Root/drivers/spi/spi-pxa2xx.c

1/*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19#include <linux/init.h>
20#include <linux/module.h>
21#include <linux/device.h>
22#include <linux/ioport.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/spi/pxa2xx_spi.h>
27#include <linux/dma-mapping.h>
28#include <linux/spi/spi.h>
29#include <linux/workqueue.h>
30#include <linux/delay.h>
31#include <linux/gpio.h>
32#include <linux/slab.h>
33
34#include <asm/io.h>
35#include <asm/irq.h>
36#include <asm/delay.h>
37
38
39MODULE_AUTHOR("Stephen Street");
40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41MODULE_LICENSE("GPL");
42MODULE_ALIAS("platform:pxa2xx-spi");
43
44#define MAX_BUSES 3
45
46#define TIMOUT_DFLT 1000
47
48#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
49#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
50#define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
51#define MAX_DMA_LEN 8191
52#define DMA_ALIGNMENT 8
53
54/*
55 * for testing SSCR1 changes that require SSP restart, basically
56 * everything except the service and interrupt enables, the pxa270 developer
57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
58 * list, but the PXA255 dev man says all bits without really meaning the
59 * service and interrupt enables
60 */
61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
66                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67
68#define DEFINE_SSP_REG(reg, off) \
69static inline u32 read_##reg(void const __iomem *p) \
70{ return __raw_readl(p + (off)); } \
71\
72static inline void write_##reg(u32 v, void __iomem *p) \
73{ __raw_writel(v, p + (off)); }
74
75DEFINE_SSP_REG(SSCR0, 0x00)
76DEFINE_SSP_REG(SSCR1, 0x04)
77DEFINE_SSP_REG(SSSR, 0x08)
78DEFINE_SSP_REG(SSITR, 0x0c)
79DEFINE_SSP_REG(SSDR, 0x10)
80DEFINE_SSP_REG(SSTO, 0x28)
81DEFINE_SSP_REG(SSPSP, 0x2c)
82
83#define START_STATE ((void*)0)
84#define RUNNING_STATE ((void*)1)
85#define DONE_STATE ((void*)2)
86#define ERROR_STATE ((void*)-1)
87
88#define QUEUE_RUNNING 0
89#define QUEUE_STOPPED 1
90
91struct driver_data {
92    /* Driver model hookup */
93    struct platform_device *pdev;
94
95    /* SSP Info */
96    struct ssp_device *ssp;
97
98    /* SPI framework hookup */
99    enum pxa_ssp_type ssp_type;
100    struct spi_master *master;
101
102    /* PXA hookup */
103    struct pxa2xx_spi_master *master_info;
104
105    /* DMA setup stuff */
106    int rx_channel;
107    int tx_channel;
108    u32 *null_dma_buf;
109
110    /* SSP register addresses */
111    void __iomem *ioaddr;
112    u32 ssdr_physical;
113
114    /* SSP masks*/
115    u32 dma_cr1;
116    u32 int_cr1;
117    u32 clear_sr;
118    u32 mask_sr;
119
120    /* Driver message queue */
121    struct workqueue_struct *workqueue;
122    struct work_struct pump_messages;
123    spinlock_t lock;
124    struct list_head queue;
125    int busy;
126    int run;
127
128    /* Message Transfer pump */
129    struct tasklet_struct pump_transfers;
130
131    /* Current message transfer state info */
132    struct spi_message* cur_msg;
133    struct spi_transfer* cur_transfer;
134    struct chip_data *cur_chip;
135    size_t len;
136    void *tx;
137    void *tx_end;
138    void *rx;
139    void *rx_end;
140    int dma_mapped;
141    dma_addr_t rx_dma;
142    dma_addr_t tx_dma;
143    size_t rx_map_len;
144    size_t tx_map_len;
145    u8 n_bytes;
146    u32 dma_width;
147    int (*write)(struct driver_data *drv_data);
148    int (*read)(struct driver_data *drv_data);
149    irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
150    void (*cs_control)(u32 command);
151};
152
153struct chip_data {
154    u32 cr0;
155    u32 cr1;
156    u32 psp;
157    u32 timeout;
158    u8 n_bytes;
159    u32 dma_width;
160    u32 dma_burst_size;
161    u32 threshold;
162    u32 dma_threshold;
163    u8 enable_dma;
164    u8 bits_per_word;
165    u32 speed_hz;
166    union {
167        int gpio_cs;
168        unsigned int frm;
169    };
170    int gpio_cs_inverted;
171    int (*write)(struct driver_data *drv_data);
172    int (*read)(struct driver_data *drv_data);
173    void (*cs_control)(u32 command);
174};
175
176static void pump_messages(struct work_struct *work);
177
178static void cs_assert(struct driver_data *drv_data)
179{
180    struct chip_data *chip = drv_data->cur_chip;
181
182    if (drv_data->ssp_type == CE4100_SSP) {
183        write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
184        return;
185    }
186
187    if (chip->cs_control) {
188        chip->cs_control(PXA2XX_CS_ASSERT);
189        return;
190    }
191
192    if (gpio_is_valid(chip->gpio_cs))
193        gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
194}
195
196static void cs_deassert(struct driver_data *drv_data)
197{
198    struct chip_data *chip = drv_data->cur_chip;
199
200    if (drv_data->ssp_type == CE4100_SSP)
201        return;
202
203    if (chip->cs_control) {
204        chip->cs_control(PXA2XX_CS_DEASSERT);
205        return;
206    }
207
208    if (gpio_is_valid(chip->gpio_cs))
209        gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
210}
211
212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
213{
214    void __iomem *reg = drv_data->ioaddr;
215
216    if (drv_data->ssp_type == CE4100_SSP)
217        val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
218
219    write_SSSR(val, reg);
220}
221
222static int pxa25x_ssp_comp(struct driver_data *drv_data)
223{
224    if (drv_data->ssp_type == PXA25x_SSP)
225        return 1;
226    if (drv_data->ssp_type == CE4100_SSP)
227        return 1;
228    return 0;
229}
230
231static int flush(struct driver_data *drv_data)
232{
233    unsigned long limit = loops_per_jiffy << 1;
234
235    void __iomem *reg = drv_data->ioaddr;
236
237    do {
238        while (read_SSSR(reg) & SSSR_RNE) {
239            read_SSDR(reg);
240        }
241    } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
242    write_SSSR_CS(drv_data, SSSR_ROR);
243
244    return limit;
245}
246
247static int null_writer(struct driver_data *drv_data)
248{
249    void __iomem *reg = drv_data->ioaddr;
250    u8 n_bytes = drv_data->n_bytes;
251
252    if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
253        || (drv_data->tx == drv_data->tx_end))
254        return 0;
255
256    write_SSDR(0, reg);
257    drv_data->tx += n_bytes;
258
259    return 1;
260}
261
262static int null_reader(struct driver_data *drv_data)
263{
264    void __iomem *reg = drv_data->ioaddr;
265    u8 n_bytes = drv_data->n_bytes;
266
267    while ((read_SSSR(reg) & SSSR_RNE)
268        && (drv_data->rx < drv_data->rx_end)) {
