Root/block/cfq-iosched.c

1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY (HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
48#define CFQ_SLICE_SCALE (5)
49#define CFQ_HW_QUEUE_MIN (5)
50#define CFQ_SERVICE_SHIFT 12
51
52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples) ((samples) > 80)
68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71    unsigned long last_end_request;
72
73    unsigned long ttime_total;
74    unsigned long ttime_samples;
75    unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85    struct rb_root rb;
86    struct rb_node *left;
87    unsigned count;
88    u64 min_vdisktime;
89    struct cfq_ttime ttime;
90};
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92            .ttime = {.last_end_request = jiffies,},}
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98    /* reference count */
99    int ref;
100    /* various state flags, see below */
101    unsigned int flags;
102    /* parent cfq_data */
103    struct cfq_data *cfqd;
104    /* service_tree member */
105    struct rb_node rb_node;
106    /* service_tree key */
107    unsigned long rb_key;
108    /* prio tree member */
109    struct rb_node p_node;
110    /* prio tree root we belong to, if any */
111    struct rb_root *p_root;
112    /* sorted list of pending requests */
113    struct rb_root sort_list;
114    /* if fifo isn't expired, next request to serve */
115    struct request *next_rq;
116    /* requests queued in sort_list */
117    int queued[2];
118    /* currently allocated requests */
119    int allocated[2];
120    /* fifo list of requests in sort_list */
121    struct list_head fifo;
122
123    /* time when queue got scheduled in to dispatch first request. */
124    unsigned long dispatch_start;
125    unsigned int allocated_slice;
126    unsigned int slice_dispatch;
127    /* time when first request from queue completed and slice started. */
128    unsigned long slice_start;
129    unsigned long slice_end;
130    long slice_resid;
131
132    /* pending priority requests */
133    int prio_pending;
134    /* number of requests that are on the dispatch list or inside driver */
135    int dispatched;
136
137    /* io prio of this group */
138    unsigned short ioprio, org_ioprio;
139    unsigned short ioprio_class;
140
141    pid_t pid;
142
143    u32 seek_history;
144    sector_t last_request_pos;
145
146    struct cfq_rb_root *service_tree;
147    struct cfq_queue *new_cfqq;
148    struct cfq_group *cfqg;
149    /* Number of sectors dispatched from queue in single dispatch round */
150    unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_class_t {
158    BE_WORKLOAD = 0,
159    RT_WORKLOAD = 1,
160    IDLE_WORKLOAD = 2,
161    CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168    ASYNC_WORKLOAD = 0,
169    SYNC_NOIDLE_WORKLOAD = 1,
170    SYNC_WORKLOAD = 2
171};
172
173struct cfqg_stats {
174#ifdef CONFIG_CFQ_GROUP_IOSCHED
175    /* total bytes transferred */
176    struct blkg_rwstat service_bytes;
177    /* total IOs serviced, post merge */
178    struct blkg_rwstat serviced;
179    /* number of ios merged */
180    struct blkg_rwstat merged;
181    /* total time spent on device in ns, may not be accurate w/ queueing */
182    struct blkg_rwstat service_time;
183    /* total time spent waiting in scheduler queue in ns */
184    struct blkg_rwstat wait_time;
185    /* number of IOs queued up */
186    struct blkg_rwstat queued;
187    /* total sectors transferred */
188    struct blkg_stat sectors;
189    /* total disk time and nr sectors dispatched by this group */
190    struct blkg_stat time;
191#ifdef CONFIG_DEBUG_BLK_CGROUP
192    /* time not charged to this cgroup */
193    struct blkg_stat unaccounted_time;
194    /* sum of number of ios queued across all samples */
195    struct blkg_stat avg_queue_size_sum;
196    /* count of samples taken for average */
197    struct blkg_stat avg_queue_size_samples;
198    /* how many times this group has been removed from service tree */
199    struct blkg_stat dequeue;
200    /* total time spent waiting for it to be assigned a timeslice. */
201    struct blkg_stat group_wait_time;
202    /* time spent idling for this blkcg_gq */
203    struct blkg_stat idle_time;
204    /* total time with empty current active q with other requests queued */
205    struct blkg_stat empty_time;
206    /* fields after this shouldn't be cleared on stat reset */
207    uint64_t start_group_wait_time;
208    uint64_t start_idle_time;
209    uint64_t start_empty_time;
210    uint16_t flags;
211#endif /* CONFIG_DEBUG_BLK_CGROUP */
212#endif /* CONFIG_CFQ_GROUP_IOSCHED */
213};
214
215/* This is per cgroup per device grouping structure */
216struct cfq_group {
217    /* must be the first member */
218    struct blkg_policy_data pd;
219
220    /* group service_tree member */
221    struct rb_node rb_node;
222
223    /* group service_tree key */
224    u64 vdisktime;
225
226    /*
227     * The number of active cfqgs and sum of their weights under this
228     * cfqg. This covers this cfqg's leaf_weight and all children's
229     * weights, but does not cover weights of further descendants.
230     *
231     * If a cfqg is on the service tree, it's active. An active cfqg
232     * also activates its parent and contributes to the children_weight
233     * of the parent.
234     */
235    int nr_active;
236    unsigned int children_weight;
237
238    /*
239     * vfraction is the fraction of vdisktime that the tasks in this
240     * cfqg are entitled to. This is determined by compounding the
241     * ratios walking up from this cfqg to the root.
242     *
243     * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244     * vfractions on a service tree is approximately 1. The sum may
245     * deviate a bit due to rounding errors and fluctuations caused by
246     * cfqgs entering and leaving the service tree.
247     */
248    unsigned int vfraction;
249
250    /*
251     * There are two weights - (internal) weight is the weight of this
252     * cfqg against the sibling cfqgs. leaf_weight is the wight of
253     * this cfqg against the child cfqgs. For the root cfqg, both
254     * weights are kept in sync for backward compatibility.
255     */
256    unsigned int weight;
257    unsigned int new_weight;
258    unsigned int dev_weight;
259
260    unsigned int leaf_weight;
261    unsigned int new_leaf_weight;
262    unsigned int dev_leaf_weight;
263
264    /* number of cfqq currently on this group */
265    int nr_cfqq;
266
267    /*
268     * Per group busy queues average. Useful for workload slice calc. We
269     * create the array for each prio class but at run time it is used
270     * only for RT and BE class and slot for IDLE class remains unused.
271     * This is primarily done to avoid confusion and a gcc warning.
272     */
273    unsigned int busy_queues_avg[CFQ_PRIO_NR];
274    /*
275     * rr lists of queues with requests. We maintain service trees for
276     * RT and BE classes. These trees are subdivided in subclasses
277     * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278     * class there is no subclassification and all the cfq queues go on
279     * a single tree service_tree_idle.
280     * Counts are embedded in the cfq_rb_root
281     */
282    struct cfq_rb_root service_trees[2][3];
283    struct cfq_rb_root service_tree_idle;
284
285    unsigned long saved_wl_slice;
286    enum wl_type_t saved_wl_type;
287    enum wl_class_t saved_wl_class;
288
289    /* number of requests that are on the dispatch list or inside driver */
290    int dispatched;
291    struct cfq_ttime ttime;
292    struct cfqg_stats stats; /* stats for this cfqg */
293    struct cfqg_stats dead_stats; /* stats pushed from dead children */
294};
295
296struct cfq_io_cq {
297    struct io_cq icq; /* must be the first member */
298    struct cfq_queue *cfqq[2];
299    struct cfq_ttime ttime;
300    int ioprio; /* the current ioprio */
301#ifdef CONFIG_CFQ_GROUP_IOSCHED
302    uint64_t blkcg_id; /* the current blkcg ID */
303#endif
304};
305
306/*
307 * Per block device queue structure
308 */
309struct cfq_data {
310    struct request_queue *queue;
311    /* Root service tree for cfq_groups */
312    struct cfq_rb_root grp_service_tree;
313    struct cfq_group *root_group;
314
315    /*
316     * The priority currently being served
317     */
318    enum wl_class_t serving_wl_class;
319    enum wl_type_t serving_wl_type;
320    unsigned long workload_expires;
321    struct cfq_group *serving_group;
322
323    /*
324     * Each priority tree is sorted by next_request position. These
325     * trees are used when determining if two or more queues are
326     * interleaving requests (see cfq_close_cooperator).
327     */
328    struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330    unsigned int busy_queues;
331    unsigned int busy_sync_queues;
332
333    int rq_in_driver;
334    int rq_in_flight[2];
335
336    /*
337     * queue-depth detection
338     */
339    int rq_queued;
340    int hw_tag;
341    /*
342     * hw_tag can be
343     * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344     * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345     * 0 => no NCQ
346     */
347    int hw_tag_est_depth;
348    unsigned int hw_tag_samples;
349
350    /*
351     * idle window management
352     */
353    struct timer_list idle_slice_timer;
354    struct work_struct unplug_work;
355
356    struct cfq_queue *active_queue;
357    struct cfq_io_cq *active_cic;
358
359    /*
360     * async queue for each priority case
361     */
362    struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363    struct cfq_queue *async_idle_cfqq;
364
365    sector_t last_position;
366
367    /*
368     * tunables, see top of file
369     */
370    unsigned int cfq_quantum;
371    unsigned int cfq_fifo_expire[2];
372    unsigned int cfq_back_penalty;
373    unsigned int cfq_back_max;
374    unsigned int cfq_slice[2];
375    unsigned int cfq_slice_async_rq;
376    unsigned int cfq_slice_idle;
377    unsigned int cfq_group_idle;
378    unsigned int cfq_latency;
379    unsigned int cfq_target_latency;
380
381    /*
382     * Fallback dummy cfqq for extreme OOM conditions
383     */
384    struct cfq_queue oom_cfqq;
385
386    unsigned long last_delayed_sync;
387};
388
389static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392                        enum wl_class_t class,
393                        enum wl_type_t type)
394{
395    if (!cfqg)
396        return NULL;
397
398    if (class == IDLE_WORKLOAD)
399        return &cfqg->service_tree_idle;
400
401    return &cfqg->service_trees[class][type];
402}
403
404enum cfqq_state_flags {
405    CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406    CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407    CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408    CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409    CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410    CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411    CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412    CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413    CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414    CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415    CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416    CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417    CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418};
419
420#define CFQ_CFQQ_FNS(name) \
421static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422{ \
423    (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424} \
425static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426{ \
427    (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428} \
429static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430{ \
431    return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432}
433
434CFQ_CFQQ_FNS(on_rr);
435CFQ_CFQQ_FNS(wait_request);
436CFQ_CFQQ_FNS(must_dispatch);
437CFQ_CFQQ_FNS(must_alloc_slice);
438CFQ_CFQQ_FNS(fifo_expire);
439CFQ_CFQQ_FNS(idle_window);
440CFQ_CFQQ_FNS(prio_changed);
441CFQ_CFQQ_FNS(slice_new);
442CFQ_CFQQ_FNS(sync);
443CFQ_CFQQ_FNS(coop);
444CFQ_CFQQ_FNS(split_coop);
445CFQ_CFQQ_FNS(deep);
446CFQ_CFQQ_FNS(wait_busy);
447#undef CFQ_CFQQ_FNS
448
449static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450{
451    return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452}
453
454static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455{
456    return pd_to_blkg(&cfqg->pd);
457}
458
459#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461/* cfqg stats flags */
462enum cfqg_stats_flags {
463    CFQG_stats_waiting = 0,
464    CFQG_stats_idling,
465    CFQG_stats_empty,
466};
467
468#define CFQG_FLAG_FNS(name) \
469static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470{ \
471    stats->flags |= (1 << CFQG_stats_##name); \
472} \
473static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474{ \
475    stats->flags &= ~(1 << CFQG_stats_##name); \
476} \
477static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478{ \
479    return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480} \
481
482CFQG_FLAG_FNS(waiting)
483CFQG_FLAG_FNS(idling)
484CFQG_FLAG_FNS(empty)
485#undef CFQG_FLAG_FNS
486
487/* This should be called with the queue_lock held. */
488static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489{
490    unsigned long long now;
491
492    if (!cfqg_stats_waiting(stats))
493        return;
494
495    now = sched_clock();
496    if (time_after64(now, stats->start_group_wait_time))
497        blkg_stat_add(&stats->group_wait_time,
498                  now - stats->start_group_wait_time);
499    cfqg_stats_clear_waiting(stats);
500}
501
502/* This should be called with the queue_lock held. */
503static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504                         struct cfq_group *curr_cfqg)
505{
506    struct cfqg_stats *stats = &cfqg->stats;
507
508    if (cfqg_stats_waiting(stats))
509        return;
510    if (cfqg == curr_cfqg)
511        return;
512    stats->start_group_wait_time = sched_clock();
513    cfqg_stats_mark_waiting(stats);
514}
515
516/* This should be called with the queue_lock held. */
517static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518{
519    unsigned long long now;
520
521    if (!cfqg_stats_empty(stats))
522        return;
523
524    now = sched_clock();
525    if (time_after64(now, stats->start_empty_time))
526        blkg_stat_add(&stats->empty_time,
527                  now - stats->start_empty_time);
528    cfqg_stats_clear_empty(stats);
529}
530
531static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532{
533    blkg_stat_add(&cfqg->stats.dequeue, 1);
534}
535
536static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537{
538    struct cfqg_stats *stats = &cfqg->stats;
539
540    if (blkg_rwstat_total(&stats->queued))
541        return;
542
543    /*
544     * group is already marked empty. This can happen if cfqq got new
545     * request in parent group and moved to this group while being added
546     * to service tree. Just ignore the event and move on.
