Root/drivers/tty/tty_io.c

1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109
110#define TTY_PARANOIA_CHECK 1
111#define CHECK_TTY_COUNT 1
112
113struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114    .c_iflag = ICRNL | IXON,
115    .c_oflag = OPOST | ONLCR,
116    .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117    .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118           ECHOCTL | ECHOKE | IEXTEN,
119    .c_cc = INIT_C_CC,
120    .c_ispeed = 38400,
121    .c_ospeed = 38400
122};
123
124EXPORT_SYMBOL(tty_std_termios);
125
126/* This list gets poked at by procfs and various bits of boot up code. This
127   could do with some rationalisation such as pulling the tty proc function
128   into this file */
129
130LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132/* Mutex to protect creating and releasing a tty. This is shared with
133   vt.c for deeply disgusting hack reasons */
134DEFINE_MUTEX(tty_mutex);
135EXPORT_SYMBOL(tty_mutex);
136
137/* Spinlock to protect the tty->tty_files list */
138DEFINE_SPINLOCK(tty_files_lock);
139
140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142ssize_t redirected_tty_write(struct file *, const char __user *,
143                            size_t, loff_t *);
144static unsigned int tty_poll(struct file *, poll_table *);
145static int tty_open(struct inode *, struct file *);
146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147#ifdef CONFIG_COMPAT
148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                unsigned long arg);
150#else
151#define tty_compat_ioctl NULL
152#endif
153static int __tty_fasync(int fd, struct file *filp, int on);
154static int tty_fasync(int fd, struct file *filp, int on);
155static void release_tty(struct tty_struct *tty, int idx);
156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159/**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168struct tty_struct *alloc_tty_struct(void)
169{
170    return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171}
172
173/**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182void free_tty_struct(struct tty_struct *tty)
183{
184    if (tty->dev)
185        put_device(tty->dev);
186    kfree(tty->write_buf);
187    tty_buffer_free_all(tty);
188    kfree(tty);
189}
190
191static inline struct tty_struct *file_tty(struct file *file)
192{
193    return ((struct tty_file_private *)file->private_data)->tty;
194}
195
196int tty_alloc_file(struct file *file)
197{
198    struct tty_file_private *priv;
199
200    priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201    if (!priv)
202        return -ENOMEM;
203
204    file->private_data = priv;
205
206    return 0;
207}
208
209/* Associate a new file with the tty structure */
210void tty_add_file(struct tty_struct *tty, struct file *file)
211{
212    struct tty_file_private *priv = file->private_data;
213
214    priv->tty = tty;
215    priv->file = file;
216
217    spin_lock(&tty_files_lock);
218    list_add(&priv->list, &tty->tty_files);
219    spin_unlock(&tty_files_lock);
220}
221
222/**
223 * tty_free_file - free file->private_data
224 *
225 * This shall be used only for fail path handling when tty_add_file was not
226 * called yet.
227 */
228void tty_free_file(struct file *file)
229{
230    struct tty_file_private *priv = file->private_data;
231
232    file->private_data = NULL;
233    kfree(priv);
234}
235
236/* Delete file from its tty */
237void tty_del_file(struct file *file)
238{
239    struct tty_file_private *priv = file->private_data;
240
241    spin_lock(&tty_files_lock);
242    list_del(&priv->list);
243    spin_unlock(&tty_files_lock);
244    tty_free_file(file);
245}
246
247
248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250/**
251 * tty_name - return tty naming
252 * @tty: tty structure
253 * @buf: buffer for output
254 *
255 * Convert a tty structure into a name. The name reflects the kernel
256 * naming policy and if udev is in use may not reflect user space
257 *
258 * Locking: none
259 */
260
261char *tty_name(struct tty_struct *tty, char *buf)
262{
263    if (!tty) /* Hmm. NULL pointer. That's fun. */
264        strcpy(buf, "NULL tty");
265    else
266        strcpy(buf, tty->name);
267    return buf;
268}
269
270EXPORT_SYMBOL(tty_name);
271
272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273                  const char *routine)
274{
275#ifdef TTY_PARANOIA_CHECK
276    if (!tty) {
277        printk(KERN_WARNING
278            "null TTY for (%d:%d) in %s\n",
279            imajor(inode), iminor(inode), routine);
280        return 1;
281    }
282    if (tty->magic != TTY_MAGIC) {
283        printk(KERN_WARNING
284            "bad magic number for tty struct (%d:%d) in %s\n",
285            imajor(inode), iminor(inode), routine);
286        return 1;
287    }
288#endif
289    return 0;
290}
291
292static int check_tty_count(struct tty_struct *tty, const char *routine)
293{
294#ifdef CHECK_TTY_COUNT
295    struct list_head *p;
296    int count = 0;
297
298    spin_lock(&tty_files_lock);
299    list_for_each(p, &tty->tty_files) {
300        count++;
301    }
302    spin_unlock(&tty_files_lock);
303    if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304        tty->driver->subtype == PTY_TYPE_SLAVE &&
305        tty->link && tty->link->count)
306        count++;
307    if (tty->count != count) {
308        printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309                    "!= #fd's(%d) in %s\n",
310               tty->name, tty->count, count, routine);
311        return count;
312    }
313#endif
314    return 0;
315}
316
317/**
318 * get_tty_driver - find device of a tty
319 * @dev_t: device identifier
320 * @index: returns the index of the tty
321 *
322 * This routine returns a tty driver structure, given a device number
323 * and also passes back the index number.
324 *
325 * Locking: caller must hold tty_mutex
326 */
327
328static struct tty_driver *get_tty_driver(dev_t device, int *index)
329{
330    struct tty_driver *p;
331
332    list_for_each_entry(p, &tty_drivers, tty_drivers) {
333        dev_t base = MKDEV(p->major, p->minor_start);
334        if (device < base || device >= base + p->num)
335            continue;
336        *index = device - base;
337        return tty_driver_kref_get(p);
338    }
339    return NULL;
340}
341
342#ifdef CONFIG_CONSOLE_POLL
343
344/**
345 * tty_find_polling_driver - find device of a polled tty
346 * @name: name string to match
347 * @line: pointer to resulting tty line nr
348 *
349 * This routine returns a tty driver structure, given a name
350 * and the condition that the tty driver is capable of polled
351 * operation.
352 */
353struct tty_driver *tty_find_polling_driver(char *name, int *line)
354{
355    struct tty_driver *p, *res = NULL;
356    int tty_line = 0;
357    int len;
358    char *str, *stp;
359
360    for (str = name; *str; str++)
361        if ((*str >= '0' && *str <= '9') || *str == ',')
362            break;
363    if (!*str)
364        return NULL;
365
366    len = str - name;
367    tty_line = simple_strtoul(str, &str, 10);
368
369    mutex_lock(&tty_mutex);
370    /* Search through the tty devices to look for a match */
371    list_for_each_entry(p, &tty_drivers, tty_drivers) {
372        if (strncmp(name, p->name, len) != 0)
373            continue;
374        stp = str;
375        if (*stp == ',')
376            stp++;
377        if (*stp == '\0')
378            stp = NULL;
379
380        if (tty_line >= 0 && tty_line < p->num && p->ops &&
381            p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382            res = tty_driver_kref_get(p);
383            *line = tty_line;
384            break;
385        }
386    }
387    mutex_unlock(&tty_mutex);
388
389    return res;
390}
391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392#endif
393
394/**
395 * tty_check_change - check for POSIX terminal changes
396 * @tty: tty to check
397 *
398 * If we try to write to, or set the state of, a terminal and we're
399 * not in the foreground, send a SIGTTOU. If the signal is blocked or
400 * ignored, go ahead and perform the operation. (POSIX 7.2)
401 *
402 * Locking: ctrl_lock
403 */
404
405int tty_check_change(struct tty_struct *tty)
406{
407    unsigned long flags;
408    int ret = 0;
409
410    if (current->signal->tty != tty)
411        return 0;
412
413    spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415    if (!tty->pgrp) {
416        printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417        goto out_unlock;
418    }
419    if (task_pgrp(current) == tty->pgrp)
420        goto out_unlock;
421    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422    if (is_ignored(SIGTTOU))
423        goto out;
424    if (is_current_pgrp_orphaned()) {
425        ret = -EIO;
426        goto out;
427    }
428    kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429    set_thread_flag(TIF_SIGPENDING);
430    ret = -ERESTARTSYS;
431out:
432    return ret;
433out_unlock:
434    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435    return ret;
436}
437
438EXPORT_SYMBOL(tty_check_change);
439
440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441                size_t count, loff_t *ppos)
442{
443    return 0;
444}
445
446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447                 size_t count, loff_t *ppos)
448{
449    return -EIO;
450}
451
452/* No kernel lock held - none needed ;) */
453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454{
455    return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456}
457
458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459        unsigned long arg)
460{
461    return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462}
463
464static long hung_up_tty_compat_ioctl(struct file *file,
465                     unsigned int cmd, unsigned long arg)
466{
467    return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468}
469
470static const struct file_operations tty_fops = {
471    .llseek = no_llseek,
472    .read = tty_read,
473    .write = tty_write,
474    .poll = tty_poll,
475    .unlocked_ioctl = tty_ioctl,
476    .compat_ioctl = tty_compat_ioctl,
477    .open = tty_open,
478    .release = tty_release,
479    .fasync = tty_fasync,
480};
481
482static const struct file_operations console_fops = {
483    .llseek = no_llseek,
484    .read = tty_read,
485    .write = redirected_tty_write,
486    .poll = tty_poll,
487    .unlocked_ioctl = tty_ioctl,
488    .compat_ioctl = tty_compat_ioctl,
489    .open = tty_open,
490    .release = tty_release,
491    .fasync = tty_fasync,
492};
493
494static const struct file_operations hung_up_tty_fops = {
495    .llseek = no_llseek,
496    .read = hung_up_tty_read,
497    .write = hung_up_tty_write,
498    .poll = hung_up_tty_poll,
499    .unlocked_ioctl = hung_up_tty_ioctl,
500    .compat_ioctl = hung_up_tty_compat_ioctl,
501    .release = tty_release,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup - request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function
512 * informs the line discipline if present that the driver is ready
513 * to receive more output data.
514 */
515
516void tty_wakeup(struct tty_struct *tty)
517{
518    struct tty_ldisc *ld;
519
520    if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521        ld = tty_ldisc_ref(tty);
522        if (ld) {
523            if (ld->ops->write_wakeup)
524                ld->ops->write_wakeup(tty);
525            tty_ldisc_deref(ld);
526        }
527    }
528    wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529}
530
531EXPORT_SYMBOL_GPL(tty_wakeup);
532
533/**
534 * __tty_hangup - actual handler for hangup events
535 * @work: tty device
536 *
537 * This can be called by the "eventd" kernel thread. That is process
538 * synchronous but doesn't hold any locks, so we need to make sure we
539 * have the appropriate locks for what we're doing.