269        read_SSDR(reg);
270        drv_data->rx += n_bytes;
271    }
272
273    return drv_data->rx == drv_data->rx_end;
274}
275
276static int u8_writer(struct driver_data *drv_data)
277{
278    void __iomem *reg = drv_data->ioaddr;
279
280    if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
281        || (drv_data->tx == drv_data->tx_end))
282        return 0;
283
284    write_SSDR(*(u8 *)(drv_data->tx), reg);
285    ++drv_data->tx;
286
287    return 1;
288}
289
290static int u8_reader(struct driver_data *drv_data)
291{
292    void __iomem *reg = drv_data->ioaddr;
293
294    while ((read_SSSR(reg) & SSSR_RNE)
295        && (drv_data->rx < drv_data->rx_end)) {
296        *(u8 *)(drv_data->rx) = read_SSDR(reg);
297        ++drv_data->rx;
298    }
299
300    return drv_data->rx == drv_data->rx_end;
301}
302
303static int u16_writer(struct driver_data *drv_data)
304{
305    void __iomem *reg = drv_data->ioaddr;
306
307    if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
308        || (drv_data->tx == drv_data->tx_end))
309        return 0;
310
311    write_SSDR(*(u16 *)(drv_data->tx), reg);
312    drv_data->tx += 2;
313
314    return 1;
315}
316
317static int u16_reader(struct driver_data *drv_data)
318{
319    void __iomem *reg = drv_data->ioaddr;
320
321    while ((read_SSSR(reg) & SSSR_RNE)
322        && (drv_data->rx < drv_data->rx_end)) {
323        *(u16 *)(drv_data->rx) = read_SSDR(reg);
324        drv_data->rx += 2;
325    }
326
327    return drv_data->rx == drv_data->rx_end;
328}
329
330static int u32_writer(struct driver_data *drv_data)
331{
332    void __iomem *reg = drv_data->ioaddr;
333
334    if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
335        || (drv_data->tx == drv_data->tx_end))
336        return 0;
337
338    write_SSDR(*(u32 *)(drv_data->tx), reg);
339    drv_data->tx += 4;
340
341    return 1;
342}
343
344static int u32_reader(struct driver_data *drv_data)
345{
346    void __iomem *reg = drv_data->ioaddr;
347
348    while ((read_SSSR(reg) & SSSR_RNE)
349        && (drv_data->rx < drv_data->rx_end)) {
350        *(u32 *)(drv_data->rx) = read_SSDR(reg);
351        drv_data->rx += 4;
352    }
353
354    return drv_data->rx == drv_data->rx_end;
355}
356
357static void *next_transfer(struct driver_data *drv_data)
358{
359    struct spi_message *msg = drv_data->cur_msg;
360    struct spi_transfer *trans = drv_data->cur_transfer;
361
362    /* Move to next transfer */
363    if (trans->transfer_list.next != &msg->transfers) {
364        drv_data->cur_transfer =
365            list_entry(trans->transfer_list.next,
366                    struct spi_transfer,
367                    transfer_list);
368        return RUNNING_STATE;
369    } else
370        return DONE_STATE;
371}
372
373static int map_dma_buffers(struct driver_data *drv_data)
374{
375    struct spi_message *msg = drv_data->cur_msg;
376    struct device *dev = &msg->spi->dev;
377
378    if (!drv_data->cur_chip->enable_dma)
379        return 0;
380
381    if (msg->is_dma_mapped)
382        return drv_data->rx_dma && drv_data->tx_dma;
383
384    if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
385        return 0;
386
387    /* Modify setup if rx buffer is null */
388    if (drv_data->rx == NULL) {
389        *drv_data->null_dma_buf = 0;
390        drv_data->rx = drv_data->null_dma_buf;
391        drv_data->rx_map_len = 4;
392    } else
393        drv_data->rx_map_len = drv_data->len;
394
395
396    /* Modify setup if tx buffer is null */
397    if (drv_data->tx == NULL) {
398        *drv_data->null_dma_buf = 0;
399        drv_data->tx = drv_data->null_dma_buf;
400        drv_data->tx_map_len = 4;
401    } else
402        drv_data->tx_map_len = drv_data->len;
403
404    /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
405     * so we flush the cache *before* invalidating it, in case
406     * the tx and rx buffers overlap.
407     */
408    drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
409                    drv_data->tx_map_len, DMA_TO_DEVICE);
410    if (dma_mapping_error(dev, drv_data->tx_dma))
411        return 0;
412
413    /* Stream map the rx buffer */
414    drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
415                    drv_data->rx_map_len, DMA_FROM_DEVICE);
416    if (dma_mapping_error(dev, drv_data->rx_dma)) {
417        dma_unmap_single(dev, drv_data->tx_dma,
418                    drv_data->tx_map_len, DMA_TO_DEVICE);
419        return 0;
420    }
421
422    return 1;
423}
424
425static void unmap_dma_buffers(struct driver_data *drv_data)
426{
427    struct device *dev;
428
429    if (!drv_data->dma_mapped)
430        return;
431
432    if (!drv_data->cur_msg->is_dma_mapped) {
433        dev = &drv_data->cur_msg->spi->dev;
434        dma_unmap_single(dev, drv_data->rx_dma,
435                    drv_data->rx_map_len, DMA_FROM_DEVICE);
436        dma_unmap_single(dev, drv_data->tx_dma,
437                    drv_data->tx_map_len, DMA_TO_DEVICE);
438    }
439
440    drv_data->dma_mapped = 0;
441}
442
443/* caller already set message->status; dma and pio irqs are blocked */
444static void giveback(struct driver_data *drv_data)
445{
446    struct spi_transfer* last_transfer;
447    unsigned long flags;
448    struct spi_message *msg;
449
450    spin_lock_irqsave(&drv_data->lock, flags);
451    msg = drv_data->cur_msg;
452    drv_data->cur_msg = NULL;
453    drv_data->cur_transfer = NULL;
454    queue_work(drv_data->workqueue, &drv_data->pump_messages);
455    spin_unlock_irqrestore(&drv_data->lock, flags);
456
457    last_transfer = list_entry(msg->transfers.prev,
458                    struct spi_transfer,
459                    transfer_list);
460
461    /* Delay if requested before any change in chip select */
462    if (last_transfer->delay_usecs)
463        udelay(last_transfer->delay_usecs);
464
465    /* Drop chip select UNLESS cs_change is true or we are returning
466     * a message with an error, or next message is for another chip
467     */
468    if (!last_transfer->cs_change)
469        cs_deassert(drv_data);
470    else {
471        struct spi_message *next_msg;
472
473        /* Holding of cs was hinted, but we need to make sure
474         * the next message is for the same chip. Don't waste
475         * time with the following tests unless this was hinted.
476         *
477         * We cannot postpone this until pump_messages, because
478         * after calling msg->complete (below) the driver that
479         * sent the current message could be unloaded, which
480         * could invalidate the cs_control() callback...