547     */
548    if (cfqg_stats_empty(stats))
549        return;
550
551    stats->start_empty_time = sched_clock();
552    cfqg_stats_mark_empty(stats);
553}
554
555static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556{
557    struct cfqg_stats *stats = &cfqg->stats;
558
559    if (cfqg_stats_idling(stats)) {
560        unsigned long long now = sched_clock();
561
562        if (time_after64(now, stats->start_idle_time))
563            blkg_stat_add(&stats->idle_time,
564                      now - stats->start_idle_time);
565        cfqg_stats_clear_idling(stats);
566    }
567}
568
569static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570{
571    struct cfqg_stats *stats = &cfqg->stats;
572
573    BUG_ON(cfqg_stats_idling(stats));
574
575    stats->start_idle_time = sched_clock();
576    cfqg_stats_mark_idling(stats);
577}
578
579static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580{
581    struct cfqg_stats *stats = &cfqg->stats;
582
583    blkg_stat_add(&stats->avg_queue_size_sum,
584              blkg_rwstat_total(&stats->queued));
585    blkg_stat_add(&stats->avg_queue_size_samples, 1);
586    cfqg_stats_update_group_wait_time(stats);
587}
588
589#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601#ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603static struct blkcg_policy blkcg_policy_cfq;
604
605static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606{
607    return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608}
609
610static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611{
612    struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614    return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615}
616
617static inline void cfqg_get(struct cfq_group *cfqg)
618{
619    return blkg_get(cfqg_to_blkg(cfqg));
620}
621
622static inline void cfqg_put(struct cfq_group *cfqg)
623{
624    return blkg_put(cfqg_to_blkg(cfqg));
625}
626
627#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628    char __pbuf[128]; \
629                                    \
630    blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631    blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632            cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633            cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634              __pbuf, ##args); \
635} while (0)
636
637#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638    char __pbuf[128]; \
639                                    \
640    blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641    blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642} while (0)
643
644static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645                        struct cfq_group *curr_cfqg, int rw)
646{
647    blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648    cfqg_stats_end_empty_time(&cfqg->stats);
649    cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650}
651
652static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653            unsigned long time, unsigned long unaccounted_time)
654{
655    blkg_stat_add(&cfqg->stats.time, time);
656#ifdef CONFIG_DEBUG_BLK_CGROUP
657    blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658#endif
659}
660
661static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662{
663    blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664}
665
666static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667{
668    blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669}
670
671static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672                          uint64_t bytes, int rw)
673{
674    blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675    blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676    blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677}
678
679static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680            uint64_t start_time, uint64_t io_start_time, int rw)
681{
682    struct cfqg_stats *stats = &cfqg->stats;
683    unsigned long long now = sched_clock();
684
685    if (time_after64(now, io_start_time))
686        blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687    if (time_after64(io_start_time, start_time))
688        blkg_rwstat_add(&stats->wait_time, rw,
689                io_start_time - start_time);
690}
691
692/* @stats = 0 */
693static void cfqg_stats_reset(struct cfqg_stats *stats)
694{
695    /* queued stats shouldn't be cleared */
696    blkg_rwstat_reset(&stats->service_bytes);
697    blkg_rwstat_reset(&stats->serviced);
698    blkg_rwstat_reset(&stats->merged);
699    blkg_rwstat_reset(&stats->service_time);
700    blkg_rwstat_reset(&stats->wait_time);
701    blkg_stat_reset(&stats->time);
702#ifdef CONFIG_DEBUG_BLK_CGROUP
703    blkg_stat_reset(&stats->unaccounted_time);
704    blkg_stat_reset(&stats->avg_queue_size_sum);
705    blkg_stat_reset(&stats->avg_queue_size_samples);
706    blkg_stat_reset(&stats->dequeue);
707    blkg_stat_reset(&stats->group_wait_time);
708    blkg_stat_reset(&stats->idle_time);
709    blkg_stat_reset(&stats->empty_time);
710#endif
711}
712
713/* @to += @from */
714static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715{
716    /* queued stats shouldn't be cleared */
717    blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718    blkg_rwstat_merge(&to->serviced, &from->serviced);
719    blkg_rwstat_merge(&to->merged, &from->merged);
720    blkg_rwstat_merge(&to->service_time, &from->service_time);
721    blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722    blkg_stat_merge(&from->time, &from->time);
723#ifdef CONFIG_DEBUG_BLK_CGROUP
724    blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725    blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726    blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727    blkg_stat_merge(&to->dequeue, &from->dequeue);
728    blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729    blkg_stat_merge(&to->idle_time, &from->idle_time);
730    blkg_stat_merge(&to->empty_time, &from->empty_time);
731#endif
732}
733
734/*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740{
741    struct cfq_group *parent = cfqg_parent(cfqg);
742
743    lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745    if (unlikely(!parent))
746        return;
747
748    cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749    cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750    cfqg_stats_reset(&cfqg->stats);
751    cfqg_stats_reset(&cfqg->dead_stats);
752}
753
754#else /* CONFIG_CFQ_GROUP_IOSCHED */
755
756static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757static inline void cfqg_get(struct cfq_group *cfqg) { }
758static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761    blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762            cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763            cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764                ##args)
765#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
767static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768            struct cfq_group *curr_cfqg, int rw) { }
769static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770            unsigned long time, unsigned long unaccounted_time) { }
771static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774                          uint64_t bytes, int rw) { }
775static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776            uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778#endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780#define cfq_log(cfqd, fmt, args...) \
781    blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783/* Traverses through cfq group service trees */
784#define for_each_cfqg_st(cfqg, i, j, st) \
785    for (i = 0; i <= IDLE_WORKLOAD; i++) \
786        for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787            : &cfqg->service_tree_idle; \
788            (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789            (i == IDLE_WORKLOAD && j == 0); \
790            j++, st = i < IDLE_WORKLOAD ? \
791            &cfqg->service_trees[i][j]: NULL) \
792
793static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794    struct cfq_ttime *ttime, bool group_idle)
795{
796    unsigned long slice;
797    if (!sample_valid(ttime->ttime_samples))
798        return false;
799    if (group_idle)
800        slice = cfqd->cfq_group_idle;
801    else
802        slice = cfqd->cfq_slice_idle;
803    return ttime->ttime_mean > slice;
804}
805
806static inline bool iops_mode(struct cfq_data *cfqd)
807{
808    /*
809     * If we are not idling on queues and it is a NCQ drive, parallel
810     * execution of requests is on and measuring time is not possible
811     * in most of the cases until and unless we drive shallower queue
812     * depths and that becomes a performance bottleneck. In such cases
813     * switch to start providing fairness in terms of number of IOs.
814     */
815    if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816        return true;
817    else
818        return false;
819}
820
821static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822{
823    if (cfq_class_idle(cfqq))
824        return IDLE_WORKLOAD;
825    if (cfq_class_rt(cfqq))
826        return RT_WORKLOAD;
827    return BE_WORKLOAD;
828}
829
830
831static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832{
833    if (!cfq_cfqq_sync(cfqq))
834        return ASYNC_WORKLOAD;
835    if (!cfq_cfqq_idle_window(cfqq))
836        return SYNC_NOIDLE_WORKLOAD;
837    return SYNC_WORKLOAD;
838}
839
840static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841                    struct cfq_data *cfqd,
842                    struct cfq_group *cfqg)
843{
844    if (wl_class == IDLE_WORKLOAD)
845        return cfqg->service_tree_idle.count;
846
847    return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848        cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849        cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850}
851
852static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853                    struct cfq_group *cfqg)
854{
855    return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856        cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857}
858
859static void cfq_dispatch_insert(struct request_queue *, struct request *);
860static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861                       struct cfq_io_cq *cic, struct bio *bio,
862                       gfp_t gfp_mask);
863
864static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865{
866    /* cic->icq is the first member, %NULL will convert to %NULL */
867    return container_of(icq, struct cfq_io_cq, icq);
868}
869
870static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871                           struct io_context *ioc)
872{
873    if (ioc)
874        return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875    return NULL;
876}
877
878static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879{
880    return cic->cfqq[is_sync];
881}
882
883static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884                bool is_sync)
885{
886    cic->cfqq[is_sync] = cfqq;
887}
888
889static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890{
891    return cic->icq.q->elevator->elevator_data;
892}
893
894/*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898static inline bool cfq_bio_sync(struct bio *bio)
899{
900    return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901}
902
903/*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908{
909    if (cfqd->busy_queues) {
910        cfq_log(cfqd, "schedule dispatch");
911        kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
912    }
913}
914
915/*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921                 unsigned short prio)
922{
923    const int base_slice = cfqd->cfq_slice[sync];
924
925    WARN_ON(prio >= IOPRIO_BE_NR);
926
927    return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928}
929
930static inline int
931cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932{
933    return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934}
935
936/**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948static inline u64 cfqg_scale_charge(unsigned long charge,
949                    unsigned int vfraction)
950{
951    u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953    /* charge / vfraction */
954    c <<= CFQ_SERVICE_SHIFT;
955    do_div(c, vfraction);
956    return c;
957}
958
959static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960{
961    s64 delta = (s64)(vdisktime - min_vdisktime);
962    if (delta > 0)
963        min_vdisktime = vdisktime;
964
965    return min_vdisktime;
966}
967
968static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969{
970    s64 delta = (s64)(vdisktime - min_vdisktime);
971    if (delta < 0)
972        min_vdisktime = vdisktime;
973
974    return min_vdisktime;
975}
976
977static void update_min_vdisktime(struct cfq_rb_root *st)
978{
979    struct cfq_group *cfqg;
980
981    if (st->left) {
982        cfqg = rb_entry_cfqg(st->left);
983        st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984                          cfqg->vdisktime);
985    }
986}
987
988/*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995                    struct cfq_group *cfqg, bool rt)
996{
997    unsigned min_q, max_q;
998    unsigned mult = cfq_hist_divisor - 1;
999    unsigned round = cfq_hist_divisor / 2;
1000    unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002    min_q = min(cfqg->busy_queues_avg[rt], busy);
1003    max_q = max(cfqg->busy_queues_avg[rt], busy);
1004    cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005        cfq_hist_divisor;
1006    return cfqg->busy_queues_avg[rt];
1007}
1008
1009static inline unsigned
1010cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011{
1012    return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013}
1014
1015static inline unsigned
1016cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017{
1018    unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019    if (cfqd->cfq_latency) {
1020        /*
1021         * interested queues (we consider only the ones with the same
1022         * priority class in the cfq group)
1023         */
1024        unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025                        cfq_class_rt(cfqq));
1026        unsigned sync_slice = cfqd->cfq_slice[1];
1027        unsigned expect_latency = sync_slice * iq;
1028        unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030        if (expect_latency > group_slice) {
1031            unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032            /* scale low_slice according to IO priority
1033             * and sync vs async */
1034            unsigned low_slice =
1035                min(slice, base_low_slice * slice / sync_slice);
1036            /* the adapted slice value is scaled to fit all iqs
1037             * into the target latency */
1038            slice = max(slice * group_slice / expect_latency,
1039                    low_slice);
1040        }
1041    }
1042    return slice;
1043}
1044
1045static inline void
1046cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047{
1048    unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050    cfqq->slice_start = jiffies;
1051    cfqq->slice_end = jiffies + slice;
1052    cfqq->allocated_slice = slice;
1053    cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054}
1055
1056/*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062{
1063    if (cfq_cfqq_slice_new(cfqq))
1064        return false;
1065    if (time_before(jiffies, cfqq->slice_end))
1066        return false;
1067
1068    return true;
1069}
1070
1071/*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076static struct request *
1077cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078{
1079    sector_t s1, s2, d1 = 0, d2 = 0;
1080    unsigned long back_max;
1081#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083    unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085    if (rq1 == NULL || rq1 == rq2)
1086        return rq2;
1087    if (rq2 == NULL)
1088        return rq1;
1089
1090    if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091        return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093    if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094        return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096    s1 = blk_rq_pos(rq1);
1097    s2 = blk_rq_pos(rq2);
1098
1099    /*
1100     * by definition, 1KiB is 2 sectors
1101     */
1102    back_max = cfqd->cfq_back_max * 2;
1103
1104    /*
1105     * Strict one way elevator _except_ in the case where we allow
1106     * short backward seeks which are biased as twice the cost of a
1107     * similar forward seek.
1108     */
1109    if (s1 >= last)
1110        d1 = s1 - last;
1111    else if (s1 + back_max >= last)
1112        d1 = (last - s1) * cfqd->cfq_back_penalty;
1113    else
1114        wrap |= CFQ_RQ1_WRAP;
1115
1116    if (s2 >= last)
1117        d2 = s2 - last;
1118    else if (s2 + back_max >= last)
1119        d2 = (last - s2) * cfqd->cfq_back_penalty;
1120    else
1121        wrap |= CFQ_RQ2_WRAP;
1122
1123    /* Found required data */
1124
1125    /*
1126     * By doing switch() on the bit mask "wrap" we avoid having to
1127     * check two variables for all permutations: --> faster!
1128     */
1129    switch (wrap) {
1130    case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131        if (d1 < d2)
1132            return rq1;
1133        else if (d2 < d1)
1134            return rq2;
1135        else {
1136            if (s1 >= s2)
1137                return rq1;
1138            else
1139                return rq2;
1140        }
1141
1142    case CFQ_RQ2_WRAP:
1143        return rq1;
1144    case CFQ_RQ1_WRAP:
1145        return rq2;
1146    case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147    default:
1148        /*
1149         * Since both rqs are wrapped,
1150         * start with the one that's further behind head
1151         * (--> only *one* back seek required),
1152         * since back seek takes more time than forward.
1153         */
1154        if (s1 <= s2)
1155            return rq1;
1156        else
1157            return rq2;
1158    }
1159}
1160
1161/*
1162 * The below is leftmost cache rbtree addon
1163 */
1164static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165{
1166    /* Service tree is empty */
1167    if (!root->count)
1168        return NULL;
1169
1170    if (!root->left)
1171        root->left = rb_first(&root->rb);
1172
1173    if (root->left)
1174        return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176    return NULL;
1177}
1178
1179static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180{
1181    if (!root->left)
1182        root->left = rb_first(&root->rb);
1183
1184    if (root->left)
1185        return rb_entry_cfqg(root->left);
1186
1187    return NULL;
1188}
1189
1190static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191{
1192    rb_erase(n, root);
1193    RB_CLEAR_NODE(n);
1194}
1195
1196static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197{
1198    if (root->left == n)
1199        root->left = NULL;
1200    rb_erase_init(n, &root->rb);
1201    --root->count;
1202}
1203
1204/*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207static struct request *
1208cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209          struct request *last)
1210{
1211    struct rb_node *rbnext = rb_next(&last->rb_node);
1212    struct rb_node *rbprev = rb_prev(&last->rb_node);
1213    struct request *next = NULL, *prev = NULL;
1214
1215    BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217    if (rbprev)
1218        prev = rb_entry_rq(rbprev);
1219
1220    if (rbnext)
1221        next = rb_entry_rq(rbnext);
1222    else {
1223        rbnext = rb_first(&cfqq->sort_list);
1224        if (rbnext && rbnext != &last->rb_node)
1225            next = rb_entry_rq(rbnext);
1226    }
1227
1228    return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229}
1230
1231static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232                      struct cfq_queue *cfqq)
1233{
1234    /*
1235     * just an approximation, should be ok.
1236     */
1237    return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238               cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239}
1240
1241static inline s64
1242cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243{
1244    return cfqg->vdisktime - st->min_vdisktime;
1245}
1246
1247static void
1248__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249{
1250    struct rb_node **node = &st->rb.rb_node;
1251    struct rb_node *parent = NULL;
1252    struct cfq_group *__cfqg;
1253    s64 key = cfqg_key(st, cfqg);
1254    int left = 1;
1255
1256    while (*node != NULL) {
1257        parent = *node;
1258        __cfqg = rb_entry_cfqg(parent);
1259
1260        if (key < cfqg_key(st, __cfqg))
1261            node = &parent->rb_left;
1262        else {
1263            node = &parent->rb_right;
1264            left = 0;
1265        }
1266    }
1267
1268    if (left)
1269        st->left = &cfqg->rb_node;
1270
1271    rb_link_node(&cfqg->rb_node, parent, node);
1272    rb_insert_color(&cfqg->rb_node, &st->rb);
1273}
1274
1275static void
1276cfq_update_group_weight(struct cfq_group *cfqg)
1277{
1278    BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1279
1280    if (cfqg->new_weight) {
1281        cfqg->weight = cfqg->new_weight;
1282        cfqg->new_weight = 0;
1283    }
1284
1285    if (cfqg->new_leaf_weight) {
1286        cfqg->leaf_weight = cfqg->new_leaf_weight;
1287        cfqg->new_leaf_weight = 0;
1288    }
1289}
1290
1291static void
1292cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1293{
1294    unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1295    struct cfq_group *pos = cfqg;
1296    struct cfq_group *parent;
1297    bool propagate;
1298
1299    /* add to the service tree */
1300    BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1301
1302    cfq_update_group_weight(cfqg);
1303    __cfq_group_service_tree_add(st, cfqg);
1304
1305    /*
1306     * Activate @cfqg and calculate the portion of vfraction @cfqg is
1307     * entitled to. vfraction is calculated by walking the tree
1308     * towards the root calculating the fraction it has at each level.
1309     * The compounded ratio is how much vfraction @cfqg owns.
1310     *
1311     * Start with the proportion tasks in this cfqg has against active
1312     * children cfqgs - its leaf_weight against children_weight.
1313     */
1314    propagate = !pos->nr_active++;
1315    pos->children_weight += pos->leaf_weight;
1316    vfr = vfr * pos->leaf_weight / pos->children_weight;
1317
1318    /*
1319     * Compound ->weight walking up the tree. Both activation and
1320     * vfraction calculation are done in the same loop. Propagation
1321     * stops once an already activated node is met. vfraction
1322     * calculation should always continue to the root.
1323     */
1324    while ((parent = cfqg_parent(pos))) {
1325        if (propagate) {
1326            propagate = !parent->nr_active++;
1327            parent->children_weight += pos->weight;
1328        }
1329        vfr = vfr * pos->weight / parent->children_weight;
1330        pos = parent;
1331    }
1332
1333    cfqg->vfraction = max_t(unsigned, vfr, 1);
1334}
1335
1336static void
1337cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1338{
1339    struct cfq_rb_root *st = &cfqd->grp_service_tree;
1340    struct cfq_group *__cfqg;
1341    struct rb_node *n;
1342
1343    cfqg->nr_cfqq++;
1344    if (!RB_EMPTY_NODE(&cfqg->rb_node))
1345        return;
1346
1347    /*
1348     * Currently put the group at the end. Later implement something
1349     * so that groups get lesser vtime based on their weights, so that
1350     * if group does not loose all if it was not continuously backlogged.
