Root/security/security.c

1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/integrity.h>
20#include <linux/ima.h>
21#include <linux/evm.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <net/flow.h>
28
29#define MAX_LSM_EVM_XATTR 2
30
31/* Boot-time LSM user choice */
32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33    CONFIG_DEFAULT_SECURITY;
34
35static struct security_operations *security_ops;
36static struct security_operations default_security_ops = {
37    .name = "default",
38};
39
40static inline int __init verify(struct security_operations *ops)
41{
42    /* verify the security_operations structure exists */
43    if (!ops)
44        return -EINVAL;
45    security_fixup_ops(ops);
46    return 0;
47}
48
49static void __init do_security_initcalls(void)
50{
51    initcall_t *call;
52    call = __security_initcall_start;
53    while (call < __security_initcall_end) {
54        (*call) ();
55        call++;
56    }
57}
58
59/**
60 * security_init - initializes the security framework
61 *
62 * This should be called early in the kernel initialization sequence.
63 */
64int __init security_init(void)
65{
66    printk(KERN_INFO "Security Framework initialized\n");
67
68    security_fixup_ops(&default_security_ops);
69    security_ops = &default_security_ops;
70    do_security_initcalls();
71
72    return 0;
73}
74
75void reset_security_ops(void)
76{
77    security_ops = &default_security_ops;
78}
79
80/* Save user chosen LSM */
81static int __init choose_lsm(char *str)
82{
83    strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84    return 1;
85}
86__setup("security=", choose_lsm);
87
88/**
89 * security_module_enable - Load given security module on boot ?
90 * @ops: a pointer to the struct security_operations that is to be checked.
91 *
92 * Each LSM must pass this method before registering its own operations
93 * to avoid security registration races. This method may also be used
94 * to check if your LSM is currently loaded during kernel initialization.
95 *
96 * Return true if:
97 * -The passed LSM is the one chosen by user at boot time,
98 * -or the passed LSM is configured as the default and the user did not
99 * choose an alternate LSM at boot time.
100 * Otherwise, return false.
101 */
102int __init security_module_enable(struct security_operations *ops)
103{
104    return !strcmp(ops->name, chosen_lsm);
105}
106
107/**
108 * register_security - registers a security framework with the kernel
109 * @ops: a pointer to the struct security_options that is to be registered
110 *
111 * This function allows a security module to register itself with the
112 * kernel security subsystem. Some rudimentary checking is done on the @ops
113 * value passed to this function. You'll need to check first if your LSM
114 * is allowed to register its @ops by calling security_module_enable(@ops).
115 *
116 * If there is already a security module registered with the kernel,
117 * an error will be returned. Otherwise %0 is returned on success.
118 */
119int __init register_security(struct security_operations *ops)
120{
121    if (verify(ops)) {
122        printk(KERN_DEBUG "%s could not verify "
123               "security_operations structure.\n", __func__);
124        return -EINVAL;
125    }
126
127    if (security_ops != &default_security_ops)
128        return -EAGAIN;
129
130    security_ops = ops;
131
132    return 0;
133}
134
135/* Security operations */
136
137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138{
139#ifdef CONFIG_SECURITY_YAMA_STACKED
140    int rc;
141    rc = yama_ptrace_access_check(child, mode);
142    if (rc)
143        return rc;
144#endif
145    return security_ops->ptrace_access_check(child, mode);
146}
147
148int security_ptrace_traceme(struct task_struct *parent)
149{
150#ifdef CONFIG_SECURITY_YAMA_STACKED
151    int rc;
152    rc = yama_ptrace_traceme(parent);
153    if (rc)
154        return rc;
155#endif
156    return security_ops->ptrace_traceme(parent);
157}
158
159int security_capget(struct task_struct *target,
160             kernel_cap_t *effective,
161             kernel_cap_t *inheritable,
162             kernel_cap_t *permitted)
163{
164    return security_ops->capget(target, effective, inheritable, permitted);
165}
166
167int security_capset(struct cred *new, const struct cred *old,
168            const kernel_cap_t *effective,
169            const kernel_cap_t *inheritable,
170            const kernel_cap_t *permitted)
171{
172    return security_ops->capset(new, old,
173                    effective, inheritable, permitted);
174}
175
176int security_capable(const struct cred *cred, struct user_namespace *ns,
177             int cap)
178{
179    return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180}
181
182int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
183                 int cap)
184{
185    return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186}
187