481         */
482
483        /* get a pointer to the next message, if any */
484        spin_lock_irqsave(&drv_data->lock, flags);
485        if (list_empty(&drv_data->queue))
486            next_msg = NULL;
487        else
488            next_msg = list_entry(drv_data->queue.next,
489                    struct spi_message, queue);
490        spin_unlock_irqrestore(&drv_data->lock, flags);
491
492        /* see if the next and current messages point
493         * to the same chip
494         */
495        if (next_msg && next_msg->spi != msg->spi)
496            next_msg = NULL;
497        if (!next_msg || msg->state == ERROR_STATE)
498            cs_deassert(drv_data);
499    }
500
501    msg->state = NULL;
502    if (msg->complete)
503        msg->complete(msg->context);
504
505    drv_data->cur_chip = NULL;
506}
507
508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
509{
510    unsigned long limit = loops_per_jiffy << 1;
511
512    while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
513        cpu_relax();
514
515    return limit;
516}
517
518static int wait_dma_channel_stop(int channel)
519{
520    unsigned long limit = loops_per_jiffy << 1;
521
522    while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
523        cpu_relax();
524
525    return limit;
526}
527
528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
529{
530    void __iomem *reg = drv_data->ioaddr;
531
532    /* Stop and reset */
533    DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
534    DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
535    write_SSSR_CS(drv_data, drv_data->clear_sr);
536    write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
537    if (!pxa25x_ssp_comp(drv_data))
538        write_SSTO(0, reg);
539    flush(drv_data);
540    write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
541
542    unmap_dma_buffers(drv_data);
543
544    dev_err(&drv_data->pdev->dev, "%s\n", msg);
545
546    drv_data->cur_msg->state = ERROR_STATE;
547    tasklet_schedule(&drv_data->pump_transfers);
548}
549
550static void dma_transfer_complete(struct driver_data *drv_data)
551{
552    void __iomem *reg = drv_data->ioaddr;
553    struct spi_message *msg = drv_data->cur_msg;
554
555    /* Clear and disable interrupts on SSP and DMA channels*/
556    write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
557    write_SSSR_CS(drv_data, drv_data->clear_sr);
558    DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
559    DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
560
561    if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
562        dev_err(&drv_data->pdev->dev,
563            "dma_handler: dma rx channel stop failed\n");
564
565    if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
566        dev_err(&drv_data->pdev->dev,
567            "dma_transfer: ssp rx stall failed\n");
568
569    unmap_dma_buffers(drv_data);
570
571    /* update the buffer pointer for the amount completed in dma */
572    drv_data->rx += drv_data->len -
573            (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
574
575    /* read trailing data from fifo, it does not matter how many
576     * bytes are in the fifo just read until buffer is full
577     * or fifo is empty, which ever occurs first */
578    drv_data->read(drv_data);
579
580    /* return count of what was actually read */
581    msg->actual_length += drv_data->len -
582                (drv_data->rx_end - drv_data->rx);
583
584    /* Transfer delays and chip select release are
585     * handled in pump_transfers or giveback
586     */
587
588    /* Move to next transfer */
589    msg->state = next_transfer(drv_data);
590
591    /* Schedule transfer tasklet */
592    tasklet_schedule(&drv_data->pump_transfers);
593}
594
595static void dma_handler(int channel, void *data)
596{
597    struct driver_data *drv_data = data;
598    u32 irq_status = DCSR(channel) & DMA_INT_MASK;
599
600    if (irq_status & DCSR_BUSERR) {
601
602        if (channel == drv_data->tx_channel)
603            dma_error_stop(drv_data,
604                    "dma_handler: "
605                    "bad bus address on tx channel");
606        else
607            dma_error_stop(drv_data,
608                    "dma_handler: "
609                    "bad bus address on rx channel");
610        return;
611    }
612
613    /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
614    if ((channel == drv_data->tx_channel)
615        && (irq_status & DCSR_ENDINTR)
616        && (drv_data->ssp_type == PXA25x_SSP)) {
617
618        /* Wait for rx to stall */
619        if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
620            dev_err(&drv_data->pdev->dev,
621                "dma_handler: ssp rx stall failed\n");
622
623        /* finish this transfer, start the next */
624        dma_transfer_complete(drv_data);
625    }
626}
627
628static irqreturn_t dma_transfer(struct driver_data *drv_data)
629{
630    u32 irq_status;
631    void __iomem *reg = drv_data->ioaddr;
632
633    irq_status = read_SSSR(reg) & drv_data->mask_sr;
634    if (irq_status & SSSR_ROR) {
635        dma_error_stop(drv_data, "dma_transfer: fifo overrun");
636        return IRQ_HANDLED;
637    }
638
639    /* Check for false positive timeout */
640    if ((irq_status & SSSR_TINT)
641        && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
642        write_SSSR(SSSR_TINT, reg);
643        return IRQ_HANDLED;
644    }
645
646    if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
647
648        /* Clear and disable timeout interrupt, do the rest in
649         * dma_transfer_complete */
650        if (!pxa25x_ssp_comp(drv_data))
651            write_SSTO(0, reg);
652
653        /* finish this transfer, start the next */
654        dma_transfer_complete(drv_data);
655
656        return IRQ_HANDLED;
657    }
658
659    /* Opps problem detected */
660    return IRQ_NONE;
661}
662
663static void reset_sccr1(struct driver_data *drv_data)
664{
665    void __iomem *reg = drv_data->ioaddr;
666    struct chip_data *chip = drv_data->cur_chip;
667    u32 sccr1_reg;
668
669    sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
670    sccr1_reg &= ~SSCR1_RFT;
671    sccr1_reg |= chip->threshold;
672    write_SSCR1(sccr1_reg, reg);
673}
674
675static void int_error_stop(struct driver_data *drv_data, const char* msg)
676{
677    void __iomem *reg = drv_data->ioaddr;
678
679    /* Stop and reset SSP */
680    write_SSSR_CS(drv_data, drv_data->clear_sr);
681    reset_sccr1(drv_data);
682    if (!pxa25x_ssp_comp(drv_data))
683        write_SSTO(0, reg);
684    flush(drv_data);
685    write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
686
687    dev_err(&drv_data->pdev->dev, "%s\n", msg);
688
689    drv_data->cur_msg->state = ERROR_STATE;
690    tasklet_schedule(&drv_data->pump_transfers);
691}
692
693static void int_transfer_complete(struct driver_data *drv_data)
694{
695    void __iomem *reg = drv_data->ioaddr;
696
697    /* Stop SSP */
698    write_SSSR_CS(drv_data, drv_data->clear_sr);
699    reset_sccr1(drv_data);
700    if (!pxa25x_ssp_comp(drv_data))
701        write_SSTO(0, reg);
702
703    /* Update total byte transferred return count actual bytes read */
704    drv_data->cur_msg->actual_length += drv_data->len -
705                (drv_data->rx_end - drv_data->rx);
706
707    /* Transfer delays and chip select release are
708     * handled in pump_transfers or giveback
709     */
710
711    /* Move to next transfer */
712    drv_data->cur_msg->state = next_transfer(drv_data);
713
714    /* Schedule transfer tasklet */
715    tasklet_schedule(&drv_data->pump_transfers);
716}
717
718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
719{
720    void __iomem *reg = drv_data->ioaddr;
721
722    u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
723            drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
724
725    u32 irq_status = read_SSSR(reg) & irq_mask;
726
727    if (irq_status & SSSR_ROR) {
728        int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
729        return IRQ_HANDLED;
730    }
731
732    if (irq_status & SSSR_TINT) {
733        write_SSSR(SSSR_TINT, reg);
734        if (drv_data->read(drv_data)) {
735            int_transfer_complete(drv_data);
736            return IRQ_HANDLED;
737        }
738    }
739
740    /* Drain rx fifo, Fill tx fifo and prevent overruns */
741    do {
742        if (drv_data->read(drv_data)) {
743            int_transfer_complete(drv_data);
744            return IRQ_HANDLED;
745        }
746    } while (drv_data->write(drv_data));
747
748    if (drv_data->read(drv_data)) {
749        int_transfer_complete(drv_data);
750        return IRQ_HANDLED;
751    }
752
753    if (drv_data->tx == drv_data->tx_end) {
754        u32 bytes_left;
755        u32 sccr1_reg;
756
757        sccr1_reg = read_SSCR1(reg);
758        sccr1_reg &= ~SSCR1_TIE;
759
760        /*
761         * PXA25x_SSP has no timeout, set up rx threshould for the
762         * remaining RX bytes.