540 *
541 * The hangup event clears any pending redirections onto the hung up
542 * device. It ensures future writes will error and it does the needed
543 * line discipline hangup and signal delivery. The tty object itself
544 * remains intact.
545 *
546 * Locking:
547 * BTM
548 * redirect lock for undoing redirection
549 * file list lock for manipulating list of ttys
550 * tty_ldisc_lock from called functions
551 * termios_mutex resetting termios data
552 * tasklist_lock to walk task list for hangup event
553 * ->siglock to protect ->signal/->sighand
554 */
555void __tty_hangup(struct tty_struct *tty)
556{
557    struct file *cons_filp = NULL;
558    struct file *filp, *f = NULL;
559    struct task_struct *p;
560    struct tty_file_private *priv;
561    int closecount = 0, n;
562    unsigned long flags;
563    int refs = 0;
564
565    if (!tty)
566        return;
567
568
569    spin_lock(&redirect_lock);
570    if (redirect && file_tty(redirect) == tty) {
571        f = redirect;
572        redirect = NULL;
573    }
574    spin_unlock(&redirect_lock);
575
576    tty_lock();
577
578    /* some functions below drop BTM, so we need this bit */
579    set_bit(TTY_HUPPING, &tty->flags);
580
581    /* inuse_filps is protected by the single tty lock,
582       this really needs to change if we want to flush the
583       workqueue with the lock held */
584    check_tty_count(tty, "tty_hangup");
585
586    spin_lock(&tty_files_lock);
587    /* This breaks for file handles being sent over AF_UNIX sockets ? */
588    list_for_each_entry(priv, &tty->tty_files, list) {
589        filp = priv->file;
590        if (filp->f_op->write == redirected_tty_write)
591            cons_filp = filp;
592        if (filp->f_op->write != tty_write)
593            continue;
594        closecount++;
595        __tty_fasync(-1, filp, 0); /* can't block */
596        filp->f_op = &hung_up_tty_fops;
597    }
598    spin_unlock(&tty_files_lock);
599
600    /*
601     * it drops BTM and thus races with reopen
602     * we protect the race by TTY_HUPPING
603     */
604    tty_ldisc_hangup(tty);
605
606    read_lock(&tasklist_lock);
607    if (tty->session) {
608        do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609            spin_lock_irq(&p->sighand->siglock);
610            if (p->signal->tty == tty) {
611                p->signal->tty = NULL;
612                /* We defer the dereferences outside fo
613                   the tasklist lock */
614                refs++;
615            }
616            if (!p->signal->leader) {
617                spin_unlock_irq(&p->sighand->siglock);
618                continue;
619            }
620            __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621            __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622            put_pid(p->signal->tty_old_pgrp); /* A noop */
623            spin_lock_irqsave(&tty->ctrl_lock, flags);
624            if (tty->pgrp)
625                p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626            spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627            spin_unlock_irq(&p->sighand->siglock);
628        } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629    }
630    read_unlock(&tasklist_lock);
631
632    spin_lock_irqsave(&tty->ctrl_lock, flags);
633    clear_bit(TTY_THROTTLED, &tty->flags);
634    clear_bit(TTY_PUSH, &tty->flags);
635    clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636    put_pid(tty->session);
637    put_pid(tty->pgrp);
638    tty->session = NULL;
639    tty->pgrp = NULL;
640    tty->ctrl_status = 0;
641    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643    /* Account for the p->signal references we killed */
644    while (refs--)
645        tty_kref_put(tty);
646
647    /*
648     * If one of the devices matches a console pointer, we
649     * cannot just call hangup() because that will cause
650     * tty->count and state->count to go out of sync.
651     * So we just call close() the right number of times.
652     */
653    if (cons_filp) {
654        if (tty->ops->close)
655            for (n = 0; n < closecount; n++)
656                tty->ops->close(tty, cons_filp);
657    } else if (tty->ops->hangup)
658        (tty->ops->hangup)(tty);
659    /*
660     * We don't want to have driver/ldisc interactions beyond
661     * the ones we did here. The driver layer expects no
662     * calls after ->hangup() from the ldisc side. However we
663     * can't yet guarantee all that.
664     */
665    set_bit(TTY_HUPPED, &tty->flags);
666    clear_bit(TTY_HUPPING, &tty->flags);
667    tty_ldisc_enable(tty);
668
669    tty_unlock();
670
671    if (f)
672        fput(f);
673}
674
675static void do_tty_hangup(struct work_struct *work)
676{
677    struct tty_struct *tty =
678        container_of(work, struct tty_struct, hangup_work);
679
680    __tty_hangup(tty);
681}
682
683/**
684 * tty_hangup - trigger a hangup event
685 * @tty: tty to hangup
686 *
687 * A carrier loss (virtual or otherwise) has occurred on this like
688 * schedule a hangup sequence to run after this event.
689 */
690
691void tty_hangup(struct tty_struct *tty)
692{
693#ifdef TTY_DEBUG_HANGUP
694    char buf[64];
695    printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696#endif
697    schedule_work(&tty->hangup_work);
698}
699
700EXPORT_SYMBOL(tty_hangup);
701
702/**
703 * tty_vhangup - process vhangup
704 * @tty: tty to hangup
705 *
706 * The user has asked via system call for the terminal to be hung up.
707 * We do this synchronously so that when the syscall returns the process
708 * is complete. That guarantee is necessary for security reasons.
709 */
710
711void tty_vhangup(struct tty_struct *tty)
712{
713#ifdef TTY_DEBUG_HANGUP
714    char buf[64];
715
716    printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717#endif
718    __tty_hangup(tty);
719}
720
721EXPORT_SYMBOL(tty_vhangup);
722
723
724/**
725 * tty_vhangup_self - process vhangup for own ctty
726 *
727 * Perform a vhangup on the current controlling tty
728 */
729
730void tty_vhangup_self(void)
731{
732    struct tty_struct *tty;
733
734    tty = get_current_tty();
735    if (tty) {
736        tty_vhangup(tty);
737        tty_kref_put(tty);
738    }
739}
740
741/**
742 * tty_hung_up_p - was tty hung up
743 * @filp: file pointer of tty
744 *
745 * Return true if the tty has been subject to a vhangup or a carrier
746 * loss
747 */
748
749int tty_hung_up_p(struct file *filp)
750{
751    return (filp->f_op == &hung_up_tty_fops);
752}
753
754EXPORT_SYMBOL(tty_hung_up_p);
755
756static void session_clear_tty(struct pid *session)
757{
758    struct task_struct *p;
759    do_each_pid_task(session, PIDTYPE_SID, p) {
760        proc_clear_tty(p);
761    } while_each_pid_task(session, PIDTYPE_SID, p);
762}
763
764/**
765 * disassociate_ctty - disconnect controlling tty
766 * @on_exit: true if exiting so need to "hang up" the session
767 *
768 * This function is typically called only by the session leader, when
769 * it wants to disassociate itself from its controlling tty.
770 *
771 * It performs the following functions:
772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
773 * (2) Clears the tty from being controlling the session
774 * (3) Clears the controlling tty for all processes in the
775 * session group.
776 *
777 * The argument on_exit is set to 1 if called when a process is
778 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
779 *
780 * Locking:
781 * BTM is taken for hysterical raisins, and held when
782 * called from no_tty().
783 * tty_mutex is taken to protect tty
784 * ->siglock is taken to protect ->signal/->sighand
785 * tasklist_lock is taken to walk process list for sessions
786 * ->siglock is taken to protect ->signal/->sighand
787 */
788
789void disassociate_ctty(int on_exit)
790{
791    struct tty_struct *tty;
792
793    if (!current->signal->leader)
794        return;
795
796    tty = get_current_tty();
797    if (tty) {
798        struct pid *tty_pgrp = get_pid(tty->pgrp);
799        if (on_exit) {
800            if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801                tty_vhangup(tty);
802        }
803        tty_kref_put(tty);
804        if (tty_pgrp) {
805            kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806            if (!on_exit)
807                kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808            put_pid(tty_pgrp);
809        }
810    } else if (on_exit) {
811        struct pid *old_pgrp;
812        spin_lock_irq(&current->sighand->siglock);
813        old_pgrp = current->signal->tty_old_pgrp;
814        current->signal->tty_old_pgrp = NULL;
815        spin_unlock_irq(&current->sighand->siglock);
816        if (old_pgrp) {
817            kill_pgrp(old_pgrp, SIGHUP, on_exit);
818            kill_pgrp(old_pgrp, SIGCONT, on_exit);
819            put_pid(old_pgrp);
820        }
821        return;
822    }
823
824    spin_lock_irq(&current->sighand->siglock);
825    put_pid(current->signal->tty_old_pgrp);
826    current->signal->tty_old_pgrp = NULL;
827    spin_unlock_irq(&current->sighand->siglock);
828
829    tty = get_current_tty();
830    if (tty) {
831        unsigned long flags;
832        spin_lock_irqsave(&tty->ctrl_lock, flags);
833        put_pid(tty->session);
834        put_pid(tty->pgrp);
835        tty->session = NULL;
836        tty->pgrp = NULL;
837        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838        tty_kref_put(tty);
839    } else {
840#ifdef TTY_DEBUG_HANGUP
841        printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842               " = NULL", tty);
843#endif
844    }
845
846    /* Now clear signal->tty under the lock */
847    read_lock(&tasklist_lock);
848    session_clear_tty(task_session(current));
849    read_unlock(&tasklist_lock);
850}
851
852/**
853 *
854 * no_tty - Ensure the current process does not have a controlling tty
855 */
856void no_tty(void)
857{
858    /* FIXME: Review locking here. The tty_lock never covered any race
859       between a new association and proc_clear_tty but possible we need
860       to protect against this anyway */
861    struct task_struct *tsk = current;
862    disassociate_ctty(0);
863    proc_clear_tty(tsk);
864}
865
866
867/**
868 * stop_tty - propagate flow control
869 * @tty: tty to stop
870 *
871 * Perform flow control to the driver. For PTY/TTY pairs we
872 * must also propagate the TIOCKPKT status. May be called
873 * on an already stopped device and will not re-call the driver
874 * method.
875 *
876 * This functionality is used by both the line disciplines for
877 * halting incoming flow and by the driver. It may therefore be
878 * called from any context, may be under the tty atomic_write_lock
879 * but not always.
