Root/block/blk-core.c

1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
36
37#include "blk.h"
38#include "blk-cgroup.h"
39
40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
44
45DEFINE_IDA(blk_queue_ida);
46
47/*
48 * For the allocated request tables
49 */
50static struct kmem_cache *request_cachep;
51
52/*
53 * For queue allocation
54 */
55struct kmem_cache *blk_requestq_cachep;
56
57/*
58 * Controlling structure to kblockd
59 */
60static struct workqueue_struct *kblockd_workqueue;
61
62static void drive_stat_acct(struct request *rq, int new_io)
63{
64    struct hd_struct *part;
65    int rw = rq_data_dir(rq);
66    int cpu;
67
68    if (!blk_do_io_stat(rq))
69        return;
70
71    cpu = part_stat_lock();
72
73    if (!new_io) {
74        part = rq->part;
75        part_stat_inc(cpu, part, merges[rw]);
76    } else {
77        part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
78        if (!hd_struct_try_get(part)) {
79            /*
80             * The partition is already being removed,
81             * the request will be accounted on the disk only
82             *
83             * We take a reference on disk->part0 although that
84             * partition will never be deleted, so we can treat
85             * it as any other partition.
86             */
87            part = &rq->rq_disk->part0;
88            hd_struct_get(part);
89        }
90        part_round_stats(cpu, part);
91        part_inc_in_flight(part, rw);
92        rq->part = part;
93    }
94
95    part_stat_unlock();
96}
97
98void blk_queue_congestion_threshold(struct request_queue *q)
99{
100    int nr;
101
102    nr = q->nr_requests - (q->nr_requests / 8) + 1;
103    if (nr > q->nr_requests)
104        nr = q->nr_requests;
105    q->nr_congestion_on = nr;
106
107    nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108    if (nr < 1)
109        nr = 1;
110    q->nr_congestion_off = nr;
111}
112
113/**
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * @bdev: device
116 *
117 * Locates the passed device's request queue and returns the address of its
118 * backing_dev_info
119 *
120 * Will return NULL if the request queue cannot be located.
121 */
122struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123{
124    struct backing_dev_info *ret = NULL;
125    struct request_queue *q = bdev_get_queue(bdev);
126
127    if (q)
128        ret = &q->backing_dev_info;
129    return ret;
130}
131EXPORT_SYMBOL(blk_get_backing_dev_info);
132
133void blk_rq_init(struct request_queue *q, struct request *rq)
134{
135    memset(rq, 0, sizeof(*rq));
136
137    INIT_LIST_HEAD(&rq->queuelist);
138    INIT_LIST_HEAD(&rq->timeout_list);
139    rq->cpu = -1;
140    rq->q = q;
141    rq->__sector = (sector_t) -1;
142    INIT_HLIST_NODE(&rq->hash);
143    RB_CLEAR_NODE(&rq->rb_node);
144    rq->cmd = rq->__cmd;
145    rq->cmd_len = BLK_MAX_CDB;
146    rq->tag = -1;
147    rq->ref_count = 1;
148    rq->start_time = jiffies;
149    set_start_time_ns(rq);
150    rq->part = NULL;
151}
152EXPORT_SYMBOL(blk_rq_init);
153
154static void req_bio_endio(struct request *rq, struct bio *bio,
155              unsigned int nbytes, int error)
156{
157    if (error)
158        clear_bit(BIO_UPTODATE, &bio->bi_flags);
159    else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
160        error = -EIO;
161
162    if (unlikely(nbytes > bio->bi_size)) {
163        printk(KERN_ERR "%s: want %u bytes done, %u left\n",
164               __func__, nbytes, bio->bi_size);
165        nbytes = bio->bi_size;
166    }
167
168    if (unlikely(rq->cmd_flags & REQ_QUIET))
169        set_bit(BIO_QUIET, &bio->bi_flags);
170
171    bio->bi_size -= nbytes;
172    bio->bi_sector += (nbytes >> 9);
173
174    if (bio_integrity(bio))
175        bio_integrity_advance(bio, nbytes);
176
177    /* don't actually finish bio if it's part of flush sequence */
178    if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
179        bio_endio(bio, error);
180}
181
182void blk_dump_rq_flags(struct request *rq, char *msg)
183{
184    int bit;
185
186    printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
187        rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
188        rq->cmd_flags);
189
190    printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
191           (unsigned long long)blk_rq_pos(rq),
192           blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
193    printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
194           rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195
196    if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
197        printk(KERN_INFO " cdb: ");
198        for (bit = 0; bit < BLK_MAX_CDB; bit++)
199            printk("%02x ", rq->cmd[bit]);
200        printk("\n");
201    }
202}
203EXPORT_SYMBOL(blk_dump_rq_flags);
204
205static void blk_delay_work(struct work_struct *work)
206{
207    struct request_queue *q;
208
209    q = container_of(work, struct request_queue, delay_work.work);
210    spin_lock_irq(q->queue_lock);
211    __blk_run_queue(q);
212    spin_unlock_irq(q->queue_lock);
213}
214
215/**
216 * blk_delay_queue - restart queueing after defined interval
217 * @q: The &struct request_queue in question
218 * @msecs: Delay in msecs
219 *
220 * Description:
221 * Sometimes queueing needs to be postponed for a little while, to allow
222 * resources to come back. This function will make sure that queueing is
223 * restarted around the specified time. Queue lock must be held.
224 */
225void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226{
227    if (likely(!blk_queue_dead(q)))
228        queue_delayed_work(kblockd_workqueue, &q->delay_work,
229                   msecs_to_jiffies(msecs));
230}
231EXPORT_SYMBOL(blk_delay_queue);
232
233/**
234 * blk_start_queue - restart a previously stopped queue
235 * @q: The &struct request_queue in question
236 *
237 * Description:
238 * blk_start_queue() will clear the stop flag on the queue, and call
239 * the request_fn for the queue if it was in a stopped state when
240 * entered. Also see blk_stop_queue(). Queue lock must be held.
241 **/
242void blk_start_queue(struct request_queue *q)
243{
244    WARN_ON(!irqs_disabled());
245
246    queue_flag_clear(QUEUE_FLAG_STOPPED, q);
247    __blk_run_queue(q);
248}
249EXPORT_SYMBOL(blk_start_queue);
250
251/**
252 * blk_stop_queue - stop a queue
253 * @q: The &struct request_queue in question
254 *
255 * Description:
256 * The Linux block layer assumes that a block driver will consume all
257 * entries on the request queue when the request_fn strategy is called.
258 * Often this will not happen, because of hardware limitations (queue
259 * depth settings). If a device driver gets a 'queue full' response,
260 * or if it simply chooses not to queue more I/O at one point, it can
261 * call this function to prevent the request_fn from being called until
262 * the driver has signalled it's ready to go again. This happens by calling
263 * blk_start_queue() to restart queue operations. Queue lock must be held.
264 **/
265void blk_stop_queue(struct request_queue *q)
266{
267    cancel_delayed_work(&q->delay_work);
268    queue_flag_set(QUEUE_FLAG_STOPPED, q);
269}
270EXPORT_SYMBOL(blk_stop_queue);
271
272/**
273 * blk_sync_queue - cancel any pending callbacks on a queue
274 * @q: the queue
275 *
276 * Description:
277 * The block layer may perform asynchronous callback activity
278 * on a queue, such as calling the unplug function after a timeout.
279 * A block device may call blk_sync_queue to ensure that any
280 * such activity is cancelled, thus allowing it to release resources
281 * that the callbacks might use. The caller must already have made sure
282 * that its ->make_request_fn will not re-add plugging prior to calling
283 * this function.
284 *
285 * This function does not cancel any asynchronous activity arising
286 * out of elevator or throttling code. That would require elevaotor_exit()
287 * and blkcg_exit_queue() to be called with queue lock initialized.
288 *
289 */
290void blk_sync_queue(struct request_queue *q)
291{
292    del_timer_sync(&q->timeout);
293    cancel_delayed_work_sync(&q->delay_work);
294}
295EXPORT_SYMBOL(blk_sync_queue);
296
297/**
298 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
299 * @q: The queue to run
300 *
301 * Description:
302 * Invoke request handling on a queue if there are any pending requests.
303 * May be used to restart request handling after a request has completed.
304 * This variant runs the queue whether or not the queue has been
305 * stopped. Must be called with the queue lock held and interrupts
306 * disabled. See also @blk_run_queue.
307 */
308inline void __blk_run_queue_uncond(struct request_queue *q)
309{
310    if (unlikely(blk_queue_dead(q)))
311        return;
312
313    /*
314     * Some request_fn implementations, e.g. scsi_request_fn(), unlock
315     * the queue lock internally. As a result multiple threads may be
316     * running such a request function concurrently. Keep track of the
317     * number of active request_fn invocations such that blk_drain_queue()
318     * can wait until all these request_fn calls have finished.
319     */
320    q->request_fn_active++;
321    q->request_fn(q);
322    q->request_fn_active--;
323}
324
325/**
326 * __blk_run_queue - run a single device queue
327 * @q: The queue to run
328 *
329 * Description:
330 * See @blk_run_queue. This variant must be called with the queue lock
331 * held and interrupts disabled.
332 */
333void __blk_run_queue(struct request_queue *q)
334{
335    if (unlikely(blk_queue_stopped(q)))
336        return;
337
338    __blk_run_queue_uncond(q);
339}
340EXPORT_SYMBOL(__blk_run_queue);
341
342/**
343 * blk_run_queue_async - run a single device queue in workqueue context
344 * @q: The queue to run
345 *
346 * Description:
347 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
348 * of us. The caller must hold the queue lock.
349 */
350void blk_run_queue_async(struct request_queue *q)
351{
352    if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
353        mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
354}
355EXPORT_SYMBOL(blk_run_queue_async);
356
357/**
358 * blk_run_queue - run a single device queue
359 * @q: The queue to run
360 *
361 * Description:
362 * Invoke request handling on this queue, if it has pending work to do.
363 * May be used to restart queueing when a request has completed.
364 */
365void blk_run_queue(struct request_queue *q)
366{
367    unsigned long flags;
368
369    spin_lock_irqsave(q->queue_lock, flags);
370    __blk_run_queue(q);
371    spin_unlock_irqrestore(q->queue_lock, flags);
372}
373EXPORT_SYMBOL(blk_run_queue);
374
375void blk_put_queue(struct request_queue *q)
376{
377    kobject_put(&q->kobj);
378}
379EXPORT_SYMBOL(blk_put_queue);
380
381/**
382 * __blk_drain_queue - drain requests from request_queue
383 * @q: queue to drain
384 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
385 *
386 * Drain requests from @q. If @drain_all is set, all requests are drained.
387 * If not, only ELVPRIV requests are drained. The caller is responsible
388 * for ensuring that no new requests which need to be drained are queued.
389 */
390static void __blk_drain_queue(struct request_queue *q, bool drain_all)
391    __releases(q->queue_lock)
392    __acquires(q->queue_lock)
393{
394    int i;
395
396    lockdep_assert_held(q->queue_lock);
397
398    while (true) {
399        bool drain = false;
400
401        /*
402         * The caller might be trying to drain @q before its
403         * elevator is initialized.
404         */
405        if (q->elevator)
406            elv_drain_elevator(q);
407
408        blkcg_drain_queue(q);
409
410        /*
411         * This function might be called on a queue which failed
412         * driver init after queue creation or is not yet fully
413         * active yet. Some drivers (e.g. fd and loop) get unhappy
414         * in such cases. Kick queue iff dispatch queue has
415         * something on it and @q has request_fn set.
416         */
417        if (!list_empty(&q->queue_head) && q->request_fn)
418            __blk_run_queue(q);
419
420        drain |= q->nr_rqs_elvpriv;
421        drain |= q->request_fn_active;
422
423        /*
424         * Unfortunately, requests are queued at and tracked from
425         * multiple places and there's no single counter which can
426         * be drained. Check all the queues and counters.
