data); |
150 | void (*cs_control)(u32 command); |
151 | }; |
152 | |
153 | struct chip_data { |
154 | u32 cr0; |
155 | u32 cr1; |
156 | u32 psp; |
157 | u32 timeout; |
158 | u8 n_bytes; |
159 | u32 dma_width; |
160 | u32 dma_burst_size; |
161 | u32 threshold; |
162 | u32 dma_threshold; |
163 | u8 enable_dma; |
164 | u8 bits_per_word; |
165 | u32 speed_hz; |
166 | union { |
167 | int gpio_cs; |
168 | unsigned int frm; |
169 | }; |
170 | int gpio_cs_inverted; |
171 | int (*write)(struct driver_data *drv_data); |
172 | int (*read)(struct driver_data *drv_data); |
173 | void (*cs_control)(u32 command); |
174 | }; |
175 | |
176 | static void pump_messages(struct work_struct *work); |
177 | |
178 | static void cs_assert(struct driver_data *drv_data) |
179 | { |
180 | struct chip_data *chip = drv_data->cur_chip; |
181 | |
182 | if (drv_data->ssp_type == CE4100_SSP) { |
183 | write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr); |
184 | return; |
185 | } |
186 | |
187 | if (chip->cs_control) { |
188 | chip->cs_control(PXA2XX_CS_ASSERT); |
189 | return; |
190 | } |
191 | |
192 | if (gpio_is_valid(chip->gpio_cs)) |
193 | gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); |
194 | } |
195 | |
196 | static void cs_deassert(struct driver_data *drv_data) |
197 | { |
198 | struct chip_data *chip = drv_data->cur_chip; |
199 | |
200 | if (drv_data->ssp_type == CE4100_SSP) |
201 | return; |
202 | |
203 | if (chip->cs_control) { |
204 | chip->cs_control(PXA2XX_CS_DEASSERT); |
205 | return; |
206 | } |
207 | |
208 | if (gpio_is_valid(chip->gpio_cs)) |
209 | gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); |
210 | } |
211 | |
212 | static void write_SSSR_CS(struct driver_data *drv_data, u32 val) |
213 | { |
214 | void __iomem *reg = drv_data->ioaddr; |
215 | |
216 | if (drv_data->ssp_type == CE4100_SSP) |
217 | val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK; |
218 | |
219 | write_SSSR(val, reg); |
220 | } |
221 | |
222 | static int pxa25x_ssp_comp(struct driver_data *drv_data) |
223 | { |
224 | if (drv_data->ssp_type == PXA25x_SSP) |
225 | return 1; |
226 | if (drv_data->ssp_type == CE4100_SSP) |
227 | return 1; |
228 | return 0; |
229 | } |
230 | |
231 | static int flush(struct driver_data *drv_data) |
232 | { |
233 | unsigned long limit = loops_per_jiffy << 1; |
234 | |
235 | void __iomem *reg = drv_data->ioaddr; |
236 | |
237 | do { |
238 | while (read_SSSR(reg) & SSSR_RNE) { |
239 | read_SSDR(reg); |
240 | } |
241 | } while ((read_SSSR(reg) & SSSR_BSY) && --limit); |
242 | write_SSSR_CS(drv_data, SSSR_ROR); |
243 | |
244 | return limit; |
245 | } |
246 | |
247 | static int null_writer(struct driver_data *drv_data) |
248 | { |
249 | void __iomem *reg = drv_data->ioaddr; |
250 | u8 n_bytes = drv_data->n_bytes; |
251 | |
252 | if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) |
253 | || (drv_data->tx == drv_data->tx_end)) |
254 | return 0; |
255 | |
256 | write_SSDR(0, reg); |
257 | drv_data->tx += n_bytes; |
258 | |
259 | return 1; |
260 | } |
261 | |
262 | static int null_reader(struct driver_data *drv_data) |
263 | { |
264 | void __iomem *reg = drv_data->ioaddr; |
265 | u8 n_bytes = drv_data->n_bytes; |
266 | |
267 | while ((read_SSSR(reg) & SSSR_RNE) |
268 | && (drv_data->rx < drv_data->rx_end)) { |
269 | read_SSDR(reg); |
270 | drv_data->rx += n_bytes; |
271 | } |
272 | |
273 | return drv_data->rx == drv_data->rx_end; |
274 | } |
275 | |
276 | static int u8_writer(struct driver_data *drv_data) |
277 | { |
278 | void __iomem *reg = drv_data->ioaddr; |
279 | |
280 | if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) |
281 | || (drv_data->tx == drv_data->tx_end)) |
282 | return 0; |
283 | |
284 | write_SSDR(*(u8 *)(drv_data->tx), reg); |
285 | ++drv_data->tx; |
286 | |
287 | return 1; |
288 | } |
289 | |
290 | static int u8_reader(struct driver_data *drv_data) |
291 | { |
292 | void __iomem *reg = drv_data->ioaddr; |
293 | |
294 | while ((read_SSSR(reg) & SSSR_RNE) |
295 | && (drv_data->rx < drv_data->rx_end)) { |
296 | *(u8 *)(drv_data->rx) = read_SSDR(reg); |
297 | ++drv_data->rx; |
298 | } |
299 | |
300 | return drv_data->rx == drv_data->rx_end; |
301 | } |
302 | |
303 | static int u16_writer(struct driver_data *drv_data) |
304 | { |
305 | void __iomem *reg = drv_data->ioaddr; |
306 | |
307 | if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) |
308 | || (drv_data->tx == drv_data->tx_end)) |
309 | return 0; |
310 | |
311 | write_SSDR(*(u16 *)(drv_data->tx), reg); |
312 | drv_data->tx += 2; |
313 | |
314 | return 1; |
315 | } |
316 | |
317 | static int u16_reader(struct driver_data *drv_data) |
318 | { |
319 | void __iomem *reg = drv_data->ioaddr; |
320 | |
321 | while ((read_SSSR(reg) & SSSR_RNE) |
322 | && (drv_data->rx < drv_data->rx_end)) { |
323 | *(u16 *)(drv_data->rx) = read_SSDR(reg); |
324 | drv_data->rx += 2; |
325 | } |
326 | |
327 | return drv_data->rx == drv_data->rx_end; |
328 | } |
329 | |
330 | static int u32_writer(struct driver_data *drv_data) |
331 | { |
332 | void __iomem *reg = drv_data->ioaddr; |
333 | |
334 | if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK) |
335 | || (drv_data->tx == drv_data->tx_end)) |
336 | return 0; |
337 | |
338 | write_SSDR(*(u32 *)(drv_data->tx), reg); |
339 | drv_data->tx += 4; |
340 | |
341 | return 1; |
342 | } |
343 | |
344 | static int u32_reader(struct driver_data *drv_data) |
345 | { |
346 | void __iomem *reg = drv_data->ioaddr; |
347 | |
348 | while ((read_SSSR(reg) & SSSR_RNE) |
349 | && (drv_data->rx < drv_data->rx_end)) { |
350 | *(u32 *)(drv_data->rx) = read_SSDR(reg); |
351 | drv_data->rx += 4; |
352 | } |
353 | |
354 | return drv_data->rx == drv_data->rx_end; |
355 | } |
356 | |
357 | static void *next_transfer(struct driver_data *drv_data) |
358 | { |
359 | struct spi_message *msg = drv_data->cur_msg; |
360 | struct spi_transfer *trans = drv_data->cur_transfer; |
361 | |
362 | /* Move to next transfer */ |
363 | if (trans->transfer_list.next != &msg->transfers) { |
364 | drv_data->cur_transfer = |
365 | list_entry(trans->transfer_list.next, |
366 | struct spi_transfer, |
367 | transfer_list); |
368 | return RUNNING_STATE; |
369 | } else |
370 | return DONE_STATE; |
371 | } |
372 | |
373 | static int map_dma_buffers(struct driver_data *drv_data) |
374 | { |
375 | struct spi_message *msg = drv_data->cur_msg; |
376 | struct device *dev = &msg->spi->dev; |
377 | |
378 | if (!drv_data->cur_chip->enable_dma) |
379 | return 0; |
380 | |
381 | if (msg->is_dma_mapped) |
382 | return drv_data->rx_dma && drv_data->tx_dma; |
383 | |
384 | if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) |
385 | return 0; |
386 | |
387 | /* Modify setup if rx buffer is null */ |
388 | if (drv_data->rx == NULL) { |
389 | *drv_data->null_dma_buf = 0; |
390 | drv_data->rx = drv_data->null_dma_buf; |
391 | drv_data->rx_map_len = 4; |
392 | } else |
393 | drv_data->rx_map_len = drv_data->len; |
394 | |
395 | |
396 | /* Modify setup if tx buffer is null */ |
397 | if (drv_data->tx == NULL) { |