1351     */
1352    n = rb_last(&st->rb);
1353    if (n) {
1354        __cfqg = rb_entry_cfqg(n);
1355        cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1356    } else
1357        cfqg->vdisktime = st->min_vdisktime;
1358    cfq_group_service_tree_add(st, cfqg);
1359}
1360
1361static void
1362cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1363{
1364    struct cfq_group *pos = cfqg;
1365    bool propagate;
1366
1367    /*
1368     * Undo activation from cfq_group_service_tree_add(). Deactivate
1369     * @cfqg and propagate deactivation upwards.
1370     */
1371    propagate = !--pos->nr_active;
1372    pos->children_weight -= pos->leaf_weight;
1373
1374    while (propagate) {
1375        struct cfq_group *parent = cfqg_parent(pos);
1376
1377        /* @pos has 0 nr_active at this point */
1378        WARN_ON_ONCE(pos->children_weight);
1379        pos->vfraction = 0;
1380
1381        if (!parent)
1382            break;
1383
1384        propagate = !--parent->nr_active;
1385        parent->children_weight -= pos->weight;
1386        pos = parent;
1387    }
1388
1389    /* remove from the service tree */
1390    if (!RB_EMPTY_NODE(&cfqg->rb_node))
1391        cfq_rb_erase(&cfqg->rb_node, st);
1392}
1393
1394static void
1395cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1396{
1397    struct cfq_rb_root *st = &cfqd->grp_service_tree;
1398
1399    BUG_ON(cfqg->nr_cfqq < 1);
1400    cfqg->nr_cfqq--;
1401
1402    /* If there are other cfq queues under this group, don't delete it */
1403    if (cfqg->nr_cfqq)
1404        return;
1405
1406    cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1407    cfq_group_service_tree_del(st, cfqg);
1408    cfqg->saved_wl_slice = 0;
1409    cfqg_stats_update_dequeue(cfqg);
1410}
1411
1412static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1413                        unsigned int *unaccounted_time)
1414{
1415    unsigned int slice_used;
1416
1417    /*
1418     * Queue got expired before even a single request completed or
1419     * got expired immediately after first request completion.
1420     */
1421    if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1422        /*
1423         * Also charge the seek time incurred to the group, otherwise
1424         * if there are mutiple queues in the group, each can dispatch
1425         * a single request on seeky media and cause lots of seek time
1426         * and group will never know it.
1427         */
1428        slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1429                    1);
1430    } else {
1431        slice_used = jiffies - cfqq->slice_start;
1432        if (slice_used > cfqq->allocated_slice) {
1433            *unaccounted_time = slice_used - cfqq->allocated_slice;
1434            slice_used = cfqq->allocated_slice;
1435        }
1436        if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1437            *unaccounted_time += cfqq->slice_start -
1438                    cfqq->dispatch_start;
1439    }
1440
1441    return slice_used;
1442}
1443
1444static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1445                struct cfq_queue *cfqq)
1446{
1447    struct cfq_rb_root *st = &cfqd->grp_service_tree;
1448    unsigned int used_sl, charge, unaccounted_sl = 0;
1449    int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1450            - cfqg->service_tree_idle.count;
1451    unsigned int vfr;
1452
1453    BUG_ON(nr_sync < 0);
1454    used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1455
1456    if (iops_mode(cfqd))
1457        charge = cfqq->slice_dispatch;
1458    else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1459        charge = cfqq->allocated_slice;
1460
1461    /*
1462     * Can't update vdisktime while on service tree and cfqg->vfraction
1463     * is valid only while on it. Cache vfr, leave the service tree,
1464     * update vdisktime and go back on. The re-addition to the tree
1465     * will also update the weights as necessary.
1466     */
1467    vfr = cfqg->vfraction;
1468    cfq_group_service_tree_del(st, cfqg);
1469    cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1470    cfq_group_service_tree_add(st, cfqg);
1471
1472    /* This group is being expired. Save the context */
1473    if (time_after(cfqd->workload_expires, jiffies)) {
1474        cfqg->saved_wl_slice = cfqd->workload_expires
1475                        - jiffies;
1476        cfqg->saved_wl_type = cfqd->serving_wl_type;
1477        cfqg->saved_wl_class = cfqd->serving_wl_class;
1478    } else
1479        cfqg->saved_wl_slice = 0;
1480
1481    cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1482                    st->min_vdisktime);
1483    cfq_log_cfqq(cfqq->cfqd, cfqq,
1484             "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1485             used_sl, cfqq->slice_dispatch, charge,
1486             iops_mode(cfqd), cfqq->nr_sectors);
1487    cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1488    cfqg_stats_set_start_empty_time(cfqg);
1489}
1490
1491/**
1492 * cfq_init_cfqg_base - initialize base part of a cfq_group
1493 * @cfqg: cfq_group to initialize
1494 *
1495 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1496 * is enabled or not.
1497 */
1498static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1499{
1500    struct cfq_rb_root *st;
1501    int i, j;
1502
1503    for_each_cfqg_st(cfqg, i, j, st)
1504        *st = CFQ_RB_ROOT;
1505    RB_CLEAR_NODE(&cfqg->rb_node);
1506
1507    cfqg->ttime.last_end_request = jiffies;
1508}
1509
1510#ifdef CONFIG_CFQ_GROUP_IOSCHED
1511static void cfq_pd_init(struct blkcg_gq *blkg)
1512{
1513    struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1514
1515    cfq_init_cfqg_base(cfqg);
1516    cfqg->weight = blkg->blkcg->cfq_weight;
1517    cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1518}
1519
1520static void cfq_pd_offline(struct blkcg_gq *blkg)
1521{
1522    /*
1523     * @blkg is going offline and will be ignored by
1524     * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1525     * that they don't get lost. If IOs complete after this point, the
1526     * stats for them will be lost. Oh well...
1527     */
1528    cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1529}
1530
1531/* offset delta from cfqg->stats to cfqg->dead_stats */
1532static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1533                    offsetof(struct cfq_group, stats);
1534
1535/* to be used by recursive prfill, sums live and dead stats recursively */
1536static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1537{
1538    u64 sum = 0;
1539
1540    sum += blkg_stat_recursive_sum(pd, off);
1541    sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1542    return sum;
1543}
1544
1545/* to be used by recursive prfill, sums live and dead rwstats recursively */
1546static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1547                               int off)
1548{
1549    struct blkg_rwstat a, b;
1550
1551    a = blkg_rwstat_recursive_sum(pd, off);
1552    b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1553    blkg_rwstat_merge(&a, &b);
1554    return a;
1555}
1556
1557static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1558{
1559    struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1560
1561    cfqg_stats_reset(&cfqg->stats);
1562    cfqg_stats_reset(&cfqg->dead_stats);
1563}
1564
1565/*
1566 * Search for the cfq group current task belongs to. request_queue lock must
1567 * be held.
1568 */
1569static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1570                        struct blkcg *blkcg)
1571{
1572    struct request_queue *q = cfqd->queue;
1573    struct cfq_group *cfqg = NULL;
1574
1575    /* avoid lookup for the common case where there's no blkcg */
1576    if (blkcg == &blkcg_root) {
1577        cfqg = cfqd->root_group;
1578    } else {
1579        struct blkcg_gq *blkg;
1580
1581        blkg = blkg_lookup_create(blkcg, q);
1582        if (!IS_ERR(blkg))
1583            cfqg = blkg_to_cfqg(blkg);
1584    }
1585
1586    return cfqg;
1587}
1588
1589static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1590{
1591    /* Currently, all async queues are mapped to root group */
1592    if (!cfq_cfqq_sync(cfqq))
1593        cfqg = cfqq->cfqd->root_group;
1594
1595    cfqq->cfqg = cfqg;
1596    /* cfqq reference on cfqg */
1597    cfqg_get(cfqg);
1598}
1599
1600static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1601                     struct blkg_policy_data *pd, int off)
1602{
1603    struct cfq_group *cfqg = pd_to_cfqg(pd);
1604
1605    if (!cfqg->dev_weight)
1606        return 0;
1607    return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1608}
1609
1610static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1611                    struct seq_file *sf)
1612{
1613    blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1614              cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1615              false);
1616    return 0;
1617}
1618
1619static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1620                      struct blkg_policy_data *pd, int off)
1621{
1622    struct cfq_group *cfqg = pd_to_cfqg(pd);
1623
1624    if (!cfqg->dev_leaf_weight)
1625        return 0;
1626    return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1627}
1628
1629static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1630                     struct cftype *cft,
1631                     struct seq_file *sf)
1632{
1633    blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1634              cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1635              false);
1636    return 0;
1637}
1638
1639static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1640                struct seq_file *sf)
1641{
1642    seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1643    return 0;
1644}
1645
1646static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1647                 struct seq_file *sf)
1648{
1649    seq_printf(sf, "%u\n",
1650           cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1651    return 0;
1652}
1653
1654static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1655                    const char *buf, bool is_leaf_weight)
1656{
1657    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1658    struct blkg_conf_ctx ctx;
1659    struct cfq_group *cfqg;
1660    int ret;
1661
1662    ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1663    if (ret)
1664        return ret;
1665
1666    ret = -EINVAL;
1667    cfqg = blkg_to_cfqg(ctx.blkg);
1668    if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1669        if (!is_leaf_weight) {
1670            cfqg->dev_weight = ctx.v;
1671            cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1672        } else {
1673            cfqg->dev_leaf_weight = ctx.v;
1674            cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1675        }
1676        ret = 0;
1677    }
1678
1679    blkg_conf_finish(&ctx);
1680    return ret;
1681}
1682
1683static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1684                  const char *buf)
1685{
1686    return __cfqg_set_weight_device(cgrp, cft, buf, false);
1687}
1688
1689static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1690                       const char *buf)
1691{
1692    return __cfqg_set_weight_device(cgrp, cft, buf, true);
1693}
1694
1695static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1696                bool is_leaf_weight)
1697{
1698    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1699    struct blkcg_gq *blkg;
1700
1701    if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1702        return -EINVAL;
1703
1704    spin_lock_irq(&blkcg->lock);
1705
1706    if (!is_leaf_weight)
1707        blkcg->cfq_weight = val;
1708    else
1709        blkcg->cfq_leaf_weight = val;
1710
1711    hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1712        struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1713
1714        if (!cfqg)
1715            continue;
1716
1717        if (!is_leaf_weight) {
1718            if (!cfqg->dev_weight)
1719                cfqg->new_weight = blkcg->cfq_weight;
1720        } else {
1721            if (!cfqg->dev_leaf_weight)
1722                cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1723        }
1724    }
1725
1726    spin_unlock_irq(&blkcg->lock);
1727    return 0;
1728}
1729
1730static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1731{
1732    return __cfq_set_weight(cgrp, cft, val, false);
1733}
1734
1735static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1736{
1737    return __cfq_set_weight(cgrp, cft, val, true);
1738}
1739
1740static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1741               struct seq_file *sf)
1742{
1743    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1744
1745    blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1746              cft->private, false);
1747    return 0;
1748}
1749
1750static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1751                 struct seq_file *sf)
1752{
1753    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1754
1755    blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1756              cft->private, true);
1757    return 0;
1758}
1759
1760static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1761                      struct blkg_policy_data *pd, int off)
1762{
1763    u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1764
1765    return __blkg_prfill_u64(sf, pd, sum);
1766}
1767
1768static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1769                    struct blkg_policy_data *pd, int off)
1770{
1771    struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1772
1773    return __blkg_prfill_rwstat(sf, pd, &sum);
1774}
1775
1776static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
1777                     struct seq_file *sf)
1778{
1779    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1780
1781    blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
1782              &blkcg_policy_cfq, cft->private, false);
1783    return 0;
1784}
1785
1786static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
1787                       struct seq_file *sf)
1788{
1789    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1790
1791    blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
1792              &blkcg_policy_cfq, cft->private, true);
1793    return 0;
1794}
1795
1796#ifdef CONFIG_DEBUG_BLK_CGROUP
1797static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1798                      struct blkg_policy_data *pd, int off)
1799{
1800    struct cfq_group *cfqg = pd_to_cfqg(pd);
1801    u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1802    u64 v = 0;
1803
1804    if (samples) {
1805        v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1806        do_div(v, samples);
1807    }
1808    __blkg_prfill_u64(sf, pd, v);
1809    return 0;
1810}
1811
1812/* print avg_queue_size */
1813static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1814                     struct seq_file *sf)
1815{
1816    struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1817
1818    blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1819              &blkcg_policy_cfq, 0, false);
1820    return 0;
1821}
1822#endif /* CONFIG_DEBUG_BLK_CGROUP */
1823
1824static struct cftype cfq_blkcg_files[] = {
1825    /* on root, weight is mapped to leaf_weight */
1826    {
1827        .name = "weight_device",
1828        .flags = CFTYPE_ONLY_ON_ROOT,
1829        .read_seq_string = cfqg_print_leaf_weight_device,
1830        .write_string = cfqg_set_leaf_weight_device,
1831        .max_write_len = 256,
1832    },
1833    {
1834        .name = "weight",
1835        .flags = CFTYPE_ONLY_ON_ROOT,
1836        .read_seq_string = cfq_print_leaf_weight,
1837        .write_u64 = cfq_set_leaf_weight,
1838    },
1839
1840    /* no such mapping necessary for !roots */
1841    {
1842        .name = "weight_device",
1843        .flags = CFTYPE_NOT_ON_ROOT,
1844        .read_seq_string = cfqg_print_weight_device,
1845        .write_string = cfqg_set_weight_device,
1846        .max_write_len = 256,
1847    },
1848    {
1849        .name = "weight",
1850        .flags = CFTYPE_NOT_ON_ROOT,
1851        .read_seq_string = cfq_print_weight,
1852        .write_u64 = cfq_set_weight,
1853    },
1854
1855    {
1856        .name = "leaf_weight_device",
1857        .read_seq_string = cfqg_print_leaf_weight_device,
1858        .write_string = cfqg_set_leaf_weight_device,
1859        .max_write_len = 256,
1860    },
1861    {
1862        .name = "leaf_weight",
1863        .read_seq_string = cfq_print_leaf_weight,
1864        .write_u64 = cfq_set_leaf_weight,
1865    },
1866
1867    /* statistics, covers only the tasks in the cfqg */
1868    {
1869        .name = "time",
1870        .private = offsetof(struct cfq_group, stats.time),
1871        .read_seq_string = cfqg_print_stat,
1872    },
1873    {
1874        .name = "sectors",
1875        .private = offsetof(struct cfq_group, stats.sectors),
1876        .read_seq_string = cfqg_print_stat,
1877    },
1878    {
1879        .name = "io_service_bytes",
1880        .private = offsetof(struct cfq_group, stats.service_bytes),
1881        .read_seq_string = cfqg_print_rwstat,
1882    },
1883    {
1884        .name = "io_serviced",
1885        .private = offsetof(struct cfq_group, stats.serviced),
1886        .read_seq_string = cfqg_print_rwstat,
1887    },
1888    {
1889        .name = "io_service_time",
1890        .private = offsetof(struct cfq_group, stats.service_time),
1891        .read_seq_string = cfqg_print_rwstat,
1892    },
1893    {
1894        .name = "io_wait_time",
1895        .private = offsetof(struct cfq_group, stats.wait_time),
1896        .read_seq_string = cfqg_print_rwstat,
1897    },
1898    {
1899        .name = "io_merged",
1900        .private = offsetof(struct cfq_group, stats.merged),
1901        .read_seq_string = cfqg_print_rwstat,
1902    },
1903    {
1904        .name = "io_queued",
1905        .private = offsetof(struct cfq_group, stats.queued),
1906        .read_seq_string = cfqg_print_rwstat,
1907    },
1908
1909    /* the same statictics which cover the cfqg and its descendants */
1910    {
1911        .name = "time_recursive",
1912        .private = offsetof(struct cfq_group, stats.time),
1913        .read_seq_string = cfqg_print_stat_recursive,
1914    },
1915    {
1916        .name = "sectors_recursive",
1917        .private = offsetof(struct cfq_group, stats.sectors),
1918        .read_seq_string = cfqg_print_stat_recursive,
1919    },
1920    {
1921        .name = "io_service_bytes_recursive",
1922        .private = offsetof(struct cfq_group, stats.service_bytes),
1923        .read_seq_string = cfqg_print_rwstat_recursive,
1924    },
1925    {
1926        .name = "io_serviced_recursive",
1927        .private = offsetof(struct cfq_group, stats.serviced),
1928        .read_seq_string = cfqg_print_rwstat_recursive,
1929    },
1930    {
1931        .name = "io_service_time_recursive",
1932        .private = offsetof(struct cfq_group, stats.service_time),
1933        .read_seq_string = cfqg_print_rwstat_recursive,
1934    },
1935    {
1936        .name = "io_wait_time_recursive",
1937        .private = offsetof(struct cfq_group, stats.wait_time),
1938        .read_seq_string = cfqg_print_rwstat_recursive,
1939    },
1940    {
1941        .name = "io_merged_recursive",
1942        .private = offsetof(struct cfq_group, stats.merged),
1943        .read_seq_string = cfqg_print_rwstat_recursive,
1944    },
1945    {
1946        .name = "io_queued_recursive",
1947        .private = offsetof(struct cfq_group, stats.queued),
1948        .read_seq_string = cfqg_print_rwstat_recursive,
1949    },
1950#ifdef CONFIG_DEBUG_BLK_CGROUP
1951    {
1952        .name = "avg_queue_size",
1953        .read_seq_string = cfqg_print_avg_queue_size,
1954    },
1955    {
1956        .name = "group_wait_time",
1957        .private = offsetof(struct cfq_group, stats.group_wait_time),
1958        .read_seq_string = cfqg_print_stat,
1959    },
1960    {
1961        .name = "idle_time",
1962        .private = offsetof(struct cfq_group, stats.idle_time),
1963        .read_seq_string = cfqg_print_stat,
1964    },
1965    {
1966        .name = "empty_time",
1967        .private = offsetof(struct cfq_group, stats.empty_time),
1968        .read_seq_string = cfqg_print_stat,
1969    },
1970    {
1971        .name = "dequeue",
1972        .private = offsetof(struct cfq_group, stats.dequeue),
1973        .read_seq_string = cfqg_print_stat,
1974    },
1975    {
1976        .name = "unaccounted_time",
1977        .private = offsetof(struct cfq_group, stats.unaccounted_time),
1978        .read_seq_string = cfqg_print_stat,
1979    },
1980#endif /* CONFIG_DEBUG_BLK_CGROUP */
1981    { } /* terminate */
1982};
1983#else /* GROUP_IOSCHED */
1984static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1985                        struct blkcg *blkcg)
1986{
1987    return cfqd->root_group;
1988}
1989
1990static inline void
1991cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1992    cfqq->cfqg = cfqg;
1993}
1994
1995#endif /* GROUP_IOSCHED */
1996
1997/*
1998 * The cfqd->service_trees holds all pending cfq_queue's that have
1999 * requests waiting to be processed. It is sorted in the order that
2000 * we will service the queues.
