Root/
1 | /* |
2 | * linux/mm/filemap.c |
3 | * |
4 | * Copyright (C) 1994-1999 Linus Torvalds |
5 | */ |
6 | |
7 | /* |
8 | * This file handles the generic file mmap semantics used by |
9 | * most "normal" filesystems (but you don't /have/ to use this: |
10 | * the NFS filesystem used to do this differently, for example) |
11 | */ |
12 | #include <linux/export.h> |
13 | #include <linux/compiler.h> |
14 | #include <linux/fs.h> |
15 | #include <linux/uaccess.h> |
16 | #include <linux/aio.h> |
17 | #include <linux/capability.h> |
18 | #include <linux/kernel_stat.h> |
19 | #include <linux/gfp.h> |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> |
22 | #include <linux/mman.h> |
23 | #include <linux/pagemap.h> |
24 | #include <linux/file.h> |
25 | #include <linux/uio.h> |
26 | #include <linux/hash.h> |
27 | #include <linux/writeback.h> |
28 | #include <linux/backing-dev.h> |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> |
31 | #include <linux/security.h> |
32 | #include <linux/cpuset.h> |
33 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
34 | #include <linux/memcontrol.h> |
35 | #include <linux/cleancache.h> |
36 | #include "internal.h" |
37 | |
38 | /* |
39 | * FIXME: remove all knowledge of the buffer layer from the core VM |
40 | */ |
41 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
42 | |
43 | #include <asm/mman.h> |
44 | |
45 | /* |
46 | * Shared mappings implemented 30.11.1994. It's not fully working yet, |
47 | * though. |
48 | * |
49 | * Shared mappings now work. 15.8.1995 Bruno. |
50 | * |
51 | * finished 'unifying' the page and buffer cache and SMP-threaded the |
52 | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> |
53 | * |
54 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> |
55 | */ |
56 | |
57 | /* |
58 | * Lock ordering: |
59 | * |
60 | * ->i_mmap_mutex (truncate_pagecache) |
61 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
62 | * ->swap_lock (exclusive_swap_page, others) |
63 | * ->mapping->tree_lock |
64 | * |
65 | * ->i_mutex |
66 | * ->i_mmap_mutex (truncate->unmap_mapping_range) |
67 | * |
68 | * ->mmap_sem |
69 | * ->i_mmap_mutex |
70 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
71 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
72 | * |
73 | * ->mmap_sem |
74 | * ->lock_page (access_process_vm) |
75 | * |
76 | * ->i_mutex (generic_file_buffered_write) |
77 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
78 | * |
79 | * bdi->wb.list_lock |
80 | * sb_lock (fs/fs-writeback.c) |
81 | * ->mapping->tree_lock (__sync_single_inode) |
82 | * |
83 | * ->i_mmap_mutex |
84 | * ->anon_vma.lock (vma_adjust) |
85 | * |
86 | * ->anon_vma.lock |
87 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
88 | * |
89 | * ->page_table_lock or pte_lock |
90 | * ->swap_lock (try_to_unmap_one) |
91 | * ->private_lock (try_to_unmap_one) |
92 | * ->tree_lock (try_to_unmap_one) |
93 | * ->zone.lru_lock (follow_page->mark_page_accessed) |
94 | * ->zone.lru_lock (check_pte_range->isolate_lru_page) |
95 | * ->private_lock (page_remove_rmap->set_page_dirty) |
96 | * ->tree_lock (page_remove_rmap->set_page_dirty) |
97 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
98 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
99 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
100 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
101 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
102 | * |
103 | * ->i_mmap_mutex |
104 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
105 | */ |
106 | |
107 | /* |
108 | * Delete a page from the page cache and free it. Caller has to make |
109 | * sure the page is locked and that nobody else uses it - or that usage |
110 | * is safe. The caller must hold the mapping's tree_lock. |
111 | */ |
112 | void __delete_from_page_cache(struct page *page) |
113 | { |
114 | struct address_space *mapping = page->mapping; |
115 | |
116 | /* |
117 | * if we're uptodate, flush out into the cleancache, otherwise |
118 | * invalidate any existing cleancache entries. We can't leave |
119 | * stale data around in the cleancache once our page is gone |
120 | */ |
121 | if (PageUptodate(page) && PageMappedToDisk(page)) |
122 | cleancache_put_page(page); |
123 | else |
124 | cleancache_invalidate_page(mapping, page); |
125 | |
126 | radix_tree_delete(&mapping->page_tree, page->index); |
127 | page->mapping = NULL; |
128 | /* Leave page->index set: truncation lookup relies upon it */ |
129 | mapping->nrpages--; |
130 | __dec_zone_page_state(page, NR_FILE_PAGES); |
131 | if (PageSwapBacked(page)) |
132 | __dec_zone_page_state(page, NR_SHMEM); |
133 | BUG_ON(page_mapped(page)); |
134 | |
135 | /* |
136 | * Some filesystems seem to re-dirty the page even after |
137 | * the VM has canceled the dirty bit (eg ext3 journaling). |
138 | * |
139 | * Fix it up by doing a final dirty accounting check after |
140 | * having removed the page entirely. |
141 | */ |
142 | if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { |
143 | dec_zone_page_state(page, NR_FILE_DIRTY); |
144 | dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); |
145 | } |
146 | } |
147 | |
148 | /** |
149 | * delete_from_page_cache - delete page from page cache |
150 | * @page: the page which the kernel is trying to remove from page cache |
151 | * |
152 | * This must be called only on pages that have been verified to be in the page |
153 | * cache and locked. It will never put the page into the free list, the caller |
154 | * has a reference on the page. |
155 | */ |
156 | void delete_from_page_cache(struct page *page) |
157 | { |
158 | struct address_space *mapping = page->mapping; |
159 | void (*freepage)(struct page *); |
160 | |
161 | BUG_ON(!PageLocked(page)); |
162 | |
163 | freepage = mapping->a_ops->freepage; |
164 | spin_lock_irq(&mapping->tree_lock); |
165 | __delete_from_page_cache(page); |
166 | spin_unlock_irq(&mapping->tree_lock); |
167 | mem_cgroup_uncharge_cache_page(page); |
168 | |
169 | if (freepage) |
170 | freepage(page); |
171 | page_cache_release(page); |
172 | } |
173 | EXPORT_SYMBOL(delete_from_page_cache); |
174 | |
175 | static int sleep_on_page(void *word) |
176 | { |
177 | io_schedule(); |
178 | return 0; |
179 | } |
180 | |
181 | static int sleep_on_page_killable(void *word) |
182 | { |
183 | sleep_on_page(word); |
184 | return fatal_signal_pending(current) ? -EINTR : 0; |
185 | } |
186 | |
187 | /** |
188 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
189 | * @mapping: address space structure to write |
190 | * @start: offset in bytes where the range starts |
191 | * @end: offset in bytes where the range ends (inclusive) |
192 | * @sync_mode: enable synchronous operation |
193 | * |
194 | * Start writeback against all of a mapping's dirty pages that lie |
195 | * within the byte offsets <start, end> inclusive. |
196 | * |
197 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
198 | * opposed to a regular memory cleansing writeback. The difference between |
199 | * these two operations is that if a dirty page/buffer is encountered, it must |
200 | * be waited upon, and not just skipped over. |
201 | */ |
202 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
203 | loff_t end, int sync_mode) |
204 | { |
205 | int ret; |
206 | struct writeback_control wbc = { |
207 | .sync_mode = sync_mode, |
208 | .nr_to_write = LONG_MAX, |
209 | .range_start = start, |
210 | .range_end = end, |
211 | }; |
212 | |
213 | if (!mapping_cap_writeback_dirty(mapping)) |
214 | return 0; |
215 | |
216 | ret = do_writepages(mapping, &wbc); |
217 | return ret; |
218 | } |
219 | |
220 | static inline int __filemap_fdatawrite(struct address_space *mapping, |
221 | int sync_mode) |
222 | { |
223 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
224 | } |
225 | |
226 | int filemap_fdatawrite(struct address_space *mapping) |
227 | { |
228 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); |
229 | } |
230 | EXPORT_SYMBOL(filemap_fdatawrite); |
231 | |
232 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
233 | loff_t end) |
234 | { |
235 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); |
236 | } |
237 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
238 | |
239 | /** |
240 | * filemap_flush - mostly a non-blocking flush |
241 | * @mapping: target address_space |
242 | * |
243 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