763         */
764        if (pxa25x_ssp_comp(drv_data)) {
765
766            sccr1_reg &= ~SSCR1_RFT;
767
768            bytes_left = drv_data->rx_end - drv_data->rx;
769            switch (drv_data->n_bytes) {
770            case 4:
771                bytes_left >>= 1;
772            case 2:
773                bytes_left >>= 1;
774            }
775
776            if (bytes_left > RX_THRESH_DFLT)
777                bytes_left = RX_THRESH_DFLT;
778
779            sccr1_reg |= SSCR1_RxTresh(bytes_left);
780        }
781        write_SSCR1(sccr1_reg, reg);
782    }
783
784    /* We did something */
785    return IRQ_HANDLED;
786}
787
788static irqreturn_t ssp_int(int irq, void *dev_id)
789{
790    struct driver_data *drv_data = dev_id;
791    void __iomem *reg = drv_data->ioaddr;
792    u32 sccr1_reg = read_SSCR1(reg);
793    u32 mask = drv_data->mask_sr;
794    u32 status;
795
796    status = read_SSSR(reg);
797
798    /* Ignore possible writes if we don't need to write */
799    if (!(sccr1_reg & SSCR1_TIE))
800        mask &= ~SSSR_TFS;
801
802    if (!(status & mask))
803        return IRQ_NONE;
804
805    if (!drv_data->cur_msg) {
806
807        write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
808        write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
809        if (!pxa25x_ssp_comp(drv_data))
810            write_SSTO(0, reg);
811        write_SSSR_CS(drv_data, drv_data->clear_sr);
812
813        dev_err(&drv_data->pdev->dev, "bad message state "
814            "in interrupt handler\n");
815
816        /* Never fail */
817        return IRQ_HANDLED;
818    }
819
820    return drv_data->transfer_handler(drv_data);
821}
822
823static int set_dma_burst_and_threshold(struct chip_data *chip,
824                struct spi_device *spi,
825                u8 bits_per_word, u32 *burst_code,
826                u32 *threshold)
827{
828    struct pxa2xx_spi_chip *chip_info =
829            (struct pxa2xx_spi_chip *)spi->controller_data;
830    int bytes_per_word;
831    int burst_bytes;
832    int thresh_words;
833    int req_burst_size;
834    int retval = 0;
835
836    /* Set the threshold (in registers) to equal the same amount of data
837     * as represented by burst size (in bytes). The computation below
838     * is (burst_size rounded up to nearest 8 byte, word or long word)
839     * divided by (bytes/register); the tx threshold is the inverse of
840     * the rx, so that there will always be enough data in the rx fifo
841     * to satisfy a burst, and there will always be enough space in the
842     * tx fifo to accept a burst (a tx burst will overwrite the fifo if
843     * there is not enough space), there must always remain enough empty
844     * space in the rx fifo for any data loaded to the tx fifo.
845     * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
846     * will be 8, or half the fifo;
847     * The threshold can only be set to 2, 4 or 8, but not 16, because
848     * to burst 16 to the tx fifo, the fifo would have to be empty;
849     * however, the minimum fifo trigger level is 1, and the tx will
850     * request service when the fifo is at this level, with only 15 spaces.
851     */
852
853    /* find bytes/word */
854    if (bits_per_word <= 8)
855        bytes_per_word = 1;
856    else if (bits_per_word <= 16)
857        bytes_per_word = 2;
858    else
859        bytes_per_word = 4;
860
861    /* use struct pxa2xx_spi_chip->dma_burst_size if available */
862    if (chip_info)
863        req_burst_size = chip_info->dma_burst_size;
864    else {
865        switch (chip->dma_burst_size) {
866        default:
867            /* if the default burst size is not set,
868             * do it now */
869            chip->dma_burst_size = DCMD_BURST8;
870        case DCMD_BURST8:
871            req_burst_size = 8;
872            break;
873        case DCMD_BURST16:
874            req_burst_size = 16;
875            break;
876        case DCMD_BURST32:
877            req_burst_size = 32;
878            break;
879        }
880    }
881    if (req_burst_size <= 8) {
882        *burst_code = DCMD_BURST8;
883        burst_bytes = 8;
884    } else if (req_burst_size <= 16) {
885        if (bytes_per_word == 1) {
886            /* don't burst more than 1/2 the fifo */
887            *burst_code = DCMD_BURST8;
888            burst_bytes = 8;
889            retval = 1;
890        } else {
891            *burst_code = DCMD_BURST16;
892            burst_bytes = 16;
893        }
894    } else {
895        if (bytes_per_word == 1) {
896            /* don't burst more than 1/2 the fifo */
897            *burst_code = DCMD_BURST8;
898            burst_bytes = 8;
899            retval = 1;
900        } else if (bytes_per_word == 2) {
901            /* don't burst more than 1/2 the fifo */
902            *burst_code = DCMD_BURST16;
903            burst_bytes = 16;
904            retval = 1;
905        } else {
906            *burst_code = DCMD_BURST32;
907            burst_bytes = 32;
908        }
909    }
910
911    thresh_words = burst_bytes / bytes_per_word;
912
913    /* thresh_words will be between 2 and 8 */
914    *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
915            | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
916
917    return retval;
918}
919
920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
921{
922    unsigned long ssp_clk = clk_get_rate(ssp->clk);
923
924    if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
925        return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
926    else
927        return ((ssp_clk / rate - 1) & 0xfff) << 8;
928}
929
930static void pump_transfers(unsigned long data)
931{
932    struct driver_data *drv_data = (struct driver_data *)data;
933    struct spi_message *message = NULL;
934    struct spi_transfer *transfer = NULL;
935    struct spi_transfer *previous = NULL;
936    struct chip_data *chip = NULL;
937    struct ssp_device *ssp = drv_data->ssp;
938    void __iomem *reg = drv_data->ioaddr;
939    u32 clk_div = 0;
940    u8 bits = 0;