398 | *drv_data->null_dma_buf = 0; |
399 | drv_data->tx = drv_data->null_dma_buf; |
400 | drv_data->tx_map_len = 4; |
401 | } else |
402 | drv_data->tx_map_len = drv_data->len; |
403 | |
404 | /* Stream map the tx buffer. Always do DMA_TO_DEVICE first |
405 | * so we flush the cache *before* invalidating it, in case |
406 | * the tx and rx buffers overlap. |
407 | */ |
408 | drv_data->tx_dma = dma_map_single(dev, drv_data->tx, |
409 | drv_data->tx_map_len, DMA_TO_DEVICE); |
410 | if (dma_mapping_error(dev, drv_data->tx_dma)) |
411 | return 0; |
412 | |
413 | /* Stream map the rx buffer */ |
414 | drv_data->rx_dma = dma_map_single(dev, drv_data->rx, |
415 | drv_data->rx_map_len, DMA_FROM_DEVICE); |
416 | if (dma_mapping_error(dev, drv_data->rx_dma)) { |
417 | dma_unmap_single(dev, drv_data->tx_dma, |
418 | drv_data->tx_map_len, DMA_TO_DEVICE); |
419 | return 0; |
420 | } |
421 | |
422 | return 1; |
423 | } |
424 | |
425 | static void unmap_dma_buffers(struct driver_data *drv_data) |
426 | { |
427 | struct device *dev; |
428 | |
429 | if (!drv_data->dma_mapped) |
430 | return; |
431 | |
432 | if (!drv_data->cur_msg->is_dma_mapped) { |
433 | dev = &drv_data->cur_msg->spi->dev; |
434 | dma_unmap_single(dev, drv_data->rx_dma, |
435 | drv_data->rx_map_len, DMA_FROM_DEVICE); |
436 | dma_unmap_single(dev, drv_data->tx_dma, |
437 | drv_data->tx_map_len, DMA_TO_DEVICE); |
438 | } |
439 | |
440 | drv_data->dma_mapped = 0; |
441 | } |
442 | |
443 | /* caller already set message->status; dma and pio irqs are blocked */ |
444 | static void giveback(struct driver_data *drv_data) |
445 | { |
446 | struct spi_transfer* last_transfer; |
447 | unsigned long flags; |
448 | struct spi_message *msg; |
449 | |
450 | spin_lock_irqsave(&drv_data->lock, flags); |
451 | msg = drv_data->cur_msg; |
452 | drv_data->cur_msg = NULL; |
453 | drv_data->cur_transfer = NULL; |
454 | queue_work(drv_data->workqueue, &drv_data->pump_messages); |
455 | spin_unlock_irqrestore(&drv_data->lock, flags); |
456 | |
457 | last_transfer = list_entry(msg->transfers.prev, |
458 | struct spi_transfer, |
459 | transfer_list); |
460 | |
461 | /* Delay if requested before any change in chip select */ |
462 | if (last_transfer->delay_usecs) |
463 | udelay(last_transfer->delay_usecs); |
464 | |
465 | /* Drop chip select UNLESS cs_change is true or we are returning |
466 | * a message with an error, or next message is for another chip |
467 | */ |
468 | if (!last_transfer->cs_change) |
469 | cs_deassert(drv_data); |
470 | else { |
471 | struct spi_message *next_msg; |
472 | |
473 | /* Holding of cs was hinted, but we need to make sure |
474 | * the next message is for the same chip. Don't waste |
475 | * time with the following tests unless this was hinted. |
476 | * |
477 | * We cannot postpone this until pump_messages, because |
478 | * after calling msg->complete (below) the driver that |
479 | * sent the current message could be unloaded, which |
480 | * could invalidate the cs_control() callback... |
481 | */ |
482 | |
483 | /* get a pointer to the next message, if any */ |
484 | spin_lock_irqsave(&drv_data->lock, flags); |
485 | if (list_empty(&drv_data->queue)) |
486 | next_msg = NULL; |
487 | else |
488 | next_msg = list_entry(drv_data->queue.next, |
489 | struct spi_message, queue); |
490 | spin_unlock_irqrestore(&drv_data->lock, flags); |
491 | |
492 | /* see if the next and current messages point |
493 | * to the same chip |
494 | */ |
495 | if (next_msg && next_msg->spi != msg->spi) |
496 | next_msg = NULL; |
497 | if (!next_msg || msg->state == ERROR_STATE) |
498 | cs_deassert(drv_data); |
499 | } |
500 | |
501 | msg->state = NULL; |
502 | if (msg->complete) |
503 | msg->complete(msg->context); |
504 | |
505 | drv_data->cur_chip = NULL; |
506 | } |
507 | |
508 | static int wait_ssp_rx_stall(void const __iomem *ioaddr) |
509 | { |
510 | unsigned long limit = loops_per_jiffy << 1; |
511 | |
512 | while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit) |
513 | cpu_relax(); |
514 | |
515 | return limit; |
516 | } |
517 | |
518 | static int wait_dma_channel_stop(int channel) |
519 | { |
520 | unsigned long limit = loops_per_jiffy << 1; |
521 | |
522 | while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit) |
523 | cpu_relax(); |
524 | |
525 | return limit; |
526 | } |
527 | |
528 | static void dma_error_stop(struct driver_data *drv_data, const char *msg) |
529 | { |
530 | void __iomem *reg = drv_data->ioaddr; |
531 | |
532 | /* Stop and reset */ |
533 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
534 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
535 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
536 | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
537 | if (!pxa25x_ssp_comp(drv_data)) |
538 | write_SSTO(0, reg); |
539 | flush(drv_data); |
540 | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
541 | |
542 | unmap_dma_buffers(drv_data); |
543 | |
544 | dev_err(&drv_data->pdev->dev, "%s\n", msg); |
545 | |
546 | drv_data->cur_msg->state = ERROR_STATE; |
547 | tasklet_schedule(&drv_data->pump_transfers); |
548 | } |
549 | |
550 | static void dma_transfer_complete(struct driver_data *drv_data) |
551 | { |
552 | void __iomem *reg = drv_data->ioaddr; |
553 | struct spi_message *msg = drv_data->cur_msg; |
554 | |
555 | /* Clear and disable interrupts on SSP and DMA channels*/ |
556 | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
557 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
558 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
559 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
560 | |
561 | if (wait_dma_channel_stop(drv_data->rx_channel) == 0) |
562 | dev_err(&drv_data->pdev->dev, |
563 | "dma_handler: dma rx channel stop failed\n"); |
564 | |
565 | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
566 | dev_err(&drv_data->pdev->dev, |
567 | "dma_transfer: ssp rx stall failed\n"); |
568 | |
569 | unmap_dma_buffers(drv_data); |
570 | |
571 | /* update the buffer pointer for the amount completed in dma */ |
572 | drv_data->rx += drv_data->len - |
573 | (DCMD(drv_data->rx_channel) & DCMD_LENGTH); |
574 | |
575 | /* read trailing data from fifo, it does not matter how many |
576 | * bytes are in the fifo just read until buffer is full |
577 | * or fifo is empty, which ever occurs first */ |
578 | drv_data->read(drv_data); |
579 | |
580 | /* return count of what was actually read */ |
581 | msg->actual_length += drv_data->len - |
582 | (drv_data->rx_end - drv_data->rx); |
583 | |
584 | /* Transfer delays and chip select release are |
585 | * handled in pump_transfers or giveback |
586 | */ |
587 | |
588 | /* Move to next transfer */ |
589 | msg->state = next_transfer(drv_data); |
590 | |
591 | /* Schedule transfer tasklet */ |
592 | tasklet_schedule(&drv_data->pump_transfers); |
593 | } |
594 | |
595 | static void dma_handler(int channel, void *data) |
596 | { |
597 | struct driver_data *drv_data = data; |
598 | u32 irq_status = DCSR(channel) & DMA_INT_MASK; |