244 | * purposes - I/O may not be started against all dirty pages. |
245 | */ |
246 | int filemap_flush(struct address_space *mapping) |
247 | { |
248 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); |
249 | } |
250 | EXPORT_SYMBOL(filemap_flush); |
251 | |
252 | /** |
253 | * filemap_fdatawait_range - wait for writeback to complete |
254 | * @mapping: address space structure to wait for |
255 | * @start_byte: offset in bytes where the range starts |
256 | * @end_byte: offset in bytes where the range ends (inclusive) |
257 | * |
258 | * Walk the list of under-writeback pages of the given address space |
259 | * in the given range and wait for all of them. |
260 | */ |
261 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, |
262 | loff_t end_byte) |
263 | { |
264 | pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; |
265 | pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; |
266 | struct pagevec pvec; |
267 | int nr_pages; |
268 | int ret = 0; |
269 | |
270 | if (end_byte < start_byte) |
271 | return 0; |
272 | |
273 | pagevec_init(&pvec, 0); |
274 | while ((index <= end) && |
275 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
276 | PAGECACHE_TAG_WRITEBACK, |
277 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { |
278 | unsigned i; |
279 | |
280 | for (i = 0; i < nr_pages; i++) { |
281 | struct page *page = pvec.pages[i]; |
282 | |
283 | /* until radix tree lookup accepts end_index */ |
284 | if (page->index > end) |
285 | continue; |
286 | |
287 | wait_on_page_writeback(page); |
288 | if (TestClearPageError(page)) |
289 | ret = -EIO; |
290 | } |
291 | pagevec_release(&pvec); |
292 | cond_resched(); |
293 | } |
294 | |
295 | /* Check for outstanding write errors */ |
296 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) |
297 | ret = -ENOSPC; |
298 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) |
299 | ret = -EIO; |
300 | |
301 | return ret; |
302 | } |
303 | EXPORT_SYMBOL(filemap_fdatawait_range); |
304 | |
305 | /** |
306 | * filemap_fdatawait - wait for all under-writeback pages to complete |
307 | * @mapping: address space structure to wait for |
308 | * |
309 | * Walk the list of under-writeback pages of the given address space |
310 | * and wait for all of them. |
311 | */ |
312 | int filemap_fdatawait(struct address_space *mapping) |
313 | { |
314 | loff_t i_size = i_size_read(mapping->host); |
315 | |
316 | if (i_size == 0) |
317 | return 0; |
318 | |
319 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
320 | } |
321 | EXPORT_SYMBOL(filemap_fdatawait); |
322 | |
323 | int filemap_write_and_wait(struct address_space *mapping) |
324 | { |
325 | int err = 0; |
326 | |
327 | if (mapping->nrpages) { |
328 | err = filemap_fdatawrite(mapping); |
329 | /* |
330 | * Even if the above returned error, the pages may be |
331 | * written partially (e.g. -ENOSPC), so we wait for it. |
332 | * But the -EIO is special case, it may indicate the worst |
333 | * thing (e.g. bug) happened, so we avoid waiting for it. |
334 | */ |
335 | if (err != -EIO) { |
336 | int err2 = filemap_fdatawait(mapping); |
337 | if (!err) |
338 | err = err2; |
339 | } |
340 | } |
341 | return err; |
342 | } |
343 | EXPORT_SYMBOL(filemap_write_and_wait); |
344 | |
345 | /** |
346 | * filemap_write_and_wait_range - write out & wait on a file range |
347 | * @mapping: the address_space for the pages |
348 | * @lstart: offset in bytes where the range starts |
349 | * @lend: offset in bytes where the range ends (inclusive) |
350 | * |
351 | * Write out and wait upon file offsets lstart->lend, inclusive. |
352 | * |
353 | * Note that `lend' is inclusive (describes the last byte to be written) so |
354 | * that this function can be used to write to the very end-of-file (end = -1). |
355 | */ |
356 | int filemap_write_and_wait_range(struct address_space *mapping, |
357 | loff_t lstart, loff_t lend) |
358 | { |
359 | int err = 0; |
360 | |
361 | if (mapping->nrpages) { |
362 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
363 | WB_SYNC_ALL); |
364 | /* See comment of filemap_write_and_wait() */ |
365 | if (err != -EIO) { |
366 | int err2 = filemap_fdatawait_range(mapping, |
367 | lstart, lend); |
368 | if (!err) |
369 | err = err2; |
370 | } |
371 | } |
372 | return err; |
373 | } |
374 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
375 | |
376 | /** |
377 | * replace_page_cache_page - replace a pagecache page with a new one |
378 | * @old: page to be replaced |
379 | * @new: page to replace with |
380 | * @gfp_mask: allocation mode |
381 | * |
382 | * This function replaces a page in the pagecache with a new one. On |
383 | * success it acquires the pagecache reference for the new page and |
384 | * drops it for the old page. Both the old and new pages must be |
385 | * locked. This function does not add the new page to the LRU, the |
386 | * caller must do that. |
387 | * |
388 | * The remove + add is atomic. The only way this function can fail is |
389 | * memory allocation failure. |
390 | */ |
391 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) |
392 | { |
393 | int error; |
394 | |
395 | VM_BUG_ON(!PageLocked(old)); |
396 | VM_BUG_ON(!PageLocked(new)); |
397 | VM_BUG_ON(new->mapping); |
398 | |
399 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
400 | if (!error) { |
401 | struct address_space *mapping = old->mapping; |
402 | void (*freepage)(struct page *); |
403 | |
404 | pgoff_t offset = old->index; |
405 | freepage = mapping->a_ops->freepage; |
406 | |
407 | page_cache_get(new); |
408 | new->mapping = mapping; |
409 | new->index = offset; |
410 | |
411 | spin_lock_irq(&mapping->tree_lock); |
412 | __delete_from_page_cache(old); |
413 | error = radix_tree_insert(&mapping->page_tree, offset, new); |
414 | BUG_ON(error); |
415 | mapping->nrpages++; |
416 | __inc_zone_page_state(new, NR_FILE_PAGES); |
417 | if (PageSwapBacked(new)) |
418 | __inc_zone_page_state(new, NR_SHMEM); |
419 | spin_unlock_irq(&mapping->tree_lock); |
420 | /* mem_cgroup codes must not be called under tree_lock */ |
421 | mem_cgroup_replace_page_cache(old, new); |
422 | radix_tree_preload_end(); |
423 | if (freepage) |
424 | freepage(old); |
425 | page_cache_release(old); |
426 | } |
427 | |
428 | return error; |
429 | } |
430 | EXPORT_SYMBOL_GPL(replace_page_cache_page); |
431 | |
432 | /** |
433 | * add_to_page_cache_locked - add a locked page to the pagecache |
434 | * @page: page to add |
435 | * @mapping: the page's address_space |
436 | * @offset: page index |
437 | * @gfp_mask: page allocation mode |
438 | * |
439 | * This function is used to add a page to the pagecache. It must be locked. |
440 | * This function does not add the page to the LRU. The caller must do that. |
441 | */ |
442 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, |
443 | pgoff_t offset, gfp_t gfp_mask) |
444 | { |
445 | int error; |
446 | |
447 | VM_BUG_ON(!PageLocked(page)); |
448 | VM_BUG_ON(PageSwapBacked(page)); |
449 | |
450 | error = mem_cgroup_cache_charge(page, current->mm, |
451 | gfp_mask & GFP_RECLAIM_MASK); |
452 | if (error) |
453 | goto out; |
454 | |
455 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
456 | if (error == 0) { |
457 | page_cache_get(page); |
458 | page->mapping = mapping; |
459 | page->index = offset; |
460 | |
461 | spin_lock_irq(&mapping->tree_lock); |
462 | error = radix_tree_insert(&mapping->page_tree, offset, page); |
463 | if (likely(!error)) { |
464 | mapping->nrpages++; |
465 | __inc_zone_page_state(page, NR_FILE_PAGES); |
466 | spin_unlock_irq(&mapping->tree_lock); |
467 | } else { |
468 | page->mapping = NULL; |
469 | /* Leave page->index set: truncation relies upon it */ |
470 | spin_unlock_irq(&mapping->tree_lock); |
471 | mem_cgroup_uncharge_cache_page(page); |
472 | page_cache_release(page); |
473 | } |
474 | radix_tree_preload_end(); |
475 | } else |
476 | mem_cgroup_uncharge_cache_page(page); |
477 | out: |
478 | return error; |
479 | } |
480 | EXPORT_SYMBOL(add_to_page_cache_locked); |
481 | |
482 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, |
483 | pgoff_t offset, gfp_t gfp_mask) |
484 | { |
485 | int ret; |
486 | |
487 | ret = add_to_page_cache(page, mapping, offset, gfp_mask); |
488 | if (ret == 0) |
489 | lru_cache_add_file(page); |
490 | return ret; |
491 | } |
492 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
493 | |
494 | #ifdef CONFIG_NUMA |
495 | struct page *__page_cache_alloc(gfp_t gfp) |