2001 */
2002static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2003                 bool add_front)
2004{
2005    struct rb_node **p, *parent;
2006    struct cfq_queue *__cfqq;
2007    unsigned long rb_key;
2008    struct cfq_rb_root *st;
2009    int left;
2010    int new_cfqq = 1;
2011
2012    st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2013    if (cfq_class_idle(cfqq)) {
2014        rb_key = CFQ_IDLE_DELAY;
2015        parent = rb_last(&st->rb);
2016        if (parent && parent != &cfqq->rb_node) {
2017            __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2018            rb_key += __cfqq->rb_key;
2019        } else
2020            rb_key += jiffies;
2021    } else if (!add_front) {
2022        /*
2023         * Get our rb key offset. Subtract any residual slice
2024         * value carried from last service. A negative resid
2025         * count indicates slice overrun, and this should position
2026         * the next service time further away in the tree.
2027         */
2028        rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2029        rb_key -= cfqq->slice_resid;
2030        cfqq->slice_resid = 0;
2031    } else {
2032        rb_key = -HZ;
2033        __cfqq = cfq_rb_first(st);
2034        rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2035    }
2036
2037    if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2038        new_cfqq = 0;
2039        /*
2040         * same position, nothing more to do
2041         */
2042        if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2043            return;
2044
2045        cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2046        cfqq->service_tree = NULL;
2047    }
2048
2049    left = 1;
2050    parent = NULL;
2051    cfqq->service_tree = st;
2052    p = &st->rb.rb_node;
2053    while (*p) {
2054        parent = *p;
2055        __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2056
2057        /*
2058         * sort by key, that represents service time.
2059         */
2060        if (time_before(rb_key, __cfqq->rb_key))
2061            p = &parent->rb_left;
2062        else {
2063            p = &parent->rb_right;
2064            left = 0;
2065        }
2066    }
2067
2068    if (left)
2069        st->left = &cfqq->rb_node;
2070
2071    cfqq->rb_key = rb_key;
2072    rb_link_node(&cfqq->rb_node, parent, p);
2073    rb_insert_color(&cfqq->rb_node, &st->rb);
2074    st->count++;
2075    if (add_front || !new_cfqq)
2076        return;
2077    cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2078}
2079
2080static struct cfq_queue *
2081cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2082             sector_t sector, struct rb_node **ret_parent,
2083             struct rb_node ***rb_link)
2084{
2085    struct rb_node **p, *parent;
2086    struct cfq_queue *cfqq = NULL;
2087
2088    parent = NULL;
2089    p = &root->rb_node;
2090    while (*p) {
2091        struct rb_node **n;
2092
2093        parent = *p;
2094        cfqq = rb_entry(parent, struct cfq_queue, p_node);
2095
2096        /*
2097         * Sort strictly based on sector. Smallest to the left,
2098         * largest to the right.
2099         */
2100        if (sector > blk_rq_pos(cfqq->next_rq))
2101            n = &(*p)->rb_right;
2102        else if (sector < blk_rq_pos(cfqq->next_rq))
2103            n = &(*p)->rb_left;
2104        else
2105            break;
2106        p = n;
2107        cfqq = NULL;
2108    }
2109
2110    *ret_parent = parent;
2111    if (rb_link)
2112        *rb_link = p;
2113    return cfqq;
2114}
2115
2116static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2117{
2118    struct rb_node **p, *parent;
2119    struct cfq_queue *__cfqq;
2120
2121    if (cfqq->p_root) {
2122        rb_erase(&cfqq->p_node, cfqq->p_root);
2123        cfqq->p_root = NULL;
2124    }
2125
2126    if (cfq_class_idle(cfqq))
2127        return;
2128    if (!cfqq->next_rq)
2129        return;
2130
2131    cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2132    __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2133                      blk_rq_pos(cfqq->next_rq), &parent, &p);
2134    if (!__cfqq) {
2135        rb_link_node(&cfqq->p_node, parent, p);
2136        rb_insert_color(&cfqq->p_node, cfqq->p_root);
2137    } else
2138        cfqq->p_root = NULL;
2139}
2140
2141/*
2142 * Update cfqq's position in the service tree.
2143 */
2144static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2145{
2146    /*
2147     * Resorting requires the cfqq to be on the RR list already.
2148     */
2149    if (cfq_cfqq_on_rr(cfqq)) {
2150        cfq_service_tree_add(cfqd, cfqq, 0);
2151        cfq_prio_tree_add(cfqd, cfqq);
2152    }
2153}
2154
2155/*
2156 * add to busy list of queues for service, trying to be fair in ordering
2157 * the pending list according to last request service
2158 */
2159static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2160{
2161    cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2162    BUG_ON(cfq_cfqq_on_rr(cfqq));
2163    cfq_mark_cfqq_on_rr(cfqq);
2164    cfqd->busy_queues++;
2165    if (cfq_cfqq_sync(cfqq))
2166        cfqd->busy_sync_queues++;
2167
2168    cfq_resort_rr_list(cfqd, cfqq);
2169}
2170
2171/*
2172 * Called when the cfqq no longer has requests pending, remove it from
2173 * the service tree.
2174 */
2175static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2176{
2177    cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2178    BUG_ON(!cfq_cfqq_on_rr(cfqq));
2179    cfq_clear_cfqq_on_rr(cfqq);
2180
2181    if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2182        cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2183        cfqq->service_tree = NULL;
2184    }
2185    if (cfqq->p_root) {
2186        rb_erase(&cfqq->p_node, cfqq->p_root);
2187        cfqq->p_root = NULL;
2188    }
2189
2190    cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2191    BUG_ON(!cfqd->busy_queues);
2192    cfqd->busy_queues--;
2193    if (cfq_cfqq_sync(cfqq))
2194        cfqd->busy_sync_queues--;
2195}
2196
2197/*
2198 * rb tree support functions
2199 */
2200static void cfq_del_rq_rb(struct request *rq)
2201{
2202    struct cfq_queue *cfqq = RQ_CFQQ(rq);
2203    const int sync = rq_is_sync(rq);
2204
2205    BUG_ON(!cfqq->queued[sync]);
2206    cfqq->queued[sync]--;
2207
2208    elv_rb_del(&cfqq->sort_list, rq);
2209
2210    if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2211        /*
2212         * Queue will be deleted from service tree when we actually
2213         * expire it later. Right now just remove it from prio tree
2214         * as it is empty.
2215         */
2216        if (cfqq->p_root) {
2217            rb_erase(&cfqq->p_node, cfqq->p_root);
2218            cfqq->p_root = NULL;
2219        }
2220    }
2221}
2222
2223static void cfq_add_rq_rb(struct request *rq)
2224{
2225    struct cfq_queue *cfqq = RQ_CFQQ(rq);
2226    struct cfq_data *cfqd = cfqq->cfqd;
2227    struct request *prev;
2228
2229    cfqq->queued[rq_is_sync(rq)]++;
2230
2231    elv_rb_add(&cfqq->sort_list, rq);
2232
2233    if (!cfq_cfqq_on_rr(cfqq))
2234        cfq_add_cfqq_rr(cfqd, cfqq);
2235
2236    /*
2237     * check if this request is a better next-serve candidate
2238     */
2239    prev = cfqq->next_rq;
2240    cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2241
2242    /*
2243     * adjust priority tree position, if ->next_rq changes
2244     */
2245    if (prev != cfqq->next_rq)
2246        cfq_prio_tree_add(cfqd, cfqq);
2247
2248    BUG_ON(!cfqq->next_rq);
2249}
2250
2251static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2252{
2253    elv_rb_del(&cfqq->sort_list, rq);
2254    cfqq->queued[rq_is_sync(rq)]--;
2255    cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2256    cfq_add_rq_rb(rq);
2257    cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2258                 rq->cmd_flags);
2259}
2260
2261static struct request *
2262cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2263{
2264    struct task_struct *tsk = current;
2265    struct cfq_io_cq *cic;
2266    struct cfq_queue *cfqq;
2267
2268    cic = cfq_cic_lookup(cfqd, tsk->io_context);
2269    if (!cic)
2270        return NULL;
2271
2272    cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2273    if (cfqq) {
2274        sector_t sector = bio->bi_sector + bio_sectors(bio);
2275
2276        return elv_rb_find(&cfqq->sort_list, sector);
2277    }
2278
2279    return NULL;
2280}
2281
2282static void cfq_activate_request(struct request_queue *q, struct request *rq)
2283{
2284    struct cfq_data *cfqd = q->elevator->elevator_data;
2285
2286    cfqd->rq_in_driver++;
2287    cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2288                        cfqd->rq_in_driver);
2289
2290    cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2291}
2292
2293static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2294{
2295    struct cfq_data *cfqd = q->elevator->elevator_data;
2296
2297    WARN_ON(!cfqd->rq_in_driver);
2298    cfqd->rq_in_driver--;
2299    cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2300                        cfqd->rq_in_driver);
2301}
2302
2303static void cfq_remove_request(struct request *rq)
2304{
2305    struct cfq_queue *cfqq = RQ_CFQQ(rq);
2306
2307    if (cfqq->next_rq == rq)
2308        cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2309
2310    list_del_init(&rq->queuelist);
2311    cfq_del_rq_rb(rq);
2312
2313    cfqq->cfqd->rq_queued--;
2314    cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2315    if (rq->cmd_flags & REQ_PRIO) {
2316        WARN_ON(!cfqq->prio_pending);
2317        cfqq->prio_pending--;
2318    }
2319}
2320
2321static int cfq_merge(struct request_queue *q, struct request **req,
2322             struct bio *bio)
2323{
2324    struct cfq_data *cfqd = q->elevator->elevator_data;
2325    struct request *__rq;
2326
2327    __rq = cfq_find_rq_fmerge(cfqd, bio);
2328    if (__rq && elv_rq_merge_ok(__rq, bio)) {
2329        *req = __rq;
2330        return ELEVATOR_FRONT_MERGE;
2331    }
2332
2333    return ELEVATOR_NO_MERGE;
2334}
2335
2336static void cfq_merged_request(struct request_queue *q, struct request *req,
2337                   int type)
2338{
2339    if (type == ELEVATOR_FRONT_MERGE) {
2340        struct cfq_queue *cfqq = RQ_CFQQ(req);
2341
2342        cfq_reposition_rq_rb(cfqq, req);
2343    }
2344}
2345
2346static void cfq_bio_merged(struct request_queue *q, struct request *req,
2347                struct bio *bio)
2348{
2349    cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2350}
2351
2352static void
2353cfq_merged_requests(struct request_queue *q, struct request *rq,
2354            struct request *next)
2355{
2356    struct cfq_queue *cfqq = RQ_CFQQ(rq);
2357    struct cfq_data *cfqd = q->elevator->elevator_data;
2358
2359    /*
2360     * reposition in fifo if next is older than rq
2361     */
2362    if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2363        time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2364        cfqq == RQ_CFQQ(next)) {
2365        list_move(&rq->queuelist, &next->queuelist);
2366        rq_set_fifo_time(rq, rq_fifo_time(next));
2367    }
2368
2369    if (cfqq->next_rq == next)
2370        cfqq->next_rq = rq;
2371    cfq_remove_request(next);
2372    cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2373
2374    cfqq = RQ_CFQQ(next);
2375    /*
2376     * all requests of this queue are merged to other queues, delete it
2377     * from the service tree. If it's the active_queue,
2378     * cfq_dispatch_requests() will choose to expire it or do idle
2379     */
2380    if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2381        cfqq != cfqd->active_queue)
2382        cfq_del_cfqq_rr(cfqd, cfqq);
2383}
2384
2385static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2386               struct bio *bio)
2387{
2388    struct cfq_data *cfqd = q->elevator->elevator_data;
2389    struct cfq_io_cq *cic;
2390    struct cfq_queue *cfqq;
2391
2392    /*
2393     * Disallow merge of a sync bio into an async request.
2394     */
2395    if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2396        return false;
2397
2398    /*
2399     * Lookup the cfqq that this bio will be queued with and allow
2400     * merge only if rq is queued there.
2401     */
2402    cic = cfq_cic_lookup(cfqd, current->io_context);
2403    if (!cic)
2404        return false;
2405
2406    cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2407    return cfqq == RQ_CFQQ(rq);
2408}
2409
2410static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2411{
2412    del_timer(&cfqd->idle_slice_timer);
2413    cfqg_stats_update_idle_time(cfqq->cfqg);
2414}
2415
2416static void __cfq_set_active_queue(struct cfq_data *cfqd,
2417                   struct cfq_queue *cfqq)
2418{
2419    if (cfqq) {
2420        cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2421                cfqd->serving_wl_class, cfqd->serving_wl_type);
2422        cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2423        cfqq->slice_start = 0;
2424        cfqq->dispatch_start = jiffies;
2425        cfqq->allocated_slice = 0;
2426        cfqq->slice_end = 0;
2427        cfqq->slice_dispatch = 0;
2428        cfqq->nr_sectors = 0;
2429
2430        cfq_clear_cfqq_wait_request(cfqq);
2431        cfq_clear_cfqq_must_dispatch(cfqq);
2432        cfq_clear_cfqq_must_alloc_slice(cfqq);
2433        cfq_clear_cfqq_fifo_expire(cfqq);
2434        cfq_mark_cfqq_slice_new(cfqq);
2435
2436        cfq_del_timer(cfqd, cfqq);
2437    }
2438
2439    cfqd->active_queue = cfqq;
2440}
2441
2442/*
2443 * current cfqq expired its slice (or was too idle), select new one
2444 */
2445static void
2446__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2447            bool timed_out)
2448{
2449    cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2450
2451    if (cfq_cfqq_wait_request(cfqq))
2452        cfq_del_timer(cfqd, cfqq);
2453
2454    cfq_clear_cfqq_wait_request(cfqq);
2455    cfq_clear_cfqq_wait_busy(cfqq);
2456
2457    /*
2458     * If this cfqq is shared between multiple processes, check to
2459     * make sure that those processes are still issuing I/Os within
2460     * the mean seek distance. If not, it may be time to break the
2461     * queues apart again.