427         */
428        if (drain_all) {
429            drain |= !list_empty(&q->queue_head);
430            for (i = 0; i < 2; i++) {
431                drain |= q->nr_rqs[i];
432                drain |= q->in_flight[i];
433                drain |= !list_empty(&q->flush_queue[i]);
434            }
435        }
436
437        if (!drain)
438            break;
439
440        spin_unlock_irq(q->queue_lock);
441
442        msleep(10);
443
444        spin_lock_irq(q->queue_lock);
445    }
446
447    /*
448     * With queue marked dead, any woken up waiter will fail the
449     * allocation path, so the wakeup chaining is lost and we're
450     * left with hung waiters. We need to wake up those waiters.
451     */
452    if (q->request_fn) {
453        struct request_list *rl;
454
455        blk_queue_for_each_rl(rl, q)
456            for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
457                wake_up_all(&rl->wait[i]);
458    }
459}
460
461/**
462 * blk_queue_bypass_start - enter queue bypass mode
463 * @q: queue of interest
464 *
465 * In bypass mode, only the dispatch FIFO queue of @q is used. This
466 * function makes @q enter bypass mode and drains all requests which were
467 * throttled or issued before. On return, it's guaranteed that no request
468 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
469 * inside queue or RCU read lock.
470 */
471void blk_queue_bypass_start(struct request_queue *q)
472{
473    bool drain;
474
475    spin_lock_irq(q->queue_lock);
476    drain = !q->bypass_depth++;
477    queue_flag_set(QUEUE_FLAG_BYPASS, q);
478    spin_unlock_irq(q->queue_lock);
479
480    if (drain) {
481        spin_lock_irq(q->queue_lock);
482        __blk_drain_queue(q, false);
483        spin_unlock_irq(q->queue_lock);
484
485        /* ensure blk_queue_bypass() is %true inside RCU read lock */
486        synchronize_rcu();
487    }
488}
489EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
490
491/**
492 * blk_queue_bypass_end - leave queue bypass mode
493 * @q: queue of interest
494 *
495 * Leave bypass mode and restore the normal queueing behavior.
496 */
497void blk_queue_bypass_end(struct request_queue *q)
498{
499    spin_lock_irq(q->queue_lock);
500    if (!--q->bypass_depth)
501        queue_flag_clear(QUEUE_FLAG_BYPASS, q);
502    WARN_ON_ONCE(q->bypass_depth < 0);
503    spin_unlock_irq(q->queue_lock);
504}
505EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
506
507/**
508 * blk_cleanup_queue - shutdown a request queue
509 * @q: request queue to shutdown
510 *
511 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
512 * put it. All future requests will be failed immediately with -ENODEV.
513 */
514void blk_cleanup_queue(struct request_queue *q)
515{
516    spinlock_t *lock = q->queue_lock;
517
518    /* mark @q DYING, no new request or merges will be allowed afterwards */
519    mutex_lock(&q->sysfs_lock);
520    queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
521    spin_lock_irq(lock);
522
523    /*
524     * A dying queue is permanently in bypass mode till released. Note
525     * that, unlike blk_queue_bypass_start(), we aren't performing
526     * synchronize_rcu() after entering bypass mode to avoid the delay
527     * as some drivers create and destroy a lot of queues while
528     * probing. This is still safe because blk_release_queue() will be
529     * called only after the queue refcnt drops to zero and nothing,
530     * RCU or not, would be traversing the queue by then.
531     */
532    q->bypass_depth++;
533    queue_flag_set(QUEUE_FLAG_BYPASS, q);
534
535    queue_flag_set(QUEUE_FLAG_NOMERGES, q);
536    queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
537    queue_flag_set(QUEUE_FLAG_DYING, q);
538    spin_unlock_irq(lock);
539    mutex_unlock(&q->sysfs_lock);
540
541    /*
542     * Drain all requests queued before DYING marking. Set DEAD flag to
543     * prevent that q->request_fn() gets invoked after draining finished.
544     */
545    spin_lock_irq(lock);
546    __blk_drain_queue(q, true);
547    queue_flag_set(QUEUE_FLAG_DEAD, q);
548    spin_unlock_irq(lock);
549
550    /* @q won't process any more request, flush async actions */
551    del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
552    blk_sync_queue(q);
553
554    spin_lock_irq(lock);
555    if (q->queue_lock != &q->__queue_lock)
556        q->queue_lock = &q->__queue_lock;
557    spin_unlock_irq(lock);
558
559    /* @q is and will stay empty, shutdown and put */
560    blk_put_queue(q);
561}
562EXPORT_SYMBOL(blk_cleanup_queue);
563
564int blk_init_rl(struct request_list *rl, struct request_queue *q,
565        gfp_t gfp_mask)
566{
567    if (unlikely(rl->rq_pool))
568        return 0;
569
570    rl->q = q;
571    rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
572    rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
573    init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
574    init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
575
576    rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
577                      mempool_free_slab, request_cachep,
578                      gfp_mask, q->node);
579    if (!rl->rq_pool)
580        return -ENOMEM;
581
582    return 0;
583}
584
585void blk_exit_rl(struct request_list *rl)
586{
587    if (rl->rq_pool)
588        mempool_destroy(rl->rq_pool);
589}
590
591struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
592{
593    return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
594}
595EXPORT_SYMBOL(blk_alloc_queue);
596
597struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
598{
599    struct request_queue *q;
600    int err;
601
602    q = kmem_cache_alloc_node(blk_requestq_cachep,
603                gfp_mask | __GFP_ZERO, node_id);
604    if (!q)
605        return NULL;
606
607    q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
608    if (q->id < 0)
609        goto fail_q;
610
611    q->backing_dev_info.ra_pages =
612            (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
613    q->backing_dev_info.state = 0;
614    q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
615    q->backing_dev_info.name = "block";
616    q->node = node_id;
617
618    err = bdi_init(&q->backing_dev_info);
619    if (err)
620        goto fail_id;
621
622    setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
623            laptop_mode_timer_fn, (unsigned long) q);
624    setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
625    INIT_LIST_HEAD(&q->queue_head);
626    INIT_LIST_HEAD(&q->timeout_list);
627    INIT_LIST_HEAD(&q->icq_list);
628#ifdef CONFIG_BLK_CGROUP
629    INIT_LIST_HEAD(&q->blkg_list);
630#endif
631    INIT_LIST_HEAD(&q->flush_queue[0]);
632    INIT_LIST_HEAD(&q->flush_queue[1]);
633    INIT_LIST_HEAD(&q->flush_data_in_flight);
634    INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
635
636    kobject_init(&q->kobj, &blk_queue_ktype);
637
638    mutex_init(&q->sysfs_lock);
639    spin_lock_init(&q->__queue_lock);
640
641    /*
642     * By default initialize queue_lock to internal lock and driver can
643     * override it later if need be.
644     */
645    q->queue_lock = &q->__queue_lock;
646
647    /*
648     * A queue starts its life with bypass turned on to avoid
649     * unnecessary bypass on/off overhead and nasty surprises during
650     * init. The initial bypass will be finished when the queue is
651     * registered by blk_register_queue().
652     */
653    q->bypass_depth = 1;
654    __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
655
656    if (blkcg_init_queue(q))
657        goto fail_id;
658
659    return q;
660
661fail_id:
662    ida_simple_remove(&blk_queue_ida, q->id);
663fail_q:
664    kmem_cache_free(blk_requestq_cachep, q);
665    return NULL;
666}
667EXPORT_SYMBOL(blk_alloc_queue_node);
668
669/**
670 * blk_init_queue - prepare a request queue for use with a block device
671 * @rfn: The function to be called to process requests that have been
672 * placed on the queue.
673 * @lock: Request queue spin lock
674 *
675 * Description:
676 * If a block device wishes to use the standard request handling procedures,
677 * which sorts requests and coalesces adjacent requests, then it must
678 * call blk_init_queue(). The function @rfn will be called when there
679 * are requests on the queue that need to be processed. If the device
680 * supports plugging, then @rfn may not be called immediately when requests
681 * are available on the queue, but may be called at some time later instead.
682 * Plugged queues are generally unplugged when a buffer belonging to one
683 * of the requests on the queue is needed, or due to memory pressure.
684 *
685 * @rfn is not required, or even expected, to remove all requests off the
686 * queue, but only as many as it can handle at a time. If it does leave
687 * requests on the queue, it is responsible for arranging that the requests
688 * get dealt with eventually.
689 *
690 * The queue spin lock must be held while manipulating the requests on the
691 * request queue; this lock will be taken also from interrupt context, so irq
692 * disabling is needed for it.
693 *
694 * Function returns a pointer to the initialized request queue, or %NULL if
695 * it didn't succeed.
696 *
697 * Note:
698 * blk_init_queue() must be paired with a blk_cleanup_queue() call
699 * when the block device is deactivated (such as at module unload).
700 **/
701
702struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
703{
704    return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
705}
706EXPORT_SYMBOL(blk_init_queue);
707
708struct request_queue *
709blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
710{
711    struct request_queue *uninit_q, *q;
712
713    uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
714    if (!uninit_q)
715        return NULL;
716
717    q = blk_init_allocated_queue(uninit_q, rfn, lock);
718    if (!q)
719        blk_cleanup_queue(uninit_q);
720
721    return q;
722}
723EXPORT_SYMBOL(blk_init_queue_node);
724
725struct request_queue *
726blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
727             spinlock_t *lock)
728{
729    if (!q)
730        return NULL;
731
732    if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
733        return NULL;
734
735    q->request_fn = rfn;
736    q->prep_rq_fn = NULL;
737    q->unprep_rq_fn = NULL;
738    q->queue_flags |= QUEUE_FLAG_DEFAULT;
739
740    /* Override internal queue lock with supplied lock pointer */
741    if (lock)
742        q->queue_lock = lock;
743
744    /*
745     * This also sets hw/phys segments, boundary and size
746     */
747    blk_queue_make_request(q, blk_queue_bio);
748
749    q->sg_reserved_size = INT_MAX;
750
751    /* init elevator */
752    if (elevator_init(q, NULL))
753        return NULL;
754    return q;
755}
756EXPORT_SYMBOL(blk_init_allocated_queue);
757
758bool blk_get_queue(struct request_queue *q)
759{
760    if (likely(!blk_queue_dying(q))) {
761        __blk_get_queue(q);
762        return true;
763    }
764
765    return false;
766}
767EXPORT_SYMBOL(blk_get_queue);
768
769static inline void blk_free_request(struct request_list *rl, struct request *rq)
770{
771    if (rq->cmd_flags & REQ_ELVPRIV) {
772        elv_put_request(rl->q, rq);
773        if (rq->elv.icq)
774            put_io_context(rq->elv.icq->ioc);
775    }
776
777    mempool_free(rq, rl->rq_pool);
778}
779
780/*
781 * ioc_batching returns true if the ioc is a valid batching request and
782 * should be given priority access to a request.
783 */
784static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
785{
786    if (!ioc)
787        return 0;
788
789    /*
790     * Make sure the process is able to allocate at least 1 request
791     * even if the batch times out, otherwise we could theoretically
792     * lose wakeups.
793     */
794    return ioc->nr_batch_requests == q->nr_batching ||
795        (ioc->nr_batch_requests > 0
796        && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
797}
798
799/*
800 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
801 * will cause the process to be a "batcher" on all queues in the system. This
802 * is the behaviour we want though - once it gets a wakeup it should be given
803 * a nice run.
804 */
805static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
806{
807    if (!ioc || ioc_batching(q, ioc))
808        return;
809
810    ioc->nr_batch_requests = q->nr_batching;
811    ioc->last_waited = jiffies;
812}
813
814static void __freed_request(struct request_list *rl, int sync)
815{
816    struct request_queue *q = rl->q;
817
818    /*
819     * bdi isn't aware of blkcg yet. As all async IOs end up root
820     * blkcg anyway, just use root blkcg state.