496 | { |
497 | int n; |
498 | struct page *page; |
499 | |
500 | if (cpuset_do_page_mem_spread()) { |
501 | unsigned int cpuset_mems_cookie; |
502 | do { |
503 | cpuset_mems_cookie = get_mems_allowed(); |
504 | n = cpuset_mem_spread_node(); |
505 | page = alloc_pages_exact_node(n, gfp, 0); |
506 | } while (!put_mems_allowed(cpuset_mems_cookie) && !page); |
507 | |
508 | return page; |
509 | } |
510 | return alloc_pages(gfp, 0); |
511 | } |
512 | EXPORT_SYMBOL(__page_cache_alloc); |
513 | #endif |
514 | |
515 | /* |
516 | * In order to wait for pages to become available there must be |
517 | * waitqueues associated with pages. By using a hash table of |
518 | * waitqueues where the bucket discipline is to maintain all |
519 | * waiters on the same queue and wake all when any of the pages |
520 | * become available, and for the woken contexts to check to be |
521 | * sure the appropriate page became available, this saves space |
522 | * at a cost of "thundering herd" phenomena during rare hash |
523 | * collisions. |
524 | */ |
525 | static wait_queue_head_t *page_waitqueue(struct page *page) |
526 | { |
527 | const struct zone *zone = page_zone(page); |
528 | |
529 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; |
530 | } |
531 | |
532 | static inline void wake_up_page(struct page *page, int bit) |
533 | { |
534 | __wake_up_bit(page_waitqueue(page), &page->flags, bit); |
535 | } |
536 | |
537 | void wait_on_page_bit(struct page *page, int bit_nr) |
538 | { |
539 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); |
540 | |
541 | if (test_bit(bit_nr, &page->flags)) |
542 | __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, |
543 | TASK_UNINTERRUPTIBLE); |
544 | } |
545 | EXPORT_SYMBOL(wait_on_page_bit); |
546 | |
547 | int wait_on_page_bit_killable(struct page *page, int bit_nr) |
548 | { |
549 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); |
550 | |
551 | if (!test_bit(bit_nr, &page->flags)) |
552 | return 0; |
553 | |
554 | return __wait_on_bit(page_waitqueue(page), &wait, |
555 | sleep_on_page_killable, TASK_KILLABLE); |
556 | } |
557 | |
558 | /** |
559 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue |
560 | * @page: Page defining the wait queue of interest |
561 | * @waiter: Waiter to add to the queue |
562 | * |
563 | * Add an arbitrary @waiter to the wait queue for the nominated @page. |
564 | */ |
565 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) |
566 | { |
567 | wait_queue_head_t *q = page_waitqueue(page); |
568 | unsigned long flags; |
569 | |
570 | spin_lock_irqsave(&q->lock, flags); |
571 | __add_wait_queue(q, waiter); |
572 | spin_unlock_irqrestore(&q->lock, flags); |
573 | } |
574 | EXPORT_SYMBOL_GPL(add_page_wait_queue); |
575 | |
576 | /** |
577 | * unlock_page - unlock a locked page |
578 | * @page: the page |
579 | * |
580 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). |
581 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup |
582 | * mechananism between PageLocked pages and PageWriteback pages is shared. |
583 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
584 | * |
585 | * The mb is necessary to enforce ordering between the clear_bit and the read |
586 | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). |
587 | */ |
588 | void unlock_page(struct page *page) |
589 | { |
590 | VM_BUG_ON(!PageLocked(page)); |
591 | clear_bit_unlock(PG_locked, &page->flags); |
592 | smp_mb__after_clear_bit(); |
593 | wake_up_page(page, PG_locked); |
594 | } |
595 | EXPORT_SYMBOL(unlock_page); |
596 | |
597 | /** |
598 | * end_page_writeback - end writeback against a page |
599 | * @page: the page |
600 | */ |
601 | void end_page_writeback(struct page *page) |
602 | { |
603 | if (TestClearPageReclaim(page)) |
604 | rotate_reclaimable_page(page); |
605 | |
606 | if (!test_clear_page_writeback(page)) |
607 | BUG(); |
608 | |
609 | smp_mb__after_clear_bit(); |
610 | wake_up_page(page, PG_writeback); |
611 | } |
612 | EXPORT_SYMBOL(end_page_writeback); |
613 | |
614 | /** |
615 | * __lock_page - get a lock on the page, assuming we need to sleep to get it |
616 | * @page: the page to lock |
617 | */ |
618 | void __lock_page(struct page *page) |
619 | { |
620 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); |
621 | |
622 | __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, |
623 | TASK_UNINTERRUPTIBLE); |
624 | } |
625 | EXPORT_SYMBOL(__lock_page); |
626 | |
627 | int __lock_page_killable(struct page *page) |
628 | { |
629 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); |
630 | |
631 | return __wait_on_bit_lock(page_waitqueue(page), &wait, |
632 | sleep_on_page_killable, TASK_KILLABLE); |
633 | } |
634 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
635 | |
636 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
637 | unsigned int flags) |
638 | { |
639 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
640 | /* |
641 | * CAUTION! In this case, mmap_sem is not released |
642 | * even though return 0. |
643 | */ |
644 | if (flags & FAULT_FLAG_RETRY_NOWAIT) |
645 | return 0; |
646 | |
647 | up_read(&mm->mmap_sem); |
648 | if (flags & FAULT_FLAG_KILLABLE) |
649 | wait_on_page_locked_killable(page); |
650 | else |
651 | wait_on_page_locked(page); |
652 | return 0; |
653 | } else { |
654 | if (flags & FAULT_FLAG_KILLABLE) { |
655 | int ret; |
656 | |
657 | ret = __lock_page_killable(page); |
658 | if (ret) { |
659 | up_read(&mm->mmap_sem); |
660 | return 0; |
661 | } |
662 | } else |
663 | __lock_page(page); |
664 | return 1; |
665 | } |
666 | } |
667 | |
668 | /** |
669 | * find_get_page - find and get a page reference |
670 | * @mapping: the address_space to search |
671 | * @offset: the page index |
672 | * |
673 | * Is there a pagecache struct page at the given (mapping, offset) tuple? |
674 | * If yes, increment its refcount and return it; if no, return NULL. |
675 | */ |
676 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
677 | { |
678 | void **pagep; |
679 | struct page *page; |
680 | |
681 | rcu_read_lock(); |
682 | repeat: |
683 | page = NULL; |
684 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); |
685 | if (pagep) { |
686 | page = radix_tree_deref_slot(pagep); |
687 | if (unlikely(!page)) |
688 | goto out; |
689 | if (radix_tree_exception(page)) { |
690 | if (radix_tree_deref_retry(page)) |
691 | goto repeat; |
692 | /* |
693 | * Otherwise, shmem/tmpfs must be storing a swap entry |
694 | * here as an exceptional entry: so return it without |
695 | * attempting to raise page count. |
696 | */ |
697 | goto out; |
698 | } |
699 | if (!page_cache_get_speculative(page)) |
700 | goto repeat; |
701 | |
702 | /* |
703 | * Has the page moved? |
704 | * This is part of the lockless pagecache protocol. See |
705 | * include/linux/pagemap.h for details. |
706 | */ |
707 | if (unlikely(page != *pagep)) { |
708 | page_cache_release(page); |
709 | goto repeat; |
710 | } |
711 | } |
712 | out: |
713 | rcu_read_unlock(); |
714 | |
715 | return page; |
716 | } |
717 | EXPORT_SYMBOL(find_get_page); |
718 | |
719 | /** |
720 | * find_lock_page - locate, pin and lock a pagecache page |
721 | * @mapping: the address_space to search |
722 | * @offset: the page index |
723 | * |
724 | * Locates the desired pagecache page, locks it, increments its reference |
725 | * count and returns its address. |
726 | * |
727 | * Returns zero if the page was not present. find_lock_page() may sleep. |
728 | */ |
729 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) |
730 | { |
731 | struct page *page; |
732 | |
733 | repeat: |
734 | page = find_get_page(mapping, offset); |
735 | if (page && !radix_tree_exception(page)) { |
736 | lock_page(page); |
737 | /* Has the page been truncated? */ |
738 | if (unlikely(page->mapping != mapping)) { |
739 | unlock_page(page); |
740 | page_cache_release(page); |
741 | goto repeat; |
742 | } |
743 | VM_BUG_ON(page->index != offset); |
744 | } |
745 | return page; |
746 | } |
747 | EXPORT_SYMBOL(find_lock_page); |
748 | |
749 | /** |
750 | * find_or_create_page - locate or add a pagecache page |
751 | * @mapping: the page's address_space |
752 | * @index: the page's index into the mapping |
753 | * @gfp_mask: page allocation mode |
754 | * |
755 | * Locates a page in the pagecache. If the page is not present, a new page |
756 | * is allocated using @gfp_mask and is added to the pagecache and to the VM's |