2462     */
2463    if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2464        cfq_mark_cfqq_split_coop(cfqq);
2465
2466    /*
2467     * store what was left of this slice, if the queue idled/timed out
2468     */
2469    if (timed_out) {
2470        if (cfq_cfqq_slice_new(cfqq))
2471            cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2472        else
2473            cfqq->slice_resid = cfqq->slice_end - jiffies;
2474        cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2475    }
2476
2477    cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2478
2479    if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2480        cfq_del_cfqq_rr(cfqd, cfqq);
2481
2482    cfq_resort_rr_list(cfqd, cfqq);
2483
2484    if (cfqq == cfqd->active_queue)
2485        cfqd->active_queue = NULL;
2486
2487    if (cfqd->active_cic) {
2488        put_io_context(cfqd->active_cic->icq.ioc);
2489        cfqd->active_cic = NULL;
2490    }
2491}
2492
2493static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2494{
2495    struct cfq_queue *cfqq = cfqd->active_queue;
2496
2497    if (cfqq)
2498        __cfq_slice_expired(cfqd, cfqq, timed_out);
2499}
2500
2501/*
2502 * Get next queue for service. Unless we have a queue preemption,
2503 * we'll simply select the first cfqq in the service tree.
2504 */
2505static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2506{
2507    struct cfq_rb_root *st = st_for(cfqd->serving_group,
2508            cfqd->serving_wl_class, cfqd->serving_wl_type);
2509
2510    if (!cfqd->rq_queued)
2511        return NULL;
2512
2513    /* There is nothing to dispatch */
2514    if (!st)
2515        return NULL;
2516    if (RB_EMPTY_ROOT(&st->rb))
2517        return NULL;
2518    return cfq_rb_first(st);
2519}
2520
2521static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2522{
2523    struct cfq_group *cfqg;
2524    struct cfq_queue *cfqq;
2525    int i, j;
2526    struct cfq_rb_root *st;
2527
2528    if (!cfqd->rq_queued)
2529        return NULL;
2530
2531    cfqg = cfq_get_next_cfqg(cfqd);
2532    if (!cfqg)
2533        return NULL;
2534
2535    for_each_cfqg_st(cfqg, i, j, st)
2536        if ((cfqq = cfq_rb_first(st)) != NULL)
2537            return cfqq;
2538    return NULL;
2539}
2540
2541/*
2542 * Get and set a new active queue for service.
2543 */
2544static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2545                          struct cfq_queue *cfqq)
2546{
2547    if (!cfqq)
2548        cfqq = cfq_get_next_queue(cfqd);
2549
2550    __cfq_set_active_queue(cfqd, cfqq);
2551    return cfqq;
2552}
2553
2554static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2555                      struct request *rq)
2556{
2557    if (blk_rq_pos(rq) >= cfqd->last_position)
2558        return blk_rq_pos(rq) - cfqd->last_position;
2559    else
2560        return cfqd->last_position - blk_rq_pos(rq);
2561}
2562
2563static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2564                   struct request *rq)
2565{
2566    return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2567}
2568
2569static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2570                    struct cfq_queue *cur_cfqq)
2571{
2572    struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2573    struct rb_node *parent, *node;
2574    struct cfq_queue *__cfqq;
2575    sector_t sector = cfqd->last_position;
2576
2577    if (RB_EMPTY_ROOT(root))
2578        return NULL;
2579
2580    /*
2581     * First, if we find a request starting at the end of the last
2582     * request, choose it.
2583     */
2584    __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2585    if (__cfqq)
2586        return __cfqq;
2587
2588    /*
2589     * If the exact sector wasn't found, the parent of the NULL leaf
2590     * will contain the closest sector.
2591     */
2592    __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2593    if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2594        return __cfqq;
2595
2596    if (blk_rq_pos(__cfqq->next_rq) < sector)
2597        node = rb_next(&__cfqq->p_node);
2598    else
2599        node = rb_prev(&__cfqq->p_node);
2600    if (!node)
2601        return NULL;
2602
2603    __cfqq = rb_entry(node, struct cfq_queue, p_node);
2604    if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2605        return __cfqq;
2606
2607    return NULL;
2608}
2609
2610/*
2611 * cfqd - obvious
2612 * cur_cfqq - passed in so that we don't decide that the current queue is
2613 * closely cooperating with itself.
2614 *
2615 * So, basically we're assuming that that cur_cfqq has dispatched at least
2616 * one request, and that cfqd->last_position reflects a position on the disk
2617 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2618 * assumption.
2619 */
2620static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2621                          struct cfq_queue *cur_cfqq)
2622{
2623    struct cfq_queue *cfqq;
2624
2625    if (cfq_class_idle(cur_cfqq))
2626        return NULL;
2627    if (!cfq_cfqq_sync(cur_cfqq))
2628        return NULL;
2629    if (CFQQ_SEEKY(cur_cfqq))
2630        return NULL;
2631
2632    /*
2633     * Don't search priority tree if it's the only queue in the group.
2634     */
2635    if (cur_cfqq->cfqg->nr_cfqq == 1)
2636        return NULL;
2637
2638    /*
2639     * We should notice if some of the queues are cooperating, eg
2640     * working closely on the same area of the disk. In that case,
2641     * we can group them together and don't waste time idling.
2642     */
2643    cfqq = cfqq_close(cfqd, cur_cfqq);
2644    if (!cfqq)
2645        return NULL;
2646
2647    /* If new queue belongs to different cfq_group, don't choose it */
2648    if (cur_cfqq->cfqg != cfqq->cfqg)
2649        return NULL;
2650
2651    /*
2652     * It only makes sense to merge sync queues.
2653     */
2654    if (!cfq_cfqq_sync(cfqq))
2655        return NULL;
2656    if (CFQQ_SEEKY(cfqq))
2657        return NULL;
2658
2659    /*
2660     * Do not merge queues of different priority classes
2661     */
2662    if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2663        return NULL;
2664
2665    return cfqq;
2666}
2667
2668/*
2669 * Determine whether we should enforce idle window for this queue.
2670 */
2671
2672static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2673{
2674    enum wl_class_t wl_class = cfqq_class(cfqq);
2675    struct cfq_rb_root *st = cfqq->service_tree;
2676
2677    BUG_ON(!st);
2678    BUG_ON(!st->count);
2679
2680    if (!cfqd->cfq_slice_idle)
2681        return false;
2682
2683    /* We never do for idle class queues. */
2684    if (wl_class == IDLE_WORKLOAD)
2685        return false;
2686
2687    /* We do for queues that were marked with idle window flag. */
2688    if (cfq_cfqq_idle_window(cfqq) &&
2689       !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2690        return true;
2691
2692    /*
2693     * Otherwise, we do only if they are the last ones
2694     * in their service tree.
2695     */
2696    if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2697       !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2698        return true;
2699    cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2700    return false;
2701}
2702
2703static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2704{
2705    struct cfq_queue *cfqq = cfqd->active_queue;
2706    struct cfq_io_cq *cic;
2707    unsigned long sl, group_idle = 0;
2708
2709    /*
2710     * SSD device without seek penalty, disable idling. But only do so
2711     * for devices that support queuing, otherwise we still have a problem
2712     * with sync vs async workloads.
2713     */
2714    if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2715        return;
2716
2717    WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2718    WARN_ON(cfq_cfqq_slice_new(cfqq));
2719
2720    /*
2721     * idle is disabled, either manually or by past process history
2722     */
2723    if (!cfq_should_idle(cfqd, cfqq)) {
2724        /* no queue idling. Check for group idling */
2725        if (cfqd->cfq_group_idle)
2726            group_idle = cfqd->cfq_group_idle;
2727        else
2728            return;
2729    }
2730
2731    /*
2732     * still active requests from this queue, don't idle
2733     */
2734    if (cfqq->dispatched)
2735        return;
2736
2737    /*
2738     * task has exited, don't wait
2739     */
2740    cic = cfqd->active_cic;
2741    if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2742        return;
2743
2744    /*
2745     * If our average think time is larger than the remaining time
2746     * slice, then don't idle. This avoids overrunning the allotted
2747     * time slice.
2748     */
2749    if (sample_valid(cic->ttime.ttime_samples) &&
2750        (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2751        cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2752                 cic->ttime.ttime_mean);
2753        return;
2754    }
2755
2756    /* There are other queues in the group, don't do group idle */
2757    if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2758        return;
2759
2760    cfq_mark_cfqq_wait_request(cfqq);
2761
2762    if (group_idle)
2763        sl = cfqd->cfq_group_idle;
2764    else
2765        sl = cfqd->cfq_slice_idle;
2766
2767    mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2768    cfqg_stats_set_start_idle_time(cfqq->cfqg);
2769    cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2770            group_idle ? 1 : 0);
2771}
2772
2773/*
2774 * Move request from internal lists to the request queue dispatch list.
2775 */
2776static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2777{
2778    struct cfq_data *cfqd = q->elevator->elevator_data;
2779    struct cfq_queue *cfqq = RQ_CFQQ(rq);
2780
2781    cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2782
2783    cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2784    cfq_remove_request(rq);
2785    cfqq->dispatched++;
2786    (RQ_CFQG(rq))->dispatched++;
2787    elv_dispatch_sort(q, rq);
2788
2789    cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2790    cfqq->nr_sectors += blk_rq_sectors(rq);
2791    cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2792}
2793
2794/*
2795 * return expired entry, or NULL to just start from scratch in rbtree
2796 */
2797static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2798{
2799    struct request *rq = NULL;
2800
2801    if (cfq_cfqq_fifo_expire(cfqq))
2802        return NULL;
2803
2804    cfq_mark_cfqq_fifo_expire(cfqq);
2805
2806    if (list_empty(&cfqq->fifo))
2807        return NULL;
2808
2809    rq = rq_entry_fifo(cfqq->fifo.next);
2810    if (time_before(jiffies, rq_fifo_time(rq)))
2811        rq = NULL;
2812
2813    cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2814    return rq;
2815}
2816
2817static inline int
2818cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2819{
2820    const int base_rq = cfqd->cfq_slice_async_rq;
2821
2822    WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2823
2824    return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2825}
2826
2827/*
2828 * Must be called with the queue_lock held.
2829 */
2830static int cfqq_process_refs(struct cfq_queue *cfqq)
2831{
2832    int process_refs, io_refs;
2833
2834    io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2835    process_refs = cfqq->ref - io_refs;
2836    BUG_ON(process_refs < 0);
2837    return process_refs;
2838}
2839
2840static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2841{
2842    int process_refs, new_process_refs;
2843    struct cfq_queue *__cfqq;
2844
2845    /*
2846     * If there are no process references on the new_cfqq, then it is
2847     * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2848     * chain may have dropped their last reference (not just their
2849     * last process reference).
2850     */
2851    if (!cfqq_process_refs(new_cfqq))
2852        return;
2853
2854    /* Avoid a circular list and skip interim queue merges */
2855    while ((__cfqq = new_cfqq->new_cfqq)) {
2856        if (__cfqq == cfqq)
2857            return;
2858        new_cfqq = __cfqq;
2859    }
2860
2861    process_refs = cfqq_process_refs(cfqq);
2862    new_process_refs = cfqq_process_refs(new_cfqq);
2863    /*
2864     * If the process for the cfqq has gone away, there is no
2865     * sense in merging the queues.
2866     */
2867    if (process_refs == 0 || new_process_refs == 0)
2868        return;
2869
2870    /*
2871     * Merge in the direction of the lesser amount of work.
2872     */
2873    if (new_process_refs >= process_refs) {
2874        cfqq->new_cfqq = new_cfqq;
2875        new_cfqq->ref += process_refs;
2876    } else {
2877        new_cfqq->new_cfqq = cfqq;
2878        cfqq->ref += new_process_refs;
2879    }
2880}
2881
2882static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2883            struct cfq_group *cfqg, enum wl_class_t wl_class)
2884{
2885    struct cfq_queue *queue;
2886    int i;
2887    bool key_valid = false;
2888    unsigned long lowest_key = 0;
2889    enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2890
2891    for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2892        /* select the one with lowest rb_key */
2893        queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2894        if (queue &&
2895            (!key_valid || time_before(queue->rb_key, lowest_key))) {
2896            lowest_key = queue->rb_key;
2897            cur_best = i;
2898            key_valid = true;
2899        }
2900    }
2901
2902    return cur_best;
2903}
2904
2905static void
2906choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2907{
2908    unsigned slice;
2909    unsigned count;
2910    struct cfq_rb_root *st;
2911    unsigned group_slice;
2912    enum wl_class_t original_class = cfqd->serving_wl_class;
2913
2914    /* Choose next priority. RT > BE > IDLE */
2915    if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2916        cfqd->serving_wl_class = RT_WORKLOAD;
2917    else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2918        cfqd->serving_wl_class = BE_WORKLOAD;
2919    else {
2920        cfqd->serving_wl_class = IDLE_WORKLOAD;
2921        cfqd->workload_expires = jiffies + 1;
2922        return;
2923    }
2924
2925    if (original_class != cfqd->serving_wl_class)
2926        goto new_workload;
2927
2928    /*
2929     * For RT and BE, we have to choose also the type
2930     * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2931     * expiration time
2932     */
2933    st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2934    count = st->count;
2935
2936    /*
2937     * check workload expiration, and that we still have other queues ready
2938     */
2939    if (count && !time_after(jiffies, cfqd->workload_expires))
2940        return;
2941
2942new_workload:
2943    /* otherwise select new workload type */
2944    cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2945                    cfqd->serving_wl_class);
2946    st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2947    count = st->count;
2948
2949    /*
2950     * the workload slice is computed as a fraction of target latency
2951     * proportional to the number of queues in that workload, over
2952     * all the queues in the same priority class
2953     */
2954    group_slice = cfq_group_slice(cfqd, cfqg);
2955
2956    slice = group_slice * count /
2957        max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2958              cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2959                    cfqg));
2960
2961    if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2962        unsigned int tmp;
2963
2964        /*
2965         * Async queues are currently system wide. Just taking
2966         * proportion of queues with-in same group will lead to higher
2967         * async ratio system wide as generally root group is going
2968         * to have higher weight. A more accurate thing would be to
2969         * calculate system wide asnc/sync ratio.
2970         */
2971        tmp = cfqd->cfq_target_latency *
2972            cfqg_busy_async_queues(cfqd, cfqg);
2973        tmp = tmp/cfqd->busy_queues;
2974        slice = min_t(unsigned, slice, tmp);
2975
2976        /* async workload slice is scaled down according to
2977         * the sync/async slice ratio. */
2978        slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2979    } else
2980        /* sync workload slice is at least 2 * cfq_slice_idle */
2981        slice = max(slice, 2 * cfqd->cfq_slice_idle);
2982
2983    slice = max_t(unsigned, slice, CFQ_MIN_TT);
2984    cfq_log(cfqd, "workload slice:%d", slice);
2985    cfqd->workload_expires = jiffies + slice;
2986}
2987
2988static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2989{
2990    struct cfq_rb_root *st = &cfqd->grp_service_tree;
2991    struct cfq_group *cfqg;
2992
2993    if (RB_EMPTY_ROOT(&st->rb))
2994        return NULL;
2995    cfqg = cfq_rb_first_group(st);
2996    update_min_vdisktime(st);
2997    return cfqg;
2998}
2999
3000static void cfq_choose_cfqg(struct cfq_data *cfqd)
3001{
3002    struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3003
3004    cfqd->serving_group = cfqg;
3005
3006    /* Restore the workload type data */
3007    if (cfqg->saved_wl_slice) {
3008        cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3009        cfqd->serving_wl_type = cfqg->saved_wl_type;
3010        cfqd->serving_wl_class = cfqg->saved_wl_class;
3011    } else
3012        cfqd->workload_expires = jiffies - 1;
3013
3014    choose_wl_class_and_type(cfqd, cfqg);
3015}
3016
3017/*
3018 * Select a queue for service. If we have a current active queue,
3019 * check whether to continue servicing it, or retrieve and set a new one.