188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189{
190    return security_ops->quotactl(cmds, type, id, sb);
191}
192
193int security_quota_on(struct dentry *dentry)
194{
195    return security_ops->quota_on(dentry);
196}
197
198int security_syslog(int type)
199{
200    return security_ops->syslog(type);
201}
202
203int security_settime(const struct timespec *ts, const struct timezone *tz)
204{
205    return security_ops->settime(ts, tz);
206}
207
208int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209{
210    return security_ops->vm_enough_memory(mm, pages);
211}
212
213int security_bprm_set_creds(struct linux_binprm *bprm)
214{
215    return security_ops->bprm_set_creds(bprm);
216}
217
218int security_bprm_check(struct linux_binprm *bprm)
219{
220    int ret;
221
222    ret = security_ops->bprm_check_security(bprm);
223    if (ret)
224        return ret;
225    return ima_bprm_check(bprm);
226}
227
228void security_bprm_committing_creds(struct linux_binprm *bprm)
229{
230    security_ops->bprm_committing_creds(bprm);
231}
232
233void security_bprm_committed_creds(struct linux_binprm *bprm)
234{
235    security_ops->bprm_committed_creds(bprm);
236}
237
238int security_bprm_secureexec(struct linux_binprm *bprm)
239{
240    return security_ops->bprm_secureexec(bprm);
241}
242
243int security_sb_alloc(struct super_block *sb)
244{
245    return security_ops->sb_alloc_security(sb);
246}
247
248void security_sb_free(struct super_block *sb)
249{
250    security_ops->sb_free_security(sb);
251}
252
253int security_sb_copy_data(char *orig, char *copy)
254{
255    return security_ops->sb_copy_data(orig, copy);
256}
257EXPORT_SYMBOL(security_sb_copy_data);
258
259int security_sb_remount(struct super_block *sb, void *data)
260{
261    return security_ops->sb_remount(sb, data);
262}
263
264int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
265{
266    return security_ops->sb_kern_mount(sb, flags, data);
267}
268
269int security_sb_show_options(struct seq_file *m, struct super_block *sb)
270{
271    return security_ops->sb_show_options(m, sb);
272}
273
274int security_sb_statfs(struct dentry *dentry)
275{
276    return security_ops->sb_statfs(dentry);
277}
278
279int security_sb_mount(const char *dev_name, struct path *path,
280                       const char *type, unsigned long flags, void *data)
281{
282    return security_ops->sb_mount(dev_name, path, type, flags, data);
283}
284
285int security_sb_umount(struct vfsmount *mnt, int flags)
286{
287    return security_ops->sb_umount(mnt, flags);
288}
289
290int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291{
292    return security_ops->sb_pivotroot(old_path, new_path);
293}
294
295int security_sb_set_mnt_opts(struct super_block *sb,
296                struct security_mnt_opts *opts)
297{
298    return security_ops->sb_set_mnt_opts(sb, opts);
299}
300EXPORT_SYMBOL(security_sb_set_mnt_opts);
301
302void security_sb_clone_mnt_opts(const struct super_block *oldsb,
303                struct super_block *newsb)
304{
305    security_ops->sb_clone_mnt_opts(oldsb, newsb);
306}
307EXPORT_SYMBOL(security_sb_clone_mnt_opts);
308
309int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
310{
311    return security_ops->sb_parse_opts_str(options, opts);
312}
313EXPORT_SYMBOL(security_sb_parse_opts_str);
314
315int security_inode_alloc(struct inode *inode)
316{
317    inode->i_security = NULL;
318    return security_ops->inode_alloc_security(inode);
319}
320
321void security_inode_free(struct inode *inode)
322{
323    integrity_inode_free(inode);
324    security_ops->inode_free_security(inode);
325}
326
327int security_inode_init_security(struct inode *inode, struct inode *dir,
328                 const struct qstr *qstr,
329                 const initxattrs initxattrs, void *fs_data)
330{
331    struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332    struct xattr *lsm_xattr, *evm_xattr, *xattr;
333    int ret;
334
335    if (unlikely(IS_PRIVATE(inode)))
336        return 0;
337
338    memset(new_xattrs, 0, sizeof new_xattrs);
339    if (!initxattrs)
340        return security_ops->inode_init_security(inode, dir, qstr,
341                             NULL, NULL, NULL);
342    lsm_xattr = new_xattrs;
343    ret = security_ops->inode_init_security(inode, dir, qstr,
344                        &lsm_xattr->name,
345                        &lsm_xattr->value,
346                        &lsm_xattr->value_len);
347    if (ret)
348        goto out;
349
350    evm_xattr = lsm_xattr + 1;
351    ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352    if (ret)
353        goto out;
354    ret = initxattrs(inode, new_xattrs, fs_data);
355out:
356    for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357        kfree(xattr->name);
358        kfree(xattr->value);
359    }
360    return (ret == -EOPNOTSUPP) ? 0 : ret;
361}
362EXPORT_SYMBOL(security_inode_init_security);
363