757 | * LRU list. The returned page is locked and has its reference count |
758 | * incremented. |
759 | * |
760 | * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic |
761 | * allocation! |
762 | * |
763 | * find_or_create_page() returns the desired page's address, or zero on |
764 | * memory exhaustion. |
765 | */ |
766 | struct page *find_or_create_page(struct address_space *mapping, |
767 | pgoff_t index, gfp_t gfp_mask) |
768 | { |
769 | struct page *page; |
770 | int err; |
771 | repeat: |
772 | page = find_lock_page(mapping, index); |
773 | if (!page) { |
774 | page = __page_cache_alloc(gfp_mask); |
775 | if (!page) |
776 | return NULL; |
777 | /* |
778 | * We want a regular kernel memory (not highmem or DMA etc) |
779 | * allocation for the radix tree nodes, but we need to honour |
780 | * the context-specific requirements the caller has asked for. |
781 | * GFP_RECLAIM_MASK collects those requirements. |
782 | */ |
783 | err = add_to_page_cache_lru(page, mapping, index, |
784 | (gfp_mask & GFP_RECLAIM_MASK)); |
785 | if (unlikely(err)) { |
786 | page_cache_release(page); |
787 | page = NULL; |
788 | if (err == -EEXIST) |
789 | goto repeat; |
790 | } |
791 | } |
792 | return page; |
793 | } |
794 | EXPORT_SYMBOL(find_or_create_page); |
795 | |
796 | /** |
797 | * find_get_pages - gang pagecache lookup |
798 | * @mapping: The address_space to search |
799 | * @start: The starting page index |
800 | * @nr_pages: The maximum number of pages |
801 | * @pages: Where the resulting pages are placed |
802 | * |
803 | * find_get_pages() will search for and return a group of up to |
804 | * @nr_pages pages in the mapping. The pages are placed at @pages. |
805 | * find_get_pages() takes a reference against the returned pages. |
806 | * |
807 | * The search returns a group of mapping-contiguous pages with ascending |
808 | * indexes. There may be holes in the indices due to not-present pages. |
809 | * |
810 | * find_get_pages() returns the number of pages which were found. |
811 | */ |
812 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, |
813 | unsigned int nr_pages, struct page **pages) |
814 | { |
815 | struct radix_tree_iter iter; |
816 | void **slot; |
817 | unsigned ret = 0; |
818 | |
819 | if (unlikely(!nr_pages)) |
820 | return 0; |
821 | |
822 | rcu_read_lock(); |
823 | restart: |
824 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
825 | struct page *page; |
826 | repeat: |
827 | page = radix_tree_deref_slot(slot); |
828 | if (unlikely(!page)) |
829 | continue; |
830 | |
831 | if (radix_tree_exception(page)) { |
832 | if (radix_tree_deref_retry(page)) { |
833 | /* |
834 | * Transient condition which can only trigger |
835 | * when entry at index 0 moves out of or back |
836 | * to root: none yet gotten, safe to restart. |
837 | */ |
838 | WARN_ON(iter.index); |
839 | goto restart; |
840 | } |
841 | /* |
842 | * Otherwise, shmem/tmpfs must be storing a swap entry |
843 | * here as an exceptional entry: so skip over it - |
844 | * we only reach this from invalidate_mapping_pages(). |
845 | */ |
846 | continue; |
847 | } |
848 | |
849 | if (!page_cache_get_speculative(page)) |
850 | goto repeat; |
851 | |
852 | /* Has the page moved? */ |
853 | if (unlikely(page != *slot)) { |
854 | page_cache_release(page); |
855 | goto repeat; |
856 | } |
857 | |
858 | pages[ret] = page; |
859 | if (++ret == nr_pages) |
860 | break; |
861 | } |
862 | |
863 | rcu_read_unlock(); |
864 | return ret; |
865 | } |
866 | |
867 | /** |
868 | * find_get_pages_contig - gang contiguous pagecache lookup |
869 | * @mapping: The address_space to search |
870 | * @index: The starting page index |
871 | * @nr_pages: The maximum number of pages |
872 | * @pages: Where the resulting pages are placed |
873 | * |
874 | * find_get_pages_contig() works exactly like find_get_pages(), except |
875 | * that the returned number of pages are guaranteed to be contiguous. |
876 | * |
877 | * find_get_pages_contig() returns the number of pages which were found. |
878 | */ |
879 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, |
880 | unsigned int nr_pages, struct page **pages) |
881 | { |
882 | struct radix_tree_iter iter; |
883 | void **slot; |
884 | unsigned int ret = 0; |
885 | |
886 | if (unlikely(!nr_pages)) |
887 | return 0; |
888 | |
889 | rcu_read_lock(); |
890 | restart: |
891 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
892 | struct page *page; |
893 | repeat: |
894 | page = radix_tree_deref_slot(slot); |
895 | /* The hole, there no reason to continue */ |
896 | if (unlikely(!page)) |
897 | break; |
898 | |
899 | if (radix_tree_exception(page)) { |
900 | if (radix_tree_deref_retry(page)) { |
901 | /* |
902 | * Transient condition which can only trigger |
903 | * when entry at index 0 moves out of or back |
904 | * to root: none yet gotten, safe to restart. |
905 | */ |
906 | goto restart; |
907 | } |
908 | /* |
909 | * Otherwise, shmem/tmpfs must be storing a swap entry |
910 | * here as an exceptional entry: so stop looking for |
911 | * contiguous pages. |
912 | */ |
913 | break; |
914 | } |
915 | |
916 | if (!page_cache_get_speculative(page)) |
917 | goto repeat; |
918 | |
919 | /* Has the page moved? */ |
920 | if (unlikely(page != *slot)) { |
921 | page_cache_release(page); |
922 | goto repeat; |
923 | } |
924 | |
925 | /* |
926 | * must check mapping and index after taking the ref. |
927 | * otherwise we can get both false positives and false |
928 | * negatives, which is just confusing to the caller. |
929 | */ |
930 | if (page->mapping == NULL || page->index != iter.index) { |
931 | page_cache_release(page); |
932 | break; |
933 | } |
934 | |
935 | pages[ret] = page; |
936 | if (++ret == nr_pages) |
937 | break; |
938 | } |
939 | rcu_read_unlock(); |
940 | return ret; |
941 | } |
942 | EXPORT_SYMBOL(find_get_pages_contig); |
943 | |
944 | /** |
945 | * find_get_pages_tag - find and return pages that match @tag |
946 | * @mapping: the address_space to search |
947 | * @index: the starting page index |
948 | * @tag: the tag index |
949 | * @nr_pages: the maximum number of pages |
950 | * @pages: where the resulting pages are placed |
951 | * |
952 | * Like find_get_pages, except we only return pages which are tagged with |
953 | * @tag. We update @index to index the next page for the traversal. |
954 | */ |
955 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, |
956 | int tag, unsigned int nr_pages, struct page **pages) |
957 | { |
958 | struct radix_tree_iter iter; |
959 | void **slot; |
960 | unsigned ret = 0; |
961 | |
962 | if (unlikely(!nr_pages)) |
963 | return 0; |
964 | |
965 | rcu_read_lock(); |
966 | restart: |
967 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
968 | &iter, *index, tag) { |
969 | struct page *page; |
970 | repeat: |
971 | page = radix_tree_deref_slot(slot); |
972 | if (unlikely(!page)) |
973 | continue; |
974 | |
975 | if (radix_tree_exception(page)) { |
976 | if (radix_tree_deref_retry(page)) { |
977 | /* |
978 | * Transient condition which can only trigger |
979 | * when entry at index 0 moves out of or back |
980 | * to root: none yet gotten, safe to restart. |
981 | */ |
982 | goto restart; |
983 | } |
984 | /* |
985 | * This function is never used on a shmem/tmpfs |
986 | * mapping, so a swap entry won't be found here. |
987 | */ |
988 | BUG(); |
989 | } |
990 | |
991 | if (!page_cache_get_speculative(page)) |
992 | goto repeat; |
993 | |
994 | /* Has the page moved? */ |
995 | if (unlikely(page != *slot)) { |
996 | page_cache_release(page); |
997 | goto repeat; |
998 | } |
999 | |
1000 | pages[ret] = page; |
1001 | if (++ret == nr_pages) |
1002 | break; |
1003 | } |
1004 | |
1005 | rcu_read_unlock(); |
1006 | |
1007 | if (ret) |
1008 | *index = pages[ret - 1]->index + 1; |
1009 | |
1010 | return ret; |
1011 | } |
1012 | EXPORT_SYMBOL(find_get_pages_tag); |
1013 | |
1014 | /** |
1015 | * grab_cache_page_nowait - returns locked page at given index in given cache |
1016 | * @mapping: target address_space |
1017 | * @index: the page index |
1018 | * |
1019 | * Same as grab_cache_page(), but do not wait if the page is unavailable. |
1020 | * This is intended for speculative data generators, where the data can |
1021 | * be regenerated if the page couldn't be grabbed. This routine should |
1022 | * be safe to call while holding the lock for another page. |
1023 | * |