3020 */
3021static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3022{
3023    struct cfq_queue *cfqq, *new_cfqq = NULL;
3024
3025    cfqq = cfqd->active_queue;
3026    if (!cfqq)
3027        goto new_queue;
3028
3029    if (!cfqd->rq_queued)
3030        return NULL;
3031
3032    /*
3033     * We were waiting for group to get backlogged. Expire the queue
3034     */
3035    if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3036        goto expire;
3037
3038    /*
3039     * The active queue has run out of time, expire it and select new.
3040     */
3041    if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3042        /*
3043         * If slice had not expired at the completion of last request
3044         * we might not have turned on wait_busy flag. Don't expire
3045         * the queue yet. Allow the group to get backlogged.
3046         *
3047         * The very fact that we have used the slice, that means we
3048         * have been idling all along on this queue and it should be
3049         * ok to wait for this request to complete.
3050         */
3051        if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3052            && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3053            cfqq = NULL;
3054            goto keep_queue;
3055        } else
3056            goto check_group_idle;
3057    }
3058
3059    /*
3060     * The active queue has requests and isn't expired, allow it to
3061     * dispatch.
3062     */
3063    if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3064        goto keep_queue;
3065
3066    /*
3067     * If another queue has a request waiting within our mean seek
3068     * distance, let it run. The expire code will check for close
3069     * cooperators and put the close queue at the front of the service
3070     * tree. If possible, merge the expiring queue with the new cfqq.
3071     */
3072    new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3073    if (new_cfqq) {
3074        if (!cfqq->new_cfqq)
3075            cfq_setup_merge(cfqq, new_cfqq);
3076        goto expire;
3077    }
3078
3079    /*
3080     * No requests pending. If the active queue still has requests in
3081     * flight or is idling for a new request, allow either of these
3082     * conditions to happen (or time out) before selecting a new queue.
3083     */
3084    if (timer_pending(&cfqd->idle_slice_timer)) {
3085        cfqq = NULL;
3086        goto keep_queue;
3087    }
3088
3089    /*
3090     * This is a deep seek queue, but the device is much faster than
3091     * the queue can deliver, don't idle
3092     **/
3093    if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3094        (cfq_cfqq_slice_new(cfqq) ||
3095        (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3096        cfq_clear_cfqq_deep(cfqq);
3097        cfq_clear_cfqq_idle_window(cfqq);
3098    }
3099
3100    if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3101        cfqq = NULL;
3102        goto keep_queue;
3103    }
3104
3105    /*
3106     * If group idle is enabled and there are requests dispatched from
3107     * this group, wait for requests to complete.
3108     */
3109check_group_idle:
3110    if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3111        cfqq->cfqg->dispatched &&
3112        !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3113        cfqq = NULL;
3114        goto keep_queue;
3115    }
3116
3117expire:
3118    cfq_slice_expired(cfqd, 0);
3119new_queue:
3120    /*
3121     * Current queue expired. Check if we have to switch to a new
3122     * service tree
3123     */
3124    if (!new_cfqq)
3125        cfq_choose_cfqg(cfqd);
3126
3127    cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3128keep_queue:
3129    return cfqq;
3130}
3131
3132static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3133{
3134    int dispatched = 0;
3135
3136    while (cfqq->next_rq) {
3137        cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3138        dispatched++;
3139    }
3140
3141    BUG_ON(!list_empty(&cfqq->fifo));
3142
3143    /* By default cfqq is not expired if it is empty. Do it explicitly */
3144    __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3145    return dispatched;
3146}
3147
3148/*
3149 * Drain our current requests. Used for barriers and when switching
3150 * io schedulers on-the-fly.
3151 */
3152static int cfq_forced_dispatch(struct cfq_data *cfqd)
3153{
3154    struct cfq_queue *cfqq;
3155    int dispatched = 0;
3156
3157    /* Expire the timeslice of the current active queue first */
3158    cfq_slice_expired(cfqd, 0);
3159    while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3160        __cfq_set_active_queue(cfqd, cfqq);
3161        dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3162    }
3163
3164    BUG_ON(cfqd->busy_queues);
3165
3166    cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3167    return dispatched;
3168}
3169
3170static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3171    struct cfq_queue *cfqq)
3172{
3173    /* the queue hasn't finished any request, can't estimate */
3174    if (cfq_cfqq_slice_new(cfqq))
3175        return true;
3176    if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3177        cfqq->slice_end))
3178        return true;
3179
3180    return false;
3181}
3182
3183static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3184{
3185    unsigned int max_dispatch;
3186
3187    /*
3188     * Drain async requests before we start sync IO
3189     */
3190    if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3191        return false;
3192
3193    /*
3194     * If this is an async queue and we have sync IO in flight, let it wait
3195     */
3196    if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3197        return false;
3198
3199    max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3200    if (cfq_class_idle(cfqq))
3201        max_dispatch = 1;
3202
3203    /*
3204     * Does this cfqq already have too much IO in flight?
3205     */
3206    if (cfqq->dispatched >= max_dispatch) {
3207        bool promote_sync = false;
3208        /*
3209         * idle queue must always only have a single IO in flight
3210         */
3211        if (cfq_class_idle(cfqq))
3212            return false;
3213
3214        /*
3215         * If there is only one sync queue
3216         * we can ignore async queue here and give the sync
3217         * queue no dispatch limit. The reason is a sync queue can
3218         * preempt async queue, limiting the sync queue doesn't make
3219         * sense. This is useful for aiostress test.
3220         */
3221        if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3222            promote_sync = true;
3223
3224        /*
3225         * We have other queues, don't allow more IO from this one
3226         */
3227        if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3228                !promote_sync)
3229            return false;
3230
3231        /*
3232         * Sole queue user, no limit
3233         */
3234        if (cfqd->busy_queues == 1 || promote_sync)
3235            max_dispatch = -1;
3236        else
3237            /*
3238             * Normally we start throttling cfqq when cfq_quantum/2
3239             * requests have been dispatched. But we can drive
3240             * deeper queue depths at the beginning of slice
3241             * subjected to upper limit of cfq_quantum.
3242             * */
3243            max_dispatch = cfqd->cfq_quantum;
3244    }
3245
3246    /*
3247     * Async queues must wait a bit before being allowed dispatch.
3248     * We also ramp up the dispatch depth gradually for async IO,
3249     * based on the last sync IO we serviced
3250     */
3251    if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3252        unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3253        unsigned int depth;
3254
3255        depth = last_sync / cfqd->cfq_slice[1];
3256        if (!depth && !cfqq->dispatched)
3257            depth = 1;
3258        if (depth < max_dispatch)
3259            max_dispatch = depth;
3260    }
3261
3262    /*
3263     * If we're below the current max, allow a dispatch
3264     */
3265    return cfqq->dispatched < max_dispatch;
3266}
3267
3268/*
3269 * Dispatch a request from cfqq, moving them to the request queue
3270 * dispatch list.
3271 */
3272static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3273{
3274    struct request *rq;
3275
3276    BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3277
3278    if (!cfq_may_dispatch(cfqd, cfqq))
3279        return false;
3280
3281    /*
3282     * follow expired path, else get first next available
3283     */
3284    rq = cfq_check_fifo(cfqq);
3285    if (!rq)
3286        rq = cfqq->next_rq;
3287
3288    /*
3289     * insert request into driver dispatch list
3290     */
3291    cfq_dispatch_insert(cfqd->queue, rq);
3292
3293    if (!cfqd->active_cic) {
3294        struct cfq_io_cq *cic = RQ_CIC(rq);
3295
3296        atomic_long_inc(&cic->icq.ioc->refcount);
3297        cfqd->active_cic = cic;
3298    }
3299
3300    return true;
3301}
3302
3303/*
3304 * Find the cfqq that we need to service and move a request from that to the
3305 * dispatch list
3306 */
3307static int cfq_dispatch_requests(struct request_queue *q, int force)
3308{
3309    struct cfq_data *cfqd = q->elevator->elevator_data;
3310    struct cfq_queue *cfqq;
3311
3312    if (!cfqd->busy_queues)
3313        return 0;
3314
3315    if (unlikely(force))
3316        return cfq_forced_dispatch(cfqd);
3317
3318    cfqq = cfq_select_queue(cfqd);
3319    if (!cfqq)
3320        return 0;
3321
3322    /*
3323     * Dispatch a request from this cfqq, if it is allowed
3324     */
3325    if (!cfq_dispatch_request(cfqd, cfqq))
3326        return 0;
3327
3328    cfqq->slice_dispatch++;
3329    cfq_clear_cfqq_must_dispatch(cfqq);
3330
3331    /*
3332     * expire an async queue immediately if it has used up its slice. idle
3333     * queue always expire after 1 dispatch round.
3334     */
3335    if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3336        cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3337        cfq_class_idle(cfqq))) {
3338        cfqq->slice_end = jiffies + 1;
3339        cfq_slice_expired(cfqd, 0);
3340    }
3341
3342    cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3343    return 1;
3344}
3345
3346/*
3347 * task holds one reference to the queue, dropped when task exits. each rq
3348 * in-flight on this queue also holds a reference, dropped when rq is freed.
3349 *
3350 * Each cfq queue took a reference on the parent group. Drop it now.
3351 * queue lock must be held here.
3352 */
3353static void cfq_put_queue(struct cfq_queue *cfqq)
3354{
3355    struct cfq_data *cfqd = cfqq->cfqd;
3356    struct cfq_group *cfqg;
3357
3358    BUG_ON(cfqq->ref <= 0);
3359
3360    cfqq->ref--;
3361    if (cfqq->ref)
3362        return;
3363
3364    cfq_log_cfqq(cfqd, cfqq, "put_queue");
3365    BUG_ON(rb_first(&cfqq->sort_list));
3366    BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3367    cfqg = cfqq->cfqg;
3368
3369    if (unlikely(cfqd->active_queue == cfqq)) {
3370        __cfq_slice_expired(cfqd, cfqq, 0);
3371        cfq_schedule_dispatch(cfqd);
3372    }
3373
3374    BUG_ON(cfq_cfqq_on_rr(cfqq));
3375    kmem_cache_free(cfq_pool, cfqq);
3376    cfqg_put(cfqg);
3377}
3378
3379static void cfq_put_cooperator(struct cfq_queue *cfqq)
3380{
3381    struct cfq_queue *__cfqq, *next;
3382
3383    /*
3384     * If this queue was scheduled to merge with another queue, be
3385     * sure to drop the reference taken on that queue (and others in
3386     * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3387     */
3388    __cfqq = cfqq->new_cfqq;
3389    while (__cfqq) {
3390        if (__cfqq == cfqq) {
3391            WARN(1, "cfqq->new_cfqq loop detected\n");
3392            break;
3393        }
3394        next = __cfqq->new_cfqq;
3395        cfq_put_queue(__cfqq);
3396        __cfqq = next;
3397    }
3398}
3399
3400static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3401{
3402    if (unlikely(cfqq == cfqd->active_queue)) {
3403        __cfq_slice_expired(cfqd, cfqq, 0);
3404        cfq_schedule_dispatch(cfqd);
3405    }
3406
3407    cfq_put_cooperator(cfqq);
3408
3409    cfq_put_queue(cfqq);
3410}
3411
3412static void cfq_init_icq(struct io_cq *icq)
3413{
3414    struct cfq_io_cq *cic = icq_to_cic(icq);
3415
3416    cic->ttime.last_end_request = jiffies;
3417}
3418
3419static void cfq_exit_icq(struct io_cq *icq)
3420{
3421    struct cfq_io_cq *cic = icq_to_cic(icq);
3422    struct cfq_data *cfqd = cic_to_cfqd(cic);
3423
3424    if (cic->cfqq[BLK_RW_ASYNC]) {
3425        cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3426        cic->cfqq[BLK_RW_ASYNC] = NULL;
3427    }
3428
3429    if (cic->cfqq[BLK_RW_SYNC]) {
3430        cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3431        cic->cfqq[BLK_RW_SYNC] = NULL;
3432    }
3433}
3434
3435static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3436{
3437    struct task_struct *tsk = current;
3438    int ioprio_class;
3439
3440    if (!cfq_cfqq_prio_changed(cfqq))
3441        return;
3442
3443    ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3444    switch (ioprio_class) {
3445    default:
3446        printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3447    case IOPRIO_CLASS_NONE:
3448        /*
3449         * no prio set, inherit CPU scheduling settings
3450         */
3451        cfqq->ioprio = task_nice_ioprio(tsk);
3452        cfqq->ioprio_class = task_nice_ioclass(tsk);
3453        break;
3454    case IOPRIO_CLASS_RT:
3455        cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3456        cfqq->ioprio_class = IOPRIO_CLASS_RT;
3457        break;
3458    case IOPRIO_CLASS_BE:
3459        cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3460        cfqq->ioprio_class = IOPRIO_CLASS_BE;
3461        break;
3462    case IOPRIO_CLASS_IDLE:
3463        cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3464        cfqq->ioprio = 7;
3465        cfq_clear_cfqq_idle_window(cfqq);
3466        break;
3467    }
3468
3469    /*
3470     * keep track of original prio settings in case we have to temporarily
3471     * elevate the priority of this queue
3472     */
3473    cfqq->org_ioprio = cfqq->ioprio;
3474    cfq_clear_cfqq_prio_changed(cfqq);
3475}
3476
3477static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3478{
3479    int ioprio = cic->icq.ioc->ioprio;
3480    struct cfq_data *cfqd = cic_to_cfqd(cic);
3481    struct cfq_queue *cfqq;
3482
3483    /*
3484     * Check whether ioprio has changed. The condition may trigger
3485     * spuriously on a newly created cic but there's no harm.
3486     */
3487    if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3488        return;
3489
3490    cfqq = cic->cfqq[BLK_RW_ASYNC];
3491    if (cfqq) {
3492        struct cfq_queue *new_cfqq;
3493        new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3494                     GFP_ATOMIC);
3495        if (new_cfqq) {
3496            cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3497            cfq_put_queue(cfqq);
3498        }
3499    }
3500
3501    cfqq = cic->cfqq[BLK_RW_SYNC];
3502    if (cfqq)
3503        cfq_mark_cfqq_prio_changed(cfqq);
3504
3505    cic->ioprio = ioprio;
3506}
3507
3508static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3509              pid_t pid, bool is_sync)
3510{
3511    RB_CLEAR_NODE(&cfqq->rb_node);
3512    RB_CLEAR_NODE(&cfqq->p_node);
3513    INIT_LIST_HEAD(&cfqq->fifo);
3514
3515    cfqq->ref = 0;
3516    cfqq->cfqd = cfqd;
3517
3518    cfq_mark_cfqq_prio_changed(cfqq);
3519
3520    if (is_sync) {
3521        if (!cfq_class_idle(cfqq))
3522            cfq_mark_cfqq_idle_window(cfqq);
3523        cfq_mark_cfqq_sync(cfqq);
3524    }
3525    cfqq->pid = pid;
3526}
3527
3528#ifdef CONFIG_CFQ_GROUP_IOSCHED
3529static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3530{
3531    struct cfq_data *cfqd = cic_to_cfqd(cic);
3532    struct cfq_queue *sync_cfqq;
3533    uint64_t id;
3534
3535    rcu_read_lock();
3536    id = bio_blkcg(bio)->id;
3537    rcu_read_unlock();
3538
3539    /*
3540     * Check whether blkcg has changed. The condition may trigger
3541     * spuriously on a newly created cic but there's no harm.
3542     */
3543    if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3544        return;
3545
3546    sync_cfqq = cic_to_cfqq(cic, 1);
3547    if (sync_cfqq) {
3548        /*
3549         * Drop reference to sync queue. A new sync queue will be
3550         * assigned in new group upon arrival of a fresh request.
3551         */
3552        cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3553        cic_set_cfqq(cic, NULL, 1);
3554        cfq_put_queue(sync_cfqq);
3555    }
3556
3557    cic->blkcg_id = id;
3558}
3559#else
3560static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3561#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3562
3563static struct cfq_queue *
3564cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3565             struct bio *bio, gfp_t gfp_mask)
3566{
3567    struct blkcg *blkcg;
3568    struct cfq_queue *cfqq, *new_cfqq = NULL;
3569    struct cfq_group *cfqg;
3570
3571retry:
3572    rcu_read_lock();
3573
3574    blkcg = bio_blkcg(bio);
3575    cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3576    cfqq = cic_to_cfqq(cic, is_sync);
3577
3578    /*
3579     * Always try a new alloc if we fell back to the OOM cfqq
3580     * originally, since it should just be a temporary situation.