364int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365                     const struct qstr *qstr, char **name,
366                     void **value, size_t *len)
367{
368    if (unlikely(IS_PRIVATE(inode)))
369        return -EOPNOTSUPP;
370    return security_ops->inode_init_security(inode, dir, qstr, name, value,
371                         len);
372}
373EXPORT_SYMBOL(security_old_inode_init_security);
374
375#ifdef CONFIG_SECURITY_PATH
376int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377            unsigned int dev)
378{
379    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380        return 0;
381    return security_ops->path_mknod(dir, dentry, mode, dev);
382}
383EXPORT_SYMBOL(security_path_mknod);
384
385int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386{
387    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388        return 0;
389    return security_ops->path_mkdir(dir, dentry, mode);
390}
391EXPORT_SYMBOL(security_path_mkdir);
392
393int security_path_rmdir(struct path *dir, struct dentry *dentry)
394{
395    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396        return 0;
397    return security_ops->path_rmdir(dir, dentry);
398}
399
400int security_path_unlink(struct path *dir, struct dentry *dentry)
401{
402    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403        return 0;
404    return security_ops->path_unlink(dir, dentry);
405}
406EXPORT_SYMBOL(security_path_unlink);
407
408int security_path_symlink(struct path *dir, struct dentry *dentry,
409              const char *old_name)
410{
411    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412        return 0;
413    return security_ops->path_symlink(dir, dentry, old_name);
414}
415
416int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417               struct dentry *new_dentry)
418{
419    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420        return 0;
421    return security_ops->path_link(old_dentry, new_dir, new_dentry);
422}
423
424int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425             struct path *new_dir, struct dentry *new_dentry)
426{
427    if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429        return 0;
430    return security_ops->path_rename(old_dir, old_dentry, new_dir,
431                     new_dentry);
432}
433EXPORT_SYMBOL(security_path_rename);
434
435int security_path_truncate(struct path *path)
436{
437    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438        return 0;
439    return security_ops->path_truncate(path);
440}
441
442int security_path_chmod(struct path *path, umode_t mode)
443{
444    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445        return 0;
446    return security_ops->path_chmod(path, mode);
447}
448
449int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
450{
451    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452        return 0;
453    return security_ops->path_chown(path, uid, gid);
454}
455
456int security_path_chroot(struct path *path)
457{
458    return security_ops->path_chroot(path);
459}
460#endif
461
462int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463{
464    if (unlikely(IS_PRIVATE(dir)))
465        return 0;
466    return security_ops->inode_create(dir, dentry, mode);
467}
468EXPORT_SYMBOL_GPL(security_inode_create);
469
470int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471             struct dentry *new_dentry)
472{
473    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474        return 0;
475    return security_ops->inode_link(old_dentry, dir, new_dentry);
476}
477
478int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479{
480    if (unlikely(IS_PRIVATE(dentry->d_inode)))
481        return 0;
482    return security_ops->inode_unlink(dir, dentry);
483}
484
485int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486                const char *old_name)
487{
488    if (unlikely(IS_PRIVATE(dir)))
489        return 0;
490    return security_ops->inode_symlink(dir, dentry, old_name);
491}
492
493int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494{
495    if (unlikely(IS_PRIVATE(dir)))
496        return 0;
497    return security_ops->inode_mkdir(dir, dentry, mode);
498}
499EXPORT_SYMBOL_GPL(security_inode_mkdir);
500
501int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502{
503    if (unlikely(IS_PRIVATE(dentry->d_inode)))
504        return 0;
505    return security_ops->inode_rmdir(dir, dentry);
506}
507
508int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509{
510    if (unlikely(IS_PRIVATE(dir)))
511        return 0;
512    return security_ops->inode_mknod(dir, dentry, mode, dev);
513}
514
515int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516               struct inode *new_dir, struct dentry *new_dentry)
517{
518        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520        return 0;
521    return security_ops->inode_rename(old_dir, old_dentry,