1024 | * Clear __GFP_FS when allocating the page to avoid recursion into the fs |
1025 | * and deadlock against the caller's locked page. |
1026 | */ |
1027 | struct page * |
1028 | grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) |
1029 | { |
1030 | struct page *page = find_get_page(mapping, index); |
1031 | |
1032 | if (page) { |
1033 | if (trylock_page(page)) |
1034 | return page; |
1035 | page_cache_release(page); |
1036 | return NULL; |
1037 | } |
1038 | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); |
1039 | if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { |
1040 | page_cache_release(page); |
1041 | page = NULL; |
1042 | } |
1043 | return page; |
1044 | } |
1045 | EXPORT_SYMBOL(grab_cache_page_nowait); |
1046 | |
1047 | /* |
1048 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail |
1049 | * a _large_ part of the i/o request. Imagine the worst scenario: |
1050 | * |
1051 | * ---R__________________________________________B__________ |
1052 | * ^ reading here ^ bad block(assume 4k) |
1053 | * |
1054 | * read(R) => miss => readahead(R...B) => media error => frustrating retries |
1055 | * => failing the whole request => read(R) => read(R+1) => |
1056 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => |
1057 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => |
1058 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... |
1059 | * |
1060 | * It is going insane. Fix it by quickly scaling down the readahead size. |
1061 | */ |
1062 | static void shrink_readahead_size_eio(struct file *filp, |
1063 | struct file_ra_state *ra) |
1064 | { |
1065 | ra->ra_pages /= 4; |
1066 | } |
1067 | |
1068 | /** |
1069 | * do_generic_file_read - generic file read routine |
1070 | * @filp: the file to read |
1071 | * @ppos: current file position |
1072 | * @desc: read_descriptor |
1073 | * @actor: read method |
1074 | * |
1075 | * This is a generic file read routine, and uses the |
1076 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1077 | * |
1078 | * This is really ugly. But the goto's actually try to clarify some |
1079 | * of the logic when it comes to error handling etc. |
1080 | */ |
1081 | static void do_generic_file_read(struct file *filp, loff_t *ppos, |
1082 | read_descriptor_t *desc, read_actor_t actor) |
1083 | { |
1084 | struct address_space *mapping = filp->f_mapping; |
1085 | struct inode *inode = mapping->host; |
1086 | struct file_ra_state *ra = &filp->f_ra; |
1087 | pgoff_t index; |
1088 | pgoff_t last_index; |
1089 | pgoff_t prev_index; |
1090 | unsigned long offset; /* offset into pagecache page */ |
1091 | unsigned int prev_offset; |
1092 | int error; |
1093 | |
1094 | index = *ppos >> PAGE_CACHE_SHIFT; |
1095 | prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; |
1096 | prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); |
1097 | last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; |
1098 | offset = *ppos & ~PAGE_CACHE_MASK; |
1099 | |
1100 | for (;;) { |
1101 | struct page *page; |
1102 | pgoff_t end_index; |
1103 | loff_t isize; |
1104 | unsigned long nr, ret; |
1105 | |
1106 | cond_resched(); |
1107 | find_page: |
1108 | page = find_get_page(mapping, index); |
1109 | if (!page) { |
1110 | page_cache_sync_readahead(mapping, |
1111 | ra, filp, |
1112 | index, last_index - index); |
1113 | page = find_get_page(mapping, index); |
1114 | if (unlikely(page == NULL)) |
1115 | goto no_cached_page; |
1116 | } |
1117 | if (PageReadahead(page)) { |
1118 | page_cache_async_readahead(mapping, |
1119 | ra, filp, page, |
1120 | index, last_index - index); |
1121 | } |
1122 | if (!PageUptodate(page)) { |
1123 | if (inode->i_blkbits == PAGE_CACHE_SHIFT || |
1124 | !mapping->a_ops->is_partially_uptodate) |
1125 | goto page_not_up_to_date; |
1126 | if (!trylock_page(page)) |
1127 | goto page_not_up_to_date; |
1128 | /* Did it get truncated before we got the lock? */ |
1129 | if (!page->mapping) |
1130 | goto page_not_up_to_date_locked; |
1131 | if (!mapping->a_ops->is_partially_uptodate(page, |
1132 | desc, offset)) |
1133 | goto page_not_up_to_date_locked; |
1134 | unlock_page(page); |
1135 | } |
1136 | page_ok: |
1137 | /* |
1138 | * i_size must be checked after we know the page is Uptodate. |
1139 | * |
1140 | * Checking i_size after the check allows us to calculate |
1141 | * the correct value for "nr", which means the zero-filled |
1142 | * part of the page is not copied back to userspace (unless |
1143 | * another truncate extends the file - this is desired though). |
1144 | */ |
1145 | |
1146 | isize = i_size_read(inode); |
1147 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; |
1148 | if (unlikely(!isize || index > end_index)) { |
1149 | page_cache_release(page); |
1150 | goto out; |
1151 | } |
1152 | |
1153 | /* nr is the maximum number of bytes to copy from this page */ |
1154 | nr = PAGE_CACHE_SIZE; |
1155 | if (index == end_index) { |
1156 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; |
1157 | if (nr <= offset) { |
1158 | page_cache_release(page); |
1159 | goto out; |
1160 | } |
1161 | } |
1162 | nr = nr - offset; |
1163 | |
1164 | /* If users can be writing to this page using arbitrary |
1165 | * virtual addresses, take care about potential aliasing |
1166 | * before reading the page on the kernel side. |
1167 | */ |
1168 | if (mapping_writably_mapped(mapping)) |
1169 | flush_dcache_page(page); |
1170 | |
1171 | /* |
1172 | * When a sequential read accesses a page several times, |
1173 | * only mark it as accessed the first time. |
1174 | */ |
1175 | if (prev_index != index || offset != prev_offset) |
1176 | mark_page_accessed(page); |
1177 | prev_index = index; |
1178 | |
1179 | /* |
1180 | * Ok, we have the page, and it's up-to-date, so |
1181 | * now we can copy it to user space... |
1182 | * |
1183 | * The actor routine returns how many bytes were actually used.. |
1184 | * NOTE! This may not be the same as how much of a user buffer |
1185 | * we filled up (we may be padding etc), so we can only update |
1186 | * "pos" here (the actor routine has to update the user buffer |
1187 | * pointers and the remaining count). |
1188 | */ |
1189 | ret = actor(desc, page, offset, nr); |
1190 | offset += ret; |
1191 | index += offset >> PAGE_CACHE_SHIFT; |
1192 | offset &= ~PAGE_CACHE_MASK; |
1193 | prev_offset = offset; |
1194 | |
1195 | page_cache_release(page); |
1196 | if (ret == nr && desc->count) |
1197 | continue; |
1198 | goto out; |
1199 | |
1200 | page_not_up_to_date: |
1201 | /* Get exclusive access to the page ... */ |
1202 | error = lock_page_killable(page); |
1203 | if (unlikely(error)) |
1204 | goto readpage_error; |
1205 | |
1206 | page_not_up_to_date_locked: |
1207 | /* Did it get truncated before we got the lock? */ |
1208 | if (!page->mapping) { |
1209 | unlock_page(page); |
1210 | page_cache_release(page); |
1211 | continue; |
1212 | } |
1213 | |
1214 | /* Did somebody else fill it already? */ |
1215 | if (PageUptodate(page)) { |
1216 | unlock_page(page); |
1217 | goto page_ok; |
1218 | } |
1219 | |
1220 | readpage: |
1221 | /* |
1222 | * A previous I/O error may have been due to temporary |
1223 | * failures, eg. multipath errors. |
1224 | * PG_error will be set again if readpage fails. |
1225 | */ |
1226 | ClearPageError(page); |
1227 | /* Start the actual read. The read will unlock the page. */ |
1228 | error = mapping->a_ops->readpage(filp, page); |
1229 | |
1230 | if (unlikely(error)) { |
1231 | if (error == AOP_TRUNCATED_PAGE) { |
1232 | page_cache_release(page); |
1233 | goto find_page; |
1234 | } |
1235 | goto readpage_error; |
1236 | } |
1237 | |
1238 | if (!PageUptodate(page)) { |
1239 | error = lock_page_killable(page); |
1240 | if (unlikely(error)) |
1241 | goto readpage_error; |
1242 | if (!PageUptodate(page)) { |
1243 | if (page->mapping == NULL) { |
1244 | /* |
1245 | * invalidate_mapping_pages got it |
1246 | */ |
1247 | unlock_page(page); |
1248 | page_cache_release(page); |
1249 | goto find_page; |
1250 | } |
1251 | unlock_page(page); |
1252 | shrink_readahead_size_eio(filp, ra); |
1253 | error = -EIO; |
1254 | goto readpage_error; |
1255 | } |
1256 | unlock_page(page); |
1257 | } |
1258 | |
1259 | goto page_ok; |
1260 | |
1261 | readpage_error: |
1262 | /* UHHUH! A synchronous read error occurred. Report it */ |
1263 | desc->error = error; |
1264 | page_cache_release(page); |
1265 | goto out; |
1266 | |
1267 | no_cached_page: |
1268 | /* |