599 | |
600 | if (irq_status & DCSR_BUSERR) { |
601 | |
602 | if (channel == drv_data->tx_channel) |
603 | dma_error_stop(drv_data, |
604 | "dma_handler: " |
605 | "bad bus address on tx channel"); |
606 | else |
607 | dma_error_stop(drv_data, |
608 | "dma_handler: " |
609 | "bad bus address on rx channel"); |
610 | return; |
611 | } |
612 | |
613 | /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ |
614 | if ((channel == drv_data->tx_channel) |
615 | && (irq_status & DCSR_ENDINTR) |
616 | && (drv_data->ssp_type == PXA25x_SSP)) { |
617 | |
618 | /* Wait for rx to stall */ |
619 | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
620 | dev_err(&drv_data->pdev->dev, |
621 | "dma_handler: ssp rx stall failed\n"); |
622 | |
623 | /* finish this transfer, start the next */ |
624 | dma_transfer_complete(drv_data); |
625 | } |
626 | } |
627 | |
628 | static irqreturn_t dma_transfer(struct driver_data *drv_data) |
629 | { |
630 | u32 irq_status; |
631 | void __iomem *reg = drv_data->ioaddr; |
632 | |
633 | irq_status = read_SSSR(reg) & drv_data->mask_sr; |
634 | if (irq_status & SSSR_ROR) { |
635 | dma_error_stop(drv_data, "dma_transfer: fifo overrun"); |
636 | return IRQ_HANDLED; |
637 | } |
638 | |
639 | /* Check for false positive timeout */ |
640 | if ((irq_status & SSSR_TINT) |
641 | && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { |
642 | write_SSSR(SSSR_TINT, reg); |
643 | return IRQ_HANDLED; |
644 | } |
645 | |
646 | if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { |
647 | |
648 | /* Clear and disable timeout interrupt, do the rest in |
649 | * dma_transfer_complete */ |
650 | if (!pxa25x_ssp_comp(drv_data)) |
651 | write_SSTO(0, reg); |
652 | |
653 | /* finish this transfer, start the next */ |
654 | dma_transfer_complete(drv_data); |
655 | |
656 | return IRQ_HANDLED; |
657 | } |
658 | |
659 | /* Opps problem detected */ |
660 | return IRQ_NONE; |
661 | } |
662 | |
663 | static void reset_sccr1(struct driver_data *drv_data) |
664 | { |
665 | void __iomem *reg = drv_data->ioaddr; |
666 | struct chip_data *chip = drv_data->cur_chip; |
667 | u32 sccr1_reg; |
668 | |
669 | sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1; |
670 | sccr1_reg &= ~SSCR1_RFT; |
671 | sccr1_reg |= chip->threshold; |
672 | write_SSCR1(sccr1_reg, reg); |
673 | } |
674 | |
675 | static void int_error_stop(struct driver_data *drv_data, const char* msg) |
676 | { |
677 | void __iomem *reg = drv_data->ioaddr; |
678 | |
679 | /* Stop and reset SSP */ |
680 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
681 | reset_sccr1(drv_data); |
682 | if (!pxa25x_ssp_comp(drv_data)) |
683 | write_SSTO(0, reg); |
684 | flush(drv_data); |
685 | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
686 | |
687 | dev_err(&drv_data->pdev->dev, "%s\n", msg); |
688 | |
689 | drv_data->cur_msg->state = ERROR_STATE; |
690 | tasklet_schedule(&drv_data->pump_transfers); |
691 | } |
692 | |
693 | static void int_transfer_complete(struct driver_data *drv_data) |
694 | { |
695 | void __iomem *reg = drv_data->ioaddr; |
696 | |
697 | /* Stop SSP */ |
698 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
699 | reset_sccr1(drv_data); |
700 | if (!pxa25x_ssp_comp(drv_data)) |
701 | write_SSTO(0, reg); |
702 | |
703 | /* Update total byte transferred return count actual bytes read */ |
704 | drv_data->cur_msg->actual_length += drv_data->len - |
705 | (drv_data->rx_end - drv_data->rx); |
706 | |
707 | /* Transfer delays and chip select release are |
708 | * handled in pump_transfers or giveback |
709 | */ |
710 | |
711 | /* Move to next transfer */ |
712 | drv_data->cur_msg->state = next_transfer(drv_data); |
713 | |
714 | /* Schedule transfer tasklet */ |
715 | tasklet_schedule(&drv_data->pump_transfers); |
716 | } |
717 | |
718 | static irqreturn_t interrupt_transfer(struct driver_data *drv_data) |
719 | { |
720 | void __iomem *reg = drv_data->ioaddr; |
721 | |
722 | u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ? |
723 | drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; |
724 | |
725 | u32 irq_status = read_SSSR(reg) & irq_mask; |
726 | |
727 | if (irq_status & SSSR_ROR) { |
728 | int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); |
729 | return IRQ_HANDLED; |
730 | } |
731 | |
732 | if (irq_status & SSSR_TINT) { |
733 | write_SSSR(SSSR_TINT, reg); |
734 | if (drv_data->read(drv_data)) { |
735 | int_transfer_complete(drv_data); |
736 | return IRQ_HANDLED; |
737 | } |
738 | } |
739 | |
740 | /* Drain rx fifo, Fill tx fifo and prevent overruns */ |
741 | do { |
742 | if (drv_data->read(drv_data)) { |
743 | int_transfer_complete(drv_data); |
744 | return IRQ_HANDLED; |
745 | } |
746 | } while (drv_data->write(drv_data)); |
747 | |
748 | if (drv_data->read(drv_data)) { |
749 | int_transfer_complete(drv_data); |
750 | return IRQ_HANDLED; |
751 | } |
752 | |
753 | if (drv_data->tx == drv_data->tx_end) { |
754 | u32 bytes_left; |
755 | u32 sccr1_reg; |
756 | |
757 | sccr1_reg = read_SSCR1(reg); |
758 | sccr1_reg &= ~SSCR1_TIE; |
759 | |
760 | /* |
761 | * PXA25x_SSP has no timeout, set up rx threshould for the |
762 | * remaining RX bytes. |
763 | */ |
764 | if (pxa25x_ssp_comp(drv_data)) { |
765 | |
766 | sccr1_reg &= ~SSCR1_RFT; |
767 | |
768 | bytes_left = drv_data->rx_end - drv_data->rx; |
769 | switch (drv_data->n_bytes) { |
770 | case 4: |
771 | bytes_left >>= 1; |
772 | case 2: |
773 | bytes_left >>= 1; |
774 | } |
775 | |
776 | if (bytes_left > RX_THRESH_DFLT) |
777 | bytes_left = RX_THRESH_DFLT; |
778 | |
779 | sccr1_reg |= SSCR1_RxTresh(bytes_left); |
780 | } |
781 | write_SSCR1(sccr1_reg, reg); |
782 | } |
783 | |
784 | /* We did something */ |
785 | return IRQ_HANDLED; |
786 | } |
787 | |
788 | static irqreturn_t ssp_int(int irq, void *dev_id) |
789 | { |
790 | struct driver_data *drv_data = dev_id; |
791 | void __iomem *reg = drv_data->ioaddr; |
792 | u32 sccr1_reg = read_SSCR1(reg); |
793 | u32 mask = drv_data->mask_sr; |
794 | u32 status; |
795 | |
796 | status = read_SSSR(reg); |
797 | |
798 | /* Ignore possible writes if we don't need to write */ |
799 | if (!(sccr1_reg & SSCR1_TIE)) |
800 | mask &= ~SSSR_TFS; |
801 | |
802 | if (!(status & mask)) |
803 | return IRQ_NONE; |
804 | |
805 | if (!drv_data->cur_msg) { |
806 | |
807 | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
808 | write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); |
809 | if (!pxa25x_ssp_comp(drv_data)) |
810 | write_SSTO(0, reg); |
811 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
812 | |
813 | dev_err(&drv_data->pdev->dev, "bad message state " |
814 | "in interrupt handler\n"); |
815 | |
816 | /* Never fail */ |
817 | return IRQ_HANDLED; |
818 | } |
819 | |
820 | return drv_data->transfer_handler(drv_data); |
821 | } |
822 | |
823 | static int set_dma_burst_and_threshold(struct chip_data *chip, |
824 | struct spi_device *spi, |
825 | u8 bits_per_word, u32 *burst_code, |
826 | u32 *threshold) |
827 | { |
828 | struct pxa2xx_spi_chip *chip_info = |