3581     */
3582    if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3583        cfqq = NULL;
3584        if (new_cfqq) {
3585            cfqq = new_cfqq;
3586            new_cfqq = NULL;
3587        } else if (gfp_mask & __GFP_WAIT) {
3588            rcu_read_unlock();
3589            spin_unlock_irq(cfqd->queue->queue_lock);
3590            new_cfqq = kmem_cache_alloc_node(cfq_pool,
3591                    gfp_mask | __GFP_ZERO,
3592                    cfqd->queue->node);
3593            spin_lock_irq(cfqd->queue->queue_lock);
3594            if (new_cfqq)
3595                goto retry;
3596            else
3597                return &cfqd->oom_cfqq;
3598        } else {
3599            cfqq = kmem_cache_alloc_node(cfq_pool,
3600                    gfp_mask | __GFP_ZERO,
3601                    cfqd->queue->node);
3602        }
3603
3604        if (cfqq) {
3605            cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3606            cfq_init_prio_data(cfqq, cic);
3607            cfq_link_cfqq_cfqg(cfqq, cfqg);
3608            cfq_log_cfqq(cfqd, cfqq, "alloced");
3609        } else
3610            cfqq = &cfqd->oom_cfqq;
3611    }
3612
3613    if (new_cfqq)
3614        kmem_cache_free(cfq_pool, new_cfqq);
3615
3616    rcu_read_unlock();
3617    return cfqq;
3618}
3619
3620static struct cfq_queue **
3621cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3622{
3623    switch (ioprio_class) {
3624    case IOPRIO_CLASS_RT:
3625        return &cfqd->async_cfqq[0][ioprio];
3626    case IOPRIO_CLASS_NONE:
3627        ioprio = IOPRIO_NORM;
3628        /* fall through */
3629    case IOPRIO_CLASS_BE:
3630        return &cfqd->async_cfqq[1][ioprio];
3631    case IOPRIO_CLASS_IDLE:
3632        return &cfqd->async_idle_cfqq;
3633    default:
3634        BUG();
3635    }
3636}
3637
3638static struct cfq_queue *
3639cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3640          struct bio *bio, gfp_t gfp_mask)
3641{
3642    const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3643    const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3644    struct cfq_queue **async_cfqq = NULL;
3645    struct cfq_queue *cfqq = NULL;
3646
3647    if (!is_sync) {
3648        async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3649        cfqq = *async_cfqq;
3650    }
3651
3652    if (!cfqq)
3653        cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3654
3655    /*
3656     * pin the queue now that it's allocated, scheduler exit will prune it
3657     */
3658    if (!is_sync && !(*async_cfqq)) {
3659        cfqq->ref++;
3660        *async_cfqq = cfqq;
3661    }
3662
3663    cfqq->ref++;
3664    return cfqq;
3665}
3666
3667static void
3668__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3669{
3670    unsigned long elapsed = jiffies - ttime->last_end_request;
3671    elapsed = min(elapsed, 2UL * slice_idle);
3672
3673    ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3674    ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3675    ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3676}
3677
3678static void
3679cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3680            struct cfq_io_cq *cic)
3681{
3682    if (cfq_cfqq_sync(cfqq)) {
3683        __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3684        __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3685            cfqd->cfq_slice_idle);
3686    }
3687#ifdef CONFIG_CFQ_GROUP_IOSCHED
3688    __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3689#endif
3690}
3691
3692static void
3693cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3694               struct request *rq)
3695{
3696    sector_t sdist = 0;
3697    sector_t n_sec = blk_rq_sectors(rq);
3698    if (cfqq->last_request_pos) {
3699        if (cfqq->last_request_pos < blk_rq_pos(rq))
3700            sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3701        else
3702            sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3703    }
3704
3705    cfqq->seek_history <<= 1;
3706    if (blk_queue_nonrot(cfqd->queue))
3707        cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3708    else
3709        cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3710}
3711
3712/*
3713 * Disable idle window if the process thinks too long or seeks so much that
3714 * it doesn't matter
3715 */
3716static void
3717cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3718               struct cfq_io_cq *cic)
3719{
3720    int old_idle, enable_idle;
3721
3722    /*
3723     * Don't idle for async or idle io prio class
3724     */
3725    if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3726        return;
3727
3728    enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3729
3730    if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3731        cfq_mark_cfqq_deep(cfqq);
3732
3733    if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3734        enable_idle = 0;
3735    else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3736         !cfqd->cfq_slice_idle ||
3737         (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3738        enable_idle = 0;
3739    else if (sample_valid(cic->ttime.ttime_samples)) {
3740        if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3741            enable_idle = 0;
3742        else
3743            enable_idle = 1;
3744    }
3745
3746    if (old_idle != enable_idle) {
3747        cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3748        if (enable_idle)
3749            cfq_mark_cfqq_idle_window(cfqq);
3750        else
3751            cfq_clear_cfqq_idle_window(cfqq);
3752    }
3753}
3754
3755/*
3756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3757 * no or if we aren't sure, a 1 will cause a preempt.
3758 */
3759static bool
3760cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3761           struct request *rq)
3762{
3763    struct cfq_queue *cfqq;
3764
3765    cfqq = cfqd->active_queue;
3766    if (!cfqq)
3767        return false;
3768
3769    if (cfq_class_idle(new_cfqq))
3770        return false;
3771
3772    if (cfq_class_idle(cfqq))
3773        return true;
3774
3775    /*
3776     * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3777     */
3778    if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3779        return false;
3780
3781    /*
3782     * if the new request is sync, but the currently running queue is
3783     * not, let the sync request have priority.
3784     */
3785    if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3786        return true;
3787
3788    if (new_cfqq->cfqg != cfqq->cfqg)
3789        return false;
3790
3791    if (cfq_slice_used(cfqq))
3792        return true;
3793
3794    /* Allow preemption only if we are idling on sync-noidle tree */
3795    if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3796        cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3797        new_cfqq->service_tree->count == 2 &&
3798        RB_EMPTY_ROOT(&cfqq->sort_list))
3799        return true;
3800
3801    /*
3802     * So both queues are sync. Let the new request get disk time if
3803     * it's a metadata request and the current queue is doing regular IO.
3804     */
3805    if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3806        return true;
3807
3808    /*
3809     * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3810     */
3811    if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3812        return true;
3813
3814    /* An idle queue should not be idle now for some reason */
3815    if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3816        return true;
3817
3818    if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3819        return false;
3820
3821    /*
3822     * if this request is as-good as one we would expect from the
3823     * current cfqq, let it preempt
3824     */
3825    if (cfq_rq_close(cfqd, cfqq, rq))
3826        return true;
3827
3828    return false;
3829}
3830
3831/*
3832 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3833 * let it have half of its nominal slice.
3834 */
3835static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3836{
3837    enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3838
3839    cfq_log_cfqq(cfqd, cfqq, "preempt");
3840    cfq_slice_expired(cfqd, 1);
3841
3842    /*
3843     * workload type is changed, don't save slice, otherwise preempt
3844     * doesn't happen
3845     */
3846    if (old_type != cfqq_type(cfqq))
3847        cfqq->cfqg->saved_wl_slice = 0;
3848
3849    /*
3850     * Put the new queue at the front of the of the current list,
3851     * so we know that it will be selected next.
3852     */
3853    BUG_ON(!cfq_cfqq_on_rr(cfqq));
3854
3855    cfq_service_tree_add(cfqd, cfqq, 1);
3856
3857    cfqq->slice_end = 0;
3858    cfq_mark_cfqq_slice_new(cfqq);
3859}
3860
3861/*
3862 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3863 * something we should do about it
3864 */
3865static void
3866cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3867        struct request *rq)
3868{
3869    struct cfq_io_cq *cic = RQ_CIC(rq);
3870
3871    cfqd->rq_queued++;
3872    if (rq->cmd_flags & REQ_PRIO)
3873        cfqq->prio_pending++;
3874
3875    cfq_update_io_thinktime(cfqd, cfqq, cic);
3876    cfq_update_io_seektime(cfqd, cfqq, rq);
3877    cfq_update_idle_window(cfqd, cfqq, cic);
3878
3879    cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3880
3881    if (cfqq == cfqd->active_queue) {
3882        /*
3883         * Remember that we saw a request from this process, but
3884         * don't start queuing just yet. Otherwise we risk seeing lots
3885         * of tiny requests, because we disrupt the normal plugging
3886         * and merging. If the request is already larger than a single
3887         * page, let it rip immediately. For that case we assume that
3888         * merging is already done. Ditto for a busy system that
3889         * has other work pending, don't risk delaying until the
3890         * idle timer unplug to continue working.
3891         */
3892        if (cfq_cfqq_wait_request(cfqq)) {
3893            if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3894                cfqd->busy_queues > 1) {
3895                cfq_del_timer(cfqd, cfqq);
3896                cfq_clear_cfqq_wait_request(cfqq);
3897                __blk_run_queue(cfqd->queue);
3898            } else {
3899                cfqg_stats_update_idle_time(cfqq->cfqg);
3900                cfq_mark_cfqq_must_dispatch(cfqq);
3901            }
3902        }
3903    } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3904        /*
3905         * not the active queue - expire current slice if it is
3906         * idle and has expired it's mean thinktime or this new queue
3907         * has some old slice time left and is of higher priority or
3908         * this new queue is RT and the current one is BE
3909         */
3910        cfq_preempt_queue(cfqd, cfqq);
3911        __blk_run_queue(cfqd->queue);
3912    }
3913}
3914
3915static void cfq_insert_request(struct request_queue *q, struct request *rq)
3916{
3917    struct cfq_data *cfqd = q->elevator->elevator_data;
3918    struct cfq_queue *cfqq = RQ_CFQQ(rq);
3919
3920    cfq_log_cfqq(cfqd, cfqq, "insert_request");
3921    cfq_init_prio_data(cfqq, RQ_CIC(rq));
3922
3923    rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3924    list_add_tail(&rq->queuelist, &cfqq->fifo);
3925    cfq_add_rq_rb(rq);
3926    cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3927                 rq->cmd_flags);
3928    cfq_rq_enqueued(cfqd, cfqq, rq);
3929}
3930
3931/*
3932 * Update hw_tag based on peak queue depth over 50 samples under
3933 * sufficient load.
3934 */
3935static void cfq_update_hw_tag(struct cfq_data *cfqd)
3936{
3937    struct cfq_queue *cfqq = cfqd->active_queue;
3938
3939    if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3940        cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3941
3942    if (cfqd->hw_tag == 1)
3943        return;
3944
3945    if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3946        cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3947        return;
3948
3949    /*
3950     * If active queue hasn't enough requests and can idle, cfq might not
3951     * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3952     * case
3953     */
3954    if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3955        cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3956        CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3957        return;
3958
3959    if (cfqd->hw_tag_samples++ < 50)
3960        return;
3961
3962    if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3963        cfqd->hw_tag = 1;
3964    else
3965        cfqd->hw_tag = 0;
3966}
3967
3968static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3969{
3970    struct cfq_io_cq *cic = cfqd->active_cic;
3971
3972    /* If the queue already has requests, don't wait */
3973    if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3974        return false;
3975
3976    /* If there are other queues in the group, don't wait */
3977    if (cfqq->cfqg->nr_cfqq > 1)
3978        return false;
3979
3980    /* the only queue in the group, but think time is big */
3981    if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3982        return false;
3983
3984    if (cfq_slice_used(cfqq))
3985        return true;
3986
3987    /* if slice left is less than think time, wait busy */
3988    if (cic && sample_valid(cic->ttime.ttime_samples)
3989        && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3990        return true;
3991
3992    /*
3993     * If think times is less than a jiffy than ttime_mean=0 and above
3994     * will not be true. It might happen that slice has not expired yet
3995     * but will expire soon (4-5 ns) during select_queue(). To cover the
3996     * case where think time is less than a jiffy, mark the queue wait
3997     * busy if only 1 jiffy is left in the slice.
3998     */
3999    if (cfqq->slice_end - jiffies == 1)
4000        return true;
4001
4002    return false;
4003}
4004
4005static void cfq_completed_request(struct request_queue *q, struct request *rq)
4006{
4007    struct cfq_queue *cfqq = RQ_CFQQ(rq);
4008    struct cfq_data *cfqd = cfqq->cfqd;
4009    const int sync = rq_is_sync(rq);
4010    unsigned long now;
4011
4012    now = jiffies;
4013    cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4014             !!(rq->cmd_flags & REQ_NOIDLE));
4015
4016    cfq_update_hw_tag(cfqd);
4017
4018    WARN_ON(!cfqd->rq_in_driver);
4019    WARN_ON(!cfqq->dispatched);
4020    cfqd->rq_in_driver--;
4021    cfqq->dispatched--;
4022    (RQ_CFQG(rq))->dispatched--;
4023    cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4024                     rq_io_start_time_ns(rq), rq->cmd_flags);
4025
4026    cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4027
4028    if (sync) {
4029        struct cfq_rb_root *st;
4030
4031        RQ_CIC(rq)->ttime.last_end_request = now;
4032
4033        if (cfq_cfqq_on_rr(cfqq))
4034            st = cfqq->service_tree;
4035        else
4036            st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4037                    cfqq_type(cfqq));
4038
4039        st->ttime.last_end_request = now;
4040        if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4041            cfqd->last_delayed_sync = now;
4042    }
4043
4044#ifdef CONFIG_CFQ_GROUP_IOSCHED
4045    cfqq->cfqg->ttime.last_end_request = now;
4046#endif
4047
4048    /*
4049     * If this is the active queue, check if it needs to be expired,
4050     * or if we want to idle in case it has no pending requests.
4051     */
4052    if (cfqd->active_queue == cfqq) {
4053        const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4054
4055        if (cfq_cfqq_slice_new(cfqq)) {
4056            cfq_set_prio_slice(cfqd, cfqq);
4057            cfq_clear_cfqq_slice_new(cfqq);
4058        }
4059
4060        /*
4061         * Should we wait for next request to come in before we expire
4062         * the queue.
4063         */
4064        if (cfq_should_wait_busy(cfqd, cfqq)) {
4065            unsigned long extend_sl = cfqd->cfq_slice_idle;
4066            if (!cfqd->cfq_slice_idle)
4067                extend_sl = cfqd->cfq_group_idle;
4068            cfqq->slice_end = jiffies + extend_sl;
4069            cfq_mark_cfqq_wait_busy(cfqq);
4070            cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4071        }
4072
4073        /*
4074         * Idling is not enabled on:
4075         * - expired queues
4076         * - idle-priority queues
4077         * - async queues
4078         * - queues with still some requests queued
4079         * - when there is a close cooperator
4080         */
4081        if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4082            cfq_slice_expired(cfqd, 1);
4083        else if (sync && cfqq_empty &&
4084             !cfq_close_cooperator(cfqd, cfqq)) {
4085            cfq_arm_slice_timer(cfqd);
4086        }
4087    }
4088
4089    if (!cfqd->rq_in_driver)
4090        cfq_schedule_dispatch(cfqd);
4091}
4092
4093static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4094{
4095    if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4096        cfq_mark_cfqq_must_alloc_slice(cfqq);
4097        return ELV_MQUEUE_MUST;
4098    }
4099
4100    return ELV_MQUEUE_MAY;
4101}
4102
4103static int cfq_may_queue(struct request_queue *q, int rw)
4104{
4105    struct cfq_data *cfqd = q->elevator->elevator_data;
4106    struct task_struct *tsk = current;
4107    struct cfq_io_cq *cic;
4108    struct cfq_queue *cfqq;
4109
4110    /*
4111     * don't force setup of a queue from here, as a call to may_queue
4112     * does not necessarily imply that a request actually will be queued.