880 *
881 * Locking:
882 * Uses the tty control lock internally
883 */
884
885void stop_tty(struct tty_struct *tty)
886{
887    unsigned long flags;
888    spin_lock_irqsave(&tty->ctrl_lock, flags);
889    if (tty->stopped) {
890        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891        return;
892    }
893    tty->stopped = 1;
894    if (tty->link && tty->link->packet) {
895        tty->ctrl_status &= ~TIOCPKT_START;
896        tty->ctrl_status |= TIOCPKT_STOP;
897        wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898    }
899    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900    if (tty->ops->stop)
901        (tty->ops->stop)(tty);
902}
903
904EXPORT_SYMBOL(stop_tty);
905
906/**
907 * start_tty - propagate flow control
908 * @tty: tty to start
909 *
910 * Start a tty that has been stopped if at all possible. Perform
911 * any necessary wakeups and propagate the TIOCPKT status. If this
912 * is the tty was previous stopped and is being started then the
913 * driver start method is invoked and the line discipline woken.
914 *
915 * Locking:
916 * ctrl_lock
917 */
918
919void start_tty(struct tty_struct *tty)
920{
921    unsigned long flags;
922    spin_lock_irqsave(&tty->ctrl_lock, flags);
923    if (!tty->stopped || tty->flow_stopped) {
924        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925        return;
926    }
927    tty->stopped = 0;
928    if (tty->link && tty->link->packet) {
929        tty->ctrl_status &= ~TIOCPKT_STOP;
930        tty->ctrl_status |= TIOCPKT_START;
931        wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932    }
933    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934    if (tty->ops->start)
935        (tty->ops->start)(tty);
936    /* If we have a running line discipline it may need kicking */
937    tty_wakeup(tty);
938}
939
940EXPORT_SYMBOL(start_tty);
941
942/**
943 * tty_read - read method for tty device files
944 * @file: pointer to tty file
945 * @buf: user buffer
946 * @count: size of user buffer
947 * @ppos: unused
948 *
949 * Perform the read system call function on this terminal device. Checks
950 * for hung up devices before calling the line discipline method.
951 *
952 * Locking:
953 * Locks the line discipline internally while needed. Multiple
954 * read calls may be outstanding in parallel.
955 */
956
957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958            loff_t *ppos)
959{
960    int i;
961    struct inode *inode = file->f_path.dentry->d_inode;
962    struct tty_struct *tty = file_tty(file);
963    struct tty_ldisc *ld;
964
965    if (tty_paranoia_check(tty, inode, "tty_read"))
966        return -EIO;
967    if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968        return -EIO;
969
970    /* We want to wait for the line discipline to sort out in this
971       situation */
972    ld = tty_ldisc_ref_wait(tty);
973    if (ld->ops->read)
974        i = (ld->ops->read)(tty, file, buf, count);
975    else
976        i = -EIO;
977    tty_ldisc_deref(ld);
978    if (i > 0)
979        inode->i_atime = current_fs_time(inode->i_sb);
980    return i;
981}
982
983void tty_write_unlock(struct tty_struct *tty)
984    __releases(&tty->atomic_write_lock)
985{
986    mutex_unlock(&tty->atomic_write_lock);
987    wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988}
989
990int tty_write_lock(struct tty_struct *tty, int ndelay)
991    __acquires(&tty->atomic_write_lock)
992{
993    if (!mutex_trylock(&tty->atomic_write_lock)) {
994        if (ndelay)
995            return -EAGAIN;
996        if (mutex_lock_interruptible(&tty->atomic_write_lock))
997            return -ERESTARTSYS;
998    }
999    return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007    ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008    struct tty_struct *tty,
1009    struct file *file,
1010    const char __user *buf,
1011    size_t count)
1012{
1013    ssize_t ret, written = 0;
1014    unsigned int chunk;
1015
1016    ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017    if (ret < 0)
1018        return ret;
1019
1020    /*
1021     * We chunk up writes into a temporary buffer. This
1022     * simplifies low-level drivers immensely, since they
1023     * don't have locking issues and user mode accesses.
1024     *
1025     * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026     * big chunk-size..
1027     *
1028     * The default chunk-size is 2kB, because the NTTY
1029     * layer has problems with bigger chunks. It will
1030     * claim to be able to handle more characters than
1031     * it actually does.
1032     *
1033     * FIXME: This can probably go away now except that 64K chunks
1034     * are too likely to fail unless switched to vmalloc...
1035     */
1036    chunk = 2048;
1037    if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038        chunk = 65536;
1039    if (count < chunk)
1040        chunk = count;
1041
1042    /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043    if (tty->write_cnt < chunk) {
1044        unsigned char *buf_chunk;
1045
1046        if (chunk < 1024)
1047            chunk = 1024;
1048
1049        buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050        if (!buf_chunk) {
1051            ret = -ENOMEM;
1052            goto out;
1053        }
1054        kfree(tty->write_buf);
1055        tty->write_cnt = chunk;
1056        tty->write_buf = buf_chunk;
1057    }
1058
1059    /* Do the write .. */
1060    for (;;) {
1061        size_t size = count;
1062        if (size > chunk)
1063            size = chunk;
1064        ret = -EFAULT;
1065        if (copy_from_user(tty->write_buf, buf, size))
1066            break;
1067        ret = write(tty, file, tty->write_buf, size);
1068        if (ret <= 0)
1069            break;
1070        written += ret;
1071        buf += ret;
1072        count -= ret;
1073        if (!count)
1074            break;
1075        ret = -ERESTARTSYS;
1076        if (signal_pending(current))
1077            break;
1078        cond_resched();
1079    }
1080    if (written) {
1081        struct inode *inode = file->f_path.dentry->d_inode;
1082        inode->i_mtime = current_fs_time(inode->i_sb);
1083        ret = written;
1084    }
1085out:
1086    tty_write_unlock(tty);
1087    return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104    if (tty) {
1105        mutex_lock(&tty->atomic_write_lock);
1106        tty_lock();
1107        if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108            tty_unlock();
1109            tty->ops->write(tty, msg, strlen(msg));
1110        } else
1111            tty_unlock();
1112        tty_write_unlock(tty);
1113    }
1114    return;
1115}
1116
1117
1118/**
1119 * tty_write - write method for tty device file
1120 * @file: tty file pointer
1121 * @buf: user data to write
1122 * @count: bytes to write
1123 * @ppos: unused
1124 *
1125 * Write data to a tty device via the line discipline.
1126 *
1127 * Locking:
1128 * Locks the line discipline as required
1129 * Writes to the tty driver are serialized by the atomic_write_lock
1130 * and are then processed in chunks to the device. The line discipline
1131 * write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135                        size_t count, loff_t *ppos)
1136{
1137    struct inode *inode = file->f_path.dentry->d_inode;
1138    struct tty_struct *tty = file_tty(file);
1139     struct tty_ldisc *ld;
1140    ssize_t ret;
1141
1142    if (tty_paranoia_check(tty, inode, "tty_write"))
1143        return -EIO;
1144    if (!tty || !tty->ops->write ||
1145        (test_bit(TTY_IO_ERROR, &tty->flags)))
1146            return -EIO;
1147    /* Short term debug to catch buggy drivers */
1148    if (tty->ops->write_room == NULL)
1149        printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150            tty->driver->name);
1151    ld = tty_ldisc_ref_wait(tty);
1152    if (!ld->ops->write)
1153        ret = -EIO;
1154    else
1155        ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156    tty_ldisc_deref(ld);
1157    return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                        size_t count, loff_t *ppos)
1162{
1163    struct file *p = NULL;
1164
1165    spin_lock(&redirect_lock);
1166    if (redirect) {
1167        get_file(redirect);
1168        p = redirect;
1169    }
1170    spin_unlock(&redirect_lock);
1171
1172    if (p) {
1173        ssize_t res;
1174        res = vfs_write(p, buf, count, &p->f_pos);
1175        fput(p);
1176        return res;
1177    }
1178    return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 * pty_line_name - generate name for a pty
1185 * @driver: the tty driver in use
1186 * @index: the minor number
1187 * @p: output buffer of at least 6 bytes
1188 *
1189 * Generate a name from a driver reference and write it to the output
1190 * buffer.
1191 *
1192 * Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196    int i = index + driver->name_base;
1197    /* ->name is initialized to "ttyp", but "tty" is expected */
1198    sprintf(p, "%s%c%x",
1199        driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200        ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 * tty_line_name - generate name for a tty
1205 * @driver: the tty driver in use
1206 * @index: the minor number
1207 * @p: output buffer of at least 7 bytes
1208 *
1209 * Generate a name from a driver reference and write it to the output
1210 * buffer.
1211 *
1212 * Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216    sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217}
1218
1219/**
1220 * tty_driver_lookup_tty() - find an existing tty, if any
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1223 *
1224 * Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 * Locking: tty_mutex must be held. If tty is found, the mutex must
1227 * be held until the 'fast-open' is also done. Will change once we
1228 * have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231        struct inode *inode, int idx)
1232{
1233    if (driver->ops->lookup)
1234        return driver->ops->lookup(driver, inode, idx);
1235
1236    return driver->ttys[idx];
1237}
1238
1239/**
1240 * tty_init_termios - helper for termios setup
1241 * @tty: the tty to set up
1242 *
1243 * Initialise the termios structures for this tty. Thus runs under
1244 * the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249    struct ktermios *tp;
1250    int idx = tty->index;
1251
1252    tp = tty->driver->termios[idx];
1253    if (tp == NULL) {
1254        tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255        if (tp == NULL)
1256            return -ENOMEM;
1257        memcpy(tp, &tty->driver->init_termios,
1258                        sizeof(struct ktermios));
1259        tty->driver->termios[idx] = tp;
1260    }
1261    tty->termios = tp;
1262    tty->termios_locked = tp + 1;
1263
1264    /* Compatibility until drivers always set this */
1265    tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266    tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267    return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273    int ret = tty_init_termios(tty);
1274    if (ret)
1275        return ret;
1276
1277    tty_driver_kref_get(driver);
1278    tty->count++;
1279    driver->ttys[tty->index] = tty;
1280    return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 * tty_driver_install_tty() - install a tty entry in the driver
1286 * @driver: the driver for the tty
1287 * @tty: the tty
1288 *
1289 * Install a tty object into the driver tables. The tty->index field
1290 * will be set by the time this is called. This method is responsible
1291 * for ensuring any need additional structures are allocated and
1292 * configured.
1293 *
1294 * Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297                        struct tty_struct *tty)
1298{
1299    return driver->ops->install ? driver->ops->install(driver, tty) :
1300        tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 * tty_driver_remove_tty() - remove a tty from the driver tables
1305 * @driver: the driver for the tty
1306 * @idx: the minor number
1307 *
1308 * Remvoe a tty object from the driver tables. The tty->index field
1309 * will be set by the time this is called.