522                       new_dir, new_dentry);
523}
524
525int security_inode_readlink(struct dentry *dentry)
526{
527    if (unlikely(IS_PRIVATE(dentry->d_inode)))
528        return 0;
529    return security_ops->inode_readlink(dentry);
530}
531
532int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533{
534    if (unlikely(IS_PRIVATE(dentry->d_inode)))
535        return 0;
536    return security_ops->inode_follow_link(dentry, nd);
537}
538
539int security_inode_permission(struct inode *inode, int mask)
540{
541    if (unlikely(IS_PRIVATE(inode)))
542        return 0;
543    return security_ops->inode_permission(inode, mask);
544}
545
546int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547{
548    int ret;
549
550    if (unlikely(IS_PRIVATE(dentry->d_inode)))
551        return 0;
552    ret = security_ops->inode_setattr(dentry, attr);
553    if (ret)
554        return ret;
555    return evm_inode_setattr(dentry, attr);
556}
557EXPORT_SYMBOL_GPL(security_inode_setattr);
558
559int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560{
561    if (unlikely(IS_PRIVATE(dentry->d_inode)))
562        return 0;
563    return security_ops->inode_getattr(mnt, dentry);
564}
565
566int security_inode_setxattr(struct dentry *dentry, const char *name,
567                const void *value, size_t size, int flags)
568{
569    int ret;
570
571    if (unlikely(IS_PRIVATE(dentry->d_inode)))
572        return 0;
573    ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574    if (ret)
575        return ret;
576    ret = ima_inode_setxattr(dentry, name, value, size);
577    if (ret)
578        return ret;
579    return evm_inode_setxattr(dentry, name, value, size);
580}
581
582void security_inode_post_setxattr(struct dentry *dentry, const char *name,
583                  const void *value, size_t size, int flags)
584{
585    if (unlikely(IS_PRIVATE(dentry->d_inode)))
586        return;
587    security_ops->inode_post_setxattr(dentry, name, value, size, flags);
588    evm_inode_post_setxattr(dentry, name, value, size);
589}
590
591int security_inode_getxattr(struct dentry *dentry, const char *name)
592{
593    if (unlikely(IS_PRIVATE(dentry->d_inode)))
594        return 0;
595    return security_ops->inode_getxattr(dentry, name);
596}
597
598int security_inode_listxattr(struct dentry *dentry)
599{
600    if (unlikely(IS_PRIVATE(dentry->d_inode)))
601        return 0;
602    return security_ops->inode_listxattr(dentry);
603}
604
605int security_inode_removexattr(struct dentry *dentry, const char *name)
606{
607    int ret;
608
609    if (unlikely(IS_PRIVATE(dentry->d_inode)))
610        return 0;
611    ret = security_ops->inode_removexattr(dentry, name);
612    if (ret)
613        return ret;
614    ret = ima_inode_removexattr(dentry, name);
615    if (ret)
616        return ret;
617    return evm_inode_removexattr(dentry, name);
618}
619
620int security_inode_need_killpriv(struct dentry *dentry)
621{
622    return security_ops->inode_need_killpriv(dentry);
623}
624
625int security_inode_killpriv(struct dentry *dentry)
626{
627    return security_ops->inode_killpriv(dentry);
628}
629
630int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631{
632    if (unlikely(IS_PRIVATE(inode)))
633        return -EOPNOTSUPP;
634    return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635}
636
637int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638{
639    if (unlikely(IS_PRIVATE(inode)))
640        return -EOPNOTSUPP;
641    return security_ops->inode_setsecurity(inode, name, value, size, flags);
642}
643
644int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645{
646    if (unlikely(IS_PRIVATE(inode)))
647        return 0;
648    return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649}
650
651void security_inode_getsecid(const struct inode *inode, u32 *secid)
652{
653    security_ops->inode_getsecid(inode, secid);
654}
655
656int security_file_permission(struct file *file, int mask)
657{
658    int ret;
659
660    ret = security_ops->file_permission(file, mask);
661    if (ret)
662        return ret;
663
664    return fsnotify_perm(file, mask);
665}
666
667int security_file_alloc(struct file *file)
668{
669    return security_ops->file_alloc_security(file);
670}
671
672void security_file_free(struct file *file)
673{
674    security_ops->file_free_security(file);
675}
676
677int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
678{
679    return security_ops->file_ioctl(file, cmd, arg);
680}
681
682static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
683{
684    /*
685     * Does we have PROT_READ and does the application expect
686     * it to imply PROT_EXEC? If not, nothing to talk about...
687     */
688    if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
689        return prot;
690    if (!(current->personality & READ_IMPLIES_EXEC))
691        return prot;
692    /*
693     * if that's an anonymous mapping, let it.