821     */
822    if (rl == &q->root_rl &&
823        rl->count[sync] < queue_congestion_off_threshold(q))
824        blk_clear_queue_congested(q, sync);
825
826    if (rl->count[sync] + 1 <= q->nr_requests) {
827        if (waitqueue_active(&rl->wait[sync]))
828            wake_up(&rl->wait[sync]);
829
830        blk_clear_rl_full(rl, sync);
831    }
832}
833
834/*
835 * A request has just been released. Account for it, update the full and
836 * congestion status, wake up any waiters. Called under q->queue_lock.
837 */
838static void freed_request(struct request_list *rl, unsigned int flags)
839{
840    struct request_queue *q = rl->q;
841    int sync = rw_is_sync(flags);
842
843    q->nr_rqs[sync]--;
844    rl->count[sync]--;
845    if (flags & REQ_ELVPRIV)
846        q->nr_rqs_elvpriv--;
847
848    __freed_request(rl, sync);
849
850    if (unlikely(rl->starved[sync ^ 1]))
851        __freed_request(rl, sync ^ 1);
852}
853
854/*
855 * Determine if elevator data should be initialized when allocating the
856 * request associated with @bio.
857 */
858static bool blk_rq_should_init_elevator(struct bio *bio)
859{
860    if (!bio)
861        return true;
862
863    /*
864     * Flush requests do not use the elevator so skip initialization.
865     * This allows a request to share the flush and elevator data.
866     */
867    if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
868        return false;
869
870    return true;
871}
872
873/**
874 * rq_ioc - determine io_context for request allocation
875 * @bio: request being allocated is for this bio (can be %NULL)
876 *
877 * Determine io_context to use for request allocation for @bio. May return
878 * %NULL if %current->io_context doesn't exist.
879 */
880static struct io_context *rq_ioc(struct bio *bio)
881{
882#ifdef CONFIG_BLK_CGROUP
883    if (bio && bio->bi_ioc)
884        return bio->bi_ioc;
885#endif
886    return current->io_context;
887}
888
889/**
890 * __get_request - get a free request
891 * @rl: request list to allocate from
892 * @rw_flags: RW and SYNC flags
893 * @bio: bio to allocate request for (can be %NULL)
894 * @gfp_mask: allocation mask
895 *
896 * Get a free request from @q. This function may fail under memory
897 * pressure or if @q is dead.
898 *
899 * Must be callled with @q->queue_lock held and,
900 * Returns %NULL on failure, with @q->queue_lock held.
901 * Returns !%NULL on success, with @q->queue_lock *not held*.
902 */
903static struct request *__get_request(struct request_list *rl, int rw_flags,
904                     struct bio *bio, gfp_t gfp_mask)
905{
906    struct request_queue *q = rl->q;
907    struct request *rq;
908    struct elevator_type *et = q->elevator->type;
909    struct io_context *ioc = rq_ioc(bio);
910    struct io_cq *icq = NULL;
911    const bool is_sync = rw_is_sync(rw_flags) != 0;
912    int may_queue;
913
914    if (unlikely(blk_queue_dying(q)))
915        return NULL;
916
917    may_queue = elv_may_queue(q, rw_flags);
918    if (may_queue == ELV_MQUEUE_NO)
919        goto rq_starved;
920
921    if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
922        if (rl->count[is_sync]+1 >= q->nr_requests) {
923            /*
924             * The queue will fill after this allocation, so set
925             * it as full, and mark this process as "batching".
926             * This process will be allowed to complete a batch of
927             * requests, others will be blocked.
928             */
929            if (!blk_rl_full(rl, is_sync)) {
930                ioc_set_batching(q, ioc);
931                blk_set_rl_full(rl, is_sync);
932            } else {
933                if (may_queue != ELV_MQUEUE_MUST
934                        && !ioc_batching(q, ioc)) {
935                    /*
936                     * The queue is full and the allocating
937                     * process is not a "batcher", and not
938                     * exempted by the IO scheduler
939                     */
940                    return NULL;
941                }
942            }
943        }
944        /*
945         * bdi isn't aware of blkcg yet. As all async IOs end up
946         * root blkcg anyway, just use root blkcg state.
947         */
948        if (rl == &q->root_rl)
949            blk_set_queue_congested(q, is_sync);
950    }
951
952    /*
953     * Only allow batching queuers to allocate up to 50% over the defined
954     * limit of requests, otherwise we could have thousands of requests
955     * allocated with any setting of ->nr_requests
956     */
957    if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
958        return NULL;
959
960    q->nr_rqs[is_sync]++;
961    rl->count[is_sync]++;
962    rl->starved[is_sync] = 0;
963
964    /*
965     * Decide whether the new request will be managed by elevator. If
966     * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
967     * prevent the current elevator from being destroyed until the new
968     * request is freed. This guarantees icq's won't be destroyed and
969     * makes creating new ones safe.
970     *
971     * Also, lookup icq while holding queue_lock. If it doesn't exist,
972     * it will be created after releasing queue_lock.
973     */
974    if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
975        rw_flags |= REQ_ELVPRIV;
976        q->nr_rqs_elvpriv++;
977        if (et->icq_cache && ioc)
978            icq = ioc_lookup_icq(ioc, q);
979    }
980
981    if (blk_queue_io_stat(q))
982        rw_flags |= REQ_IO_STAT;
983    spin_unlock_irq(q->queue_lock);
984
985    /* allocate and init request */
986    rq = mempool_alloc(rl->rq_pool, gfp_mask);
987    if (!rq)
988        goto fail_alloc;
989
990    blk_rq_init(q, rq);
991    blk_rq_set_rl(rq, rl);
992    rq->cmd_flags = rw_flags | REQ_ALLOCED;
993
994    /* init elvpriv */
995    if (rw_flags & REQ_ELVPRIV) {
996        if (unlikely(et->icq_cache && !icq)) {
997            if (ioc)
998                icq = ioc_create_icq(ioc, q, gfp_mask);
999            if (!icq)
1000                goto fail_elvpriv;
1001        }
1002
1003        rq->elv.icq = icq;
1004        if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1005            goto fail_elvpriv;
1006
1007        /* @rq->elv.icq holds io_context until @rq is freed */
1008        if (icq)
1009            get_io_context(icq->ioc);
1010    }
1011out:
1012    /*
1013     * ioc may be NULL here, and ioc_batching will be false. That's
1014     * OK, if the queue is under the request limit then requests need
1015     * not count toward the nr_batch_requests limit. There will always
1016     * be some limit enforced by BLK_BATCH_TIME.
1017     */
1018    if (ioc_batching(q, ioc))
1019        ioc->nr_batch_requests--;
1020
1021    trace_block_getrq(q, bio, rw_flags & 1);
1022    return rq;
1023
1024fail_elvpriv:
1025    /*
1026     * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1027     * and may fail indefinitely under memory pressure and thus
1028     * shouldn't stall IO. Treat this request as !elvpriv. This will
1029     * disturb iosched and blkcg but weird is bettern than dead.
1030     */
1031    printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1032               dev_name(q->backing_dev_info.dev));
1033
1034    rq->cmd_flags &= ~REQ_ELVPRIV;
1035    rq->elv.icq = NULL;
1036
1037    spin_lock_irq(q->queue_lock);
1038    q->nr_rqs_elvpriv--;
1039    spin_unlock_irq(q->queue_lock);
1040    goto out;
1041
1042fail_alloc:
1043    /*
1044     * Allocation failed presumably due to memory. Undo anything we
1045     * might have messed up.
1046     *
1047     * Allocating task should really be put onto the front of the wait
1048     * queue, but this is pretty rare.
1049     */
1050    spin_lock_irq(q->queue_lock);
1051    freed_request(rl, rw_flags);
1052
1053    /*
1054     * in the very unlikely event that allocation failed and no
1055     * requests for this direction was pending, mark us starved so that
1056     * freeing of a request in the other direction will notice
1057     * us. another possible fix would be to split the rq mempool into
1058     * READ and WRITE
1059     */
1060rq_starved:
1061    if (unlikely(rl->count[is_sync] == 0))
1062        rl->starved[is_sync] = 1;
1063    return NULL;
1064}
1065
1066/**
1067 * get_request - get a free request
1068 * @q: request_queue to allocate request from
1069 * @rw_flags: RW and SYNC flags
1070 * @bio: bio to allocate request for (can be %NULL)
1071 * @gfp_mask: allocation mask
1072 *
1073 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1074 * function keeps retrying under memory pressure and fails iff @q is dead.
1075 *
1076 * Must be callled with @q->queue_lock held and,
1077 * Returns %NULL on failure, with @q->queue_lock held.
1078 * Returns !%NULL on success, with @q->queue_lock *not held*.
1079 */
1080static struct request *get_request(struct request_queue *q, int rw_flags,
1081                   struct bio *bio, gfp_t gfp_mask)
1082{
1083    const bool is_sync = rw_is_sync(rw_flags) != 0;
1084    DEFINE_WAIT(wait);
1085    struct request_list *rl;
1086    struct request *rq;
1087
1088    rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1089retry:
1090    rq = __get_request(rl, rw_flags, bio, gfp_mask);
1091    if (rq)
1092        return rq;
1093
1094    if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1095        blk_put_rl(rl);
1096        return NULL;
1097    }
1098
1099    /* wait on @rl and retry */
1100    prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1101                  TASK_UNINTERRUPTIBLE);
1102
1103    trace_block_sleeprq(q, bio, rw_flags & 1);
1104
1105    spin_unlock_irq(q->queue_lock);
1106    io_schedule();
1107
1108    /*
1109     * After sleeping, we become a "batching" process and will be able
1110     * to allocate at least one request, and up to a big batch of them
1111     * for a small period time. See ioc_batching, ioc_set_batching
1112     */
1113    ioc_set_batching(q, current->io_context);
1114
1115    spin_lock_irq(q->queue_lock);
1116    finish_wait(&rl->wait[is_sync], &wait);
1117
1118    goto retry;
1119}
1120
1121struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1122{
1123    struct request *rq;
1124
1125    BUG_ON(rw != READ && rw != WRITE);
1126
1127    /* create ioc upfront */
1128    create_io_context(gfp_mask, q->node);
1129
1130    spin_lock_irq(q->queue_lock);
1131    rq = get_request(q, rw, NULL, gfp_mask);
1132    if (!rq)
1133        spin_unlock_irq(q->queue_lock);
1134    /* q->queue_lock is unlocked at this point */
1135
1136    return rq;
1137}
1138EXPORT_SYMBOL(blk_get_request);
1139
1140/**
1141 * blk_make_request - given a bio, allocate a corresponding struct request.
1142 * @q: target request queue
1143 * @bio: The bio describing the memory mappings that will be submitted for IO.
1144 * It may be a chained-bio properly constructed by block/bio layer.
1145 * @gfp_mask: gfp flags to be used for memory allocation
1146 *
1147 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1148 * type commands. Where the struct request needs to be farther initialized by
1149 * the caller. It is passed a &struct bio, which describes the memory info of
1150 * the I/O transfer.
1151 *
1152 * The caller of blk_make_request must make sure that bi_io_vec
1153 * are set to describe the memory buffers. That bio_data_dir() will return
1154 * the needed direction of the request. (And all bio's in the passed bio-chain
1155 * are properly set accordingly)
1156 *
1157 * If called under none-sleepable conditions, mapped bio buffers must not
1158 * need bouncing, by calling the appropriate masked or flagged allocator,
1159 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1160 * BUG.
1161 *
1162 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1163 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1164 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1165 * completion of a bio that hasn't been submitted yet, thus resulting in a
1166 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1167 * of bio_alloc(), as that avoids the mempool deadlock.