941    u32 speed = 0;
942    u32 cr0;
943    u32 cr1;
944    u32 dma_thresh = drv_data->cur_chip->dma_threshold;
945    u32 dma_burst = drv_data->cur_chip->dma_burst_size;
946
947    /* Get current state information */
948    message = drv_data->cur_msg;
949    transfer = drv_data->cur_transfer;
950    chip = drv_data->cur_chip;
951
952    /* Handle for abort */
953    if (message->state == ERROR_STATE) {
954        message->status = -EIO;
955        giveback(drv_data);
956        return;
957    }
958
959    /* Handle end of message */
960    if (message->state == DONE_STATE) {
961        message->status = 0;
962        giveback(drv_data);
963        return;
964    }
965
966    /* Delay if requested at end of transfer before CS change */
967    if (message->state == RUNNING_STATE) {
968        previous = list_entry(transfer->transfer_list.prev,
969                    struct spi_transfer,
970                    transfer_list);
971        if (previous->delay_usecs)
972            udelay(previous->delay_usecs);
973
974        /* Drop chip select only if cs_change is requested */
975        if (previous->cs_change)
976            cs_deassert(drv_data);
977    }
978
979    /* Check for transfers that need multiple DMA segments */
980    if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
981
982        /* reject already-mapped transfers; PIO won't always work */
983        if (message->is_dma_mapped
984                || transfer->rx_dma || transfer->tx_dma) {
985            dev_err(&drv_data->pdev->dev,
986                "pump_transfers: mapped transfer length "
987                "of %u is greater than %d\n",
988                transfer->len, MAX_DMA_LEN);
989            message->status = -EINVAL;
990            giveback(drv_data);
991            return;
992        }
993
994        /* warn ... we force this to PIO mode */
995        if (printk_ratelimit())
996            dev_warn(&message->spi->dev, "pump_transfers: "
997                "DMA disabled for transfer length %ld "
998                "greater than %d\n",
999                (long)drv_data->len, MAX_DMA_LEN);
1000    }
1001
1002    /* Setup the transfer state based on the type of transfer */
1003    if (flush(drv_data) == 0) {
1004        dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005        message->status = -EIO;
1006        giveback(drv_data);
1007        return;
1008    }
1009    drv_data->n_bytes = chip->n_bytes;
1010    drv_data->dma_width = chip->dma_width;
1011    drv_data->tx = (void *)transfer->tx_buf;
1012    drv_data->tx_end = drv_data->tx + transfer->len;
1013    drv_data->rx = transfer->rx_buf;
1014    drv_data->rx_end = drv_data->rx + transfer->len;
1015    drv_data->rx_dma = transfer->rx_dma;
1016    drv_data->tx_dma = transfer->tx_dma;
1017    drv_data->len = transfer->len & DCMD_LENGTH;
1018    drv_data->write = drv_data->tx ? chip->write : null_writer;
1019    drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021    /* Change speed and bit per word on a per transfer */
1022    cr0 = chip->cr0;
1023    if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025        bits = chip->bits_per_word;
1026        speed = chip->speed_hz;
1027
1028        if (transfer->speed_hz)
1029            speed = transfer->speed_hz;
1030
1031        if (transfer->bits_per_word)
1032            bits = transfer->bits_per_word;
1033
1034        clk_div = ssp_get_clk_div(ssp, speed);
1035
1036        if (bits <= 8) {
1037            drv_data->n_bytes = 1;
1038            drv_data->dma_width = DCMD_WIDTH1;
1039            drv_data->read = drv_data->read != null_reader ?
1040                        u8_reader : null_reader;
1041            drv_data->write = drv_data->write != null_writer ?
1042                        u8_writer : null_writer;
1043        } else if (bits <= 16) {
1044            drv_data->n_bytes = 2;
1045            drv_data->dma_width = DCMD_WIDTH2;
1046            drv_data->read = drv_data->read != null_reader ?
1047                        u16_reader : null_reader;
1048            drv_data->write = drv_data->write != null_writer ?
1049                        u16_writer : null_writer;
1050        } else if (bits <= 32) {
1051            drv_data->n_bytes = 4;
1052            drv_data->dma_width = DCMD_WIDTH4;
1053            drv_data->read = drv_data->read != null_reader ?
1054                        u32_reader : null_reader;
1055            drv_data->write = drv_data->write != null_writer ?
1056                        u32_writer : null_writer;
1057        }
1058        /* if bits/word is changed in dma mode, then must check the
1059         * thresholds and burst also */
1060        if (chip->enable_dma) {
1061            if (set_dma_burst_and_threshold(chip, message->spi,
1062                            bits, &dma_burst,
1063                            &dma_thresh))
1064                if (printk_ratelimit())
1065                    dev_warn(&message->spi->dev,
1066                        "pump_transfers: "
1067                        "DMA burst size reduced to "
1068                        "match bits_per_word\n");
1069        }
1070
1071        cr0 = clk_div
1072            | SSCR0_Motorola
1073            | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074            | SSCR0_SSE
1075            | (bits > 16 ? SSCR0_EDSS : 0);
1076    }
1077
1078    message->state = RUNNING_STATE;
1079
1080    /* Try to map dma buffer and do a dma transfer if successful, but
1081     * only if the length is non-zero and less than MAX_DMA_LEN.
1082     *
1083     * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084     * of PIO instead. Care is needed above because the transfer may
1085     * have have been passed with buffers that are already dma mapped.
1086     * A zero-length transfer in PIO mode will not try to write/read
1087     * to/from the buffers
1088     *
1089     * REVISIT large transfers are exactly where we most want to be
1090     * using DMA. If this happens much, split those transfers into
1091     * multiple DMA segments rather than forcing PIO.