829 | (struct pxa2xx_spi_chip *)spi->controller_data; |
830 | int bytes_per_word; |
831 | int burst_bytes; |
832 | int thresh_words; |
833 | int req_burst_size; |
834 | int retval = 0; |
835 | |
836 | /* Set the threshold (in registers) to equal the same amount of data |
837 | * as represented by burst size (in bytes). The computation below |
838 | * is (burst_size rounded up to nearest 8 byte, word or long word) |
839 | * divided by (bytes/register); the tx threshold is the inverse of |
840 | * the rx, so that there will always be enough data in the rx fifo |
841 | * to satisfy a burst, and there will always be enough space in the |
842 | * tx fifo to accept a burst (a tx burst will overwrite the fifo if |
843 | * there is not enough space), there must always remain enough empty |
844 | * space in the rx fifo for any data loaded to the tx fifo. |
845 | * Whenever burst_size (in bytes) equals bits/word, the fifo threshold |
846 | * will be 8, or half the fifo; |
847 | * The threshold can only be set to 2, 4 or 8, but not 16, because |
848 | * to burst 16 to the tx fifo, the fifo would have to be empty; |
849 | * however, the minimum fifo trigger level is 1, and the tx will |
850 | * request service when the fifo is at this level, with only 15 spaces. |
851 | */ |
852 | |
853 | /* find bytes/word */ |
854 | if (bits_per_word <= 8) |
855 | bytes_per_word = 1; |
856 | else if (bits_per_word <= 16) |
857 | bytes_per_word = 2; |
858 | else |
859 | bytes_per_word = 4; |
860 | |
861 | /* use struct pxa2xx_spi_chip->dma_burst_size if available */ |
862 | if (chip_info) |
863 | req_burst_size = chip_info->dma_burst_size; |
864 | else { |
865 | switch (chip->dma_burst_size) { |
866 | default: |
867 | /* if the default burst size is not set, |
868 | * do it now */ |
869 | chip->dma_burst_size = DCMD_BURST8; |
870 | case DCMD_BURST8: |
871 | req_burst_size = 8; |
872 | break; |
873 | case DCMD_BURST16: |
874 | req_burst_size = 16; |
875 | break; |
876 | case DCMD_BURST32: |
877 | req_burst_size = 32; |
878 | break; |
879 | } |
880 | } |
881 | if (req_burst_size <= 8) { |
882 | *burst_code = DCMD_BURST8; |
883 | burst_bytes = 8; |
884 | } else if (req_burst_size <= 16) { |
885 | if (bytes_per_word == 1) { |
886 | /* don't burst more than 1/2 the fifo */ |
887 | *burst_code = DCMD_BURST8; |
888 | burst_bytes = 8; |
889 | retval = 1; |
890 | } else { |
891 | *burst_code = DCMD_BURST16; |
892 | burst_bytes = 16; |
893 | } |
894 | } else { |
895 | if (bytes_per_word == 1) { |
896 | /* don't burst more than 1/2 the fifo */ |
897 | *burst_code = DCMD_BURST8; |
898 | burst_bytes = 8; |
899 | retval = 1; |
900 | } else if (bytes_per_word == 2) { |
901 | /* don't burst more than 1/2 the fifo */ |
902 | *burst_code = DCMD_BURST16; |
903 | burst_bytes = 16; |
904 | retval = 1; |
905 | } else { |
906 | *burst_code = DCMD_BURST32; |
907 | burst_bytes = 32; |
908 | } |
909 | } |
910 | |
911 | thresh_words = burst_bytes / bytes_per_word; |
912 | |
913 | /* thresh_words will be between 2 and 8 */ |
914 | *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) |
915 | | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); |
916 | |
917 | return retval; |
918 | } |
919 | |
920 | static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate) |
921 | { |
922 | unsigned long ssp_clk = clk_get_rate(ssp->clk); |
923 | |
924 | if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) |
925 | return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8; |
926 | else |
927 | return ((ssp_clk / rate - 1) & 0xfff) << 8; |
928 | } |
929 | |
930 | static void pump_transfers(unsigned long data) |
931 | { |
932 | struct driver_data *drv_data = (struct driver_data *)data; |
933 | struct spi_message *message = NULL; |
934 | struct spi_transfer *transfer = NULL; |
935 | struct spi_transfer *previous = NULL; |
936 | struct chip_data *chip = NULL; |
937 | struct ssp_device *ssp = drv_data->ssp; |
938 | void __iomem *reg = drv_data->ioaddr; |
939 | u32 clk_div = 0; |
940 | u8 bits = 0; |
941 | u32 speed = 0; |
942 | u32 cr0; |
943 | u32 cr1; |
944 | u32 dma_thresh = drv_data->cur_chip->dma_threshold; |
945 | u32 dma_burst = drv_data->cur_chip->dma_burst_size; |
946 | |
947 | /* Get current state information */ |
948 | message = drv_data->cur_msg; |
949 | transfer = drv_data->cur_transfer; |
950 | chip = drv_data->cur_chip; |
951 | |
952 | /* Handle for abort */ |
953 | if (message->state == ERROR_STATE) { |
954 | message->status = -EIO; |
955 | giveback(drv_data); |
956 | return; |
957 | } |
958 | |
959 | /* Handle end of message */ |
960 | if (message->state == DONE_STATE) { |
961 | message->status = 0; |
962 | giveback(drv_data); |
963 | return; |
964 | } |
965 | |
966 | /* Delay if requested at end of transfer before CS change */ |
967 | if (message->state == RUNNING_STATE) { |
968 | previous = list_entry(transfer->transfer_list.prev, |
969 | struct spi_transfer, |
970 | transfer_list); |
971 | if (previous->delay_usecs) |
972 | udelay(previous->delay_usecs); |
973 | |
974 | /* Drop chip select only if cs_change is requested */ |
975 | if (previous->cs_change) |
976 | cs_deassert(drv_data); |
977 | } |
978 | |
979 | /* Check for transfers that need multiple DMA segments */ |
980 | if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { |
981 | |
982 | /* reject already-mapped transfers; PIO won't always work */ |
983 | if (message->is_dma_mapped |
984 | || transfer->rx_dma || transfer->tx_dma) { |
985 | dev_err(&drv_data->pdev->dev, |
986 | "pump_transfers: mapped transfer length " |
987 | "of %u is greater than %d\n", |
988 | transfer->len, MAX_DMA_LEN); |
989 | message->status = -EINVAL; |
990 | giveback(drv_data); |
991 | return; |
992 | } |
993 | |
994 | /* warn ... we force this to PIO mode */ |
995 | if (printk_ratelimit()) |
996 | dev_warn(&message->spi->dev, "pump_transfers: " |
997 | "DMA disabled for transfer length %ld " |
998 | "greater than %d\n", |
999 | (long)drv_data->len, MAX_DMA_LEN); |
1000 | } |
1001 | |
1002 | /* Setup the transfer state based on the type of transfer */ |
1003 | if (flush(drv_data) == 0) { |
1004 | dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); |
1005 | message->status = -EIO; |
1006 | giveback(drv_data); |
1007 | return; |
1008 | } |
1009 | drv_data->n_bytes = chip->n_bytes; |
1010 | drv_data->dma_width = chip->dma_width; |
1011 | drv_data->tx = (void *)transfer->tx_buf; |
1012 | drv_data->tx_end = drv_data->tx + transfer->len; |
1013 | drv_data->rx = transfer->rx_buf; |
1014 | drv_data->rx_end = drv_data->rx + transfer->len; |
1015 | drv_data->rx_dma = transfer->rx_dma; |
1016 | drv_data->tx_dma = transfer->tx_dma; |
1017 | drv_data->len = transfer->len & DCMD_LENGTH; |
1018 | drv_data->write = drv_data->tx ? chip->write : null_writer; |
1019 | drv_data->read = drv_data->rx ? chip->read : null_reader; |
1020 | |
1021 | /* Change speed and bit per word on a per transfer */ |
1022 | cr0 = chip->cr0; |
1023 | if (transfer->speed_hz || transfer->bits_per_word) { |