1168 * If possible a big IO should be split into smaller parts when allocation
1169 * fails. Partial allocation should not be an error, or you risk a live-lock.
1170 */
1171struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1172                 gfp_t gfp_mask)
1173{
1174    struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1175
1176    if (unlikely(!rq))
1177        return ERR_PTR(-ENOMEM);
1178
1179    for_each_bio(bio) {
1180        struct bio *bounce_bio = bio;
1181        int ret;
1182
1183        blk_queue_bounce(q, &bounce_bio);
1184        ret = blk_rq_append_bio(q, rq, bounce_bio);
1185        if (unlikely(ret)) {
1186            blk_put_request(rq);
1187            return ERR_PTR(ret);
1188        }
1189    }
1190
1191    return rq;
1192}
1193EXPORT_SYMBOL(blk_make_request);
1194
1195/**
1196 * blk_requeue_request - put a request back on queue
1197 * @q: request queue where request should be inserted
1198 * @rq: request to be inserted
1199 *
1200 * Description:
1201 * Drivers often keep queueing requests until the hardware cannot accept
1202 * more, when that condition happens we need to put the request back
1203 * on the queue. Must be called with queue lock held.
1204 */
1205void blk_requeue_request(struct request_queue *q, struct request *rq)
1206{
1207    blk_delete_timer(rq);
1208    blk_clear_rq_complete(rq);
1209    trace_block_rq_requeue(q, rq);
1210
1211    if (blk_rq_tagged(rq))
1212        blk_queue_end_tag(q, rq);
1213
1214    BUG_ON(blk_queued_rq(rq));
1215
1216    elv_requeue_request(q, rq);
1217}
1218EXPORT_SYMBOL(blk_requeue_request);
1219
1220static void add_acct_request(struct request_queue *q, struct request *rq,
1221                 int where)
1222{
1223    drive_stat_acct(rq, 1);
1224    __elv_add_request(q, rq, where);
1225}
1226
1227static void part_round_stats_single(int cpu, struct hd_struct *part,
1228                    unsigned long now)
1229{
1230    if (now == part->stamp)
1231        return;
1232
1233    if (part_in_flight(part)) {
1234        __part_stat_add(cpu, part, time_in_queue,
1235                part_in_flight(part) * (now - part->stamp));
1236        __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1237    }
1238    part->stamp = now;
1239}
1240
1241/**
1242 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1243 * @cpu: cpu number for stats access
1244 * @part: target partition
1245 *
1246 * The average IO queue length and utilisation statistics are maintained
1247 * by observing the current state of the queue length and the amount of
1248 * time it has been in this state for.
1249 *
1250 * Normally, that accounting is done on IO completion, but that can result
1251 * in more than a second's worth of IO being accounted for within any one
1252 * second, leading to >100% utilisation. To deal with that, we call this
1253 * function to do a round-off before returning the results when reading
1254 * /proc/diskstats. This accounts immediately for all queue usage up to
1255 * the current jiffies and restarts the counters again.
1256 */
1257void part_round_stats(int cpu, struct hd_struct *part)
1258{
1259    unsigned long now = jiffies;
1260
1261    if (part->partno)
1262        part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1263    part_round_stats_single(cpu, part, now);
1264}
1265EXPORT_SYMBOL_GPL(part_round_stats);
1266
1267/*
1268 * queue lock must be held
1269 */
1270void __blk_put_request(struct request_queue *q, struct request *req)
1271{
1272    if (unlikely(!q))
1273        return;
1274    if (unlikely(--req->ref_count))
1275        return;
1276
1277    elv_completed_request(q, req);
1278
1279    /* this is a bio leak */
1280    WARN_ON(req->bio != NULL);
1281
1282    /*
1283     * Request may not have originated from ll_rw_blk. if not,
1284     * it didn't come out of our reserved rq pools
1285     */
1286    if (req->cmd_flags & REQ_ALLOCED) {
1287        unsigned int flags = req->cmd_flags;
1288        struct request_list *rl = blk_rq_rl(req);
1289
1290        BUG_ON(!list_empty(&req->queuelist));
1291        BUG_ON(!hlist_unhashed(&req->hash));
1292
1293        blk_free_request(rl, req);
1294        freed_request(rl, flags);
1295        blk_put_rl(rl);
1296    }
1297}
1298EXPORT_SYMBOL_GPL(__blk_put_request);
1299
1300void blk_put_request(struct request *req)
1301{
1302    unsigned long flags;
1303    struct request_queue *q = req->q;
1304
1305    spin_lock_irqsave(q->queue_lock, flags);
1306    __blk_put_request(q, req);
1307    spin_unlock_irqrestore(q->queue_lock, flags);
1308}
1309EXPORT_SYMBOL(blk_put_request);
1310
1311/**
1312 * blk_add_request_payload - add a payload to a request
1313 * @rq: request to update
1314 * @page: page backing the payload
1315 * @len: length of the payload.
1316 *
1317 * This allows to later add a payload to an already submitted request by
1318 * a block driver. The driver needs to take care of freeing the payload
1319 * itself.
1320 *
1321 * Note that this is a quite horrible hack and nothing but handling of
1322 * discard requests should ever use it.
1323 */
1324void blk_add_request_payload(struct request *rq, struct page *page,
1325        unsigned int len)
1326{
1327    struct bio *bio = rq->bio;
1328
1329    bio->bi_io_vec->bv_page = page;
1330    bio->bi_io_vec->bv_offset = 0;
1331    bio->bi_io_vec->bv_len = len;
1332
1333    bio->bi_size = len;
1334    bio->bi_vcnt = 1;
1335    bio->bi_phys_segments = 1;
1336
1337    rq->__data_len = rq->resid_len = len;
1338    rq->nr_phys_segments = 1;
1339    rq->buffer = bio_data(bio);
1340}
1341EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342
1343static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1344                   struct bio *bio)
1345{
1346    const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347
1348    if (!ll_back_merge_fn(q, req, bio))
1349        return false;
1350
1351    trace_block_bio_backmerge(q, req, bio);
1352
1353    if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1354        blk_rq_set_mixed_merge(req);
1355
1356    req->biotail->bi_next = bio;
1357    req->biotail = bio;
1358    req->__data_len += bio->bi_size;
1359    req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360
1361    drive_stat_acct(req, 0);
1362    return true;
1363}
1364
1365static bool bio_attempt_front_merge(struct request_queue *q,
1366                    struct request *req, struct bio *bio)
1367{
1368    const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1369
1370    if (!ll_front_merge_fn(q, req, bio))
1371        return false;
1372
1373    trace_block_bio_frontmerge(q, req, bio);
1374
1375    if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1376        blk_rq_set_mixed_merge(req);
1377
1378    bio->bi_next = req->bio;
1379    req->bio = bio;
1380
1381    /*
1382     * may not be valid. if the low level driver said
1383     * it didn't need a bounce buffer then it better
1384     * not touch req->buffer either...
1385     */
1386    req->buffer = bio_data(bio);
1387    req->__sector = bio->bi_sector;
1388    req->__data_len += bio->bi_size;
1389    req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390
1391    drive_stat_acct(req, 0);
1392    return true;
1393}
1394
1395/**
1396 * attempt_plug_merge - try to merge with %current's plugged list
1397 * @q: request_queue new bio is being queued at
1398 * @bio: new bio being queued
1399 * @request_count: out parameter for number of traversed plugged requests
1400 *
1401 * Determine whether @bio being queued on @q can be merged with a request
1402 * on %current's plugged list. Returns %true if merge was successful,
1403 * otherwise %false.
1404 *
1405 * Plugging coalesces IOs from the same issuer for the same purpose without
1406 * going through @q->queue_lock. As such it's more of an issuing mechanism
1407 * than scheduling, and the request, while may have elvpriv data, is not
1408 * added on the elevator at this point. In addition, we don't have
1409 * reliable access to the elevator outside queue lock. Only check basic
1410 * merging parameters without querying the elevator.
1411 */
1412static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1413                   unsigned int *request_count)
1414{
1415    struct blk_plug *plug;
1416    struct request *rq;
1417    bool ret = false;
1418
1419    plug = current->plug;
1420    if (!plug)
1421        goto out;
1422    *request_count = 0;
1423
1424    list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1425        int el_ret;
1426
1427        if (rq->q == q)
1428            (*request_count)++;
1429
1430        if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1431            continue;
1432
1433        el_ret = blk_try_merge(rq, bio);
1434        if (el_ret == ELEVATOR_BACK_MERGE) {
1435            ret = bio_attempt_back_merge(q, rq, bio);
1436            if (ret)
1437                break;
1438        } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1439            ret = bio_attempt_front_merge(q, rq, bio);
1440            if (ret)
1441                break;
1442        }
1443    }
1444out:
1445    return ret;
1446}
1447
1448void init_request_from_bio(struct request *req, struct bio *bio)
1449{
1450    req->cmd_type = REQ_TYPE_FS;
1451
1452    req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1453    if (bio->bi_rw & REQ_RAHEAD)
1454        req->cmd_flags |= REQ_FAILFAST_MASK;
1455
1456    req->errors = 0;
1457    req->__sector = bio->bi_sector;
1458    req->ioprio = bio_prio(bio);
1459    blk_rq_bio_prep(req->q, req, bio);
1460}
1461
1462void blk_queue_bio(struct request_queue *q, struct bio *bio)
1463{
1464    const bool sync = !!(bio->bi_rw & REQ_SYNC);
1465    struct blk_plug *plug;
1466    int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1467    struct request *req;
1468    unsigned int request_count = 0;
1469
1470    /*
1471     * low level driver can indicate that it wants pages above a
1472     * certain limit bounced to low memory (ie for highmem, or even
1473     * ISA dma in theory)
1474     */
1475    blk_queue_bounce(q, &bio);
1476
1477    if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1478        bio_endio(bio, -EIO);
1479        return;
1480    }
1481
1482    if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1483        spin_lock_irq(q->queue_lock);
1484        where = ELEVATOR_INSERT_FLUSH;
1485        goto get_rq;
1486    }
1487
1488    /*
1489     * Check if we can merge with the plugged list before grabbing
1490     * any locks.
1491     */
1492    if (attempt_plug_merge(q, bio, &request_count))
1493        return;
1494
1495    spin_lock_irq(q->queue_lock);
1496
1497    el_ret = elv_merge(q, &req, bio);
1498    if (el_ret == ELEVATOR_BACK_MERGE) {
1499        if (bio_attempt_back_merge(q, req, bio)) {
1500            elv_bio_merged(q, req, bio);
1501            if (!attempt_back_merge(q, req))
1502                elv_merged_request(q, req, el_ret);
1503            goto out_unlock;
1504        }
1505    } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1506        if (bio_attempt_front_merge(q, req, bio)) {
1507            elv_bio_merged(q, req, bio);
1508            if (!attempt_front_merge(q, req))
1509                elv_merged_request(q, req, el_ret);
1510            goto out_unlock;
1511        }
1512    }
1513
1514get_rq:
1515    /*
1516     * This sync check and mask will be re-done in init_request_from_bio(),
1517     * but we need to set it earlier to expose the sync flag to the
1518     * rq allocator and io schedulers.
1519     */
1520    rw_flags = bio_data_dir(bio);
1521    if (sync)
1522        rw_flags |= REQ_SYNC;
1523
1524    /*
1525     * Grab a free request. This is might sleep but can not fail.
1526     * Returns with the queue unlocked.
1527     */
1528    req = get_request(q, rw_flags, bio, GFP_NOIO);
1529    if (unlikely(!req)) {
1530        bio_endio(bio, -ENODEV); /* @q is dead */
1531        goto out_unlock;
1532    }
1533
1534    /*
1535     * After dropping the lock and possibly sleeping here, our request
1536     * may now be mergeable after it had proven unmergeable (above).