1092     */
1093    drv_data->dma_mapped = 0;
1094    if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095        drv_data->dma_mapped = map_dma_buffers(drv_data);
1096    if (drv_data->dma_mapped) {
1097
1098        /* Ensure we have the correct interrupt handler */
1099        drv_data->transfer_handler = dma_transfer;
1100
1101        /* Setup rx DMA Channel */
1102        DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103        DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104        DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105        if (drv_data->rx == drv_data->null_dma_buf)
1106            /* No target address increment */
1107            DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108                            | drv_data->dma_width
1109                            | dma_burst
1110                            | drv_data->len;
1111        else
1112            DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113                            | DCMD_FLOWSRC
1114                            | drv_data->dma_width
1115                            | dma_burst
1116                            | drv_data->len;
1117
1118        /* Setup tx DMA Channel */
1119        DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120        DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121        DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122        if (drv_data->tx == drv_data->null_dma_buf)
1123            /* No source address increment */
1124            DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125                            | drv_data->dma_width
1126                            | dma_burst
1127                            | drv_data->len;
1128        else
1129            DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130                            | DCMD_FLOWTRG
1131                            | drv_data->dma_width
1132                            | dma_burst
1133                            | drv_data->len;
1134
1135        /* Enable dma end irqs on SSP to detect end of transfer */
1136        if (drv_data->ssp_type == PXA25x_SSP)
1137            DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139        /* Clear status and start DMA engine */
1140        cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141        write_SSSR(drv_data->clear_sr, reg);
1142        DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143        DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144    } else {
1145        /* Ensure we have the correct interrupt handler */
1146        drv_data->transfer_handler = interrupt_transfer;
1147
1148        /* Clear status */
1149        cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150        write_SSSR_CS(drv_data, drv_data->clear_sr);
1151    }
1152
1153    /* see if we need to reload the config registers */
1154    if ((read_SSCR0(reg) != cr0)
1155        || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156            (cr1 & SSCR1_CHANGE_MASK)) {
1157
1158        /* stop the SSP, and update the other bits */
1159        write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160        if (!pxa25x_ssp_comp(drv_data))
1161            write_SSTO(chip->timeout, reg);
1162        /* first set CR1 without interrupt and service enables */
1163        write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164        /* restart the SSP */
1165        write_SSCR0(cr0, reg);
1166
1167    } else {
1168        if (!pxa25x_ssp_comp(drv_data))
1169            write_SSTO(chip->timeout, reg);
1170    }
1171
1172    cs_assert(drv_data);
1173
1174    /* after chip select, release the data by enabling service
1175     * requests and interrupts, without changing any mode bits */
1176    write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
1180{
1181    struct driver_data *drv_data =
1182        container_of(work, struct driver_data, pump_messages);
1183    unsigned long flags;
1184
1185    /* Lock queue and check for queue work */
1186    spin_lock_irqsave(&drv_data->lock, flags);
1187    if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188        drv_data->busy = 0;
1189        spin_unlock_irqrestore(&drv_data->lock, flags);
1190        return;
1191    }
1192
1193    /* Make sure we are not already running a message */
1194    if (drv_data->cur_msg) {
1195        spin_unlock_irqrestore(&drv_data->lock, flags);
1196        return;
1197    }
1198
1199    /* Extract head of queue */
1200    drv_data->cur_msg = list_entry(drv_data->queue.next,
1201                    struct spi_message, queue);
1202    list_del_init(&drv_data->cur_msg->queue);
1203
1204    /* Initial message state*/
1205    drv_data->cur_msg->state = START_STATE;
1206    drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207                        struct spi_transfer,
1208                        transfer_list);
1209
1210    /* prepare to setup the SSP, in pump_transfers, using the per
1211     * chip configuration */
1212    drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214    /* Mark as busy and launch transfers */
1215    tasklet_schedule(&drv_data->pump_transfers);
1216
1217    drv_data->busy = 1;
1218    spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
1222{
1223    struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224    unsigned long flags;
1225
1226    spin_lock_irqsave(&drv_data->lock, flags);
1227
1228    if (drv_data->run == QUEUE_STOPPED) {
1229        spin_unlock_irqrestore(&drv_data->lock, flags);
1230        return -ESHUTDOWN;
1231    }
1232
1233    msg->actual_length = 0;
1234    msg->status = -EINPROGRESS;
1235    msg->state = START_STATE;
1236
1237    list_add_tail(&msg->queue, &drv_data->queue);
1238
1239    if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240        queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241
1242    spin_unlock_irqrestore(&drv_data->lock, flags);
1243
1244    return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248            struct pxa2xx_spi_chip *chip_info)
1249{
1250    int err = 0;
1251
1252    if (chip == NULL || chip_info == NULL)
1253        return 0;
1254
1255    /* NOTE: setup() can be called multiple times, possibly with
1256     * different chip_info, release previously requested GPIO
1257     */
1258    if (gpio_is_valid(chip->gpio_cs))
1259        gpio_free(chip->gpio_cs);
1260
1261    /* If (*cs_control) is provided, ignore GPIO chip select */
1262    if (chip_info->cs_control) {
1263        chip->cs_control = chip_info->cs_control;
1264        return 0;
1265    }
1266
1267    if (gpio_is_valid(chip_info->gpio_cs)) {
1268        err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269        if (err) {
1270            dev_err(&spi->dev, "failed to request chip select "
1271                    "GPIO%d\n", chip_info->gpio_cs);
1272            return err;
1273        }
1274
1275        chip->gpio_cs = chip_info->gpio_cs;
1276        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278        err = gpio_direction_output(chip->gpio_cs,
1279                    !chip->gpio_cs_inverted);
1280    }
1281
1282    return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287    struct pxa2xx_spi_chip *chip_info = NULL;
1288    struct chip_data *chip;
1289    struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290    struct ssp_device *ssp = drv_data->ssp;
1291    unsigned int clk_div;
1292    uint tx_thres = TX_THRESH_DFLT;
1293    uint rx_thres = RX_THRESH_DFLT;
1294
1295    if (!pxa25x_ssp_comp(drv_data)
1296        && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297        dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298                "b/w not 4-32 for type non-PXA25x_SSP\n",
1299                drv_data->ssp_type, spi->bits_per_word);
1300        return -EINVAL;
1301    } else if (pxa25x_ssp_comp(drv_data)
1302            && (spi->bits_per_word < 4
1303                || spi->bits_per_word > 16)) {
1304        dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305                "b/w not 4-16 for type PXA25x_SSP\n",
1306                drv_data->ssp_type, spi->bits_per_word);
1307        return -EINVAL;
1308    }
1309
1310    /* Only alloc on first setup */
1311    chip = spi_get_ctldata(spi);
1312    if (!chip) {
1313        chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314        if (!chip) {
1315            dev_err(&spi->dev,
1316                "failed setup: can't allocate chip data\n");
1317            return -ENOMEM;
1318        }
1319
1320        if (drv_data->ssp_type == CE4100_SSP) {
1321            if (spi->chip_select > 4) {
1322                dev_err(&spi->dev, "failed setup: "
1323                "cs number must not be > 4.\n");
1324                kfree(chip);
1325                return -EINVAL;
1326            }
1327
1328            chip->frm = spi->chip_select;
1329        } else
1330            chip->gpio_cs = -1;
1331        chip->enable_dma = 0;
1332        chip->timeout = TIMOUT_DFLT;
1333        chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334                    DCMD_BURST8 : 0;
1335    }
1336
1337    /* protocol drivers may change the chip settings, so...