1024 | |
1025 | bits = chip->bits_per_word; |
1026 | speed = chip->speed_hz; |
1027 | |
1028 | if (transfer->speed_hz) |
1029 | speed = transfer->speed_hz; |
1030 | |
1031 | if (transfer->bits_per_word) |
1032 | bits = transfer->bits_per_word; |
1033 | |
1034 | clk_div = ssp_get_clk_div(ssp, speed); |
1035 | |
1036 | if (bits <= 8) { |
1037 | drv_data->n_bytes = 1; |
1038 | drv_data->dma_width = DCMD_WIDTH1; |
1039 | drv_data->read = drv_data->read != null_reader ? |
1040 | u8_reader : null_reader; |
1041 | drv_data->write = drv_data->write != null_writer ? |
1042 | u8_writer : null_writer; |
1043 | } else if (bits <= 16) { |
1044 | drv_data->n_bytes = 2; |
1045 | drv_data->dma_width = DCMD_WIDTH2; |
1046 | drv_data->read = drv_data->read != null_reader ? |
1047 | u16_reader : null_reader; |
1048 | drv_data->write = drv_data->write != null_writer ? |
1049 | u16_writer : null_writer; |
1050 | } else if (bits <= 32) { |
1051 | drv_data->n_bytes = 4; |
1052 | drv_data->dma_width = DCMD_WIDTH4; |
1053 | drv_data->read = drv_data->read != null_reader ? |
1054 | u32_reader : null_reader; |
1055 | drv_data->write = drv_data->write != null_writer ? |
1056 | u32_writer : null_writer; |
1057 | } |
1058 | /* if bits/word is changed in dma mode, then must check the |
1059 | * thresholds and burst also */ |
1060 | if (chip->enable_dma) { |
1061 | if (set_dma_burst_and_threshold(chip, message->spi, |
1062 | bits, &dma_burst, |
1063 | &dma_thresh)) |
1064 | if (printk_ratelimit()) |
1065 | dev_warn(&message->spi->dev, |
1066 | "pump_transfers: " |
1067 | "DMA burst size reduced to " |
1068 | "match bits_per_word\n"); |
1069 | } |
1070 | |
1071 | cr0 = clk_div |
1072 | | SSCR0_Motorola |
1073 | | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) |
1074 | | SSCR0_SSE |
1075 | | (bits > 16 ? SSCR0_EDSS : 0); |
1076 | } |
1077 | |
1078 | message->state = RUNNING_STATE; |
1079 | |
1080 | /* Try to map dma buffer and do a dma transfer if successful, but |
1081 | * only if the length is non-zero and less than MAX_DMA_LEN. |
1082 | * |
1083 | * Zero-length non-descriptor DMA is illegal on PXA2xx; force use |
1084 | * of PIO instead. Care is needed above because the transfer may |
1085 | * have have been passed with buffers that are already dma mapped. |
1086 | * A zero-length transfer in PIO mode will not try to write/read |
1087 | * to/from the buffers |
1088 | * |
1089 | * REVISIT large transfers are exactly where we most want to be |
1090 | * using DMA. If this happens much, split those transfers into |
1091 | * multiple DMA segments rather than forcing PIO. |
1092 | */ |
1093 | drv_data->dma_mapped = 0; |
1094 | if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN) |
1095 | drv_data->dma_mapped = map_dma_buffers(drv_data); |
1096 | if (drv_data->dma_mapped) { |
1097 | |
1098 | /* Ensure we have the correct interrupt handler */ |
1099 | drv_data->transfer_handler = dma_transfer; |
1100 | |
1101 | /* Setup rx DMA Channel */ |
1102 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
1103 | DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; |
1104 | DTADR(drv_data->rx_channel) = drv_data->rx_dma; |
1105 | if (drv_data->rx == drv_data->null_dma_buf) |
1106 | /* No target address increment */ |
1107 | DCMD(drv_data->rx_channel) = DCMD_FLOWSRC |
1108 | | drv_data->dma_width |
1109 | | dma_burst |
1110 | | drv_data->len; |
1111 | else |
1112 | DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR |
1113 | | DCMD_FLOWSRC |
1114 | | drv_data->dma_width |
1115 | | dma_burst |
1116 | | drv_data->len; |
1117 | |
1118 | /* Setup tx DMA Channel */ |
1119 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
1120 | DSADR(drv_data->tx_channel) = drv_data->tx_dma; |
1121 | DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; |
1122 | if (drv_data->tx == drv_data->null_dma_buf) |
1123 | /* No source address increment */ |
1124 | DCMD(drv_data->tx_channel) = DCMD_FLOWTRG |
1125 | | drv_data->dma_width |
1126 | | dma_burst |
1127 | | drv_data->len; |
1128 | else |
1129 | DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR |
1130 | | DCMD_FLOWTRG |
1131 | | drv_data->dma_width |
1132 | | dma_burst |
1133 | | drv_data->len; |
1134 | |
1135 | /* Enable dma end irqs on SSP to detect end of transfer */ |
1136 | if (drv_data->ssp_type == PXA25x_SSP) |
1137 | DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; |
1138 | |
1139 | /* Clear status and start DMA engine */ |
1140 | cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; |
1141 | write_SSSR(drv_data->clear_sr, reg); |
1142 | DCSR(drv_data->rx_channel) |= DCSR_RUN; |
1143 | DCSR(drv_data->tx_channel) |= DCSR_RUN; |
1144 | } else { |
1145 | /* Ensure we have the correct interrupt handler */ |
1146 | drv_data->transfer_handler = interrupt_transfer; |
1147 | |
1148 | /* Clear status */ |
1149 | cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; |
1150 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
1151 | } |
1152 | |
1153 | /* see if we need to reload the config registers */ |
1154 | if ((read_SSCR0(reg) != cr0) |
1155 | || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) != |
1156 | (cr1 & SSCR1_CHANGE_MASK)) { |
1157 | |
1158 | /* stop the SSP, and update the other bits */ |
1159 | write_SSCR0(cr0 & ~SSCR0_SSE, reg); |
1160 | if (!pxa25x_ssp_comp(drv_data)) |
1161 | write_SSTO(chip->timeout, reg); |
1162 | /* first set CR1 without interrupt and service enables */ |
1163 | write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg); |
1164 | /* restart the SSP */ |
1165 | write_SSCR0(cr0, reg); |
1166 | |
1167 | } else { |
1168 | if (!pxa25x_ssp_comp(drv_data)) |
1169 | write_SSTO(chip->timeout, reg); |
1170 | } |
1171 | |
1172 | cs_assert(drv_data); |
1173 | |
1174 | /* after chip select, release the data by enabling service |
1175 | * requests and interrupts, without changing any mode bits */ |
1176 | write_SSCR1(cr1, reg); |
1177 | } |
1178 | |
1179 | static void pump_messages(struct work_struct *work) |
1180 | { |
1181 | struct driver_data *drv_data = |
1182 | container_of(work, struct driver_data, pump_messages); |
1183 | unsigned long flags; |
1184 | |
1185 | /* Lock queue and check for queue work */ |
1186 | spin_lock_irqsave(&drv_data->lock, flags); |
1187 | if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) { |
1188 | drv_data->busy = 0; |
1189 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1190 | return; |
1191 | } |
1192 | |
1193 | /* Make sure we are not already running a message */ |
1194 | if (drv_data->cur_msg) { |
1195 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1196 | return; |
1197 | } |
1198 | |
1199 | /* Extract head of queue */ |
1200 | drv_data->cur_msg = list_entry(drv_data->queue.next, |
1201 | struct spi_message, queue); |
1202 | list_del_init(&drv_data->cur_msg->queue); |
1203 | |
1204 | /* Initial message state*/ |
1205 | drv_data->cur_msg->state = START_STATE; |
1206 | drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, |
1207 | struct spi_transfer, |