694     */
695    if (!file)
696        return prot | PROT_EXEC;
697    /*
698     * ditto if it's not on noexec mount, except that on !MMU we need
699     * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
700     */
701    if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
702#ifndef CONFIG_MMU
703        unsigned long caps = 0;
704        struct address_space *mapping = file->f_mapping;
705        if (mapping && mapping->backing_dev_info)
706            caps = mapping->backing_dev_info->capabilities;
707        if (!(caps & BDI_CAP_EXEC_MAP))
708            return prot;
709#endif
710        return prot | PROT_EXEC;
711    }
712    /* anything on noexec mount won't get PROT_EXEC */
713    return prot;
714}
715
716int security_mmap_file(struct file *file, unsigned long prot,
717            unsigned long flags)
718{
719    int ret;
720    ret = security_ops->mmap_file(file, prot,
721                    mmap_prot(file, prot), flags);
722    if (ret)
723        return ret;
724    return ima_file_mmap(file, prot);
725}
726
727int security_mmap_addr(unsigned long addr)
728{
729    return security_ops->mmap_addr(addr);
730}
731
732int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
733                unsigned long prot)
734{
735    return security_ops->file_mprotect(vma, reqprot, prot);
736}
737
738int security_file_lock(struct file *file, unsigned int cmd)
739{
740    return security_ops->file_lock(file, cmd);
741}
742
743int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
744{
745    return security_ops->file_fcntl(file, cmd, arg);
746}
747
748int security_file_set_fowner(struct file *file)
749{
750    return security_ops->file_set_fowner(file);
751}
752
753int security_file_send_sigiotask(struct task_struct *tsk,
754                  struct fown_struct *fown, int sig)
755{
756    return security_ops->file_send_sigiotask(tsk, fown, sig);
757}
758
759int security_file_receive(struct file *file)
760{
761    return security_ops->file_receive(file);
762}
763
764int security_file_open(struct file *file, const struct cred *cred)
765{
766    int ret;
767
768    ret = security_ops->file_open(file, cred);
769    if (ret)
770        return ret;
771
772    return fsnotify_perm(file, MAY_OPEN);
773}
774
775int security_task_create(unsigned long clone_flags)
776{
777    return security_ops->task_create(clone_flags);
778}
779
780void security_task_free(struct task_struct *task)
781{
782#ifdef CONFIG_SECURITY_YAMA_STACKED
783    yama_task_free(task);
784#endif
785    security_ops->task_free(task);
786}
787
788int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
789{
790    return security_ops->cred_alloc_blank(cred, gfp);
791}
792
793void security_cred_free(struct cred *cred)
794{
795    security_ops->cred_free(cred);
796}
797
798int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
799{
800    return security_ops->cred_prepare(new, old, gfp);
801}
802
803void security_transfer_creds(struct cred *new, const struct cred *old)
804{
805    security_ops->cred_transfer(new, old);
806}
807
808int security_kernel_act_as(struct cred *new, u32 secid)
809{
810    return security_ops->kernel_act_as(new, secid);
811}
812
813int security_kernel_create_files_as(struct cred *new, struct inode *inode)
814{
815    return security_ops->kernel_create_files_as(new, inode);
816}
817
818int security_kernel_module_request(char *kmod_name)
819{
820    return security_ops->kernel_module_request(kmod_name);
821}
822
823int security_kernel_module_from_file(struct file *file)
824{
825    int ret;
826
827    ret = security_ops->kernel_module_from_file(file);
828    if (ret)
829        return ret;
830    return ima_module_check(file);
831}
832
833int security_task_fix_setuid(struct cred *new, const struct cred *old,
834                 int flags)
835{
836    return security_ops->task_fix_setuid(new, old, flags);
837}
838
839int security_task_setpgid(struct task_struct *p, pid_t pgid)
840{
841    return security_ops->task_setpgid(p, pgid);
842}
843
844int security_task_getpgid(struct task_struct *p)
845{
846    return security_ops->task_getpgid(p);
847}
848
849int security_task_getsid(struct task_struct *p)
850{
851    return security_ops->task_getsid(p);
852}
853
854void security_task_getsecid(struct task_struct *p, u32 *secid)
855{
856    security_ops->task_getsecid(p, secid);
857}
858EXPORT_SYMBOL(security_task_getsecid);
859
860int security_task_setnice(struct task_struct *p, int nice)
861{
862    return security_ops->task_setnice(p, nice);
863}
864
865int security_task_setioprio(struct task_struct *p, int ioprio)
866{
867    return security_ops->task_setioprio(p, ioprio);
868}
869
870int security_task_getioprio(struct task_struct *p)
871{
872    return security_ops->task_getioprio(p);
873}
874
875int security_task_setrlimit(struct task_struct *p, unsigned int resource,
876        struct rlimit *new_rlim)
877{
878    return security_ops->task_setrlimit(p, resource, new_rlim);
879}
880
881int security_task_setscheduler(struct task_struct *p)
882{
883    return security_ops->task_setscheduler(p);
884}
885
886int security_task_getscheduler(struct task_struct *p)
887{
888    return security_ops->task_getscheduler(p);