1537     * We don't worry about that case for efficiency. It won't happen
1538     * often, and the elevators are able to handle it.
1539     */
1540    init_request_from_bio(req, bio);
1541
1542    if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1543        req->cpu = raw_smp_processor_id();
1544
1545    plug = current->plug;
1546    if (plug) {
1547        /*
1548         * If this is the first request added after a plug, fire
1549         * of a plug trace. If others have been added before, check
1550         * if we have multiple devices in this plug. If so, make a
1551         * note to sort the list before dispatch.
1552         */
1553        if (list_empty(&plug->list))
1554            trace_block_plug(q);
1555        else {
1556            if (request_count >= BLK_MAX_REQUEST_COUNT) {
1557                blk_flush_plug_list(plug, false);
1558                trace_block_plug(q);
1559            }
1560        }
1561        list_add_tail(&req->queuelist, &plug->list);
1562        drive_stat_acct(req, 1);
1563    } else {
1564        spin_lock_irq(q->queue_lock);
1565        add_acct_request(q, req, where);
1566        __blk_run_queue(q);
1567out_unlock:
1568        spin_unlock_irq(q->queue_lock);
1569    }
1570}
1571EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1572
1573/*
1574 * If bio->bi_dev is a partition, remap the location
1575 */
1576static inline void blk_partition_remap(struct bio *bio)
1577{
1578    struct block_device *bdev = bio->bi_bdev;
1579
1580    if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1581        struct hd_struct *p = bdev->bd_part;
1582
1583        bio->bi_sector += p->start_sect;
1584        bio->bi_bdev = bdev->bd_contains;
1585
1586        trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1587                      bdev->bd_dev,
1588                      bio->bi_sector - p->start_sect);
1589    }
1590}
1591
1592static void handle_bad_sector(struct bio *bio)
1593{
1594    char b[BDEVNAME_SIZE];
1595
1596    printk(KERN_INFO "attempt to access beyond end of device\n");
1597    printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1598            bdevname(bio->bi_bdev, b),
1599            bio->bi_rw,
1600            (unsigned long long)bio->bi_sector + bio_sectors(bio),
1601            (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1602
1603    set_bit(BIO_EOF, &bio->bi_flags);
1604}
1605
1606#ifdef CONFIG_FAIL_MAKE_REQUEST
1607
1608static DECLARE_FAULT_ATTR(fail_make_request);
1609
1610static int __init setup_fail_make_request(char *str)
1611{
1612    return setup_fault_attr(&fail_make_request, str);
1613}
1614__setup("fail_make_request=", setup_fail_make_request);
1615
1616static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1617{
1618    return part->make_it_fail && should_fail(&fail_make_request, bytes);
1619}
1620
1621static int __init fail_make_request_debugfs(void)
1622{
1623    struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1624                        NULL, &fail_make_request);
1625
1626    return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1627}
1628
1629late_initcall(fail_make_request_debugfs);
1630
1631#else /* CONFIG_FAIL_MAKE_REQUEST */
1632
1633static inline bool should_fail_request(struct hd_struct *part,
1634                    unsigned int bytes)
1635{
1636    return false;
1637}
1638
1639#endif /* CONFIG_FAIL_MAKE_REQUEST */
1640
1641/*
1642 * Check whether this bio extends beyond the end of the device.
1643 */
1644static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1645{
1646    sector_t maxsector;
1647
1648    if (!nr_sectors)
1649        return 0;
1650
1651    /* Test device or partition size, when known. */
1652    maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1653    if (maxsector) {
1654        sector_t sector = bio->bi_sector;
1655
1656        if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1657            /*
1658             * This may well happen - the kernel calls bread()
1659             * without checking the size of the device, e.g., when
1660             * mounting a device.
1661             */
1662            handle_bad_sector(bio);
1663            return 1;
1664        }
1665    }
1666
1667    return 0;
1668}
1669
1670static noinline_for_stack bool
1671generic_make_request_checks(struct bio *bio)
1672{
1673    struct request_queue *q;
1674    int nr_sectors = bio_sectors(bio);
1675    int err = -EIO;
1676    char b[BDEVNAME_SIZE];
1677    struct hd_struct *part;
1678
1679    might_sleep();
1680
1681    if (bio_check_eod(bio, nr_sectors))
1682        goto end_io;
1683
1684    q = bdev_get_queue(bio->bi_bdev);
1685    if (unlikely(!q)) {
1686        printk(KERN_ERR
1687               "generic_make_request: Trying to access "
1688            "nonexistent block-device %s (%Lu)\n",
1689            bdevname(bio->bi_bdev, b),
1690            (long long) bio->bi_sector);
1691        goto end_io;
1692    }
1693
1694    if (likely(bio_is_rw(bio) &&
1695           nr_sectors > queue_max_hw_sectors(q))) {
1696        printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1697               bdevname(bio->bi_bdev, b),
1698               bio_sectors(bio),
1699               queue_max_hw_sectors(q));
1700        goto end_io;
1701    }
1702
1703    part = bio->bi_bdev->bd_part;
1704    if (should_fail_request(part, bio->bi_size) ||
1705        should_fail_request(&part_to_disk(part)->part0,
1706                bio->bi_size))
1707        goto end_io;
1708
1709    /*
1710     * If this device has partitions, remap block n
1711     * of partition p to block n+start(p) of the disk.
1712     */
1713    blk_partition_remap(bio);
1714
1715    if (bio_check_eod(bio, nr_sectors))
1716        goto end_io;
1717
1718    /*
1719     * Filter flush bio's early so that make_request based
1720     * drivers without flush support don't have to worry
1721     * about them.
1722     */
1723    if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1724        bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1725        if (!nr_sectors) {
1726            err = 0;
1727            goto end_io;
1728        }
1729    }
1730
1731    if ((bio->bi_rw & REQ_DISCARD) &&
1732        (!blk_queue_discard(q) ||
1733         ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1734        err = -EOPNOTSUPP;
1735        goto end_io;
1736    }
1737
1738    if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1739        err = -EOPNOTSUPP;
1740        goto end_io;
1741    }
1742
1743    /*
1744     * Various block parts want %current->io_context and lazy ioc
1745     * allocation ends up trading a lot of pain for a small amount of
1746     * memory. Just allocate it upfront. This may fail and block
1747     * layer knows how to live with it.
1748     */
1749    create_io_context(GFP_ATOMIC, q->node);
1750
1751    if (blk_throtl_bio(q, bio))
1752        return false; /* throttled, will be resubmitted later */
1753
1754    trace_block_bio_queue(q, bio);
1755    return true;
1756
1757end_io:
1758    bio_endio(bio, err);
1759    return false;
1760}
1761
1762/**
1763 * generic_make_request - hand a buffer to its device driver for I/O
1764 * @bio: The bio describing the location in memory and on the device.
1765 *
1766 * generic_make_request() is used to make I/O requests of block
1767 * devices. It is passed a &struct bio, which describes the I/O that needs
1768 * to be done.
1769 *
1770 * generic_make_request() does not return any status. The
1771 * success/failure status of the request, along with notification of
1772 * completion, is delivered asynchronously through the bio->bi_end_io
1773 * function described (one day) else where.
1774 *
1775 * The caller of generic_make_request must make sure that bi_io_vec
1776 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1777 * set to describe the device address, and the
1778 * bi_end_io and optionally bi_private are set to describe how
1779 * completion notification should be signaled.
1780 *
1781 * generic_make_request and the drivers it calls may use bi_next if this
1782 * bio happens to be merged with someone else, and may resubmit the bio to
1783 * a lower device by calling into generic_make_request recursively, which
1784 * means the bio should NOT be touched after the call to ->make_request_fn.
1785 */
1786void generic_make_request(struct bio *bio)
1787{
1788    struct bio_list bio_list_on_stack;
1789
1790    if (!generic_make_request_checks(bio))
1791        return;
1792
1793    /*
1794     * We only want one ->make_request_fn to be active at a time, else
1795     * stack usage with stacked devices could be a problem. So use
1796     * current->bio_list to keep a list of requests submited by a
1797     * make_request_fn function. current->bio_list is also used as a
1798     * flag to say if generic_make_request is currently active in this
1799     * task or not. If it is NULL, then no make_request is active. If
1800     * it is non-NULL, then a make_request is active, and new requests
1801     * should be added at the tail
1802     */
1803    if (current->bio_list) {
1804        bio_list_add(current->bio_list, bio);
1805        return;
1806    }
1807
1808    /* following loop may be a bit non-obvious, and so deserves some
1809     * explanation.
1810     * Before entering the loop, bio->bi_next is NULL (as all callers
1811     * ensure that) so we have a list with a single bio.
1812     * We pretend that we have just taken it off a longer list, so
1813     * we assign bio_list to a pointer to the bio_list_on_stack,
1814     * thus initialising the bio_list of new bios to be
1815     * added. ->make_request() may indeed add some more bios
1816     * through a recursive call to generic_make_request. If it
1817     * did, we find a non-NULL value in bio_list and re-enter the loop
1818     * from the top. In this case we really did just take the bio
1819     * of the top of the list (no pretending) and so remove it from
1820     * bio_list, and call into ->make_request() again.
1821     */
1822    BUG_ON(bio->bi_next);
1823    bio_list_init(&bio_list_on_stack);
1824    current->bio_list = &bio_list_on_stack;
1825    do {
1826        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1827
1828        q->make_request_fn(q, bio);
1829
1830        bio = bio_list_pop(current->bio_list);
1831    } while (bio);
1832    current->bio_list = NULL; /* deactivate */
1833}
1834EXPORT_SYMBOL(generic_make_request);
1835
1836/**
1837 * submit_bio - submit a bio to the block device layer for I/O
1838 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1839 * @bio: The &struct bio which describes the I/O
1840 *
1841 * submit_bio() is very similar in purpose to generic_make_request(), and
1842 * uses that function to do most of the work. Both are fairly rough
1843 * interfaces; @bio must be presetup and ready for I/O.
1844 *
1845 */
1846void submit_bio(int rw, struct bio *bio)
1847{
1848    bio->bi_rw |= rw;
1849
1850    /*
1851     * If it's a regular read/write or a barrier with data attached,
1852     * go through the normal accounting stuff before submission.
1853     */
1854    if (bio_has_data(bio)) {
1855        unsigned int count;
1856
1857        if (unlikely(rw & REQ_WRITE_SAME))
1858            count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1859        else
1860            count = bio_sectors(bio);
1861
1862        if (rw & WRITE) {
1863            count_vm_events(PGPGOUT, count);
1864        } else {
1865            task_io_account_read(bio->bi_size);
1866            count_vm_events(PGPGIN, count);
1867        }
1868
1869        if (unlikely(block_dump)) {
1870            char b[BDEVNAME_SIZE];
1871            printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1872            current->comm, task_pid_nr(current),
1873                (rw & WRITE) ? "WRITE" : "READ",
1874                (unsigned long long)bio->bi_sector,
1875                bdevname(bio->bi_bdev, b),
1876                count);
1877        }
1878    }
1879
1880    generic_make_request(bio);
1881}
1882EXPORT_SYMBOL(submit_bio);
1883
1884/**
1885 * blk_rq_check_limits - Helper function to check a request for the queue limit
1886 * @q: the queue
1887 * @rq: the request being checked
1888 *
1889 * Description:
1890 * @rq may have been made based on weaker limitations of upper-level queues
1891 * in request stacking drivers, and it may violate the limitation of @q.
1892 * Since the block layer and the underlying device driver trust @rq
1893 * after it is inserted to @q, it should be checked against @q before
1894 * the insertion using this generic function.
1895 *
1896 * This function should also be useful for request stacking drivers
1897 * in some cases below, so export this function.
1898 * Request stacking drivers like request-based dm may change the queue
1899 * limits while requests are in the queue (e.g. dm's table swapping).