1338     * if chip_info exists, use it */
1339    chip_info = spi->controller_data;
1340
1341    /* chip_info isn't always needed */
1342    chip->cr1 = 0;
1343    if (chip_info) {
1344        if (chip_info->timeout)
1345            chip->timeout = chip_info->timeout;
1346        if (chip_info->tx_threshold)
1347            tx_thres = chip_info->tx_threshold;
1348        if (chip_info->rx_threshold)
1349            rx_thres = chip_info->rx_threshold;
1350        chip->enable_dma = drv_data->master_info->enable_dma;
1351        chip->dma_threshold = 0;
1352        if (chip_info->enable_loopback)
1353            chip->cr1 = SSCR1_LBM;
1354    }
1355
1356    chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357            (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358
1359    /* set dma burst and threshold outside of chip_info path so that if
1360     * chip_info goes away after setting chip->enable_dma, the
1361     * burst and threshold can still respond to changes in bits_per_word */
1362    if (chip->enable_dma) {
1363        /* set up legal burst and threshold for dma */
1364        if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1365                        &chip->dma_burst_size,
1366                        &chip->dma_threshold)) {
1367            dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368                    "to match bits_per_word\n");
1369        }
1370    }
1371
1372    clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373    chip->speed_hz = spi->max_speed_hz;
1374
1375    chip->cr0 = clk_div
1376            | SSCR0_Motorola
1377            | SSCR0_DataSize(spi->bits_per_word > 16 ?
1378                spi->bits_per_word - 16 : spi->bits_per_word)
1379            | SSCR0_SSE
1380            | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381    chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382    chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383            | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385    /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1386    if (!pxa25x_ssp_comp(drv_data))
1387        dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388            clk_get_rate(ssp->clk)
1389                / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390            chip->enable_dma ? "DMA" : "PIO");
1391    else
1392        dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393            clk_get_rate(ssp->clk) / 2
1394                / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395            chip->enable_dma ? "DMA" : "PIO");
1396
1397    if (spi->bits_per_word <= 8) {
1398        chip->n_bytes = 1;
1399        chip->dma_width = DCMD_WIDTH1;
1400        chip->read = u8_reader;
1401        chip->write = u8_writer;
1402    } else if (spi->bits_per_word <= 16) {
1403        chip->n_bytes = 2;
1404        chip->dma_width = DCMD_WIDTH2;
1405        chip->read = u16_reader;
1406        chip->write = u16_writer;
1407    } else if (spi->bits_per_word <= 32) {
1408        chip->cr0 |= SSCR0_EDSS;
1409        chip->n_bytes = 4;
1410        chip->dma_width = DCMD_WIDTH4;
1411        chip->read = u32_reader;
1412        chip->write = u32_writer;
1413    } else {
1414        dev_err(&spi->dev, "invalid wordsize\n");
1415        return -ENODEV;
1416    }
1417    chip->bits_per_word = spi->bits_per_word;
1418
1419    spi_set_ctldata(spi, chip);
1420
1421    if (drv_data->ssp_type == CE4100_SSP)
1422        return 0;
1423
1424    return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429    struct chip_data *chip = spi_get_ctldata(spi);
1430    struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431
1432    if (!chip)
1433        return;
1434
1435    if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436        gpio_free(chip->gpio_cs);
1437
1438    kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443    INIT_LIST_HEAD(&drv_data->queue);
1444    spin_lock_init(&drv_data->lock);
1445
1446    drv_data->run = QUEUE_STOPPED;
1447    drv_data->busy = 0;
1448
1449    tasklet_init(&drv_data->pump_transfers,
1450            pump_transfers, (unsigned long)drv_data);
1451
1452    INIT_WORK(&drv_data->pump_messages, pump_messages);
1453    drv_data->workqueue = create_singlethread_workqueue(
1454                dev_name(drv_data->master->dev.parent));
1455    if (drv_data->workqueue == NULL)
1456        return -EBUSY;
1457
1458    return 0;
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463    unsigned long flags;
1464
1465    spin_lock_irqsave(&drv_data->lock, flags);
1466
1467    if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468        spin_unlock_irqrestore(&drv_data->lock, flags);
1469        return -EBUSY;
1470    }
1471
1472    drv_data->run = QUEUE_RUNNING;
1473    drv_data->cur_msg = NULL;
1474    drv_data->cur_transfer = NULL;
1475    drv_data->cur_chip = NULL;
1476    spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478    queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479
1480    return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
1484{
1485    unsigned long flags;
1486    unsigned limit = 500;
1487    int status = 0;
1488
1489    spin_lock_irqsave(&drv_data->lock, flags);
1490
1491    /* This is a bit lame, but is optimized for the common execution path.
1492     * A wait_queue on the drv_data->busy could be used, but then the common
1493     * execution path (pump_messages) would be required to call wake_up or
1494     * friends on every SPI message. Do this instead */
1495    drv_data->run = QUEUE_STOPPED;
1496    while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497        spin_unlock_irqrestore(&drv_data->lock, flags);
1498        msleep(10);
1499        spin_lock_irqsave(&drv_data->lock, flags);
1500    }
1501
1502    if (!list_empty(&drv_data->queue) || drv_data->busy)
1503        status = -EBUSY;
1504
1505    spin_unlock_irqrestore(&drv_data->lock, flags);
1506
1507    return status;
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
1511{
1512    int status;
1513
1514    status = stop_queue(drv_data);
1515    /* we are unloading the module or failing to load (only two calls
1516     * to this routine), and neither call can handle a return value.