889}
890
891int security_task_movememory(struct task_struct *p)
892{
893    return security_ops->task_movememory(p);
894}
895
896int security_task_kill(struct task_struct *p, struct siginfo *info,
897            int sig, u32 secid)
898{
899    return security_ops->task_kill(p, info, sig, secid);
900}
901
902int security_task_wait(struct task_struct *p)
903{
904    return security_ops->task_wait(p);
905}
906
907int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
908             unsigned long arg4, unsigned long arg5)
909{
910#ifdef CONFIG_SECURITY_YAMA_STACKED
911    int rc;
912    rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
913    if (rc != -ENOSYS)
914        return rc;
915#endif
916    return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
917}
918
919void security_task_to_inode(struct task_struct *p, struct inode *inode)
920{
921    security_ops->task_to_inode(p, inode);
922}
923
924int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
925{
926    return security_ops->ipc_permission(ipcp, flag);
927}
928
929void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
930{
931    security_ops->ipc_getsecid(ipcp, secid);
932}
933
934int security_msg_msg_alloc(struct msg_msg *msg)
935{
936    return security_ops->msg_msg_alloc_security(msg);
937}
938
939void security_msg_msg_free(struct msg_msg *msg)
940{
941    security_ops->msg_msg_free_security(msg);
942}
943
944int security_msg_queue_alloc(struct msg_queue *msq)
945{
946    return security_ops->msg_queue_alloc_security(msq);
947}
948
949void security_msg_queue_free(struct msg_queue *msq)
950{
951    security_ops->msg_queue_free_security(msq);
952}
953
954int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
955{
956    return security_ops->msg_queue_associate(msq, msqflg);
957}
958
959int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
960{
961    return security_ops->msg_queue_msgctl(msq, cmd);
962}
963
964int security_msg_queue_msgsnd(struct msg_queue *msq,
965                   struct msg_msg *msg, int msqflg)
966{
967    return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
968}
969
970int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
971                   struct task_struct *target, long type, int mode)
972{
973    return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
974}
975
976int security_shm_alloc(struct shmid_kernel *shp)
977{
978    return security_ops->shm_alloc_security(shp);
979}
980
981void security_shm_free(struct shmid_kernel *shp)
982{
983    security_ops->shm_free_security(shp);
984}
985
986int security_shm_associate(struct shmid_kernel *shp, int shmflg)
987{
988    return security_ops->shm_associate(shp, shmflg);
989}
990
991int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
992{
993    return security_ops->shm_shmctl(shp, cmd);
994}
995
996int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
997{
998    return security_ops->shm_shmat(shp, shmaddr, shmflg);
999}
1000
1001int security_sem_alloc(struct sem_array *sma)
1002{
1003    return security_ops->sem_alloc_security(sma);
1004}
1005
1006void security_sem_free(struct sem_array *sma)
1007{
1008    security_ops->sem_free_security(sma);
1009}
1010
1011int security_sem_associate(struct sem_array *sma, int semflg)
1012{
1013    return security_ops->sem_associate(sma, semflg);
1014}
1015
1016int security_sem_semctl(struct sem_array *sma, int cmd)
1017{
1018    return security_ops->sem_semctl(sma, cmd);
1019}
1020
1021int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1022            unsigned nsops, int alter)
1023{
1024    return security_ops->sem_semop(sma, sops, nsops, alter);
1025}
1026
1027void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1028{
1029    if (unlikely(inode && IS_PRIVATE(inode)))
1030        return;
1031    security_ops->d_instantiate(dentry, inode);
1032}
1033EXPORT_SYMBOL(security_d_instantiate);
1034
1035int security_getprocattr(struct task_struct *p, char *name, char **value)
1036{
1037    return security_ops->getprocattr(p, name, value);
1038}
1039
1040int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1041{
1042    return security_ops->setprocattr(p, name, value, size);
1043}
1044
1045int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1046{
1047    return security_ops->netlink_send(sk, skb);
1048}
1049
1050int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1051{
1052    return security_ops->secid_to_secctx(secid, secdata, seclen);
1053}
1054EXPORT_SYMBOL(security_secid_to_secctx);
1055
1056int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1057{
1058    return security_ops->secctx_to_secid(secdata, seclen, secid);
1059}
1060EXPORT_SYMBOL(security_secctx_to_secid);
1061
1062void security_release_secctx(char *secdata, u32 seclen)
1063{
1064    security_ops->release_secctx(secdata, seclen);
1065}
1066EXPORT_SYMBOL(security_release_secctx);
1067
1068int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1069{
1070    return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1071}
1072EXPORT_SYMBOL(security_inode_notifysecctx);
1073
1074int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1075{
1076    return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1077}