1900 * Such request stacking drivers should check those requests agaist
1901 * the new queue limits again when they dispatch those requests,
1902 * although such checkings are also done against the old queue limits
1903 * when submitting requests.
1904 */
1905int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1906{
1907    if (!rq_mergeable(rq))
1908        return 0;
1909
1910    if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1911        printk(KERN_ERR "%s: over max size limit.\n", __func__);
1912        return -EIO;
1913    }
1914
1915    /*
1916     * queue's settings related to segment counting like q->bounce_pfn
1917     * may differ from that of other stacking queues.
1918     * Recalculate it to check the request correctly on this queue's
1919     * limitation.
1920     */
1921    blk_recalc_rq_segments(rq);
1922    if (rq->nr_phys_segments > queue_max_segments(q)) {
1923        printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1924        return -EIO;
1925    }
1926
1927    return 0;
1928}
1929EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1930
1931/**
1932 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1933 * @q: the queue to submit the request
1934 * @rq: the request being queued
1935 */
1936int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1937{
1938    unsigned long flags;
1939    int where = ELEVATOR_INSERT_BACK;
1940
1941    if (blk_rq_check_limits(q, rq))
1942        return -EIO;
1943
1944    if (rq->rq_disk &&
1945        should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1946        return -EIO;
1947
1948    spin_lock_irqsave(q->queue_lock, flags);
1949    if (unlikely(blk_queue_dying(q))) {
1950        spin_unlock_irqrestore(q->queue_lock, flags);
1951        return -ENODEV;
1952    }
1953
1954    /*
1955     * Submitting request must be dequeued before calling this function
1956     * because it will be linked to another request_queue
1957     */
1958    BUG_ON(blk_queued_rq(rq));
1959
1960    if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1961        where = ELEVATOR_INSERT_FLUSH;
1962
1963    add_acct_request(q, rq, where);
1964    if (where == ELEVATOR_INSERT_FLUSH)
1965        __blk_run_queue(q);
1966    spin_unlock_irqrestore(q->queue_lock, flags);
1967
1968    return 0;
1969}
1970EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1971
1972/**
1973 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1974 * @rq: request to examine
1975 *
1976 * Description:
1977 * A request could be merge of IOs which require different failure
1978 * handling. This function determines the number of bytes which
1979 * can be failed from the beginning of the request without
1980 * crossing into area which need to be retried further.
1981 *
1982 * Return:
1983 * The number of bytes to fail.
1984 *
1985 * Context:
1986 * queue_lock must be held.
1987 */
1988unsigned int blk_rq_err_bytes(const struct request *rq)
1989{
1990    unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1991    unsigned int bytes = 0;
1992    struct bio *bio;
1993
1994    if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1995        return blk_rq_bytes(rq);
1996
1997    /*
1998     * Currently the only 'mixing' which can happen is between
1999     * different fastfail types. We can safely fail portions
2000     * which have all the failfast bits that the first one has -
2001     * the ones which are at least as eager to fail as the first
2002     * one.
2003     */
2004    for (bio = rq->bio; bio; bio = bio->bi_next) {
2005        if ((bio->bi_rw & ff) != ff)
2006            break;
2007        bytes += bio->bi_size;
2008    }
2009
2010    /* this could lead to infinite loop */
2011    BUG_ON(blk_rq_bytes(rq) && !bytes);
2012    return bytes;
2013}
2014EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2015
2016static void blk_account_io_completion(struct request *req, unsigned int bytes)
2017{
2018    if (blk_do_io_stat(req)) {
2019        const int rw = rq_data_dir(req);
2020        struct hd_struct *part;
2021        int cpu;
2022
2023        cpu = part_stat_lock();
2024        part = req->part;
2025        part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2026        part_stat_unlock();
2027    }
2028}
2029
2030static void blk_account_io_done(struct request *req)
2031{
2032    /*
2033     * Account IO completion. flush_rq isn't accounted as a
2034     * normal IO on queueing nor completion. Accounting the
2035     * containing request is enough.
2036     */
2037    if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2038        unsigned long duration = jiffies - req->start_time;
2039        const int rw = rq_data_dir(req);
2040        struct hd_struct *part;
2041        int cpu;
2042
2043        cpu = part_stat_lock();
2044        part = req->part;
2045
2046        part_stat_inc(cpu, part, ios[rw]);
2047        part_stat_add(cpu, part, ticks[rw], duration);
2048        part_round_stats(cpu, part);
2049        part_dec_in_flight(part, rw);
2050
2051        hd_struct_put(part);
2052        part_stat_unlock();
2053    }
2054}
2055
2056/**
2057 * blk_peek_request - peek at the top of a request queue
2058 * @q: request queue to peek at
2059 *
2060 * Description:
2061 * Return the request at the top of @q. The returned request
2062 * should be started using blk_start_request() before LLD starts
2063 * processing it.
2064 *
2065 * Return:
2066 * Pointer to the request at the top of @q if available. Null
2067 * otherwise.
2068 *
2069 * Context:
2070 * queue_lock must be held.
2071 */
2072struct request *blk_peek_request(struct request_queue *q)
2073{
2074    struct request *rq;
2075    int ret;
2076
2077    while ((rq = __elv_next_request(q)) != NULL) {
2078        if (!(rq->cmd_flags & REQ_STARTED)) {
2079            /*
2080             * This is the first time the device driver
2081             * sees this request (possibly after
2082             * requeueing). Notify IO scheduler.
2083             */
2084            if (rq->cmd_flags & REQ_SORTED)
2085                elv_activate_rq(q, rq);
2086
2087            /*
2088             * just mark as started even if we don't start
2089             * it, a request that has been delayed should
2090             * not be passed by new incoming requests
2091             */
2092            rq->cmd_flags |= REQ_STARTED;
2093            trace_block_rq_issue(q, rq);
2094        }
2095
2096        if (!q->boundary_rq || q->boundary_rq == rq) {
2097            q->end_sector = rq_end_sector(rq);
2098            q->boundary_rq = NULL;
2099        }
2100
2101        if (rq->cmd_flags & REQ_DONTPREP)
2102            break;
2103
2104        if (q->dma_drain_size && blk_rq_bytes(rq)) {
2105            /*
2106             * make sure space for the drain appears we
2107             * know we can do this because max_hw_segments
2108             * has been adjusted to be one fewer than the
2109             * device can handle
2110             */
2111            rq->nr_phys_segments++;
2112        }
2113
2114        if (!q->prep_rq_fn)
2115            break;
2116
2117        ret = q->prep_rq_fn(q, rq);
2118        if (ret == BLKPREP_OK) {
2119            break;
2120        } else if (ret == BLKPREP_DEFER) {
2121            /*
2122             * the request may have been (partially) prepped.
2123             * we need to keep this request in the front to
2124             * avoid resource deadlock. REQ_STARTED will
2125             * prevent other fs requests from passing this one.
2126             */
2127            if (q->dma_drain_size && blk_rq_bytes(rq) &&
2128                !(rq->cmd_flags & REQ_DONTPREP)) {
2129                /*
2130                 * remove the space for the drain we added
2131                 * so that we don't add it again
2132                 */
2133                --rq->nr_phys_segments;
2134            }
2135
2136            rq = NULL;
2137            break;
2138        } else if (ret == BLKPREP_KILL) {
2139            rq->cmd_flags |= REQ_QUIET;
2140            /*
2141             * Mark this request as started so we don't trigger
2142             * any debug logic in the end I/O path.
2143             */
2144            blk_start_request(rq);
2145            __blk_end_request_all(rq, -EIO);
2146        } else {
2147            printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2148            break;
2149        }
2150    }
2151
2152    return rq;
2153}
2154EXPORT_SYMBOL(blk_peek_request);
2155
2156void blk_dequeue_request(struct request *rq)
2157{
2158    struct request_queue *q = rq->q;
2159
2160    BUG_ON(list_empty(&rq->queuelist));
2161    BUG_ON(ELV_ON_HASH(rq));
2162
2163    list_del_init(&rq->queuelist);
2164
2165    /*
2166     * the time frame between a request being removed from the lists
2167     * and to it is freed is accounted as io that is in progress at
2168     * the driver side.
2169     */
2170    if (blk_account_rq(rq)) {
2171        q->in_flight[rq_is_sync(rq)]++;
2172        set_io_start_time_ns(rq);
2173    }
2174}
2175
2176/**
2177 * blk_start_request - start request processing on the driver
2178 * @req: request to dequeue
2179 *
2180 * Description:
2181 * Dequeue @req and start timeout timer on it. This hands off the
2182 * request to the driver.
2183 *
2184 * Block internal functions which don't want to start timer should
2185 * call blk_dequeue_request().
2186 *
2187 * Context:
2188 * queue_lock must be held.
2189 */
2190void blk_start_request(struct request *req)
2191{
2192    blk_dequeue_request(req);
2193
2194    /*
2195     * We are now handing the request to the hardware, initialize
2196     * resid_len to full count and add the timeout handler.
2197     */
2198    req->resid_len = blk_rq_bytes(req);
2199    if (unlikely(blk_bidi_rq(req)))
2200        req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2201
2202    blk_add_timer(req);
2203}
2204EXPORT_SYMBOL(blk_start_request);
2205
2206/**
2207 * blk_fetch_request - fetch a request from a request queue
2208 * @q: request queue to fetch a request from
2209 *
2210 * Description:
2211 * Return the request at the top of @q. The request is started on
2212 * return and LLD can start processing it immediately.
2213 *
2214 * Return:
2215 * Pointer to the request at the top of @q if available. Null
2216 * otherwise.
2217 *
2218 * Context:
2219 * queue_lock must be held.
2220 */
2221struct request *blk_fetch_request(struct request_queue *q)
2222{
2223    struct request *rq;
2224
2225    rq = blk_peek_request(q);
2226    if (rq)
2227        blk_start_request(rq);
2228    return rq;
2229}
2230EXPORT_SYMBOL(blk_fetch_request);
2231
2232/**
2233 * blk_update_request - Special helper function for request stacking drivers
2234 * @req: the request being processed
2235 * @error: %0 for success, < %0 for error
2236 * @nr_bytes: number of bytes to complete @req
2237 *
2238 * Description:
2239 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2240 * the request structure even if @req doesn't have leftover.
2241 * If @req has leftover, sets it up for the next range of segments.
2242 *
2243 * This special helper function is only for request stacking drivers
2244 * (e.g. request-based dm) so that they can handle partial completion.
2245 * Actual device drivers should use blk_end_request instead.
2246 *
2247 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2248 * %false return from this function.
2249 *
2250 * Return:
2251 * %false - this request doesn't have any more data
2252 * %true - this request has more data
2253 **/
2254bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2255{
2256    int total_bytes, bio_nbytes, next_idx = 0;
2257    struct bio *bio;
2258
2259    if (!req->bio)
2260        return false;
2261
2262    trace_block_rq_complete(req->q, req);
2263
2264    /*
2265     * For fs requests, rq is just carrier of independent bio's
2266     * and each partial completion should be handled separately.
2267     * Reset per-request error on each partial completion.
2268     *
2269     * TODO: tj: This is too subtle. It would be better to let
2270     * low level drivers do what they see fit.
2271     */
2272    if (req->cmd_type == REQ_TYPE_FS)
2273        req->errors = 0;
2274
2275    if (error && req->cmd_type == REQ_TYPE_FS &&
2276        !(req->cmd_flags & REQ_QUIET)) {
2277        char *error_type;
2278
2279        switch (error) {
2280        case -ENOLINK:
2281            error_type = "recoverable transport";
2282            break;
2283        case -EREMOTEIO:
2284            error_type = "critical target";
2285            break;
2286        case -EBADE:
2287            error_type = "critical nexus";
2288            break;
2289        case -EIO:
2290        default:
2291            error_type = "I/O";
2292            break;
2293        }
2294        printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2295                   error_type, req->rq_disk ?