1269 | * Ok, it wasn't cached, so we need to create a new |
1270 | * page.. |
1271 | */ |
1272 | page = page_cache_alloc_cold(mapping); |
1273 | if (!page) { |
1274 | desc->error = -ENOMEM; |
1275 | goto out; |
1276 | } |
1277 | error = add_to_page_cache_lru(page, mapping, |
1278 | index, GFP_KERNEL); |
1279 | if (error) { |
1280 | page_cache_release(page); |
1281 | if (error == -EEXIST) |
1282 | goto find_page; |
1283 | desc->error = error; |
1284 | goto out; |
1285 | } |
1286 | goto readpage; |
1287 | } |
1288 | |
1289 | out: |
1290 | ra->prev_pos = prev_index; |
1291 | ra->prev_pos <<= PAGE_CACHE_SHIFT; |
1292 | ra->prev_pos |= prev_offset; |
1293 | |
1294 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; |
1295 | file_accessed(filp); |
1296 | } |
1297 | |
1298 | int file_read_actor(read_descriptor_t *desc, struct page *page, |
1299 | unsigned long offset, unsigned long size) |
1300 | { |
1301 | char *kaddr; |
1302 | unsigned long left, count = desc->count; |
1303 | |
1304 | if (size > count) |
1305 | size = count; |
1306 | |
1307 | /* |
1308 | * Faults on the destination of a read are common, so do it before |
1309 | * taking the kmap. |
1310 | */ |
1311 | if (!fault_in_pages_writeable(desc->arg.buf, size)) { |
1312 | kaddr = kmap_atomic(page); |
1313 | left = __copy_to_user_inatomic(desc->arg.buf, |
1314 | kaddr + offset, size); |
1315 | kunmap_atomic(kaddr); |
1316 | if (left == 0) |
1317 | goto success; |
1318 | } |
1319 | |
1320 | /* Do it the slow way */ |
1321 | kaddr = kmap(page); |
1322 | left = __copy_to_user(desc->arg.buf, kaddr + offset, size); |
1323 | kunmap(page); |
1324 | |
1325 | if (left) { |
1326 | size -= left; |
1327 | desc->error = -EFAULT; |
1328 | } |
1329 | success: |
1330 | desc->count = count - size; |
1331 | desc->written += size; |
1332 | desc->arg.buf += size; |
1333 | return size; |
1334 | } |
1335 | |
1336 | /* |
1337 | * Performs necessary checks before doing a write |
1338 | * @iov: io vector request |
1339 | * @nr_segs: number of segments in the iovec |
1340 | * @count: number of bytes to write |
1341 | * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE |
1342 | * |
1343 | * Adjust number of segments and amount of bytes to write (nr_segs should be |
1344 | * properly initialized first). Returns appropriate error code that caller |
1345 | * should return or zero in case that write should be allowed. |
1346 | */ |
1347 | int generic_segment_checks(const struct iovec *iov, |
1348 | unsigned long *nr_segs, size_t *count, int access_flags) |
1349 | { |
1350 | unsigned long seg; |
1351 | size_t cnt = 0; |
1352 | for (seg = 0; seg < *nr_segs; seg++) { |
1353 | const struct iovec *iv = &iov[seg]; |
1354 | |
1355 | /* |
1356 | * If any segment has a negative length, or the cumulative |
1357 | * length ever wraps negative then return -EINVAL. |
1358 | */ |
1359 | cnt += iv->iov_len; |
1360 | if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) |
1361 | return -EINVAL; |
1362 | if (access_ok(access_flags, iv->iov_base, iv->iov_len)) |
1363 | continue; |
1364 | if (seg == 0) |
1365 | return -EFAULT; |
1366 | *nr_segs = seg; |
1367 | cnt -= iv->iov_len; /* This segment is no good */ |
1368 | break; |
1369 | } |
1370 | *count = cnt; |
1371 | return 0; |
1372 | } |
1373 | EXPORT_SYMBOL(generic_segment_checks); |
1374 | |
1375 | /** |
1376 | * generic_file_aio_read - generic filesystem read routine |
1377 | * @iocb: kernel I/O control block |
1378 | * @iov: io vector request |
1379 | * @nr_segs: number of segments in the iovec |
1380 | * @pos: current file position |
1381 | * |
1382 | * This is the "read()" routine for all filesystems |
1383 | * that can use the page cache directly. |
1384 | */ |
1385 | ssize_t |
1386 | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, |
1387 | unsigned long nr_segs, loff_t pos) |
1388 | { |
1389 | struct file *filp = iocb->ki_filp; |
1390 | ssize_t retval; |
1391 | unsigned long seg = 0; |
1392 | size_t count; |
1393 | loff_t *ppos = &iocb->ki_pos; |
1394 | |
1395 | count = 0; |
1396 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1397 | if (retval) |
1398 | return retval; |
1399 | |
1400 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ |
1401 | if (filp->f_flags & O_DIRECT) { |
1402 | loff_t size; |
1403 | struct address_space *mapping; |
1404 | struct inode *inode; |
1405 | |
1406 | mapping = filp->f_mapping; |
1407 | inode = mapping->host; |
1408 | if (!count) |
1409 | goto out; /* skip atime */ |
1410 | size = i_size_read(inode); |
1411 | if (pos < size) { |
1412 | retval = filemap_write_and_wait_range(mapping, pos, |
1413 | pos + iov_length(iov, nr_segs) - 1); |
1414 | if (!retval) { |
1415 | retval = mapping->a_ops->direct_IO(READ, iocb, |
1416 | iov, pos, nr_segs); |
1417 | } |
1418 | if (retval > 0) { |
1419 | *ppos = pos + retval; |
1420 | count -= retval; |
1421 | } |
1422 | |
1423 | /* |
1424 | * Btrfs can have a short DIO read if we encounter |
1425 | * compressed extents, so if there was an error, or if |
1426 | * we've already read everything we wanted to, or if |
1427 | * there was a short read because we hit EOF, go ahead |
1428 | * and return. Otherwise fallthrough to buffered io for |
1429 | * the rest of the read. |
1430 | */ |
1431 | if (retval < 0 || !count || *ppos >= size) { |
1432 | file_accessed(filp); |
1433 | goto out; |
1434 | } |
1435 | } |
1436 | } |
1437 | |
1438 | count = retval; |
1439 | for (seg = 0; seg < nr_segs; seg++) { |
1440 | read_descriptor_t desc; |
1441 | loff_t offset = 0; |
1442 | |
1443 | /* |
1444 | * If we did a short DIO read we need to skip the section of the |
1445 | * iov that we've already read data into. |
1446 | */ |
1447 | if (count) { |
1448 | if (count > iov[seg].iov_len) { |
1449 | count -= iov[seg].iov_len; |
1450 | continue; |
1451 | } |
1452 | offset = count; |
1453 | count = 0; |
1454 | } |
1455 | |
1456 | desc.written = 0; |
1457 | desc.arg.buf = iov[seg].iov_base + offset; |
1458 | desc.count = iov[seg].iov_len - offset; |
1459 | if (desc.count == 0) |
1460 | continue; |
1461 | desc.error = 0; |
1462 | do_generic_file_read(filp, ppos, &desc, file_read_actor); |
1463 | retval += desc.written; |
1464 | if (desc.error) { |
1465 | retval = retval ?: desc.error; |
1466 | break; |
1467 | } |
1468 | if (desc.count > 0) |
1469 | break; |
1470 | } |
1471 | out: |
1472 | return retval; |
1473 | } |
1474 | EXPORT_SYMBOL(generic_file_aio_read); |
1475 | |
1476 | #ifdef CONFIG_MMU |
1477 | /** |
1478 | * page_cache_read - adds requested page to the page cache if not already there |
1479 | * @file: file to read |
1480 | * @offset: page index |
1481 | * |
1482 | * This adds the requested page to the page cache if it isn't already there, |
1483 | * and schedules an I/O to read in its contents from disk. |
1484 | */ |
1485 | static int page_cache_read(struct file *file, pgoff_t offset) |
1486 | { |
1487 | struct address_space *mapping = file->f_mapping; |
1488 | struct page *page; |
1489 | int ret; |
1490 | |
1491 | do { |
1492 | page = page_cache_alloc_cold(mapping); |
1493 | if (!page) |
1494 | return -ENOMEM; |
1495 | |
1496 | ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); |
1497 | if (ret == 0) |
1498 | ret = mapping->a_ops->readpage(file, page); |
1499 | else if (ret == -EEXIST) |
1500 | ret = 0; /* losing race to add is OK */ |
1501 | |
1502 | page_cache_release(page); |
1503 | |
1504 | } while (ret == AOP_TRUNCATED_PAGE); |
1505 | |
1506 | return ret; |
1507 | } |
1508 | |
1509 | #define MMAP_LOTSAMISS (100) |
1510 | |
1511 | /* |
1512 | * Synchronous readahead happens when we don't even find |
1513 | * a page in the page cache at all. |
1514 | */ |
1515 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, |
1516 | struct file_ra_state *ra, |
1517 | struct file *file, |
1518 | pgoff_t offset) |
1519 | { |
1520 | unsigned long ra_pages; |
1521 | struct address_space *mapping = file->f_mapping; |
1522 | |
1523 | /* If we don't want any read-ahead, don't bother */ |
1524 | if (VM_RandomReadHint(vma)) |
1525 | return; |
1526 | if (!ra->ra_pages) |
1527 | return; |
1528 | |
1529 | if (VM_SequentialReadHint(vma)) { |
1530 | page_cache_sync_readahead(mapping, ra, file, offset, |
1531 | ra->ra_pages); |
1532 | return; |
1533 | } |
1534 | |
1535 | /* Avoid banging the cache line if not needed */ |
1536 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) |
1537 | ra->mmap_miss++; |
1538 | |
1539 | /* |