4113     * so just lookup a possibly existing queue, or return 'may queue'
4114     * if that fails
4115     */
4116    cic = cfq_cic_lookup(cfqd, tsk->io_context);
4117    if (!cic)
4118        return ELV_MQUEUE_MAY;
4119
4120    cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4121    if (cfqq) {
4122        cfq_init_prio_data(cfqq, cic);
4123
4124        return __cfq_may_queue(cfqq);
4125    }
4126
4127    return ELV_MQUEUE_MAY;
4128}
4129
4130/*
4131 * queue lock held here
4132 */
4133static void cfq_put_request(struct request *rq)
4134{
4135    struct cfq_queue *cfqq = RQ_CFQQ(rq);
4136
4137    if (cfqq) {
4138        const int rw = rq_data_dir(rq);
4139
4140        BUG_ON(!cfqq->allocated[rw]);
4141        cfqq->allocated[rw]--;
4142
4143        /* Put down rq reference on cfqg */
4144        cfqg_put(RQ_CFQG(rq));
4145        rq->elv.priv[0] = NULL;
4146        rq->elv.priv[1] = NULL;
4147
4148        cfq_put_queue(cfqq);
4149    }
4150}
4151
4152static struct cfq_queue *
4153cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4154        struct cfq_queue *cfqq)
4155{
4156    cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4157    cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4158    cfq_mark_cfqq_coop(cfqq->new_cfqq);
4159    cfq_put_queue(cfqq);
4160    return cic_to_cfqq(cic, 1);
4161}
4162
4163/*
4164 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4165 * was the last process referring to said cfqq.
4166 */
4167static struct cfq_queue *
4168split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4169{
4170    if (cfqq_process_refs(cfqq) == 1) {
4171        cfqq->pid = current->pid;
4172        cfq_clear_cfqq_coop(cfqq);
4173        cfq_clear_cfqq_split_coop(cfqq);
4174        return cfqq;
4175    }
4176
4177    cic_set_cfqq(cic, NULL, 1);
4178
4179    cfq_put_cooperator(cfqq);
4180
4181    cfq_put_queue(cfqq);
4182    return NULL;
4183}
4184/*
4185 * Allocate cfq data structures associated with this request.
4186 */
4187static int
4188cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4189        gfp_t gfp_mask)
4190{
4191    struct cfq_data *cfqd = q->elevator->elevator_data;
4192    struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4193    const int rw = rq_data_dir(rq);
4194    const bool is_sync = rq_is_sync(rq);
4195    struct cfq_queue *cfqq;
4196
4197    might_sleep_if(gfp_mask & __GFP_WAIT);
4198
4199    spin_lock_irq(q->queue_lock);
4200
4201    check_ioprio_changed(cic, bio);
4202    check_blkcg_changed(cic, bio);
4203new_queue:
4204    cfqq = cic_to_cfqq(cic, is_sync);
4205    if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4206        cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4207        cic_set_cfqq(cic, cfqq, is_sync);
4208    } else {
4209        /*
4210         * If the queue was seeky for too long, break it apart.
4211         */
4212        if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4213            cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4214            cfqq = split_cfqq(cic, cfqq);
4215            if (!cfqq)
4216                goto new_queue;
4217        }
4218
4219        /*
4220         * Check to see if this queue is scheduled to merge with
4221         * another, closely cooperating queue. The merging of
4222         * queues happens here as it must be done in process context.
4223         * The reference on new_cfqq was taken in merge_cfqqs.
4224         */
4225        if (cfqq->new_cfqq)
4226            cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4227    }
4228
4229    cfqq->allocated[rw]++;
4230
4231    cfqq->ref++;
4232    cfqg_get(cfqq->cfqg);
4233    rq->elv.priv[0] = cfqq;
4234    rq->elv.priv[1] = cfqq->cfqg;
4235    spin_unlock_irq(q->queue_lock);
4236    return 0;
4237}
4238
4239static void cfq_kick_queue(struct work_struct *work)
4240{
4241    struct cfq_data *cfqd =
4242        container_of(work, struct cfq_data, unplug_work);
4243    struct request_queue *q = cfqd->queue;
4244
4245    spin_lock_irq(q->queue_lock);
4246    __blk_run_queue(cfqd->queue);
4247    spin_unlock_irq(q->queue_lock);
4248}
4249
4250/*
4251 * Timer running if the active_queue is currently idling inside its time slice
4252 */
4253static void cfq_idle_slice_timer(unsigned long data)
4254{
4255    struct cfq_data *cfqd = (struct cfq_data *) data;
4256    struct cfq_queue *cfqq;
4257    unsigned long flags;
4258    int timed_out = 1;
4259
4260    cfq_log(cfqd, "idle timer fired");
4261
4262    spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4263
4264    cfqq = cfqd->active_queue;
4265    if (cfqq) {
4266        timed_out = 0;
4267
4268        /*
4269         * We saw a request before the queue expired, let it through
4270         */
4271        if (cfq_cfqq_must_dispatch(cfqq))
4272            goto out_kick;
4273
4274        /*
4275         * expired
4276         */
4277        if (cfq_slice_used(cfqq))
4278            goto expire;
4279
4280        /*
4281         * only expire and reinvoke request handler, if there are
4282         * other queues with pending requests
4283         */
4284        if (!cfqd->busy_queues)
4285            goto out_cont;
4286
4287        /*
4288         * not expired and it has a request pending, let it dispatch
4289         */
4290        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4291            goto out_kick;
4292
4293        /*
4294         * Queue depth flag is reset only when the idle didn't succeed
4295         */
4296        cfq_clear_cfqq_deep(cfqq);
4297    }
4298expire:
4299    cfq_slice_expired(cfqd, timed_out);
4300out_kick:
4301    cfq_schedule_dispatch(cfqd);
4302out_cont:
4303    spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4304}
4305
4306static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4307{
4308    del_timer_sync(&cfqd->idle_slice_timer);
4309    cancel_work_sync(&cfqd->unplug_work);
4310}
4311
4312static void cfq_put_async_queues(struct cfq_data *cfqd)
4313{
4314    int i;
4315
4316    for (i = 0; i < IOPRIO_BE_NR; i++) {
4317        if (cfqd->async_cfqq[0][i])
4318            cfq_put_queue(cfqd->async_cfqq[0][i]);
4319        if (cfqd->async_cfqq[1][i])
4320            cfq_put_queue(cfqd->async_cfqq[1][i]);
4321    }
4322
4323    if (cfqd->async_idle_cfqq)
4324        cfq_put_queue(cfqd->async_idle_cfqq);
4325}
4326
4327static void cfq_exit_queue(struct elevator_queue *e)
4328{
4329    struct cfq_data *cfqd = e->elevator_data;
4330    struct request_queue *q = cfqd->queue;
4331
4332    cfq_shutdown_timer_wq(cfqd);
4333
4334    spin_lock_irq(q->queue_lock);
4335
4336    if (cfqd->active_queue)
4337        __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4338
4339    cfq_put_async_queues(cfqd);
4340
4341    spin_unlock_irq(q->queue_lock);
4342
4343    cfq_shutdown_timer_wq(cfqd);
4344
4345#ifdef CONFIG_CFQ_GROUP_IOSCHED
4346    blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4347#else
4348    kfree(cfqd->root_group);
4349#endif
4350    kfree(cfqd);
4351}
4352
4353static int cfq_init_queue(struct request_queue *q)
4354{
4355    struct cfq_data *cfqd;
4356    struct blkcg_gq *blkg __maybe_unused;
4357    int i, ret;
4358
4359    cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4360    if (!cfqd)
4361        return -ENOMEM;
4362
4363    cfqd->queue = q;
4364    q->elevator->elevator_data = cfqd;
4365
4366    /* Init root service tree */
4367    cfqd->grp_service_tree = CFQ_RB_ROOT;
4368
4369    /* Init root group and prefer root group over other groups by default */
4370#ifdef CONFIG_CFQ_GROUP_IOSCHED
4371    ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4372    if (ret)
4373        goto out_free;
4374
4375    cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4376#else
4377    ret = -ENOMEM;
4378    cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4379                    GFP_KERNEL, cfqd->queue->node);
4380    if (!cfqd->root_group)
4381        goto out_free;
4382
4383    cfq_init_cfqg_base(cfqd->root_group);
4384#endif
4385    cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4386    cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4387
4388    /*
4389     * Not strictly needed (since RB_ROOT just clears the node and we
4390     * zeroed cfqd on alloc), but better be safe in case someone decides
4391     * to add magic to the rb code
4392     */
4393    for (i = 0; i < CFQ_PRIO_LISTS; i++)
4394        cfqd->prio_trees[i] = RB_ROOT;
4395
4396    /*
4397     * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4398     * Grab a permanent reference to it, so that the normal code flow
4399     * will not attempt to free it. oom_cfqq is linked to root_group
4400     * but shouldn't hold a reference as it'll never be unlinked. Lose
4401     * the reference from linking right away.
4402     */
4403    cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4404    cfqd->oom_cfqq.ref++;
4405
4406    spin_lock_irq(q->queue_lock);
4407    cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4408    cfqg_put(cfqd->root_group);
4409    spin_unlock_irq(q->queue_lock);
4410
4411    init_timer(&cfqd->idle_slice_timer);
4412    cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4413    cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4414
4415    INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4416
4417    cfqd->cfq_quantum = cfq_quantum;
4418    cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4419    cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4420    cfqd->cfq_back_max = cfq_back_max;
4421    cfqd->cfq_back_penalty = cfq_back_penalty;
4422    cfqd->cfq_slice[0] = cfq_slice_async;
4423    cfqd->cfq_slice[1] = cfq_slice_sync;
4424    cfqd->cfq_target_latency = cfq_target_latency;
4425    cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4426    cfqd->cfq_slice_idle = cfq_slice_idle;
4427    cfqd->cfq_group_idle = cfq_group_idle;
4428    cfqd->cfq_latency = 1;
4429    cfqd->hw_tag = -1;
4430    /*
4431     * we optimistically start assuming sync ops weren't delayed in last
4432     * second, in order to have larger depth for async operations.
4433     */
4434    cfqd->last_delayed_sync = jiffies - HZ;
4435    return 0;
4436
4437out_free:
4438    kfree(cfqd);
4439    return ret;
4440}
4441
4442/*
4443 * sysfs parts below -->
4444 */
4445static ssize_t
4446cfq_var_show(unsigned int var, char *page)
4447{
4448    return sprintf(page, "%d\n", var);
4449}
4450
4451static ssize_t
4452cfq_var_store(unsigned int *var, const char *page, size_t count)
4453{
4454    char *p = (char *) page;
4455
4456    *var = simple_strtoul(p, &p, 10);
4457    return count;
4458}
4459
4460#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4461static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4462{ \
4463    struct cfq_data *cfqd = e->elevator_data; \
4464    unsigned int __data = __VAR; \
4465    if (__CONV) \
4466        __data = jiffies_to_msecs(__data); \
4467    return cfq_var_show(__data, (page)); \
4468}
4469SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4470SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4471SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4472SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4473SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4474SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4475SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4476SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4477SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4478SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4479SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4480SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4481#undef SHOW_FUNCTION
4482
4483#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4484static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4485{ \
4486    struct cfq_data *cfqd = e->elevator_data; \
4487    unsigned int __data; \
4488    int ret = cfq_var_store(&__data, (page), count); \
4489    if (__data < (MIN)) \
4490        __data = (MIN); \
4491    else if (__data > (MAX)) \
4492        __data = (MAX); \
4493    if (__CONV) \
4494        *(__PTR) = msecs_to_jiffies(__data); \
4495    else \
4496        *(__PTR) = __data; \
4497    return ret; \
4498}
4499STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4500STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4501        UINT_MAX, 1);
4502STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4503        UINT_MAX, 1);
4504STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4505STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4506        UINT_MAX, 0);
4507STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4508STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4509STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4510STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4511STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4512        UINT_MAX, 0);
4513STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4514STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4515#undef STORE_FUNCTION
4516
4517#define CFQ_ATTR(name) \
4518    __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4519
4520static struct elv_fs_entry cfq_attrs[] = {
4521    CFQ_ATTR(quantum),
4522    CFQ_ATTR(fifo_expire_sync),
4523    CFQ_ATTR(fifo_expire_async),
4524    CFQ_ATTR(back_seek_max),
4525    CFQ_ATTR(back_seek_penalty),
4526    CFQ_ATTR(slice_sync),
4527    CFQ_ATTR(slice_async),
4528    CFQ_ATTR(slice_async_rq),
4529    CFQ_ATTR(slice_idle),
4530    CFQ_ATTR(group_idle),
4531    CFQ_ATTR(low_latency),
4532    CFQ_ATTR(target_latency),
4533    __ATTR_NULL
4534};
4535
4536static struct elevator_type iosched_cfq = {
4537    .ops = {
4538        .elevator_merge_fn = cfq_merge,
4539        .elevator_merged_fn = cfq_merged_request,
4540        .elevator_merge_req_fn = cfq_merged_requests,
4541        .elevator_allow_merge_fn = cfq_allow_merge,
4542        .elevator_bio_merged_fn = cfq_bio_merged,
4543        .elevator_dispatch_fn = cfq_dispatch_requests,
4544        .elevator_add_req_fn = cfq_insert_request,
4545        .elevator_activate_req_fn = cfq_activate_request,
4546        .elevator_deactivate_req_fn = cfq_deactivate_request,
4547        .elevator_completed_req_fn = cfq_completed_request,
4548        .elevator_former_req_fn = elv_rb_former_request,
4549        .elevator_latter_req_fn = elv_rb_latter_request,
4550        .elevator_init_icq_fn = cfq_init_icq,
4551        .elevator_exit_icq_fn = cfq_exit_icq,
4552        .elevator_set_req_fn = cfq_set_request,
4553        .elevator_put_req_fn = cfq_put_request,
4554        .elevator_may_queue_fn = cfq_may_queue,
4555        .elevator_init_fn = cfq_init_queue,
4556        .elevator_exit_fn = cfq_exit_queue,
4557    },
4558    .icq_size = sizeof(struct cfq_io_cq),
4559    .icq_align = __alignof__(struct cfq_io_cq),
4560    .elevator_attrs = cfq_attrs,
4561    .elevator_name = "cfq",
4562    .elevator_owner = THIS_MODULE,
4563};
4564
4565#ifdef CONFIG_CFQ_GROUP_IOSCHED
4566static struct blkcg_policy blkcg_policy_cfq = {
4567    .pd_size = sizeof(struct cfq_group),
4568    .cftypes = cfq_blkcg_files,
4569
4570    .pd_init_fn = cfq_pd_init,
4571    .pd_offline_fn = cfq_pd_offline,
4572    .pd_reset_stats_fn = cfq_pd_reset_stats,
4573};
4574#endif
4575
4576static int __init cfq_init(void)
4577{
4578    int ret;
4579
4580    /*
4581     * could be 0 on HZ < 1000 setups
4582     */
4583    if (!cfq_slice_async)
4584        cfq_slice_async = 1;
4585    if (!cfq_slice_idle)
4586        cfq_slice_idle = 1;
4587
4588#ifdef CONFIG_CFQ_GROUP_IOSCHED
4589    if (!cfq_group_idle)
4590        cfq_group_idle = 1;
4591
4592    ret = blkcg_policy_register(&blkcg_policy_cfq);
4593    if (ret)
4594        return ret;
4595#else
4596    cfq_group_idle = 0;
4597#endif
4598
4599    ret = -ENOMEM;
4600    cfq_pool = KMEM_CACHE(cfq_queue, 0);
4601    if (!cfq_pool)
4602        goto err_pol_unreg;
4603
4604    ret = elv_register(&iosched_cfq);
4605    if (ret)
4606        goto err_free_pool;
4607
4608    return 0;
4609
4610err_free_pool:
4611    kmem_cache_destroy(cfq_pool);
4612err_pol_unreg:
4613#ifdef CONFIG_CFQ_GROUP_IOSCHED
4614    blkcg_policy_unregister(&blkcg_policy_cfq);
4615#endif
4616    return ret;
4617}
4618
4619static void __exit cfq_exit(void)
4620{
4621#ifdef CONFIG_CFQ_GROUP_IOSCHED
4622    blkcg_policy_unregister(&blkcg_policy_cfq);
4623#endif
4624    elv_unregister(&iosched_cfq);
4625    kmem_cache_destroy(cfq_pool);
4626}
4627
4628module_init(cfq_init);
4629module_exit(cfq_exit);
4630
4631MODULE_AUTHOR("Jens Axboe");
4632MODULE_LICENSE("GPL");
4633MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4634

Archive Download this file



interactive