2296                   req->rq_disk->disk_name : "?",
2297                   (unsigned long long)blk_rq_pos(req));
2298
2299    }
2300
2301    blk_account_io_completion(req, nr_bytes);
2302
2303    total_bytes = bio_nbytes = 0;
2304    while ((bio = req->bio) != NULL) {
2305        int nbytes;
2306
2307        if (nr_bytes >= bio->bi_size) {
2308            req->bio = bio->bi_next;
2309            nbytes = bio->bi_size;
2310            req_bio_endio(req, bio, nbytes, error);
2311            next_idx = 0;
2312            bio_nbytes = 0;
2313        } else {
2314            int idx = bio->bi_idx + next_idx;
2315
2316            if (unlikely(idx >= bio->bi_vcnt)) {
2317                blk_dump_rq_flags(req, "__end_that");
2318                printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2319                       __func__, idx, bio->bi_vcnt);
2320                break;
2321            }
2322
2323            nbytes = bio_iovec_idx(bio, idx)->bv_len;
2324            BIO_BUG_ON(nbytes > bio->bi_size);
2325
2326            /*
2327             * not a complete bvec done
2328             */
2329            if (unlikely(nbytes > nr_bytes)) {
2330                bio_nbytes += nr_bytes;
2331                total_bytes += nr_bytes;
2332                break;
2333            }
2334
2335            /*
2336             * advance to the next vector
2337             */
2338            next_idx++;
2339            bio_nbytes += nbytes;
2340        }
2341
2342        total_bytes += nbytes;
2343        nr_bytes -= nbytes;
2344
2345        bio = req->bio;
2346        if (bio) {
2347            /*
2348             * end more in this run, or just return 'not-done'
2349             */
2350            if (unlikely(nr_bytes <= 0))
2351                break;
2352        }
2353    }
2354
2355    /*
2356     * completely done
2357     */
2358    if (!req->bio) {
2359        /*
2360         * Reset counters so that the request stacking driver
2361         * can find how many bytes remain in the request
2362         * later.
2363         */
2364        req->__data_len = 0;
2365        return false;
2366    }
2367
2368    /*
2369     * if the request wasn't completed, update state
2370     */
2371    if (bio_nbytes) {
2372        req_bio_endio(req, bio, bio_nbytes, error);
2373        bio->bi_idx += next_idx;
2374        bio_iovec(bio)->bv_offset += nr_bytes;
2375        bio_iovec(bio)->bv_len -= nr_bytes;
2376    }
2377
2378    req->__data_len -= total_bytes;
2379    req->buffer = bio_data(req->bio);
2380
2381    /* update sector only for requests with clear definition of sector */
2382    if (req->cmd_type == REQ_TYPE_FS)
2383        req->__sector += total_bytes >> 9;
2384
2385    /* mixed attributes always follow the first bio */
2386    if (req->cmd_flags & REQ_MIXED_MERGE) {
2387        req->cmd_flags &= ~REQ_FAILFAST_MASK;
2388        req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2389    }
2390
2391    /*
2392     * If total number of sectors is less than the first segment
2393     * size, something has gone terribly wrong.
2394     */
2395    if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2396        blk_dump_rq_flags(req, "request botched");
2397        req->__data_len = blk_rq_cur_bytes(req);
2398    }
2399
2400    /* recalculate the number of segments */
2401    blk_recalc_rq_segments(req);
2402
2403    return true;
2404}
2405EXPORT_SYMBOL_GPL(blk_update_request);
2406
2407static bool blk_update_bidi_request(struct request *rq, int error,
2408                    unsigned int nr_bytes,
2409                    unsigned int bidi_bytes)
2410{
2411    if (blk_update_request(rq, error, nr_bytes))
2412        return true;
2413
2414    /* Bidi request must be completed as a whole */
2415    if (unlikely(blk_bidi_rq(rq)) &&
2416        blk_update_request(rq->next_rq, error, bidi_bytes))
2417        return true;
2418
2419    if (blk_queue_add_random(rq->q))
2420        add_disk_randomness(rq->rq_disk);
2421
2422    return false;
2423}
2424
2425/**
2426 * blk_unprep_request - unprepare a request
2427 * @req: the request
2428 *
2429 * This function makes a request ready for complete resubmission (or
2430 * completion). It happens only after all error handling is complete,
2431 * so represents the appropriate moment to deallocate any resources
2432 * that were allocated to the request in the prep_rq_fn. The queue
2433 * lock is held when calling this.
2434 */
2435void blk_unprep_request(struct request *req)
2436{
2437    struct request_queue *q = req->q;
2438
2439    req->cmd_flags &= ~REQ_DONTPREP;
2440    if (q->unprep_rq_fn)
2441        q->unprep_rq_fn(q, req);
2442}
2443EXPORT_SYMBOL_GPL(blk_unprep_request);
2444
2445/*
2446 * queue lock must be held
2447 */
2448static void blk_finish_request(struct request *req, int error)
2449{
2450    if (blk_rq_tagged(req))
2451        blk_queue_end_tag(req->q, req);
2452
2453    BUG_ON(blk_queued_rq(req));
2454
2455    if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2456        laptop_io_completion(&req->q->backing_dev_info);
2457
2458    blk_delete_timer(req);
2459
2460    if (req->cmd_flags & REQ_DONTPREP)
2461        blk_unprep_request(req);
2462
2463
2464    blk_account_io_done(req);
2465
2466    if (req->end_io)
2467        req->end_io(req, error);
2468    else {
2469        if (blk_bidi_rq(req))
2470            __blk_put_request(req->next_rq->q, req->next_rq);
2471
2472        __blk_put_request(req->q, req);
2473    }
2474}
2475
2476/**
2477 * blk_end_bidi_request - Complete a bidi request
2478 * @rq: the request to complete
2479 * @error: %0 for success, < %0 for error
2480 * @nr_bytes: number of bytes to complete @rq
2481 * @bidi_bytes: number of bytes to complete @rq->next_rq
2482 *
2483 * Description:
2484 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2485 * Drivers that supports bidi can safely call this member for any
2486 * type of request, bidi or uni. In the later case @bidi_bytes is
2487 * just ignored.
2488 *
2489 * Return:
2490 * %false - we are done with this request
2491 * %true - still buffers pending for this request
2492 **/
2493static bool blk_end_bidi_request(struct request *rq, int error,
2494                 unsigned int nr_bytes, unsigned int bidi_bytes)
2495{
2496    struct request_queue *q = rq->q;
2497    unsigned long flags;
2498
2499    if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2500        return true;
2501
2502    spin_lock_irqsave(q->queue_lock, flags);
2503    blk_finish_request(rq, error);
2504    spin_unlock_irqrestore(q->queue_lock, flags);
2505
2506    return false;
2507}
2508
2509/**
2510 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2511 * @rq: the request to complete
2512 * @error: %0 for success, < %0 for error
2513 * @nr_bytes: number of bytes to complete @rq
2514 * @bidi_bytes: number of bytes to complete @rq->next_rq
2515 *
2516 * Description:
2517 * Identical to blk_end_bidi_request() except that queue lock is
2518 * assumed to be locked on entry and remains so on return.
2519 *
2520 * Return:
2521 * %false - we are done with this request
2522 * %true - still buffers pending for this request
2523 **/
2524bool __blk_end_bidi_request(struct request *rq, int error,
2525                   unsigned int nr_bytes, unsigned int bidi_bytes)
2526{
2527    if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2528        return true;
2529
2530    blk_finish_request(rq, error);
2531
2532    return false;
2533}
2534
2535/**
2536 * blk_end_request - Helper function for drivers to complete the request.
2537 * @rq: the request being processed
2538 * @error: %0 for success, < %0 for error
2539 * @nr_bytes: number of bytes to complete
2540 *
2541 * Description:
2542 * Ends I/O on a number of bytes attached to @rq.
2543 * If @rq has leftover, sets it up for the next range of segments.
2544 *
2545 * Return:
2546 * %false - we are done with this request
2547 * %true - still buffers pending for this request
2548 **/
2549bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2550{
2551    return blk_end_bidi_request(rq, error, nr_bytes, 0);
2552}
2553EXPORT_SYMBOL(blk_end_request);
2554
2555/**
2556 * blk_end_request_all - Helper function for drives to finish the request.
2557 * @rq: the request to finish
2558 * @error: %0 for success, < %0 for error
2559 *
2560 * Description:
2561 * Completely finish @rq.
2562 */
2563void blk_end_request_all(struct request *rq, int error)
2564{
2565    bool pending;
2566    unsigned int bidi_bytes = 0;
2567
2568    if (unlikely(blk_bidi_rq(rq)))
2569        bidi_bytes = blk_rq_bytes(rq->next_rq);
2570
2571    pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2572    BUG_ON(pending);
2573}
2574EXPORT_SYMBOL(blk_end_request_all);
2575
2576/**
2577 * blk_end_request_cur - Helper function to finish the current request chunk.
2578 * @rq: the request to finish the current chunk for
2579 * @error: %0 for success, < %0 for error
2580 *
2581 * Description:
2582 * Complete the current consecutively mapped chunk from @rq.
2583 *
2584 * Return:
2585 * %false - we are done with this request
2586 * %true - still buffers pending for this request
2587 */
2588bool blk_end_request_cur(struct request *rq, int error)
2589{
2590    return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2591}
2592EXPORT_SYMBOL(blk_end_request_cur);
2593
2594/**
2595 * blk_end_request_err - Finish a request till the next failure boundary.
2596 * @rq: the request to finish till the next failure boundary for
2597 * @error: must be negative errno
2598 *
2599 * Description:
2600 * Complete @rq till the next failure boundary.
2601 *
2602 * Return:
2603 * %false - we are done with this request
2604 * %true - still buffers pending for this request
2605 */
2606bool blk_end_request_err(struct request *rq, int error)
2607{
2608    WARN_ON(error >= 0);
2609    return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2610}
2611EXPORT_SYMBOL_GPL(blk_end_request_err);
2612
2613/**
2614 * __blk_end_request - Helper function for drivers to complete the request.
2615 * @rq: the request being processed
2616 * @error: %0 for success, < %0 for error
2617 * @nr_bytes: number of bytes to complete
2618 *
2619 * Description:
2620 * Must be called with queue lock held unlike blk_end_request().
2621 *
2622 * Return:
2623 * %false - we are done with this request
2624 * %true - still buffers pending for this request
2625 **/
2626bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2627{
2628    return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2629}
2630EXPORT_SYMBOL(__blk_end_request);
2631
2632/**
2633 * __blk_end_request_all - Helper function for drives to finish the request.
2634 * @rq: the request to finish
2635 * @error: %0 for success, < %0 for error
2636 *
2637 * Description:
2638 * Completely finish @rq. Must be called with queue lock held.
2639 */
2640void __blk_end_request_all(struct request *rq, int error)
2641{
2642    bool pending;
2643    unsigned int bidi_bytes = 0;
2644
2645    if (unlikely(blk_bidi_rq(rq)))
2646        bidi_bytes = blk_rq_bytes(rq->next_rq);
2647
2648    pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2649    BUG_ON(pending);
2650}
2651EXPORT_SYMBOL(__blk_end_request_all);
2652
2653/**
2654 * __blk_end_request_cur - Helper function to finish the current request chunk.
2655 * @rq: the request to finish the current chunk for
2656 * @error: %0 for success, < %0 for error
2657 *
2658 * Description:
2659 * Complete the current consecutively mapped chunk from @rq. Must
2660 * be called with queue lock held.
2661 *
2662 * Return:
2663 * %false - we are done with this request
2664 * %true - still buffers pending for this request
2665 */
2666bool __blk_end_request_cur(struct request *rq, int error)
2667{
2668    return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2669}
2670EXPORT_SYMBOL(__blk_end_request_cur);
2671
2672/**
2673 * __blk_end_request_err - Finish a request till the next failure boundary.