1540 | * Do we miss much more than hit in this file? If so, |
1541 | * stop bothering with read-ahead. It will only hurt. |
1542 | */ |
1543 | if (ra->mmap_miss > MMAP_LOTSAMISS) |
1544 | return; |
1545 | |
1546 | /* |
1547 | * mmap read-around |
1548 | */ |
1549 | ra_pages = max_sane_readahead(ra->ra_pages); |
1550 | ra->start = max_t(long, 0, offset - ra_pages / 2); |
1551 | ra->size = ra_pages; |
1552 | ra->async_size = ra_pages / 4; |
1553 | ra_submit(ra, mapping, file); |
1554 | } |
1555 | |
1556 | /* |
1557 | * Asynchronous readahead happens when we find the page and PG_readahead, |
1558 | * so we want to possibly extend the readahead further.. |
1559 | */ |
1560 | static void do_async_mmap_readahead(struct vm_area_struct *vma, |
1561 | struct file_ra_state *ra, |
1562 | struct file *file, |
1563 | struct page *page, |
1564 | pgoff_t offset) |
1565 | { |
1566 | struct address_space *mapping = file->f_mapping; |
1567 | |
1568 | /* If we don't want any read-ahead, don't bother */ |
1569 | if (VM_RandomReadHint(vma)) |
1570 | return; |
1571 | if (ra->mmap_miss > 0) |
1572 | ra->mmap_miss--; |
1573 | if (PageReadahead(page)) |
1574 | page_cache_async_readahead(mapping, ra, file, |
1575 | page, offset, ra->ra_pages); |
1576 | } |
1577 | |
1578 | /** |
1579 | * filemap_fault - read in file data for page fault handling |
1580 | * @vma: vma in which the fault was taken |
1581 | * @vmf: struct vm_fault containing details of the fault |
1582 | * |
1583 | * filemap_fault() is invoked via the vma operations vector for a |
1584 | * mapped memory region to read in file data during a page fault. |
1585 | * |
1586 | * The goto's are kind of ugly, but this streamlines the normal case of having |
1587 | * it in the page cache, and handles the special cases reasonably without |
1588 | * having a lot of duplicated code. |
1589 | */ |
1590 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1591 | { |
1592 | int error; |
1593 | struct file *file = vma->vm_file; |
1594 | struct address_space *mapping = file->f_mapping; |
1595 | struct file_ra_state *ra = &file->f_ra; |
1596 | struct inode *inode = mapping->host; |
1597 | pgoff_t offset = vmf->pgoff; |
1598 | struct page *page; |
1599 | pgoff_t size; |
1600 | int ret = 0; |
1601 | |
1602 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1603 | if (offset >= size) |
1604 | return VM_FAULT_SIGBUS; |
1605 | |
1606 | /* |
1607 | * Do we have something in the page cache already? |
1608 | */ |
1609 | page = find_get_page(mapping, offset); |
1610 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1611 | /* |
1612 | * We found the page, so try async readahead before |
1613 | * waiting for the lock. |
1614 | */ |
1615 | do_async_mmap_readahead(vma, ra, file, page, offset); |
1616 | } else if (!page) { |
1617 | /* No page in the page cache at all */ |
1618 | do_sync_mmap_readahead(vma, ra, file, offset); |
1619 | count_vm_event(PGMAJFAULT); |
1620 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
1621 | ret = VM_FAULT_MAJOR; |
1622 | retry_find: |
1623 | page = find_get_page(mapping, offset); |
1624 | if (!page) |
1625 | goto no_cached_page; |
1626 | } |
1627 | |
1628 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { |
1629 | page_cache_release(page); |
1630 | return ret | VM_FAULT_RETRY; |
1631 | } |
1632 | |
1633 | /* Did it get truncated? */ |
1634 | if (unlikely(page->mapping != mapping)) { |
1635 | unlock_page(page); |
1636 | put_page(page); |
1637 | goto retry_find; |
1638 | } |
1639 | VM_BUG_ON(page->index != offset); |
1640 | |
1641 | /* |
1642 | * We have a locked page in the page cache, now we need to check |
1643 | * that it's up-to-date. If not, it is going to be due to an error. |
1644 | */ |
1645 | if (unlikely(!PageUptodate(page))) |
1646 | goto page_not_uptodate; |
1647 | |
1648 | /* |
1649 | * Found the page and have a reference on it. |
1650 | * We must recheck i_size under page lock. |
1651 | */ |
1652 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1653 | if (unlikely(offset >= size)) { |
1654 | unlock_page(page); |
1655 | page_cache_release(page); |
1656 | return VM_FAULT_SIGBUS; |
1657 | } |
1658 | |
1659 | vmf->page = page; |
1660 | return ret | VM_FAULT_LOCKED; |
1661 | |
1662 | no_cached_page: |
1663 | /* |
1664 | * We're only likely to ever get here if MADV_RANDOM is in |
1665 | * effect. |
1666 | */ |
1667 | error = page_cache_read(file, offset); |
1668 | |
1669 | /* |
1670 | * The page we want has now been added to the page cache. |
1671 | * In the unlikely event that someone removed it in the |
1672 | * meantime, we'll just come back here and read it again. |
1673 | */ |
1674 | if (error >= 0) |
1675 | goto retry_find; |
1676 | |
1677 | /* |
1678 | * An error return from page_cache_read can result if the |
1679 | * system is low on memory, or a problem occurs while trying |
1680 | * to schedule I/O. |
1681 | */ |
1682 | if (error == -ENOMEM) |
1683 | return VM_FAULT_OOM; |
1684 | return VM_FAULT_SIGBUS; |
1685 | |
1686 | page_not_uptodate: |
1687 | /* |
1688 | * Umm, take care of errors if the page isn't up-to-date. |
1689 | * Try to re-read it _once_. We do this synchronously, |
1690 | * because there really aren't any performance issues here |
1691 | * and we need to check for errors. |
1692 | */ |
1693 | ClearPageError(page); |
1694 | error = mapping->a_ops->readpage(file, page); |
1695 | if (!error) { |
1696 | wait_on_page_locked(page); |
1697 | if (!PageUptodate(page)) |
1698 | error = -EIO; |
1699 | } |
1700 | page_cache_release(page); |
1701 | |
1702 | if (!error || error == AOP_TRUNCATED_PAGE) |
1703 | goto retry_find; |
1704 | |
1705 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
1706 | shrink_readahead_size_eio(file, ra); |
1707 | return VM_FAULT_SIGBUS; |
1708 | } |
1709 | EXPORT_SYMBOL(filemap_fault); |
1710 | |
1711 | int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
1712 | { |
1713 | struct page *page = vmf->page; |
1714 | struct inode *inode = file_inode(vma->vm_file); |
1715 | int ret = VM_FAULT_LOCKED; |
1716 | |
1717 | sb_start_pagefault(inode->i_sb); |
1718 | file_update_time(vma->vm_file); |
1719 | lock_page(page); |
1720 | if (page->mapping != inode->i_mapping) { |
1721 | unlock_page(page); |
1722 | ret = VM_FAULT_NOPAGE; |
1723 | goto out; |
1724 | } |
1725 | /* |
1726 | * We mark the page dirty already here so that when freeze is in |
1727 | * progress, we are guaranteed that writeback during freezing will |
1728 | * see the dirty page and writeprotect it again. |
1729 | */ |
1730 | set_page_dirty(page); |
1731 | wait_for_stable_page(page); |
1732 | out: |
1733 | sb_end_pagefault(inode->i_sb); |
1734 | return ret; |
1735 | } |
1736 | EXPORT_SYMBOL(filemap_page_mkwrite); |
1737 | |
1738 | const struct vm_operations_struct generic_file_vm_ops = { |
1739 | .fault = filemap_fault, |
1740 | .page_mkwrite = filemap_page_mkwrite, |
1741 | .remap_pages = generic_file_remap_pages, |
1742 | }; |
1743 | |
1744 | /* This is used for a general mmap of a disk file */ |
1745 | |
1746 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
1747 | { |
1748 | struct address_space *mapping = file->f_mapping; |
1749 | |
1750 | if (!mapping->a_ops->readpage) |
1751 | return -ENOEXEC; |
1752 | file_accessed(file); |
1753 | vma->vm_ops = &generic_file_vm_ops; |
1754 | return 0; |
1755 | } |
1756 | |
1757 | /* |
1758 | * This is for filesystems which do not implement ->writepage. |
1759 | */ |
1760 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) |
1761 | { |
1762 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) |
1763 | return -EINVAL; |
1764 | return generic_file_mmap(file, vma); |
1765 | } |
1766 | #else |
1767 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
1768 | { |
1769 | return -ENOSYS; |
1770 | } |
1771 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) |
1772 | { |
1773 | return -ENOSYS; |
1774 | } |
1775 | #endif /* CONFIG_MMU */ |
1776 | |
1777 | EXPORT_SYMBOL(generic_file_mmap); |
1778 | EXPORT_SYMBOL(generic_file_readonly_mmap); |
1779 | |
1780 | static struct page *__read_cache_page(struct address_space *mapping, |
1781 | pgoff_t index, |
1782 | int (*filler)(void *, struct page *), |
1783 | void *data, |
1784 | gfp_t gfp) |
1785 | { |
1786 | struct page *page; |
1787 | int err; |
1788 | repeat: |
1789 | page = find_get_page(mapping, index); |
1790 | if (!page) { |
1791 | page = __page_cache_alloc(gfp | __GFP_COLD); |