1310 *
1311 * Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315    if (driver->ops->remove)
1316        driver->ops->remove(driver, tty);
1317    else
1318        driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * tty_reopen() - fast re-open of an open tty
1323 * @tty - the tty to open
1324 *
1325 * Return 0 on success, -errno on error.
1326 *
1327 * Locking: tty_mutex must be held from the time the tty was found
1328 * till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332    struct tty_driver *driver = tty->driver;
1333
1334    if (test_bit(TTY_CLOSING, &tty->flags) ||
1335            test_bit(TTY_HUPPING, &tty->flags) ||
1336            test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337        return -EIO;
1338
1339    if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340        driver->subtype == PTY_TYPE_MASTER) {
1341        /*
1342         * special case for PTY masters: only one open permitted,
1343         * and the slave side open count is incremented as well.
1344         */
1345        if (tty->count)
1346            return -EIO;
1347
1348        tty->link->count++;
1349    }
1350    tty->count++;
1351
1352    mutex_lock(&tty->ldisc_mutex);
1353    WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354    mutex_unlock(&tty->ldisc_mutex);
1355
1356    return 0;
1357}
1358
1359/**
1360 * tty_init_dev - initialise a tty device
1361 * @driver: tty driver we are opening a device on
1362 * @idx: device index
1363 * @ret_tty: returned tty structure
1364 *
1365 * Prepare a tty device. This may not be a "new" clean device but
1366 * could also be an active device. The pty drivers require special
1367 * handling because of this.
1368 *
1369 * Locking:
1370 * The function is called under the tty_mutex, which
1371 * protects us from the tty struct or driver itself going away.
1372 *
1373 * On exit the tty device has the line discipline attached and
1374 * a reference count of 1. If a pair was created for pty/tty use
1375 * and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open. The new code protects the open with a mutex, so it's
1379 * really quite straightforward. The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385    struct tty_struct *tty;
1386    int retval;
1387
1388    /*
1389     * First time open is complex, especially for PTY devices.
1390     * This code guarantees that either everything succeeds and the
1391     * TTY is ready for operation, or else the table slots are vacated
1392     * and the allocated memory released. (Except that the termios
1393     * and locked termios may be retained.)
1394     */
1395
1396    if (!try_module_get(driver->owner))
1397        return ERR_PTR(-ENODEV);
1398
1399    tty = alloc_tty_struct();
1400    if (!tty) {
1401        retval = -ENOMEM;
1402        goto err_module_put;
1403    }
1404    initialize_tty_struct(tty, driver, idx);
1405
1406    retval = tty_driver_install_tty(driver, tty);
1407    if (retval < 0)
1408        goto err_deinit_tty;
1409
1410    /*
1411     * Structures all installed ... call the ldisc open routines.
1412     * If we fail here just call release_tty to clean up. No need
1413     * to decrement the use counts, as release_tty doesn't care.
1414     */
1415    retval = tty_ldisc_setup(tty, tty->link);
1416    if (retval)
1417        goto err_release_tty;
1418    return tty;
1419
1420err_deinit_tty:
1421    deinitialize_tty_struct(tty);
1422    free_tty_struct(tty);
1423err_module_put:
1424    module_put(driver->owner);
1425    return ERR_PTR(retval);
1426
1427    /* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429    printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430                 "clearing slot %d\n", idx);
1431    release_tty(tty, idx);
1432    return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
1436{
1437    struct ktermios *tp;
1438    int idx = tty->index;
1439    /* Kill this flag and push into drivers for locking etc */
1440    if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441        /* FIXME: Locking on ->termios array */
1442        tp = tty->termios;
1443        tty->driver->termios[idx] = NULL;
1444        kfree(tp);
1445    }
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
1450{
1451    tty_driver_remove_tty(tty->driver, tty);
1452    tty_free_termios(tty);
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 * release_one_tty - release tty structure memory
1458 * @kref: kref of tty we are obliterating
1459 *
1460 * Releases memory associated with a tty structure, and clears out the
1461 * driver table slots. This function is called when a device is no longer
1462 * in use. It also gets called when setup of a device fails.
1463 *
1464 * Locking:
1465 * tty_mutex - sometimes only
1466 * takes the file list lock internally when working on the list
1467 * of ttys that the driver keeps.
1468 *
1469 * This method gets called from a work queue so that the driver private
1470 * cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474    struct tty_struct *tty =
1475        container_of(work, struct tty_struct, hangup_work);
1476    struct tty_driver *driver = tty->driver;
1477
1478    if (tty->ops->cleanup)
1479        tty->ops->cleanup(tty);
1480
1481    tty->magic = 0;
1482    tty_driver_kref_put(driver);
1483    module_put(driver->owner);
1484
1485    spin_lock(&tty_files_lock);
1486    list_del_init(&tty->tty_files);
1487    spin_unlock(&tty_files_lock);
1488
1489    put_pid(tty->pgrp);
1490    put_pid(tty->session);
1491    free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496    struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498    if (tty->ops->shutdown)
1499        tty->ops->shutdown(tty);
1500    else
1501        tty_shutdown(tty);
1502
1503    /* The hangup queue is now free so we can reuse it rather than
1504       waste a chunk of memory for each port */
1505    INIT_WORK(&tty->hangup_work, release_one_tty);
1506    schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 * tty_kref_put - release a tty kref
1511 * @tty: tty device
1512 *
1513 * Release a reference to a tty device and if need be let the kref
1514 * layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519    if (tty)
1520        kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 * release_tty - release tty structure memory
1526 *
1527 * Release both @tty and a possible linked partner (think pty pair),
1528 * and decrement the refcount of the backing module.
1529 *
1530 * Locking:
1531 * tty_mutex - sometimes only
1532 * takes the file list lock internally when working on the list
1533 * of ttys that the driver keeps.
1534 * FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539    /* This should always be true but check for the moment */
1540    WARN_ON(tty->index != idx);
1541
1542    if (tty->link)
1543        tty_kref_put(tty->link);
1544    tty_kref_put(tty);
1545}
1546
1547/**
1548 * tty_release_checks - check a tty before real release
1549 * @tty: tty to check
1550 * @o_tty: link of @tty (if any)
1551 * @idx: index of the tty
1552 *
1553 * Performs some paranoid checking before true release of the @tty.
1554 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557        int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560    if (idx < 0 || idx >= tty->driver->num) {
1561        printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562                __func__, tty->name);
1563        return -1;
1564    }
1565
1566    /* not much to check for devpts */
1567    if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568        return 0;
1569
1570    if (tty != tty->driver->ttys[idx]) {
1571        printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572                __func__, idx, tty->name);
1573        return -1;
1574    }
1575    if (tty->termios != tty->driver->termios[idx]) {
1576        printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577                __func__, idx, tty->name);
1578        return -1;
1579    }
1580    if (tty->driver->other) {
1581        if (o_tty != tty->driver->other->ttys[idx]) {
1582            printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583                    __func__, idx, tty->name);
1584            return -1;
1585        }
1586        if (o_tty->termios != tty->driver->other->termios[idx]) {
1587            printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588                    __func__, idx, tty->name);
1589            return -1;
1590        }
1591        if (o_tty->link != tty) {
1592            printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593            return -1;
1594        }
1595    }
1596#endif
1597    return 0;
1598}
1599
1600/**
1601 * tty_release - vfs callback for close
1602 * @inode: inode of tty
1603 * @filp: file pointer for handle to tty
1604 *
1605 * Called the last time each file handle is closed that references
1606 * this tty. There may however be several such references.
1607 *
1608 * Locking:
1609 * Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621    struct tty_struct *tty = file_tty(filp);
1622    struct tty_struct *o_tty;
1623    int pty_master, tty_closing, o_tty_closing, do_sleep;
1624    int devpts;
1625    int idx;
1626    char buf[64];
1627
1628    if (tty_paranoia_check(tty, inode, __func__))
1629        return 0;
1630
1631    tty_lock();
1632    check_tty_count(tty, __func__);
1633
1634    __tty_fasync(-1, filp, 0);
1635
1636    idx = tty->index;
1637    pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638              tty->driver->subtype == PTY_TYPE_MASTER);
1639    devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640    o_tty = tty->link;
1641
1642    if (tty_release_checks(tty, o_tty, idx)) {
1643        tty_unlock();
1644        return 0;
1645    }
1646
1647#ifdef TTY_DEBUG_HANGUP
1648    printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649            tty_name(tty, buf), tty->count);
1650#endif
1651
1652    if (tty->ops->close)
1653        tty->ops->close(tty, filp);
1654
1655    tty_unlock();
1656    /*
1657     * Sanity check: if tty->count is going to zero, there shouldn't be
1658     * any waiters on tty->read_wait or tty->write_wait. We test the
1659     * wait queues and kick everyone out _before_ actually starting to
1660     * close. This ensures that we won't block while releasing the tty
1661     * structure.
1662     *
1663     * The test for the o_tty closing is necessary, since the master and
1664     * slave sides may close in any order. If the slave side closes out
1665     * first, its count will be one, since the master side holds an open.
1666     * Thus this test wouldn't be triggered at the time the slave closes,
1667     * so we do it now.
1668     *
1669     * Note that it's possible for the tty to be opened again while we're
1670     * flushing out waiters. By recalculating the closing flags before
1671     * each iteration we avoid any problems.
1672     */
1673    while (1) {
1674        /* Guard against races with tty->count changes elsewhere and
1675           opens on /dev/tty */
1676
1677        mutex_lock(&tty_mutex);
1678        tty_lock();
1679        tty_closing = tty->count <= 1;
1680        o_tty_closing = o_tty &&
1681            (o_tty->count <= (pty_master ? 1 : 0));
1682        do_sleep = 0;
1683
1684        if (tty_closing) {
1685            if (waitqueue_active(&tty->read_wait)) {
1686                wake_up_poll(&tty->read_wait, POLLIN);
1687                do_sleep++;
1688            }
1689            if (waitqueue_active(&tty->write_wait)) {
1690                wake_up_poll(&tty->write_wait, POLLOUT);
1691                do_sleep++;
1692            }
1693        }
1694        if (o_tty_closing) {
1695            if (waitqueue_active(&o_tty->read_wait)) {
1696                wake_up_poll(&o_tty->read_wait, POLLIN);
1697                do_sleep++;
1698            }
1699            if (waitqueue_active(&o_tty->write_wait)) {
1700                wake_up_poll(&o_tty->write_wait, POLLOUT);
1701                do_sleep++;
1702            }
1703        }
1704        if (!do_sleep)
1705            break;
1706
1707        printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708                __func__, tty_name(tty, buf));
1709        tty_unlock();
1710        mutex_unlock(&tty_mutex);
1711        schedule();
1712    }
1713
1714    /*
1715     * The closing flags are now consistent with the open counts on
1716     * both sides, and we've completed the last operation that could
1717     * block, so it's safe to proceed with closing.