1078EXPORT_SYMBOL(security_inode_setsecctx);
1079
1080int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1081{
1082    return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1083}
1084EXPORT_SYMBOL(security_inode_getsecctx);
1085
1086#ifdef CONFIG_SECURITY_NETWORK
1087
1088int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1089{
1090    return security_ops->unix_stream_connect(sock, other, newsk);
1091}
1092EXPORT_SYMBOL(security_unix_stream_connect);
1093
1094int security_unix_may_send(struct socket *sock, struct socket *other)
1095{
1096    return security_ops->unix_may_send(sock, other);
1097}
1098EXPORT_SYMBOL(security_unix_may_send);
1099
1100int security_socket_create(int family, int type, int protocol, int kern)
1101{
1102    return security_ops->socket_create(family, type, protocol, kern);
1103}
1104
1105int security_socket_post_create(struct socket *sock, int family,
1106                int type, int protocol, int kern)
1107{
1108    return security_ops->socket_post_create(sock, family, type,
1109                        protocol, kern);
1110}
1111
1112int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1113{
1114    return security_ops->socket_bind(sock, address, addrlen);
1115}
1116
1117int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1118{
1119    return security_ops->socket_connect(sock, address, addrlen);
1120}
1121
1122int security_socket_listen(struct socket *sock, int backlog)
1123{
1124    return security_ops->socket_listen(sock, backlog);
1125}
1126
1127int security_socket_accept(struct socket *sock, struct socket *newsock)
1128{
1129    return security_ops->socket_accept(sock, newsock);
1130}
1131
1132int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1133{
1134    return security_ops->socket_sendmsg(sock, msg, size);
1135}
1136
1137int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1138                int size, int flags)
1139{
1140    return security_ops->socket_recvmsg(sock, msg, size, flags);
1141}
1142
1143int security_socket_getsockname(struct socket *sock)
1144{
1145    return security_ops->socket_getsockname(sock);
1146}
1147
1148int security_socket_getpeername(struct socket *sock)
1149{
1150    return security_ops->socket_getpeername(sock);
1151}
1152
1153int security_socket_getsockopt(struct socket *sock, int level, int optname)
1154{
1155    return security_ops->socket_getsockopt(sock, level, optname);
1156}
1157
1158int security_socket_setsockopt(struct socket *sock, int level, int optname)
1159{
1160    return security_ops->socket_setsockopt(sock, level, optname);
1161}
1162
1163int security_socket_shutdown(struct socket *sock, int how)
1164{
1165    return security_ops->socket_shutdown(sock, how);
1166}
1167
1168int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1169{
1170    return security_ops->socket_sock_rcv_skb(sk, skb);
1171}
1172EXPORT_SYMBOL(security_sock_rcv_skb);
1173
1174int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1175                      int __user *optlen, unsigned len)
1176{
1177    return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1178}
1179
1180int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1181{
1182    return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1183}
1184EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1185
1186int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1187{
1188    return security_ops->sk_alloc_security(sk, family, priority);
1189}
1190
1191void security_sk_free(struct sock *sk)
1192{
1193    security_ops->sk_free_security(sk);
1194}
1195
1196void security_sk_clone(const struct sock *sk, struct sock *newsk)
1197{
1198    security_ops->sk_clone_security(sk, newsk);
1199}
1200EXPORT_SYMBOL(security_sk_clone);
1201
1202void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1203{
1204    security_ops->sk_getsecid(sk, &fl->flowi_secid);
1205}
1206EXPORT_SYMBOL(security_sk_classify_flow);
1207
1208void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1209{
1210    security_ops->req_classify_flow(req, fl);
1211}
1212EXPORT_SYMBOL(security_req_classify_flow);
1213
1214void security_sock_graft(struct sock *sk, struct socket *parent)
1215{
1216    security_ops->sock_graft(sk, parent);
1217}
1218EXPORT_SYMBOL(security_sock_graft);
1219
1220int security_inet_conn_request(struct sock *sk,
1221            struct sk_buff *skb, struct request_sock *req)
1222{
1223    return security_ops->inet_conn_request(sk, skb, req);
1224}
1225EXPORT_SYMBOL(security_inet_conn_request);
1226
1227void security_inet_csk_clone(struct sock *newsk,
1228            const struct request_sock *req)
1229{
1230    security_ops->inet_csk_clone(newsk, req);
1231}
1232
1233void security_inet_conn_established(struct sock *sk,
1234            struct sk_buff *skb)
1235{
1236    security_ops->inet_conn_established(sk, skb);
1237}
1238
1239int security_secmark_relabel_packet(u32 secid)
1240{
1241    return security_ops->secmark_relabel_packet(secid);
1242}
1243EXPORT_SYMBOL(security_secmark_relabel_packet);
1244
1245void security_secmark_refcount_inc(void)
1246{
1247    security_ops->secmark_refcount_inc();
1248}
1249EXPORT_SYMBOL(security_secmark_refcount_inc);