1208 | transfer_list); |
1209 | |
1210 | /* prepare to setup the SSP, in pump_transfers, using the per |
1211 | * chip configuration */ |
1212 | drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); |
1213 | |
1214 | /* Mark as busy and launch transfers */ |
1215 | tasklet_schedule(&drv_data->pump_transfers); |
1216 | |
1217 | drv_data->busy = 1; |
1218 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1219 | } |
1220 | |
1221 | static int transfer(struct spi_device *spi, struct spi_message *msg) |
1222 | { |
1223 | struct driver_data *drv_data = spi_master_get_devdata(spi->master); |
1224 | unsigned long flags; |
1225 | |
1226 | spin_lock_irqsave(&drv_data->lock, flags); |
1227 | |
1228 | if (drv_data->run == QUEUE_STOPPED) { |
1229 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1230 | return -ESHUTDOWN; |
1231 | } |
1232 | |
1233 | msg->actual_length = 0; |
1234 | msg->status = -EINPROGRESS; |
1235 | msg->state = START_STATE; |
1236 | |
1237 | list_add_tail(&msg->queue, &drv_data->queue); |
1238 | |
1239 | if (drv_data->run == QUEUE_RUNNING && !drv_data->busy) |
1240 | queue_work(drv_data->workqueue, &drv_data->pump_messages); |
1241 | |
1242 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1243 | |
1244 | return 0; |
1245 | } |
1246 | |
1247 | static int setup_cs(struct spi_device *spi, struct chip_data *chip, |
1248 | struct pxa2xx_spi_chip *chip_info) |
1249 | { |
1250 | int err = 0; |
1251 | |
1252 | if (chip == NULL || chip_info == NULL) |
1253 | return 0; |
1254 | |
1255 | /* NOTE: setup() can be called multiple times, possibly with |
1256 | * different chip_info, release previously requested GPIO |
1257 | */ |
1258 | if (gpio_is_valid(chip->gpio_cs)) |
1259 | gpio_free(chip->gpio_cs); |
1260 | |
1261 | /* If (*cs_control) is provided, ignore GPIO chip select */ |
1262 | if (chip_info->cs_control) { |
1263 | chip->cs_control = chip_info->cs_control; |
1264 | return 0; |
1265 | } |
1266 | |
1267 | if (gpio_is_valid(chip_info->gpio_cs)) { |
1268 | err = gpio_request(chip_info->gpio_cs, "SPI_CS"); |
1269 | if (err) { |
1270 | dev_err(&spi->dev, "failed to request chip select " |
1271 | "GPIO%d\n", chip_info->gpio_cs); |
1272 | return err; |
1273 | } |
1274 | |
1275 | chip->gpio_cs = chip_info->gpio_cs; |
1276 | chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; |
1277 | |
1278 | err = gpio_direction_output(chip->gpio_cs, |
1279 | !chip->gpio_cs_inverted); |
1280 | } |
1281 | |
1282 | return err; |
1283 | } |
1284 | |
1285 | static int setup(struct spi_device *spi) |
1286 | { |
1287 | struct pxa2xx_spi_chip *chip_info = NULL; |
1288 | struct chip_data *chip; |
1289 | struct driver_data *drv_data = spi_master_get_devdata(spi->master); |
1290 | struct ssp_device *ssp = drv_data->ssp; |
1291 | unsigned int clk_div; |
1292 | uint tx_thres = TX_THRESH_DFLT; |
1293 | uint rx_thres = RX_THRESH_DFLT; |
1294 | |
1295 | if (!pxa25x_ssp_comp(drv_data) |
1296 | && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) { |
1297 | dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " |
1298 | "b/w not 4-32 for type non-PXA25x_SSP\n", |
1299 | drv_data->ssp_type, spi->bits_per_word); |
1300 | return -EINVAL; |
1301 | } else if (pxa25x_ssp_comp(drv_data) |
1302 | && (spi->bits_per_word < 4 |
1303 | || spi->bits_per_word > 16)) { |
1304 | dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " |
1305 | "b/w not 4-16 for type PXA25x_SSP\n", |
1306 | drv_data->ssp_type, spi->bits_per_word); |
1307 | return -EINVAL; |
1308 | } |
1309 | |
1310 | /* Only alloc on first setup */ |
1311 | chip = spi_get_ctldata(spi); |
1312 | if (!chip) { |
1313 | chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
1314 | if (!chip) { |
1315 | dev_err(&spi->dev, |
1316 | "failed setup: can't allocate chip data\n"); |
1317 | return -ENOMEM; |
1318 | } |
1319 | |
1320 | if (drv_data->ssp_type == CE4100_SSP) { |
1321 | if (spi->chip_select > 4) { |
1322 | dev_err(&spi->dev, "failed setup: " |
1323 | "cs number must not be > 4.\n"); |
1324 | kfree(chip); |
1325 | return -EINVAL; |
1326 | } |
1327 | |
1328 | chip->frm = spi->chip_select; |
1329 | } else |
1330 | chip->gpio_cs = -1; |
1331 | chip->enable_dma = 0; |
1332 | chip->timeout = TIMOUT_DFLT; |
1333 | chip->dma_burst_size = drv_data->master_info->enable_dma ? |
1334 | DCMD_BURST8 : 0; |
1335 | } |
1336 | |
1337 | /* protocol drivers may change the chip settings, so... |
1338 | * if chip_info exists, use it */ |
1339 | chip_info = spi->controller_data; |
1340 | |
1341 | /* chip_info isn't always needed */ |
1342 | chip->cr1 = 0; |
1343 | if (chip_info) { |
1344 | if (chip_info->timeout) |
1345 | chip->timeout = chip_info->timeout; |
1346 | if (chip_info->tx_threshold) |
1347 | tx_thres = chip_info->tx_threshold; |
1348 | if (chip_info->rx_threshold) |
1349 | rx_thres = chip_info->rx_threshold; |
1350 | chip->enable_dma = drv_data->master_info->enable_dma; |
1351 | chip->dma_threshold = 0; |
1352 | if (chip_info->enable_loopback) |
1353 | chip->cr1 = SSCR1_LBM; |
1354 | } |
1355 | |
1356 | chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | |
1357 | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); |
1358 | |
1359 | /* set dma burst and threshold outside of chip_info path so that if |
1360 | * chip_info goes away after setting chip->enable_dma, the |
1361 | * burst and threshold can still respond to changes in bits_per_word */ |
1362 | if (chip->enable_dma) { |
1363 | /* set up legal burst and threshold for dma */ |
1364 | if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word, |
1365 | &chip->dma_burst_size, |
1366 | &chip->dma_threshold)) { |
1367 | dev_warn(&spi->dev, "in setup: DMA burst size reduced " |
1368 | "to match bits_per_word\n"); |
1369 | } |
1370 | } |
1371 | |
1372 | clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz); |
1373 | chip->speed_hz = spi->max_speed_hz; |
1374 | |
1375 | chip->cr0 = clk_div |
1376 | | SSCR0_Motorola |
1377 | | SSCR0_DataSize(spi->bits_per_word > 16 ? |
1378 | spi->bits_per_word - 16 : spi->bits_per_word) |
1379 | | SSCR0_SSE |
1380 | | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0); |
1381 | chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); |
1382 | chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) |
1383 | | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); |
1384 | |
1385 | /* NOTE: PXA25x_SSP _could_ use external clocking ... */ |
1386 | if (!pxa25x_ssp_comp(drv_data)) |
1387 | dev_dbg(&spi->dev, "%ld Hz actual, %s\n", |
1388 | clk_get_rate(ssp->clk) |
1389 | / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)), |
1390 | chip->enable_dma ? "DMA" : "PIO"); |
1391 | else |
1392 | dev_dbg(&spi->dev, "%ld Hz actual, %s\n", |
1393 | clk_get_rate(ssp->clk) / 2 |
1394 | / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)), |
1395 | chip->enable_dma ? "DMA" : "PIO"); |
1396 | |
1397 | if (spi->bits_per_word <= 8) { |
1398 | chip->n_bytes = 1; |
1399 | chip->dma_width = DCMD_WIDTH1; |
1400 | chip->read = u8_reader; |