1718     */
1719    if (pty_master) {
1720        if (--o_tty->count < 0) {
1721            printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722                __func__, o_tty->count, tty_name(o_tty, buf));
1723            o_tty->count = 0;
1724        }
1725    }
1726    if (--tty->count < 0) {
1727        printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728                __func__, tty->count, tty_name(tty, buf));
1729        tty->count = 0;
1730    }
1731
1732    /*
1733     * We've decremented tty->count, so we need to remove this file
1734     * descriptor off the tty->tty_files list; this serves two
1735     * purposes:
1736     * - check_tty_count sees the correct number of file descriptors
1737     * associated with this tty.
1738     * - do_tty_hangup no longer sees this file descriptor as
1739     * something that needs to be handled for hangups.
1740     */
1741    tty_del_file(filp);
1742
1743    /*
1744     * Perform some housekeeping before deciding whether to return.
1745     *
1746     * Set the TTY_CLOSING flag if this was the last open. In the
1747     * case of a pty we may have to wait around for the other side
1748     * to close, and TTY_CLOSING makes sure we can't be reopened.
1749     */
1750    if (tty_closing)
1751        set_bit(TTY_CLOSING, &tty->flags);
1752    if (o_tty_closing)
1753        set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755    /*
1756     * If _either_ side is closing, make sure there aren't any
1757     * processes that still think tty or o_tty is their controlling
1758     * tty.
1759     */
1760    if (tty_closing || o_tty_closing) {
1761        read_lock(&tasklist_lock);
1762        session_clear_tty(tty->session);
1763        if (o_tty)
1764            session_clear_tty(o_tty->session);
1765        read_unlock(&tasklist_lock);
1766    }
1767
1768    mutex_unlock(&tty_mutex);
1769
1770    /* check whether both sides are closing ... */
1771    if (!tty_closing || (o_tty && !o_tty_closing)) {
1772        tty_unlock();
1773        return 0;
1774    }
1775
1776#ifdef TTY_DEBUG_HANGUP
1777    printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779    /*
1780     * Ask the line discipline code to release its structures
1781     */
1782    tty_ldisc_release(tty, o_tty);
1783    /*
1784     * The release_tty function takes care of the details of clearing
1785     * the slots and preserving the termios structure.
1786     */
1787    release_tty(tty, idx);
1788
1789    /* Make this pty number available for reallocation */
1790    if (devpts)
1791        devpts_kill_index(inode, idx);
1792    tty_unlock();
1793    return 0;
1794}
1795
1796/**
1797 * tty_open_current_tty - get tty of current task for open
1798 * @device: device number
1799 * @filp: file pointer to tty
1800 * @return: tty of the current task iff @device is /dev/tty
1801 *
1802 * We cannot return driver and index like for the other nodes because
1803 * devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 * We need to move to returning a refcounted object from all the lookup
1806 * paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810    struct tty_struct *tty;
1811
1812    if (device != MKDEV(TTYAUX_MAJOR, 0))
1813        return NULL;
1814
1815    tty = get_current_tty();
1816    if (!tty)
1817        return ERR_PTR(-ENXIO);
1818
1819    filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820    /* noctty = 1; */
1821    tty_kref_put(tty);
1822    /* FIXME: we put a reference and return a TTY! */
1823    /* This is only safe because the caller holds tty_mutex */
1824    return tty;
1825}
1826
1827/**
1828 * tty_lookup_driver - lookup a tty driver for a given device file
1829 * @device: device number
1830 * @filp: file pointer to tty
1831 * @noctty: set if the device should not become a controlling tty
1832 * @index: index for the device in the @return driver
1833 * @return: driver for this inode (with increased refcount)
1834 *
1835 * If @return is not erroneous, the caller is responsible to decrement the
1836 * refcount by tty_driver_kref_put.
1837 *
1838 * Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841        int *noctty, int *index)
1842{
1843    struct tty_driver *driver;
1844
1845    switch (device) {
1846#ifdef CONFIG_VT
1847    case MKDEV(TTY_MAJOR, 0): {
1848        extern struct tty_driver *console_driver;
1849        driver = tty_driver_kref_get(console_driver);
1850        *index = fg_console;
1851        *noctty = 1;
1852        break;
1853    }
1854#endif
1855    case MKDEV(TTYAUX_MAJOR, 1): {
1856        struct tty_driver *console_driver = console_device(index);
1857        if (console_driver) {
1858            driver = tty_driver_kref_get(console_driver);
1859            if (driver) {
1860                /* Don't let /dev/console block */
1861                filp->f_flags |= O_NONBLOCK;
1862                *noctty = 1;
1863                break;
1864            }
1865        }
1866        return ERR_PTR(-ENODEV);
1867    }
1868    default:
1869        driver = get_tty_driver(device, index);
1870        if (!driver)
1871            return ERR_PTR(-ENODEV);
1872        break;
1873    }
1874    return driver;
1875}
1876
1877/**
1878 * tty_open - open a tty device
1879 * @inode: inode of device file
1880 * @filp: file pointer to tty
1881 *
1882 * tty_open and tty_release keep up the tty count that contains the
1883 * number of opens done on a tty. We cannot use the inode-count, as
1884 * different inodes might point to the same tty.
1885 *
1886 * Open-counting is needed for pty masters, as well as for keeping
1887 * track of serial lines: DTR is dropped when the last close happens.
1888 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1889 *
1890 * The termios state of a pty is reset on first open so that
1891 * settings don't persist across reuse.
1892 *
1893 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 * tty->count should protect the rest.
1895 * ->siglock protects ->signal/->sighand
1896 */
1897
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900    struct tty_struct *tty;
1901    int noctty, retval;
1902    struct tty_driver *driver = NULL;
1903    int index;
1904    dev_t device = inode->i_rdev;
1905    unsigned saved_flags = filp->f_flags;
1906
1907    nonseekable_open(inode, filp);
1908
1909retry_open:
1910    retval = tty_alloc_file(filp);
1911    if (retval)
1912        return -ENOMEM;
1913
1914    noctty = filp->f_flags & O_NOCTTY;
1915    index = -1;
1916    retval = 0;
1917
1918    mutex_lock(&tty_mutex);
1919    tty_lock();
1920
1921    tty = tty_open_current_tty(device, filp);
1922    if (IS_ERR(tty)) {
1923        retval = PTR_ERR(tty);
1924        goto err_unlock;
1925    } else if (!tty) {
1926        driver = tty_lookup_driver(device, filp, &noctty, &index);
1927        if (IS_ERR(driver)) {
1928            retval = PTR_ERR(driver);
1929            goto err_unlock;
1930        }
1931
1932        /* check whether we're reopening an existing tty */
1933        tty = tty_driver_lookup_tty(driver, inode, index);
1934        if (IS_ERR(tty)) {
1935            retval = PTR_ERR(tty);
1936            goto err_unlock;
1937        }
1938    }
1939
1940    if (tty) {
1941        retval = tty_reopen(tty);
1942        if (retval)
1943            tty = ERR_PTR(retval);
1944    } else
1945        tty = tty_init_dev(driver, index);
1946
1947    mutex_unlock(&tty_mutex);
1948    if (driver)
1949        tty_driver_kref_put(driver);
1950    if (IS_ERR(tty)) {
1951        tty_unlock();
1952        retval = PTR_ERR(tty);
1953        goto err_file;
1954    }
1955
1956    tty_add_file(tty, filp);
1957
1958    check_tty_count(tty, __func__);
1959    if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960        tty->driver->subtype == PTY_TYPE_MASTER)
1961        noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963    printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965    if (tty->ops->open)
1966        retval = tty->ops->open(tty, filp);
1967    else
1968        retval = -ENODEV;
1969    filp->f_flags = saved_flags;
1970
1971    if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972                        !capable(CAP_SYS_ADMIN))
1973        retval = -EBUSY;
1974
1975    if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977        printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978                retval, tty->name);
1979#endif
1980        tty_unlock(); /* need to call tty_release without BTM */
1981        tty_release(inode, filp);
1982        if (retval != -ERESTARTSYS)
1983            return retval;
1984
1985        if (signal_pending(current))
1986            return retval;
1987
1988        schedule();
1989        /*
1990         * Need to reset f_op in case a hangup happened.
1991         */
1992        tty_lock();
1993        if (filp->f_op == &hung_up_tty_fops)
1994            filp->f_op = &tty_fops;
1995        tty_unlock();
1996        goto retry_open;
1997    }
1998    tty_unlock();
1999
2000
2001    mutex_lock(&tty_mutex);
2002    tty_lock();
2003    spin_lock_irq(&current->sighand->siglock);
2004    if (!noctty &&
2005        current->signal->leader &&
2006        !current->signal->tty &&
2007        tty->session == NULL)
2008        __proc_set_tty(current, tty);
2009    spin_unlock_irq(&current->sighand->siglock);
2010    tty_unlock();
2011    mutex_unlock(&tty_mutex);
2012    return 0;
2013err_unlock:
2014    tty_unlock();
2015    mutex_unlock(&tty_mutex);
2016    /* after locks to avoid deadlock */
2017    if (!IS_ERR_OR_NULL(driver))
2018        tty_driver_kref_put(driver);
2019err_file:
2020    tty_free_file(filp);
2021    return retval;
2022}
2023
2024
2025
2026/**
2027 * tty_poll - check tty status
2028 * @filp: file being polled
2029 * @wait: poll wait structures to update
2030 *
2031 * Call the line discipline polling method to obtain the poll
2032 * status of the device.
2033 *
2034 * Locking: locks called line discipline but ldisc poll method
2035 * may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040    struct tty_struct *tty = file_tty(filp);
2041    struct tty_ldisc *ld;
2042    int ret = 0;
2043
2044    if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045        return 0;
2046
2047    ld = tty_ldisc_ref_wait(tty);
2048    if (ld->ops->poll)
2049        ret = (ld->ops->poll)(tty, filp, wait);
2050    tty_ldisc_deref(ld);
2051    return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056    struct tty_struct *tty = file_tty(filp);
2057    unsigned long flags;
2058    int retval = 0;
2059
2060    if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061        goto out;
2062
2063    retval = fasync_helper(fd, filp, on, &tty->fasync);
2064    if (retval <= 0)
2065        goto out;
2066
2067    if (on) {
2068        enum pid_type type;
2069        struct pid *pid;
2070        if (!waitqueue_active(&tty->read_wait))
2071            tty->minimum_to_wake = 1;
2072        spin_lock_irqsave(&tty->ctrl_lock, flags);
2073        if (tty->pgrp) {
2074            pid = tty->pgrp;
2075            type = PIDTYPE_PGID;
2076        } else {
2077            pid = task_pid(current);
2078            type = PIDTYPE_PID;
2079        }
2080        get_pid(pid);
2081        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082        retval = __f_setown(filp, pid, type, 0);
2083        put_pid(pid);
2084        if (retval)
2085            goto out;
2086    } else {
2087        if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088            tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089    }
2090    retval = 0;
2091out:
2092    return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097    int retval;
2098    tty_lock();
2099    retval = __tty_fasync(fd, filp, on);
2100    tty_unlock();
2101    return retval;
2102}
2103
2104/**
2105 * tiocsti - fake input character
2106 * @tty: tty to fake input into
2107 * @p: pointer to character
2108 *
2109 * Fake input to a tty device. Does the necessary locking and
2110 * input management.