1250
1251void security_secmark_refcount_dec(void)
1252{
1253    security_ops->secmark_refcount_dec();
1254}
1255EXPORT_SYMBOL(security_secmark_refcount_dec);
1256
1257int security_tun_dev_alloc_security(void **security)
1258{
1259    return security_ops->tun_dev_alloc_security(security);
1260}
1261EXPORT_SYMBOL(security_tun_dev_alloc_security);
1262
1263void security_tun_dev_free_security(void *security)
1264{
1265    security_ops->tun_dev_free_security(security);
1266}
1267EXPORT_SYMBOL(security_tun_dev_free_security);
1268
1269int security_tun_dev_create(void)
1270{
1271    return security_ops->tun_dev_create();
1272}
1273EXPORT_SYMBOL(security_tun_dev_create);
1274
1275int security_tun_dev_attach_queue(void *security)
1276{
1277    return security_ops->tun_dev_attach_queue(security);
1278}
1279EXPORT_SYMBOL(security_tun_dev_attach_queue);
1280
1281int security_tun_dev_attach(struct sock *sk, void *security)
1282{
1283    return security_ops->tun_dev_attach(sk, security);
1284}
1285EXPORT_SYMBOL(security_tun_dev_attach);
1286
1287int security_tun_dev_open(void *security)
1288{
1289    return security_ops->tun_dev_open(security);
1290}
1291EXPORT_SYMBOL(security_tun_dev_open);
1292
1293void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1294{
1295    security_ops->skb_owned_by(skb, sk);
1296}
1297
1298#endif /* CONFIG_SECURITY_NETWORK */
1299
1300#ifdef CONFIG_SECURITY_NETWORK_XFRM
1301
1302int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1303{
1304    return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1305}
1306EXPORT_SYMBOL(security_xfrm_policy_alloc);
1307
1308int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1309                  struct xfrm_sec_ctx **new_ctxp)
1310{
1311    return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1312}
1313
1314void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1315{
1316    security_ops->xfrm_policy_free_security(ctx);
1317}
1318EXPORT_SYMBOL(security_xfrm_policy_free);
1319
1320int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1321{
1322    return security_ops->xfrm_policy_delete_security(ctx);
1323}
1324
1325int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1326{
1327    return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1328}
1329EXPORT_SYMBOL(security_xfrm_state_alloc);
1330
1331int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1332                      struct xfrm_sec_ctx *polsec, u32 secid)
1333{
1334    if (!polsec)
1335        return 0;
1336    /*
1337     * We want the context to be taken from secid which is usually
1338     * from the sock.
1339     */
1340    return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1341}
1342
1343int security_xfrm_state_delete(struct xfrm_state *x)
1344{
1345    return security_ops->xfrm_state_delete_security(x);
1346}
1347EXPORT_SYMBOL(security_xfrm_state_delete);
1348
1349void security_xfrm_state_free(struct xfrm_state *x)
1350{
1351    security_ops->xfrm_state_free_security(x);
1352}
1353
1354int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1355{
1356    return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1357}
1358
1359int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1360                       struct xfrm_policy *xp,
1361                       const struct flowi *fl)
1362{
1363    return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1364}
1365
1366int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1367{
1368    return security_ops->xfrm_decode_session(skb, secid, 1);
1369}
1370
1371void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1372{
1373    int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1374
1375    BUG_ON(rc);
1376}
1377EXPORT_SYMBOL(security_skb_classify_flow);
1378
1379#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1380
1381#ifdef CONFIG_KEYS
1382
1383int security_key_alloc(struct key *key, const struct cred *cred,
1384               unsigned long flags)
1385{
1386    return security_ops->key_alloc(key, cred, flags);
1387}
1388
1389void security_key_free(struct key *key)
1390{
1391    security_ops->key_free(key);
1392}
1393
1394int security_key_permission(key_ref_t key_ref,
1395                const struct cred *cred, key_perm_t perm)
1396{
1397    return security_ops->key_permission(key_ref, cred, perm);
1398}
1399
1400int security_key_getsecurity(struct key *key, char **_buffer)
1401{
1402    return security_ops->key_getsecurity(key, _buffer);
1403}
1404
1405#endif /* CONFIG_KEYS */
1406
1407#ifdef CONFIG_AUDIT
1408
1409int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1410{
1411    return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1412}
1413
1414int security_audit_rule_known(struct audit_krule *krule)
1415{
1416    return security_ops->audit_rule_known(krule);
1417}
1418
1419void security_audit_rule_free(void *lsmrule)
1420{
1421    security_ops->audit_rule_free(lsmrule);
1422}
1423
1424int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1425                  struct audit_context *actx)
1426{
1427    return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1428}
1429
1430#endif /* CONFIG_AUDIT */
1431

Archive Download this file



interactive