1401 | chip->write = u8_writer; |
1402 | } else if (spi->bits_per_word <= 16) { |
1403 | chip->n_bytes = 2; |
1404 | chip->dma_width = DCMD_WIDTH2; |
1405 | chip->read = u16_reader; |
1406 | chip->write = u16_writer; |
1407 | } else if (spi->bits_per_word <= 32) { |
1408 | chip->cr0 |= SSCR0_EDSS; |
1409 | chip->n_bytes = 4; |
1410 | chip->dma_width = DCMD_WIDTH4; |
1411 | chip->read = u32_reader; |
1412 | chip->write = u32_writer; |
1413 | } else { |
1414 | dev_err(&spi->dev, "invalid wordsize\n"); |
1415 | return -ENODEV; |
1416 | } |
1417 | chip->bits_per_word = spi->bits_per_word; |
1418 | |
1419 | spi_set_ctldata(spi, chip); |
1420 | |
1421 | if (drv_data->ssp_type == CE4100_SSP) |
1422 | return 0; |
1423 | |
1424 | return setup_cs(spi, chip, chip_info); |
1425 | } |
1426 | |
1427 | static void cleanup(struct spi_device *spi) |
1428 | { |
1429 | struct chip_data *chip = spi_get_ctldata(spi); |
1430 | struct driver_data *drv_data = spi_master_get_devdata(spi->master); |
1431 | |
1432 | if (!chip) |
1433 | return; |
1434 | |
1435 | if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) |
1436 | gpio_free(chip->gpio_cs); |
1437 | |
1438 | kfree(chip); |
1439 | } |
1440 | |
1441 | static int __devinit init_queue(struct driver_data *drv_data) |
1442 | { |
1443 | INIT_LIST_HEAD(&drv_data->queue); |
1444 | spin_lock_init(&drv_data->lock); |
1445 | |
1446 | drv_data->run = QUEUE_STOPPED; |
1447 | drv_data->busy = 0; |
1448 | |
1449 | tasklet_init(&drv_data->pump_transfers, |
1450 | pump_transfers, (unsigned long)drv_data); |
1451 | |
1452 | INIT_WORK(&drv_data->pump_messages, pump_messages); |
1453 | drv_data->workqueue = create_singlethread_workqueue( |
1454 | dev_name(drv_data->master->dev.parent)); |
1455 | if (drv_data->workqueue == NULL) |
1456 | return -EBUSY; |
1457 | |
1458 | return 0; |
1459 | } |
1460 | |
1461 | static int start_queue(struct driver_data *drv_data) |
1462 | { |
1463 | unsigned long flags; |
1464 | |
1465 | spin_lock_irqsave(&drv_data->lock, flags); |
1466 | |
1467 | if (drv_data->run == QUEUE_RUNNING || drv_data->busy) { |
1468 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1469 | return -EBUSY; |
1470 | } |
1471 | |
1472 | drv_data->run = QUEUE_RUNNING; |
1473 | drv_data->cur_msg = NULL; |
1474 | drv_data->cur_transfer = NULL; |
1475 | drv_data->cur_chip = NULL; |
1476 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1477 | |
1478 | queue_work(drv_data->workqueue, &drv_data->pump_messages); |
1479 | |
1480 | return 0; |
1481 | } |
1482 | |
1483 | static int stop_queue(struct driver_data *drv_data) |
1484 | { |
1485 | unsigned long flags; |
1486 | unsigned limit = 500; |
1487 | int status = 0; |
1488 | |
1489 | spin_lock_irqsave(&drv_data->lock, flags); |
1490 | |
1491 | /* This is a bit lame, but is optimized for the common execution path. |
1492 | * A wait_queue on the drv_data->busy could be used, but then the common |
1493 | * execution path (pump_messages) would be required to call wake_up or |
1494 | * friends on every SPI message. Do this instead */ |
1495 | drv_data->run = QUEUE_STOPPED; |
1496 | while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) { |
1497 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1498 | msleep(10); |
1499 | spin_lock_irqsave(&drv_data->lock, flags); |
1500 | } |
1501 | |
1502 | if (!list_empty(&drv_data->queue) || drv_data->busy) |
1503 | status = -EBUSY; |
1504 | |
1505 | spin_unlock_irqrestore(&drv_data->lock, flags); |
1506 | |
1507 | return status; |
1508 | } |
1509 | |
1510 | static int destroy_queue(struct driver_data *drv_data) |
1511 | { |
1512 | int status; |
1513 | |
1514 | status = stop_queue(drv_data); |
1515 | /* we are unloading the module or failing to load (only two calls |
1516 | * to this routine), and neither call can handle a return value. |
1517 | * However, destroy_workqueue calls flush_workqueue, and that will |
1518 | * block until all work is done. If the reason that stop_queue |
1519 | * timed out is that the work will never finish, then it does no |
1520 | * good to call destroy_workqueue, so return anyway. */ |
1521 | if (status != 0) |
1522 | return status; |
1523 | |
1524 | destroy_workqueue(drv_data->workqueue); |
1525 | |
1526 | return 0; |
1527 | } |
1528 | |
1529 | static int __devinit pxa2xx_spi_probe(struct platform_device *pdev) |
1530 | { |
1531 | struct device *dev = &pdev->dev; |
1532 | struct pxa2xx_spi_master *platform_info; |
1533 | struct spi_master *master; |
1534 | struct driver_data *drv_data; |
1535 | struct ssp_device *ssp; |
1536 | int status; |
1537 | |
1538 | platform_info = dev->platform_data; |
1539 | |
1540 | ssp = pxa_ssp_request(pdev->id, pdev->name); |
1541 | if (ssp == NULL) { |
1542 | dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id); |
1543 | return -ENODEV; |
1544 | } |
1545 | |
1546 | /* Allocate master with space for drv_data and null dma buffer */ |
1547 | master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); |
1548 | if (!master) { |
1549 | dev_err(&pdev->dev, "cannot alloc spi_master\n"); |
1550 | pxa_ssp_free(ssp); |
1551 | return -ENOMEM; |
1552 | } |
1553 | drv_data = spi_master_get_devdata(master); |
1554 | drv_data->master = master; |
1555 | drv_data->master_info = platform_info; |
1556 | drv_data->pdev = pdev; |
1557 | drv_data->ssp = ssp; |
1558 | |
1559 | master->dev.parent = &pdev->dev; |
1560 | master->dev.of_node = pdev->dev.of_node; |
1561 | /* the spi->mode bits understood by this driver: */ |
1562 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
1563 | |
1564 | master->bus_num = pdev->id; |
1565 | master->num_chipselect = platform_info->num_chipselect; |
1566 | master->dma_alignment = DMA_ALIGNMENT; |
1567 | master->cleanup = cleanup; |
1568 | master->setup = setup; |
1569 | master->transfer = transfer; |
1570 | |
1571 | drv_data->ssp_type = ssp->type; |
1572 | drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data + |
1573 | sizeof(struct driver_data)), 8); |
1574 | |
1575 | drv_data->ioaddr = ssp->mmio_base; |
1576 | drv_data->ssdr_physical = ssp->phys_base + SSDR; |
1577 | if (pxa25x_ssp_comp(drv_data)) { |
1578 | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; |
1579 | drv_data->dma_cr1 = 0; |
1580 | drv_data->clear_sr = SSSR_ROR; |
1581 | drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; |
1582 | } else { |
1583 | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; |
1584 | drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE; |
1585 | drv_data->clear_sr = SSSR_ROR | SSSR_TINT; |
1586 | drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; |
1587 | } |
1588 | |
1589 | status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), |
1590 | drv_data); |
1591 | if (status < 0) { |
1592 | dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); |
1593 | goto out_error_master_alloc; |
1594 | } |
1595 | |
1596 | /* Setup DMA if requested */ |
1597 | drv_data->tx_channel = -1; |
1598 | drv_data->rx_channel = -1; |
1599 | if (platform_info->enable_dma) { |
1600 | |