2111 *
2112 * FIXME: does not honour flow control ??
2113 *
2114 * Locking:
2115 * Called functions take tty_ldisc_lock
2116 * current->signal->tty check is safe without locks
2117 *
2118 * FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123    char ch, mbz = 0;
2124    struct tty_ldisc *ld;
2125
2126    if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127        return -EPERM;
2128    if (get_user(ch, p))
2129        return -EFAULT;
2130    tty_audit_tiocsti(tty, ch);
2131    ld = tty_ldisc_ref_wait(tty);
2132    ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133    tty_ldisc_deref(ld);
2134    return 0;
2135}
2136
2137/**
2138 * tiocgwinsz - implement window query ioctl
2139 * @tty; tty
2140 * @arg: user buffer for result
2141 *
2142 * Copies the kernel idea of the window size into the user buffer.
2143 *
2144 * Locking: tty->termios_mutex is taken to ensure the winsize data
2145 * is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150    int err;
2151
2152    mutex_lock(&tty->termios_mutex);
2153    err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154    mutex_unlock(&tty->termios_mutex);
2155
2156    return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 * tty_do_resize - resize event
2161 * @tty: tty being resized
2162 * @rows: rows (character)
2163 * @cols: cols (character)
2164 *
2165 * Update the termios variables and send the necessary signals to
2166 * peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171    struct pid *pgrp;
2172    unsigned long flags;
2173
2174    /* Lock the tty */
2175    mutex_lock(&tty->termios_mutex);
2176    if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177        goto done;
2178    /* Get the PID values and reference them so we can
2179       avoid holding the tty ctrl lock while sending signals */
2180    spin_lock_irqsave(&tty->ctrl_lock, flags);
2181    pgrp = get_pid(tty->pgrp);
2182    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184    if (pgrp)
2185        kill_pgrp(pgrp, SIGWINCH, 1);
2186    put_pid(pgrp);
2187
2188    tty->winsize = *ws;
2189done:
2190    mutex_unlock(&tty->termios_mutex);
2191    return 0;
2192}
2193
2194/**
2195 * tiocswinsz - implement window size set ioctl
2196 * @tty; tty side of tty
2197 * @arg: user buffer for result
2198 *
2199 * Copies the user idea of the window size to the kernel. Traditionally
2200 * this is just advisory information but for the Linux console it
2201 * actually has driver level meaning and triggers a VC resize.
2202 *
2203 * Locking:
2204 * Driver dependent. The default do_resize method takes the
2205 * tty termios mutex and ctrl_lock. The console takes its own lock
2206 * then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211    struct winsize tmp_ws;
2212    if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213        return -EFAULT;
2214
2215    if (tty->ops->resize)
2216        return tty->ops->resize(tty, &tmp_ws);
2217    else
2218        return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 * tioccons - allow admin to move logical console
2223 * @file: the file to become console
2224 *
2225 * Allow the administrator to move the redirected console device
2226 *
2227 * Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232    if (!capable(CAP_SYS_ADMIN))
2233        return -EPERM;
2234    if (file->f_op->write == redirected_tty_write) {
2235        struct file *f;
2236        spin_lock(&redirect_lock);
2237        f = redirect;
2238        redirect = NULL;
2239        spin_unlock(&redirect_lock);
2240        if (f)
2241            fput(f);
2242        return 0;
2243    }
2244    spin_lock(&redirect_lock);
2245    if (redirect) {
2246        spin_unlock(&redirect_lock);
2247        return -EBUSY;
2248    }
2249    get_file(file);
2250    redirect = file;
2251    spin_unlock(&redirect_lock);
2252    return 0;
2253}
2254
2255/**
2256 * fionbio - non blocking ioctl
2257 * @file: file to set blocking value
2258 * @p: user parameter
2259 *
2260 * Historical tty interfaces had a blocking control ioctl before
2261 * the generic functionality existed. This piece of history is preserved
2262 * in the expected tty API of posix OS's.
2263 *
2264 * Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269    int nonblock;
2270
2271    if (get_user(nonblock, p))
2272        return -EFAULT;
2273
2274    spin_lock(&file->f_lock);
2275    if (nonblock)
2276        file->f_flags |= O_NONBLOCK;
2277    else
2278        file->f_flags &= ~O_NONBLOCK;
2279    spin_unlock(&file->f_lock);
2280    return 0;
2281}
2282
2283/**
2284 * tiocsctty - set controlling tty
2285 * @tty: tty structure
2286 * @arg: user argument
2287 *
2288 * This ioctl is used to manage job control. It permits a session
2289 * leader to set this tty as the controlling tty for the session.
2290 *
2291 * Locking:
2292 * Takes tty_mutex() to protect tty instance
2293 * Takes tasklist_lock internally to walk sessions
2294 * Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299    int ret = 0;
2300    if (current->signal->leader && (task_session(current) == tty->session))
2301        return ret;
2302
2303    mutex_lock(&tty_mutex);
2304    /*
2305     * The process must be a session leader and
2306     * not have a controlling tty already.
2307     */
2308    if (!current->signal->leader || current->signal->tty) {
2309        ret = -EPERM;
2310        goto unlock;
2311    }
2312
2313    if (tty->session) {
2314        /*
2315         * This tty is already the controlling
2316         * tty for another session group!
2317         */
2318        if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319            /*
2320             * Steal it away
2321             */
2322            read_lock(&tasklist_lock);
2323            session_clear_tty(tty->session);
2324            read_unlock(&tasklist_lock);
2325        } else {
2326            ret = -EPERM;
2327            goto unlock;
2328        }
2329    }
2330    proc_set_tty(current, tty);
2331unlock:
2332    mutex_unlock(&tty_mutex);
2333    return ret;
2334}
2335
2336/**
2337 * tty_get_pgrp - return a ref counted pgrp pid
2338 * @tty: tty to read
2339 *
2340 * Returns a refcounted instance of the pid struct for the process
2341 * group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346    unsigned long flags;
2347    struct pid *pgrp;
2348
2349    spin_lock_irqsave(&tty->ctrl_lock, flags);
2350    pgrp = get_pid(tty->pgrp);
2351    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353    return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 * tiocgpgrp - get process group
2359 * @tty: tty passed by user
2360 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2361 * @p: returned pid
2362 *
2363 * Obtain the process group of the tty. If there is no process group
2364 * return an error.
2365 *
2366 * Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371    struct pid *pid;
2372    int ret;
2373    /*
2374     * (tty == real_tty) is a cheap way of
2375     * testing if the tty is NOT a master pty.
2376     */
2377    if (tty == real_tty && current->signal->tty != real_tty)
2378        return -ENOTTY;
2379    pid = tty_get_pgrp(real_tty);
2380    ret = put_user(pid_vnr(pid), p);
2381    put_pid(pid);
2382    return ret;
2383}
2384
2385/**
2386 * tiocspgrp - attempt to set process group
2387 * @tty: tty passed by user
2388 * @real_tty: tty side device matching tty passed by user
2389 * @p: pid pointer
2390 *
2391 * Set the process group of the tty to the session passed. Only
2392 * permitted where the tty session is our session.
2393 *
2394 * Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399    struct pid *pgrp;
2400    pid_t pgrp_nr;
2401    int retval = tty_check_change(real_tty);
2402    unsigned long flags;
2403
2404    if (retval == -EIO)
2405        return -ENOTTY;
2406    if (retval)
2407        return retval;
2408    if (!current->signal->tty ||
2409        (current->signal->tty != real_tty) ||
2410        (real_tty->session != task_session(current)))
2411        return -ENOTTY;
2412    if (get_user(pgrp_nr, p))
2413        return -EFAULT;
2414    if (pgrp_nr < 0)
2415        return -EINVAL;
2416    rcu_read_lock();
2417    pgrp = find_vpid(pgrp_nr);
2418    retval = -ESRCH;
2419    if (!pgrp)
2420        goto out_unlock;
2421    retval = -EPERM;
2422    if (session_of_pgrp(pgrp) != task_session(current))
2423        goto out_unlock;
2424    retval = 0;
2425    spin_lock_irqsave(&tty->ctrl_lock, flags);
2426    put_pid(real_tty->pgrp);
2427    real_tty->pgrp = get_pid(pgrp);
2428    spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430    rcu_read_unlock();
2431    return retval;
2432}
2433
2434/**
2435 * tiocgsid - get session id
2436 * @tty: tty passed by user
2437 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2438 * @p: pointer to returned session id
2439 *
2440 * Obtain the session id of the tty. If there is no session
2441 * return an error.
2442 *
2443 * Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448    /*
2449     * (tty == real_tty) is a cheap way of
2450     * testing if the tty is NOT a master pty.
2451    */
2452    if (tty == real_tty && current->signal->tty != real_tty)
2453        return -ENOTTY;
2454    if (!real_tty->session)
2455        return -ENOTTY;
2456    return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 * tiocsetd - set line discipline
2461 * @tty: tty device
2462 * @p: pointer to user data
2463 *
2464 * Set the line discipline according to user request.
2465 *
2466 * Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471    int ldisc;
2472    int ret;
2473
2474    if (get_user(ldisc, p))
2475        return -EFAULT;
2476
2477    ret = tty_set_ldisc(tty, ldisc);
2478
2479    return ret;
2480}
2481
2482/**
2483 * send_break - performed time break
2484 * @tty: device to break on
2485 * @duration: timeout in mS
2486 *
2487 * Perform a timed break on hardware that lacks its own driver level
2488 * timed break functionality.