2674 * @rq: the request to finish till the next failure boundary for
2675 * @error: must be negative errno
2676 *
2677 * Description:
2678 * Complete @rq till the next failure boundary. Must be called
2679 * with queue lock held.
2680 *
2681 * Return:
2682 * %false - we are done with this request
2683 * %true - still buffers pending for this request
2684 */
2685bool __blk_end_request_err(struct request *rq, int error)
2686{
2687    WARN_ON(error >= 0);
2688    return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2689}
2690EXPORT_SYMBOL_GPL(__blk_end_request_err);
2691
2692void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2693             struct bio *bio)
2694{
2695    /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2696    rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2697
2698    if (bio_has_data(bio)) {
2699        rq->nr_phys_segments = bio_phys_segments(q, bio);
2700        rq->buffer = bio_data(bio);
2701    }
2702    rq->__data_len = bio->bi_size;
2703    rq->bio = rq->biotail = bio;
2704
2705    if (bio->bi_bdev)
2706        rq->rq_disk = bio->bi_bdev->bd_disk;
2707}
2708
2709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2710/**
2711 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2712 * @rq: the request to be flushed
2713 *
2714 * Description:
2715 * Flush all pages in @rq.
2716 */
2717void rq_flush_dcache_pages(struct request *rq)
2718{
2719    struct req_iterator iter;
2720    struct bio_vec *bvec;
2721
2722    rq_for_each_segment(bvec, rq, iter)
2723        flush_dcache_page(bvec->bv_page);
2724}
2725EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2726#endif
2727
2728/**
2729 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2730 * @q : the queue of the device being checked
2731 *
2732 * Description:
2733 * Check if underlying low-level drivers of a device are busy.
2734 * If the drivers want to export their busy state, they must set own
2735 * exporting function using blk_queue_lld_busy() first.
2736 *
2737 * Basically, this function is used only by request stacking drivers
2738 * to stop dispatching requests to underlying devices when underlying
2739 * devices are busy. This behavior helps more I/O merging on the queue
2740 * of the request stacking driver and prevents I/O throughput regression
2741 * on burst I/O load.
2742 *
2743 * Return:
2744 * 0 - Not busy (The request stacking driver should dispatch request)
2745 * 1 - Busy (The request stacking driver should stop dispatching request)
2746 */
2747int blk_lld_busy(struct request_queue *q)
2748{
2749    if (q->lld_busy_fn)
2750        return q->lld_busy_fn(q);
2751
2752    return 0;
2753}
2754EXPORT_SYMBOL_GPL(blk_lld_busy);
2755
2756/**
2757 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2758 * @rq: the clone request to be cleaned up
2759 *
2760 * Description:
2761 * Free all bios in @rq for a cloned request.
2762 */
2763void blk_rq_unprep_clone(struct request *rq)
2764{
2765    struct bio *bio;
2766
2767    while ((bio = rq->bio) != NULL) {
2768        rq->bio = bio->bi_next;
2769
2770        bio_put(bio);
2771    }
2772}
2773EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2774
2775/*
2776 * Copy attributes of the original request to the clone request.
2777 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2778 */
2779static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2780{
2781    dst->cpu = src->cpu;
2782    dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2783    dst->cmd_type = src->cmd_type;
2784    dst->__sector = blk_rq_pos(src);
2785    dst->__data_len = blk_rq_bytes(src);
2786    dst->nr_phys_segments = src->nr_phys_segments;
2787    dst->ioprio = src->ioprio;
2788    dst->extra_len = src->extra_len;
2789}
2790
2791/**
2792 * blk_rq_prep_clone - Helper function to setup clone request
2793 * @rq: the request to be setup
2794 * @rq_src: original request to be cloned
2795 * @bs: bio_set that bios for clone are allocated from
2796 * @gfp_mask: memory allocation mask for bio
2797 * @bio_ctr: setup function to be called for each clone bio.
2798 * Returns %0 for success, non %0 for failure.
2799 * @data: private data to be passed to @bio_ctr
2800 *
2801 * Description:
2802 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2803 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2804 * are not copied, and copying such parts is the caller's responsibility.
2805 * Also, pages which the original bios are pointing to are not copied
2806 * and the cloned bios just point same pages.
2807 * So cloned bios must be completed before original bios, which means
2808 * the caller must complete @rq before @rq_src.
2809 */
2810int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2811              struct bio_set *bs, gfp_t gfp_mask,
2812              int (*bio_ctr)(struct bio *, struct bio *, void *),
2813              void *data)
2814{
2815    struct bio *bio, *bio_src;
2816
2817    if (!bs)
2818        bs = fs_bio_set;
2819
2820    blk_rq_init(NULL, rq);
2821
2822    __rq_for_each_bio(bio_src, rq_src) {
2823        bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2824        if (!bio)
2825            goto free_and_out;
2826
2827        if (bio_ctr && bio_ctr(bio, bio_src, data))
2828            goto free_and_out;
2829
2830        if (rq->bio) {
2831            rq->biotail->bi_next = bio;
2832            rq->biotail = bio;
2833        } else
2834            rq->bio = rq->biotail = bio;
2835    }
2836
2837    __blk_rq_prep_clone(rq, rq_src);
2838
2839    return 0;
2840
2841free_and_out:
2842    if (bio)
2843        bio_put(bio);
2844    blk_rq_unprep_clone(rq);
2845
2846    return -ENOMEM;
2847}
2848EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2849
2850int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2851{
2852    return queue_work(kblockd_workqueue, work);
2853}
2854EXPORT_SYMBOL(kblockd_schedule_work);
2855
2856int kblockd_schedule_delayed_work(struct request_queue *q,
2857            struct delayed_work *dwork, unsigned long delay)
2858{
2859    return queue_delayed_work(kblockd_workqueue, dwork, delay);
2860}
2861EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2862
2863#define PLUG_MAGIC 0x91827364
2864
2865/**
2866 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2867 * @plug: The &struct blk_plug that needs to be initialized
2868 *
2869 * Description:
2870 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2871 * pending I/O should the task end up blocking between blk_start_plug() and
2872 * blk_finish_plug(). This is important from a performance perspective, but
2873 * also ensures that we don't deadlock. For instance, if the task is blocking
2874 * for a memory allocation, memory reclaim could end up wanting to free a
2875 * page belonging to that request that is currently residing in our private
2876 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2877 * this kind of deadlock.
2878 */
2879void blk_start_plug(struct blk_plug *plug)
2880{
2881    struct task_struct *tsk = current;
2882
2883    plug->magic = PLUG_MAGIC;
2884    INIT_LIST_HEAD(&plug->list);
2885    INIT_LIST_HEAD(&plug->cb_list);
2886
2887    /*
2888     * If this is a nested plug, don't actually assign it. It will be
2889     * flushed on its own.
2890     */
2891    if (!tsk->plug) {
2892        /*
2893         * Store ordering should not be needed here, since a potential
2894         * preempt will imply a full memory barrier
2895         */
2896        tsk->plug = plug;
2897    }
2898}
2899EXPORT_SYMBOL(blk_start_plug);
2900
2901static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2902{
2903    struct request *rqa = container_of(a, struct request, queuelist);
2904    struct request *rqb = container_of(b, struct request, queuelist);
2905
2906    return !(rqa->q < rqb->q ||
2907        (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2908}
2909
2910/*
2911 * If 'from_schedule' is true, then postpone the dispatch of requests
2912 * until a safe kblockd context. We due this to avoid accidental big
2913 * additional stack usage in driver dispatch, in places where the originally
2914 * plugger did not intend it.
2915 */
2916static void queue_unplugged(struct request_queue *q, unsigned int depth,
2917                bool from_schedule)
2918    __releases(q->queue_lock)
2919{
2920    trace_block_unplug(q, depth, !from_schedule);
2921
2922    if (from_schedule)
2923        blk_run_queue_async(q);
2924    else
2925        __blk_run_queue(q);
2926    spin_unlock(q->queue_lock);
2927}
2928
2929static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2930{
2931    LIST_HEAD(callbacks);
2932
2933    while (!list_empty(&plug->cb_list)) {
2934        list_splice_init(&plug->cb_list, &callbacks);
2935
2936        while (!list_empty(&callbacks)) {
2937            struct blk_plug_cb *cb = list_first_entry(&callbacks,
2938                              struct blk_plug_cb,
2939                              list);
2940            list_del(&cb->list);
2941            cb->callback(cb, from_schedule);
2942        }
2943    }
2944}
2945
2946struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2947                      int size)
2948{
2949    struct blk_plug *plug = current->plug;
2950    struct blk_plug_cb *cb;
2951
2952    if (!plug)
2953        return NULL;
2954
2955    list_for_each_entry(cb, &plug->cb_list, list)
2956        if (cb->callback == unplug && cb->data == data)
2957            return cb;
2958
2959    /* Not currently on the callback list */
2960    BUG_ON(size < sizeof(*cb));
2961    cb = kzalloc(size, GFP_ATOMIC);
2962    if (cb) {
2963        cb->data = data;
2964        cb->callback = unplug;
2965        list_add(&cb->list, &plug->cb_list);
2966    }
2967    return cb;
2968}
2969EXPORT_SYMBOL(blk_check_plugged);
2970
2971void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2972{
2973    struct request_queue *q;
2974    unsigned long flags;
2975    struct request *rq;
2976    LIST_HEAD(list);
2977    unsigned int depth;
2978
2979    BUG_ON(plug->magic != PLUG_MAGIC);
2980
2981    flush_plug_callbacks(plug, from_schedule);
2982    if (list_empty(&plug->list))
2983        return;
2984
2985    list_splice_init(&plug->list, &list);
2986
2987    list_sort(NULL, &list, plug_rq_cmp);
2988
2989    q = NULL;
2990    depth = 0;
2991
2992    /*
2993     * Save and disable interrupts here, to avoid doing it for every
2994     * queue lock we have to take.
2995     */
2996    local_irq_save(flags);
2997    while (!list_empty(&list)) {
2998        rq = list_entry_rq(list.next);
2999        list_del_init(&rq->queuelist);
3000        BUG_ON(!rq->q);
3001        if (rq->q != q) {
3002            /*
3003             * This drops the queue lock
3004             */
3005            if (q)
3006                queue_unplugged(q, depth, from_schedule);
3007            q = rq->q;
3008            depth = 0;
3009            spin_lock(q->queue_lock);
3010        }
3011
3012        /*
3013         * Short-circuit if @q is dead
3014         */
3015        if (unlikely(blk_queue_dying(q))) {
3016            __blk_end_request_all(rq, -ENODEV);
3017            continue;
3018        }
3019
3020        /*
3021         * rq is already accounted, so use raw insert
3022         */
3023        if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3024            __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3025        else
3026            __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3027
3028        depth++;
3029    }
3030
3031    /*
3032     * This drops the queue lock
3033     */
3034    if (q)
3035        queue_unplugged(q, depth, from_schedule);
3036
3037    local_irq_restore(flags);
3038}
3039
3040void blk_finish_plug(struct blk_plug *plug)
3041{
3042    blk_flush_plug_list(plug, false);
3043
3044    if (plug == current->plug)
3045        current->plug = NULL;
3046}
3047EXPORT_SYMBOL(blk_finish_plug);
3048
3049int __init blk_dev_init(void)
3050{
3051    BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3052            sizeof(((struct request *)0)->cmd_flags));
3053
3054    /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3055    kblockd_workqueue = alloc_workqueue("kblockd",
3056                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3057    if (!kblockd_workqueue)
3058        panic("Failed to create kblockd\n");
3059
3060    request_cachep = kmem_cache_create("blkdev_requests",
3061            sizeof(struct request), 0, SLAB_PANIC, NULL);
3062
3063    blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3064            sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3065
3066    return 0;
3067}
3068

Archive Download this file



interactive