1601 | /* Get two DMA channels (rx and tx) */ |
1602 | drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", |
1603 | DMA_PRIO_HIGH, |
1604 | dma_handler, |
1605 | drv_data); |
1606 | if (drv_data->rx_channel < 0) { |
1607 | dev_err(dev, "problem (%d) requesting rx channel\n", |
1608 | drv_data->rx_channel); |
1609 | status = -ENODEV; |
1610 | goto out_error_irq_alloc; |
1611 | } |
1612 | drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", |
1613 | DMA_PRIO_MEDIUM, |
1614 | dma_handler, |
1615 | drv_data); |
1616 | if (drv_data->tx_channel < 0) { |
1617 | dev_err(dev, "problem (%d) requesting tx channel\n", |
1618 | drv_data->tx_channel); |
1619 | status = -ENODEV; |
1620 | goto out_error_dma_alloc; |
1621 | } |
1622 | |
1623 | DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; |
1624 | DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; |
1625 | } |
1626 | |
1627 | /* Enable SOC clock */ |
1628 | clk_enable(ssp->clk); |
1629 | |
1630 | /* Load default SSP configuration */ |
1631 | write_SSCR0(0, drv_data->ioaddr); |
1632 | write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) | |
1633 | SSCR1_TxTresh(TX_THRESH_DFLT), |
1634 | drv_data->ioaddr); |
1635 | write_SSCR0(SSCR0_SCR(2) |
1636 | | SSCR0_Motorola |
1637 | | SSCR0_DataSize(8), |
1638 | drv_data->ioaddr); |
1639 | if (!pxa25x_ssp_comp(drv_data)) |
1640 | write_SSTO(0, drv_data->ioaddr); |
1641 | write_SSPSP(0, drv_data->ioaddr); |
1642 | |
1643 | /* Initial and start queue */ |
1644 | status = init_queue(drv_data); |
1645 | if (status != 0) { |
1646 | dev_err(&pdev->dev, "problem initializing queue\n"); |
1647 | goto out_error_clock_enabled; |
1648 | } |
1649 | status = start_queue(drv_data); |
1650 | if (status != 0) { |
1651 | dev_err(&pdev->dev, "problem starting queue\n"); |
1652 | goto out_error_clock_enabled; |
1653 | } |
1654 | |
1655 | /* Register with the SPI framework */ |
1656 | platform_set_drvdata(pdev, drv_data); |
1657 | status = spi_register_master(master); |
1658 | if (status != 0) { |
1659 | dev_err(&pdev->dev, "problem registering spi master\n"); |
1660 | goto out_error_queue_alloc; |
1661 | } |
1662 | |
1663 | return status; |
1664 | |
1665 | out_error_queue_alloc: |
1666 | destroy_queue(drv_data); |
1667 | |
1668 | out_error_clock_enabled: |
1669 | clk_disable(ssp->clk); |
1670 | |
1671 | out_error_dma_alloc: |
1672 | if (drv_data->tx_channel != -1) |
1673 | pxa_free_dma(drv_data->tx_channel); |
1674 | if (drv_data->rx_channel != -1) |
1675 | pxa_free_dma(drv_data->rx_channel); |
1676 | |
1677 | out_error_irq_alloc: |
1678 | free_irq(ssp->irq, drv_data); |
1679 | |
1680 | out_error_master_alloc: |
1681 | spi_master_put(master); |
1682 | pxa_ssp_free(ssp); |
1683 | return status; |
1684 | } |
1685 | |
1686 | static int pxa2xx_spi_remove(struct platform_device *pdev) |
1687 | { |
1688 | struct driver_data *drv_data = platform_get_drvdata(pdev); |
1689 | struct ssp_device *ssp; |
1690 | int status = 0; |
1691 | |
1692 | if (!drv_data) |
1693 | return 0; |
1694 | ssp = drv_data->ssp; |
1695 | |
1696 | /* Remove the queue */ |
1697 | status = destroy_queue(drv_data); |
1698 | if (status != 0) |
1699 | /* the kernel does not check the return status of this |
1700 | * this routine (mod->exit, within the kernel). Therefore |
1701 | * nothing is gained by returning from here, the module is |
1702 | * going away regardless, and we should not leave any more |
1703 | * resources allocated than necessary. We cannot free the |
1704 | * message memory in drv_data->queue, but we can release the |
1705 | * resources below. I think the kernel should honor -EBUSY |
1706 | * returns but... */ |
1707 | dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not " |
1708 | "complete, message memory not freed\n"); |
1709 | |
1710 | /* Disable the SSP at the peripheral and SOC level */ |
1711 | write_SSCR0(0, drv_data->ioaddr); |
1712 | clk_disable(ssp->clk); |
1713 | |
1714 | /* Release DMA */ |
1715 | if (drv_data->master_info->enable_dma) { |
1716 | DRCMR(ssp->drcmr_rx) = 0; |
1717 | DRCMR(ssp->drcmr_tx) = 0; |
1718 | pxa_free_dma(drv_data->tx_channel); |
1719 | pxa_free_dma(drv_data->rx_channel); |
1720 | } |
1721 | |
1722 | /* Release IRQ */ |
1723 | free_irq(ssp->irq, drv_data); |
1724 | |
1725 | /* Release SSP */ |
1726 | pxa_ssp_free(ssp); |
1727 | |
1728 | /* Disconnect from the SPI framework */ |
1729 | spi_unregister_master(drv_data->master); |
1730 | |
1731 | /* Prevent double remove */ |
1732 | platform_set_drvdata(pdev, NULL); |
1733 | |
1734 | return 0; |
1735 | } |
1736 | |
1737 | static void pxa2xx_spi_shutdown(struct platform_device *pdev) |
1738 | { |
1739 | int status = 0; |
1740 | |
1741 | if ((status = pxa2xx_spi_remove(pdev)) != 0) |
1742 | dev_err(&pdev->dev, "shutdown failed with %d\n", status); |
1743 | } |
1744 | |
1745 | #ifdef CONFIG_PM |
1746 | static int pxa2xx_spi_suspend(struct device *dev) |
1747 | { |
1748 | struct driver_data *drv_data = dev_get_drvdata(dev); |
1749 | struct ssp_device *ssp = drv_data->ssp; |
1750 | int status = 0; |
1751 | |
1752 | status = stop_queue(drv_data); |
1753 | if (status != 0) |
1754 | return status; |
1755 | write_SSCR0(0, drv_data->ioaddr); |
1756 | clk_disable(ssp->clk); |
1757 | |
1758 | return 0; |
1759 | } |
1760 | |
1761 | static int pxa2xx_spi_resume(struct device *dev) |
1762 | { |
1763 | struct driver_data *drv_data = dev_get_drvdata(dev); |
1764 | struct ssp_device *ssp = drv_data->ssp; |
1765 | int status = 0; |
1766 | |
1767 | if (drv_data->rx_channel != -1) |
1768 | DRCMR(drv_data->ssp->drcmr_rx) = |
1769 | DRCMR_MAPVLD | drv_data->rx_channel; |
1770 | if (drv_data->tx_channel != -1) |
1771 | DRCMR(drv_data->ssp->drcmr_tx) = |
1772 | DRCMR_MAPVLD | drv_data->tx_channel; |
1773 | |
1774 | /* Enable the SSP clock */ |
1775 | clk_enable(ssp->clk); |
1776 | |
1777 | /* Start the queue running */ |
1778 | status = start_queue(drv_data); |
1779 | if (status != 0) { |
1780 | dev_err(dev, "problem starting queue (%d)\n", status); |
1781 | return status; |
1782 | } |
1783 | |
1784 | return 0; |
1785 | } |
1786 | |
1787 | static const struct dev_pm_ops pxa2xx_spi_pm_ops = { |
1788 | .suspend = pxa2xx_spi_suspend, |
1789 | .resume = pxa2xx_spi_resume, |
1790 | }; |
1791 | #endif |
1792 | |
1793 | static struct platform_driver driver = { |
1794 | .driver = { |
1795 | .name = "pxa2xx-spi", |
1796 | .owner = THIS_MODULE, |
1797 | #ifdef CONFIG_PM |
1798 | .pm = &pxa2xx_spi_pm_ops, |
1799 | #endif |
1800 | }, |
1801 | .probe = pxa2xx_spi_probe, |
1802 | .remove = pxa2xx_spi_remove, |
1803 | .shutdown = pxa2xx_spi_shutdown, |
1804 | }; |
1805 | |
1806 | static int __init pxa2xx_spi_init(void) |
1807 | { |
1808 | return platform_driver_register(&driver); |
1809 | } |
1810 | subsys_initcall(pxa2xx_spi_init); |
1811 | |
1812 | static void __exit pxa2xx_spi_exit(void) |
1813 | { |
1814 | platform_driver_unregister(&driver); |
1815 | } |
1816 | module_exit(pxa2xx_spi_exit); |
1817 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9