2489 *
2490 * Locking:
2491 * atomic_write_lock serializes
2492 *
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497    int retval;
2498
2499    if (tty->ops->break_ctl == NULL)
2500        return 0;
2501
2502    if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503        retval = tty->ops->break_ctl(tty, duration);
2504    else {
2505        /* Do the work ourselves */
2506        if (tty_write_lock(tty, 0) < 0)
2507            return -EINTR;
2508        retval = tty->ops->break_ctl(tty, -1);
2509        if (retval)
2510            goto out;
2511        if (!signal_pending(current))
2512            msleep_interruptible(duration);
2513        retval = tty->ops->break_ctl(tty, 0);
2514out:
2515        tty_write_unlock(tty);
2516        if (signal_pending(current))
2517            retval = -EINTR;
2518    }
2519    return retval;
2520}
2521
2522/**
2523 * tty_tiocmget - get modem status
2524 * @tty: tty device
2525 * @file: user file pointer
2526 * @p: pointer to result
2527 *
2528 * Obtain the modem status bits from the tty driver if the feature
2529 * is supported. Return -EINVAL if it is not available.
2530 *
2531 * Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536    int retval = -EINVAL;
2537
2538    if (tty->ops->tiocmget) {
2539        retval = tty->ops->tiocmget(tty);
2540
2541        if (retval >= 0)
2542            retval = put_user(retval, p);
2543    }
2544    return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -EINVAL if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560         unsigned __user *p)
2561{
2562    int retval;
2563    unsigned int set, clear, val;
2564
2565    if (tty->ops->tiocmset == NULL)
2566        return -EINVAL;
2567
2568    retval = get_user(val, p);
2569    if (retval)
2570        return retval;
2571    set = clear = 0;
2572    switch (cmd) {
2573    case TIOCMBIS:
2574        set = val;
2575        break;
2576    case TIOCMBIC:
2577        clear = val;
2578        break;
2579    case TIOCMSET:
2580        set = val;
2581        clear = ~val;
2582        break;
2583    }
2584    set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585    clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586    return tty->ops->tiocmset(tty, set, clear);
2587}
2588
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591    int retval = -EINVAL;
2592    struct serial_icounter_struct icount;
2593    memset(&icount, 0, sizeof(icount));
2594    if (tty->ops->get_icount)
2595        retval = tty->ops->get_icount(tty, &icount);
2596    if (retval != 0)
2597        return retval;
2598    if (copy_to_user(arg, &icount, sizeof(icount)))
2599        return -EFAULT;
2600    return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605    if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606        tty->driver->subtype == PTY_TYPE_MASTER)
2607        tty = tty->link;
2608    return tty;
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2613{
2614    if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615        tty->driver->subtype == PTY_TYPE_MASTER)
2616        return tty;
2617    return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626    struct tty_struct *tty = file_tty(file);
2627    struct tty_struct *real_tty;
2628    void __user *p = (void __user *)arg;
2629    int retval;
2630    struct tty_ldisc *ld;
2631    struct inode *inode = file->f_dentry->d_inode;
2632
2633    if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634        return -EINVAL;
2635
2636    real_tty = tty_pair_get_tty(tty);
2637
2638    /*
2639     * Factor out some common prep work
2640     */
2641    switch (cmd) {
2642    case TIOCSETD:
2643    case TIOCSBRK:
2644    case TIOCCBRK:
2645    case TCSBRK:
2646    case TCSBRKP:
2647        retval = tty_check_change(tty);
2648        if (retval)
2649            return retval;
2650        if (cmd != TIOCCBRK) {
2651            tty_wait_until_sent(tty, 0);
2652            if (signal_pending(current))
2653                return -EINTR;
2654        }
2655        break;
2656    }
2657
2658    /*
2659     * Now do the stuff.
2660     */
2661    switch (cmd) {
2662    case TIOCSTI:
2663        return tiocsti(tty, p);
2664    case TIOCGWINSZ:
2665        return tiocgwinsz(real_tty, p);
2666    case TIOCSWINSZ:
2667        return tiocswinsz(real_tty, p);
2668    case TIOCCONS:
2669        return real_tty != tty ? -EINVAL : tioccons(file);
2670    case FIONBIO:
2671        return fionbio(file, p);
2672    case TIOCEXCL:
2673        set_bit(TTY_EXCLUSIVE, &tty->flags);
2674        return 0;
2675    case TIOCNXCL:
2676        clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677        return 0;
2678    case TIOCNOTTY:
2679        if (current->signal->tty != tty)
2680            return -ENOTTY;
2681        no_tty();
2682        return 0;
2683    case TIOCSCTTY:
2684        return tiocsctty(tty, arg);
2685    case TIOCGPGRP:
2686        return tiocgpgrp(tty, real_tty, p);
2687    case TIOCSPGRP:
2688        return tiocspgrp(tty, real_tty, p);
2689    case TIOCGSID:
2690        return tiocgsid(tty, real_tty, p);
2691    case TIOCGETD:
2692        return put_user(tty->ldisc->ops->num, (int __user *)p);
2693    case TIOCSETD:
2694        return tiocsetd(tty, p);
2695    case TIOCVHANGUP:
2696        if (!capable(CAP_SYS_ADMIN))
2697            return -EPERM;
2698        tty_vhangup(tty);
2699        return 0;
2700    case TIOCGDEV:
2701    {
2702        unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703        return put_user(ret, (unsigned int __user *)p);
2704    }
2705    /*
2706     * Break handling
2707     */
2708    case TIOCSBRK: /* Turn break on, unconditionally */
2709        if (tty->ops->break_ctl)
2710            return tty->ops->break_ctl(tty, -1);
2711        return 0;
2712    case TIOCCBRK: /* Turn break off, unconditionally */
2713        if (tty->ops->break_ctl)
2714            return tty->ops->break_ctl(tty, 0);
2715        return 0;
2716    case TCSBRK: /* SVID version: non-zero arg --> no break */
2717        /* non-zero arg means wait for all output data
2718         * to be sent (performed above) but don't send break.
2719         * This is used by the tcdrain() termios function.
2720         */
2721        if (!arg)
2722            return send_break(tty, 250);
2723        return 0;
2724    case TCSBRKP: /* support for POSIX tcsendbreak() */
2725        return send_break(tty, arg ? arg*100 : 250);
2726
2727    case TIOCMGET:
2728        return tty_tiocmget(tty, p);
2729    case TIOCMSET:
2730    case TIOCMBIC:
2731    case TIOCMBIS:
2732        return tty_tiocmset(tty, cmd, p);
2733    case TIOCGICOUNT:
2734        retval = tty_tiocgicount(tty, p);
2735        /* For the moment allow fall through to the old method */
2736            if (retval != -EINVAL)
2737            return retval;
2738        break;
2739    case TCFLSH:
2740        switch (arg) {
2741        case TCIFLUSH:
2742        case TCIOFLUSH:
2743        /* flush tty buffer and allow ldisc to process ioctl */
2744            tty_buffer_flush(tty);
2745            break;
2746        }
2747        break;
2748    }
2749    if (tty->ops->ioctl) {
2750        retval = (tty->ops->ioctl)(tty, cmd, arg);
2751        if (retval != -ENOIOCTLCMD)
2752            return retval;
2753    }
2754    ld = tty_ldisc_ref_wait(tty);
2755    retval = -EINVAL;
2756    if (ld->ops->ioctl) {
2757        retval = ld->ops->ioctl(tty, file, cmd, arg);
2758        if (retval == -ENOIOCTLCMD)
2759            retval = -EINVAL;
2760    }
2761    tty_ldisc_deref(ld);
2762    return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767                unsigned long arg)
2768{
2769    struct inode *inode = file->f_dentry->d_inode;
2770    struct tty_struct *tty = file_tty(file);
2771    struct tty_ldisc *ld;
2772    int retval = -ENOIOCTLCMD;
2773
2774    if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775        return -EINVAL;
2776
2777    if (tty->ops->compat_ioctl) {
2778        retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779        if (retval != -ENOIOCTLCMD)
2780            return retval;
2781    }
2782
2783    ld = tty_ldisc_ref_wait(tty);
2784    if (ld->ops->compat_ioctl)
2785        retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786    else
2787        retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788    tty_ldisc_deref(ld);
2789
2790    return retval;
2791}
2792#endif
2793
2794/*
2795 * This implements the "Secure Attention Key" --- the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key". Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal. But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context. This can
2811 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816    tty_hangup(tty);
2817#else
2818    struct task_struct *g, *p;
2819    struct pid *session;
2820    int i;
2821    struct file *filp;
2822    struct fdtable *fdt;
2823
2824    if (!tty)
2825        return;
2826    session = tty->session;
2827
2828    tty_ldisc_flush(tty);
2829
2830    tty_driver_flush_buffer(tty);
2831
2832    read_lock(&tasklist_lock);
2833    /* Kill the entire session */
2834    do_each_pid_task(session, PIDTYPE_SID, p) {
2835        printk(KERN_NOTICE "SAK: killed process %d"
2836            " (%s): task_session(p)==tty->session\n",
2837            task_pid_nr(p), p->comm);
2838        send_sig(SIGKILL, p, 1);
2839    } while_each_pid_task(session, PIDTYPE_SID, p);
2840    /* Now kill any processes that happen to have the
2841     * tty open.
2842     */
2843    do_each_thread(g, p) {
2844        if (p->signal->tty == tty) {
2845            printk(KERN_NOTICE "SAK: killed process %d"
2846                " (%s): task_session(p)==tty->session\n",
2847                task_pid_nr(p), p->comm);
2848            send_sig(SIGKILL, p, 1);
2849            continue;
2850        }
2851        task_lock(p);
2852        if (p->files) {
2853            /*
2854             * We don't take a ref to the file, so we must
2855             * hold ->file_lock instead.
2856             */
2857            spin_lock(&p->files->file_lock);
2858            fdt = files_fdtable(p->files);
2859            for (i = 0; i < fdt->max_fds; i++) {
2860                filp = fcheck_files(p->files, i);
2861                if (!filp)
2862                    continue;
2863                if (filp->f_op->read == tty_read &&
2864                    file_tty(filp) == tty) {
2865                    printk(KERN_NOTICE "SAK: killed process %d"
2866                        " (%s): fd#%d opened to the tty\n",
2867                        task_pid_nr(p), p->comm, i);
2868                    force_sig(SIGKILL, p);
2869                    break;
2870                }
2871            }
2872            spin_unlock(&p->files->file_lock);
2873        }
2874        task_unlock(p);
2875    } while_each_thread(g, p);
2876    read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882    struct tty_struct *tty =
2883        container_of(work, struct tty_struct, SAK_work);
2884    __do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895    if (!tty)
2896        return;
2897    schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904    dev_t *devt = data;
2905    return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911    dev_t devt = tty_devnum(tty);
2912    return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 * initialize_tty_struct
2918 * @tty: tty to initialize
2919 *
2920 * This subroutine initializes a tty structure that has been newly
2921 * allocated.