1517     * However, destroy_workqueue calls flush_workqueue, and that will
1518     * block until all work is done. If the reason that stop_queue
1519     * timed out is that the work will never finish, then it does no
1520     * good to call destroy_workqueue, so return anyway. */
1521    if (status != 0)
1522        return status;
1523
1524    destroy_workqueue(drv_data->workqueue);
1525
1526    return 0;
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531    struct device *dev = &pdev->dev;
1532    struct pxa2xx_spi_master *platform_info;
1533    struct spi_master *master;
1534    struct driver_data *drv_data;
1535    struct ssp_device *ssp;
1536    int status;
1537
1538    platform_info = dev->platform_data;
1539
1540    ssp = pxa_ssp_request(pdev->id, pdev->name);
1541    if (ssp == NULL) {
1542        dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1543        return -ENODEV;
1544    }
1545
1546    /* Allocate master with space for drv_data and null dma buffer */
1547    master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548    if (!master) {
1549        dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550        pxa_ssp_free(ssp);
1551        return -ENOMEM;
1552    }
1553    drv_data = spi_master_get_devdata(master);
1554    drv_data->master = master;
1555    drv_data->master_info = platform_info;
1556    drv_data->pdev = pdev;
1557    drv_data->ssp = ssp;
1558
1559    master->dev.parent = &pdev->dev;
1560    master->dev.of_node = pdev->dev.of_node;
1561    /* the spi->mode bits understood by this driver: */
1562    master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564    master->bus_num = pdev->id;
1565    master->num_chipselect = platform_info->num_chipselect;
1566    master->dma_alignment = DMA_ALIGNMENT;
1567    master->cleanup = cleanup;
1568    master->setup = setup;
1569    master->transfer = transfer;
1570
1571    drv_data->ssp_type = ssp->type;
1572    drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573                        sizeof(struct driver_data)), 8);
1574
1575    drv_data->ioaddr = ssp->mmio_base;
1576    drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577    if (pxa25x_ssp_comp(drv_data)) {
1578        drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579        drv_data->dma_cr1 = 0;
1580        drv_data->clear_sr = SSSR_ROR;
1581        drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582    } else {
1583        drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584        drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585        drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586        drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587    }
1588
1589    status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590            drv_data);
1591    if (status < 0) {
1592        dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593        goto out_error_master_alloc;
1594    }
1595
1596    /* Setup DMA if requested */
1597    drv_data->tx_channel = -1;
1598    drv_data->rx_channel = -1;
1599    if (platform_info->enable_dma) {
1600
1601        /* Get two DMA channels (rx and tx) */
1602        drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603                            DMA_PRIO_HIGH,
1604                            dma_handler,
1605                            drv_data);
1606        if (drv_data->rx_channel < 0) {
1607            dev_err(dev, "problem (%d) requesting rx channel\n",
1608                drv_data->rx_channel);
1609            status = -ENODEV;
1610            goto out_error_irq_alloc;
1611        }
1612        drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613                            DMA_PRIO_MEDIUM,
1614                            dma_handler,
1615                            drv_data);
1616        if (drv_data->tx_channel < 0) {
1617            dev_err(dev, "problem (%d) requesting tx channel\n",
1618                drv_data->tx_channel);
1619            status = -ENODEV;
1620            goto out_error_dma_alloc;
1621        }
1622
1623        DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624        DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625    }
1626
1627    /* Enable SOC clock */
1628    clk_enable(ssp->clk);
1629
1630    /* Load default SSP configuration */
1631    write_SSCR0(0, drv_data->ioaddr);
1632    write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633                SSCR1_TxTresh(TX_THRESH_DFLT),
1634                drv_data->ioaddr);
1635    write_SSCR0(SSCR0_SCR(2)
1636            | SSCR0_Motorola
1637            | SSCR0_DataSize(8),
1638            drv_data->ioaddr);
1639    if (!pxa25x_ssp_comp(drv_data))
1640        write_SSTO(0, drv_data->ioaddr);
1641    write_SSPSP(0, drv_data->ioaddr);
1642
1643    /* Initial and start queue */
1644    status = init_queue(drv_data);
1645    if (status != 0) {
1646        dev_err(&pdev->dev, "problem initializing queue\n");
1647        goto out_error_clock_enabled;
1648    }
1649    status = start_queue(drv_data);
1650    if (status != 0) {
1651        dev_err(&pdev->dev, "problem starting queue\n");
1652        goto out_error_clock_enabled;
1653    }
1654
1655    /* Register with the SPI framework */
1656    platform_set_drvdata(pdev, drv_data);
1657    status = spi_register_master(master);
1658    if (status != 0) {
1659        dev_err(&pdev->dev, "problem registering spi master\n");
1660        goto out_error_queue_alloc;
1661    }
1662
1663    return status;
1664
1665out_error_queue_alloc:
1666    destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669    clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672    if (drv_data->tx_channel != -1)
1673        pxa_free_dma(drv_data->tx_channel);
1674    if (drv_data->rx_channel != -1)
1675        pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678    free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681    spi_master_put(master);
1682    pxa_ssp_free(ssp);
1683    return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688    struct driver_data *drv_data = platform_get_drvdata(pdev);
1689    struct ssp_device *ssp;
1690    int status = 0;
1691
1692    if (!drv_data)
1693        return 0;
1694    ssp = drv_data->ssp;
1695
1696    /* Remove the queue */
1697    status = destroy_queue(drv_data);
1698    if (status != 0)
1699        /* the kernel does not check the return status of this
1700         * this routine (mod->exit, within the kernel). Therefore
1701         * nothing is gained by returning from here, the module is
1702         * going away regardless, and we should not leave any more
1703         * resources allocated than necessary. We cannot free the
1704         * message memory in drv_data->queue, but we can release the
1705         * resources below. I think the kernel should honor -EBUSY
1706         * returns but... */
1707        dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708            "complete, message memory not freed\n");
1709
1710    /* Disable the SSP at the peripheral and SOC level */
1711    write_SSCR0(0, drv_data->ioaddr);
1712    clk_disable(ssp->clk);
1713
1714    /* Release DMA */
1715    if (drv_data->master_info->enable_dma) {
1716        DRCMR(ssp->drcmr_rx) = 0;
1717        DRCMR(ssp->drcmr_tx) = 0;
1718        pxa_free_dma(drv_data->tx_channel);
1719        pxa_free_dma(drv_data->rx_channel);
1720    }
1721
1722    /* Release IRQ */
1723    free_irq(ssp->irq, drv_data);
1724
1725    /* Release SSP */
1726    pxa_ssp_free(ssp);
1727
1728    /* Disconnect from the SPI framework */
1729    spi_unregister_master(drv_data->master);
1730
1731    /* Prevent double remove */
1732    platform_set_drvdata(pdev, NULL);
1733
1734    return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739    int status = 0;
1740
1741    if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742        dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748    struct driver_data *drv_data = dev_get_drvdata(dev);
1749    struct ssp_device *ssp = drv_data->ssp;
1750    int status = 0;
1751
1752    status = stop_queue(drv_data);
1753    if (status != 0)
1754        return status;
1755    write_SSCR0(0, drv_data->ioaddr);
1756    clk_disable(ssp->clk);
1757
1758    return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763    struct driver_data *drv_data = dev_get_drvdata(dev);
1764    struct ssp_device *ssp = drv_data->ssp;
1765    int status = 0;
1766
1767    if (drv_data->rx_channel != -1)
1768        DRCMR(drv_data->ssp->drcmr_rx) =
1769            DRCMR_MAPVLD | drv_data->rx_channel;
1770    if (drv_data->tx_channel != -1)
1771        DRCMR(drv_data->ssp->drcmr_tx) =
1772            DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774    /* Enable the SSP clock */
1775    clk_enable(ssp->clk);
1776
1777    /* Start the queue running */
1778    status = start_queue(drv_data);
1779    if (status != 0) {
1780        dev_err(dev, "problem starting queue (%d)\n", status);
1781        return status;
1782    }
1783
1784    return 0;
1785}
1786
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788    .suspend = pxa2xx_spi_suspend,
1789    .resume = pxa2xx_spi_resume,
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794    .driver = {
1795        .name = "pxa2xx-spi",
1796        .owner = THIS_MODULE,
1797#ifdef CONFIG_PM
1798        .pm = &pxa2xx_spi_pm_ops,
1799#endif
1800    },
1801    .probe = pxa2xx_spi_probe,
1802    .remove = pxa2xx_spi_remove,
1803    .shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808    return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814    platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);
1817

Archive Download this file



interactive