2922 *
2923 * Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927        struct tty_driver *driver, int idx)
2928{
2929    memset(tty, 0, sizeof(struct tty_struct));
2930    kref_init(&tty->kref);
2931    tty->magic = TTY_MAGIC;
2932    tty_ldisc_init(tty);
2933    tty->session = NULL;
2934    tty->pgrp = NULL;
2935    tty->overrun_time = jiffies;
2936    tty_buffer_init(tty);
2937    mutex_init(&tty->termios_mutex);
2938    mutex_init(&tty->ldisc_mutex);
2939    init_waitqueue_head(&tty->write_wait);
2940    init_waitqueue_head(&tty->read_wait);
2941    INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942    mutex_init(&tty->atomic_read_lock);
2943    mutex_init(&tty->atomic_write_lock);
2944    mutex_init(&tty->output_lock);
2945    mutex_init(&tty->echo_lock);
2946    spin_lock_init(&tty->read_lock);
2947    spin_lock_init(&tty->ctrl_lock);
2948    INIT_LIST_HEAD(&tty->tty_files);
2949    INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951    tty->driver = driver;
2952    tty->ops = driver->ops;
2953    tty->index = idx;
2954    tty_line_name(driver, idx, tty->name);
2955    tty->dev = tty_get_device(tty);
2956}
2957
2958/**
2959 * deinitialize_tty_struct
2960 * @tty: tty to deinitialize
2961 *
2962 * This subroutine deinitializes a tty structure that has been newly
2963 * allocated but tty_release cannot be called on that yet.
2964 *
2965 * Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969    tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 * tty_put_char - write one character to a tty
2974 * @tty: tty
2975 * @ch: character
2976 *
2977 * Write one byte to the tty using the provided put_char method
2978 * if present. Returns the number of characters successfully output.
2979 *
2980 * Note: the specific put_char operation in the driver layer may go
2981 * away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986    if (tty->ops->put_char)
2987        return tty->ops->put_char(tty, ch);
2988    return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
2994/**
2995 * tty_register_device - register a tty device
2996 * @driver: the tty driver that describes the tty device
2997 * @index: the index in the tty driver for this tty device
2998 * @device: a struct device that is associated with this tty device.
2999 * This field is optional, if there is no known struct device
3000 * for this tty device it can be set to NULL safely.
3001 *
3002 * Returns a pointer to the struct device for this tty device
3003 * (or ERR_PTR(-EFOO) on error).
3004 *
3005 * This call is required to be made to register an individual tty device
3006 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3007 * that bit is not set, this function should not be called by a tty
3008 * driver.
3009 *
3010 * Locking: ??
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014                   struct device *device)
3015{
3016    char name[64];
3017    dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3018
3019    if (index >= driver->num) {
3020        printk(KERN_ERR "Attempt to register invalid tty line number "
3021               " (%d).\n", index);
3022        return ERR_PTR(-EINVAL);
3023    }
3024
3025    if (driver->type == TTY_DRIVER_TYPE_PTY)
3026        pty_line_name(driver, index, name);
3027    else
3028        tty_line_name(driver, index, name);
3029
3030    return device_create(tty_class, device, dev, NULL, name);
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * tty_unregister_device - unregister a tty device
3036 * @driver: the tty driver that describes the tty device
3037 * @index: the index in the tty driver for this tty device
3038 *
3039 * If a tty device is registered with a call to tty_register_device() then
3040 * this function must be called when the tty device is gone.
3041 *
3042 * Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047    device_destroy(tty_class,
3048        MKDEV(driver->major, driver->minor_start) + index);
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3053{
3054    struct tty_driver *driver;
3055
3056    driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057    if (driver) {
3058        kref_init(&driver->kref);
3059        driver->magic = TTY_DRIVER_MAGIC;
3060        driver->num = lines;
3061        driver->owner = owner;
3062        /* later we'll move allocation of tables here */
3063    }
3064    return driver;
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070    struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071    int i;
3072    struct ktermios *tp;
3073    void *p;
3074
3075    if (driver->flags & TTY_DRIVER_INSTALLED) {
3076        /*
3077         * Free the termios and termios_locked structures because
3078         * we don't want to get memory leaks when modular tty
3079         * drivers are removed from the kernel.
3080         */
3081        for (i = 0; i < driver->num; i++) {
3082            tp = driver->termios[i];
3083            if (tp) {
3084                driver->termios[i] = NULL;
3085                kfree(tp);
3086            }
3087            if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088                tty_unregister_device(driver, i);
3089        }
3090        p = driver->ttys;
3091        proc_tty_unregister_driver(driver);
3092        driver->ttys = NULL;
3093        driver->termios = NULL;
3094        kfree(p);
3095        cdev_del(&driver->cdev);
3096    }
3097    kfree(driver);
3098}
3099
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102    kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107            const struct tty_operations *op)
3108{
3109    driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115    tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124    int error;
3125    int i;
3126    dev_t dev;
3127    void **p = NULL;
3128    struct device *d;
3129
3130    if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131        p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132        if (!p)
3133            return -ENOMEM;
3134    }
3135
3136    if (!driver->major) {
3137        error = alloc_chrdev_region(&dev, driver->minor_start,
3138                        driver->num, driver->name);
3139        if (!error) {
3140            driver->major = MAJOR(dev);
3141            driver->minor_start = MINOR(dev);
3142        }
3143    } else {
3144        dev = MKDEV(driver->major, driver->minor_start);
3145        error = register_chrdev_region(dev, driver->num, driver->name);
3146    }
3147    if (error < 0) {
3148        kfree(p);
3149        return error;
3150    }
3151
3152    if (p) {
3153        driver->ttys = (struct tty_struct **)p;
3154        driver->termios = (struct ktermios **)(p + driver->num);
3155    } else {
3156        driver->ttys = NULL;
3157        driver->termios = NULL;
3158    }
3159
3160    cdev_init(&driver->cdev, &tty_fops);
3161    driver->cdev.owner = driver->owner;
3162    error = cdev_add(&driver->cdev, dev, driver->num);
3163    if (error) {
3164        unregister_chrdev_region(dev, driver->num);
3165        driver->ttys = NULL;
3166        driver->termios = NULL;
3167        kfree(p);
3168        return error;
3169    }
3170
3171    mutex_lock(&tty_mutex);
3172    list_add(&driver->tty_drivers, &tty_drivers);
3173    mutex_unlock(&tty_mutex);
3174
3175    if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176        for (i = 0; i < driver->num; i++) {
3177            d = tty_register_device(driver, i, NULL);
3178            if (IS_ERR(d)) {
3179                error = PTR_ERR(d);
3180                goto err;
3181            }
3182        }
3183    }
3184    proc_tty_register_driver(driver);
3185    driver->flags |= TTY_DRIVER_INSTALLED;
3186    return 0;
3187
3188err:
3189    for (i--; i >= 0; i--)
3190        tty_unregister_device(driver, i);
3191
3192    mutex_lock(&tty_mutex);
3193    list_del(&driver->tty_drivers);
3194    mutex_unlock(&tty_mutex);
3195
3196    unregister_chrdev_region(dev, driver->num);
3197    driver->ttys = NULL;
3198    driver->termios = NULL;
3199    kfree(p);
3200    return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211    /* FIXME */
3212    if (driver->refcount)
3213        return -EBUSY;
3214#endif
3215    unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216                driver->num);
3217    mutex_lock(&tty_mutex);
3218    list_del(&driver->tty_drivers);
3219    mutex_unlock(&tty_mutex);
3220    return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227    return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233    unsigned long flags;
3234    struct tty_struct *tty;
3235    spin_lock_irqsave(&p->sighand->siglock, flags);
3236    tty = p->signal->tty;
3237    p->signal->tty = NULL;
3238    spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239    tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246    if (tty) {
3247        unsigned long flags;
3248        /* We should not have a session or pgrp to put here but.... */
3249        spin_lock_irqsave(&tty->ctrl_lock, flags);
3250        put_pid(tty->session);
3251        put_pid(tty->pgrp);
3252        tty->pgrp = get_pid(task_pgrp(tsk));
3253        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254        tty->session = get_pid(task_session(tsk));
3255        if (tsk->signal->tty) {
3256            printk(KERN_DEBUG "tty not NULL!!\n");
3257            tty_kref_put(tsk->signal->tty);
3258        }
3259    }
3260    put_pid(tsk->signal->tty_old_pgrp);
3261    tsk->signal->tty = tty_kref_get(tty);
3262    tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267    spin_lock_irq(&tsk->sighand->siglock);
3268    __proc_set_tty(tsk, tty);
3269    spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274    struct tty_struct *tty;
3275    unsigned long flags;
3276
3277    spin_lock_irqsave(&current->sighand->siglock, flags);
3278    tty = tty_kref_get(current->signal->tty);
3279    spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280    return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286    *fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297    initcall_t *call;
3298
3299    /* Setup the default TTY line discipline. */
3300    tty_ldisc_begin();
3301
3302    /*
3303     * set up the console device so that later boot sequences can
3304     * inform about problems etc..
3305     */
3306    call = __con_initcall_start;
3307    while (call < __con_initcall_end) {
3308        (*call)();
3309        call++;
3310    }
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315    if (!mode)
3316        return NULL;
3317    if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318        dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319        *mode = 0666;
3320    return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325    tty_class = class_create(THIS_MODULE, "tty");
3326    if (IS_ERR(tty_class))
3327        return PTR_ERR(tty_class);
3328    tty_class->devnode = tty_devnode;
3329    return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338                struct device_attribute *attr, char *buf)
3339{
3340    struct console *cs[16];
3341    int i = 0;
3342    struct console *c;
3343    ssize_t count = 0;
3344
3345    console_lock();
3346    for_each_console(c) {
3347        if (!c->device)
3348            continue;
3349        if (!c->write)
3350            continue;
3351        if ((c->flags & CON_ENABLED) == 0)
3352            continue;
3353        cs[i++] = c;
3354        if (i >= ARRAY_SIZE(cs))
3355            break;
3356    }
3357    while (i--)
3358        count += sprintf(buf + count, "%s%d%c",
3359                 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3360    console_unlock();
3361
3362    return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370    if (consdev)
3371        sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
3380    cdev_init(&tty_cdev, &tty_fops);
3381    if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382        register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383        panic("Couldn't register /dev/tty driver\n");
3384    device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386    cdev_init(&console_cdev, &console_fops);
3387    if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388        register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389        panic("Couldn't register /dev/console driver\n");
3390    consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391                  "console");
3392    if (IS_ERR(consdev))
3393        consdev = NULL;
3394    else
3395        WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398    vty_init(&console_fops);
3399#endif
3400    return 0;
3401}
3402
3403

Archive Download this file



interactive