1792 | if (!page) |
1793 | return ERR_PTR(-ENOMEM); |
1794 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
1795 | if (unlikely(err)) { |
1796 | page_cache_release(page); |
1797 | if (err == -EEXIST) |
1798 | goto repeat; |
1799 | /* Presumably ENOMEM for radix tree node */ |
1800 | return ERR_PTR(err); |
1801 | } |
1802 | err = filler(data, page); |
1803 | if (err < 0) { |
1804 | page_cache_release(page); |
1805 | page = ERR_PTR(err); |
1806 | } |
1807 | } |
1808 | return page; |
1809 | } |
1810 | |
1811 | static struct page *do_read_cache_page(struct address_space *mapping, |
1812 | pgoff_t index, |
1813 | int (*filler)(void *, struct page *), |
1814 | void *data, |
1815 | gfp_t gfp) |
1816 | |
1817 | { |
1818 | struct page *page; |
1819 | int err; |
1820 | |
1821 | retry: |
1822 | page = __read_cache_page(mapping, index, filler, data, gfp); |
1823 | if (IS_ERR(page)) |
1824 | return page; |
1825 | if (PageUptodate(page)) |
1826 | goto out; |
1827 | |
1828 | lock_page(page); |
1829 | if (!page->mapping) { |
1830 | unlock_page(page); |
1831 | page_cache_release(page); |
1832 | goto retry; |
1833 | } |
1834 | if (PageUptodate(page)) { |
1835 | unlock_page(page); |
1836 | goto out; |
1837 | } |
1838 | err = filler(data, page); |
1839 | if (err < 0) { |
1840 | page_cache_release(page); |
1841 | return ERR_PTR(err); |
1842 | } |
1843 | out: |
1844 | mark_page_accessed(page); |
1845 | return page; |
1846 | } |
1847 | |
1848 | /** |
1849 | * read_cache_page_async - read into page cache, fill it if needed |
1850 | * @mapping: the page's address_space |
1851 | * @index: the page index |
1852 | * @filler: function to perform the read |
1853 | * @data: first arg to filler(data, page) function, often left as NULL |
1854 | * |
1855 | * Same as read_cache_page, but don't wait for page to become unlocked |
1856 | * after submitting it to the filler. |
1857 | * |
1858 | * Read into the page cache. If a page already exists, and PageUptodate() is |
1859 | * not set, try to fill the page but don't wait for it to become unlocked. |
1860 | * |
1861 | * If the page does not get brought uptodate, return -EIO. |
1862 | */ |
1863 | struct page *read_cache_page_async(struct address_space *mapping, |
1864 | pgoff_t index, |
1865 | int (*filler)(void *, struct page *), |
1866 | void *data) |
1867 | { |
1868 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); |
1869 | } |
1870 | EXPORT_SYMBOL(read_cache_page_async); |
1871 | |
1872 | static struct page *wait_on_page_read(struct page *page) |
1873 | { |
1874 | if (!IS_ERR(page)) { |
1875 | wait_on_page_locked(page); |
1876 | if (!PageUptodate(page)) { |
1877 | page_cache_release(page); |
1878 | page = ERR_PTR(-EIO); |
1879 | } |
1880 | } |
1881 | return page; |
1882 | } |
1883 | |
1884 | /** |
1885 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. |
1886 | * @mapping: the page's address_space |
1887 | * @index: the page index |
1888 | * @gfp: the page allocator flags to use if allocating |
1889 | * |
1890 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with |
1891 | * any new page allocations done using the specified allocation flags. |
1892 | * |
1893 | * If the page does not get brought uptodate, return -EIO. |
1894 | */ |
1895 | struct page *read_cache_page_gfp(struct address_space *mapping, |
1896 | pgoff_t index, |
1897 | gfp_t gfp) |
1898 | { |
1899 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; |
1900 | |
1901 | return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); |
1902 | } |
1903 | EXPORT_SYMBOL(read_cache_page_gfp); |
1904 | |
1905 | /** |
1906 | * read_cache_page - read into page cache, fill it if needed |
1907 | * @mapping: the page's address_space |
1908 | * @index: the page index |
1909 | * @filler: function to perform the read |
1910 | * @data: first arg to filler(data, page) function, often left as NULL |
1911 | * |
1912 | * Read into the page cache. If a page already exists, and PageUptodate() is |
1913 | * not set, try to fill the page then wait for it to become unlocked. |
1914 | * |
1915 | * If the page does not get brought uptodate, return -EIO. |
1916 | */ |
1917 | struct page *read_cache_page(struct address_space *mapping, |
1918 | pgoff_t index, |
1919 | int (*filler)(void *, struct page *), |
1920 | void *data) |
1921 | { |
1922 | return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); |
1923 | } |
1924 | EXPORT_SYMBOL(read_cache_page); |
1925 | |
1926 | static size_t __iovec_copy_from_user_inatomic(char *vaddr, |
1927 | const struct iovec *iov, size_t base, size_t bytes) |
1928 | { |
1929 | size_t copied = 0, left = 0; |
1930 | |
1931 | while (bytes) { |
1932 | char __user *buf = iov->iov_base + base; |
1933 | int copy = min(bytes, iov->iov_len - base); |
1934 | |
1935 | base = 0; |
1936 | left = __copy_from_user_inatomic(vaddr, buf, copy); |
1937 | copied += copy; |
1938 | bytes -= copy; |
1939 | vaddr += copy; |
1940 | iov++; |
1941 | |
1942 | if (unlikely(left)) |
1943 | break; |
1944 | } |
1945 | return copied - left; |
1946 | } |
1947 | |
1948 | /* |
1949 | * Copy as much as we can into the page and return the number of bytes which |
1950 | * were successfully copied. If a fault is encountered then return the number of |
1951 | * bytes which were copied. |
1952 | */ |
1953 | size_t iov_iter_copy_from_user_atomic(struct page *page, |
1954 | struct iov_iter *i, unsigned long offset, size_t bytes) |
1955 | { |
1956 | char *kaddr; |
1957 | size_t copied; |
1958 | |
1959 | BUG_ON(!in_atomic()); |
1960 | kaddr = kmap_atomic(page); |
1961 | if (likely(i->nr_segs == 1)) { |
1962 | int left; |
1963 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1964 | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); |
1965 | copied = bytes - left; |
1966 | } else { |
1967 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
1968 | i->iov, i->iov_offset, bytes); |
1969 | } |
1970 | kunmap_atomic(kaddr); |
1971 | |
1972 | return copied; |
1973 | } |
1974 | EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); |
1975 | |
1976 | /* |
1977 | * This has the same sideeffects and return value as |
1978 | * iov_iter_copy_from_user_atomic(). |
1979 | * The difference is that it attempts to resolve faults. |
1980 | * Page must not be locked. |
1981 | */ |
1982 | size_t iov_iter_copy_from_user(struct page *page, |
1983 | struct iov_iter *i, unsigned long offset, size_t bytes) |
1984 | { |
1985 | char *kaddr; |
1986 | size_t copied; |
1987 | |
1988 | kaddr = kmap(page); |
1989 | if (likely(i->nr_segs == 1)) { |
1990 | int left; |
1991 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1992 | left = __copy_from_user(kaddr + offset, buf, bytes); |
1993 | copied = bytes - left; |
1994 | } else { |
1995 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
1996 | i->iov, i->iov_offset, bytes); |
1997 | } |
1998 | kunmap(page); |
1999 | return copied; |
2000 | } |
2001 | EXPORT_SYMBOL(iov_iter_copy_from_user); |
2002 | |
2003 | void iov_iter_advance(struct iov_iter *i, size_t bytes) |
2004 | { |
2005 | BUG_ON(i->count < bytes); |
2006 | |
2007 | if (likely(i->nr_segs == 1)) { |
2008 | i->iov_offset += bytes; |
2009 | i->count -= bytes; |
2010 | } else { |
2011 | const struct iovec *iov = i->iov; |
2012 | size_t base = i->iov_offset; |
2013 | unsigned long nr_segs = i->nr_segs; |
2014 | |
2015 | /* |
2016 | * The !iov->iov_len check ensures we skip over unlikely |
2017 | * zero-length segments (without overruning the iovec). |
2018 | */ |
2019 | while (bytes || unlikely(i->count && !iov->iov_len)) { |
2020 | int copy; |
2021 | |
2022 | copy = min(bytes, iov->iov_len - base); |
2023 | BUG_ON(!i->count || i->count < copy); |
2024 | i->count -= copy; |
2025 | bytes -= copy; |
2026 | base += copy; |
2027 | if (iov->iov_len == base) { |
2028 | iov++; |
2029 | nr_segs--; |
2030 | base = 0; |
2031 | } |
2032 | } |
2033 | i->iov = iov; |
2034 | i->iov_offset = base; |
2035 | i->nr_segs = nr_segs; |
2036 | } |
2037 | } |
2038 | EXPORT_SYMBOL(iov_iter_advance); |
2039 | |
2040 | /* |
2041 | * Fault in the first iovec of the given iov_iter, to a maximum length |
2042 | * of bytes. Returns 0 on success, or non-zero if the memory could not be |
2043 | * accessed (ie. because it is an invalid address). |
2044 | * |
2045 | * writev-intensive code may want this to prefault several iovecs -- that |
2046 | * would be possible (callers must not rely on the fact that _only_ the |
2047 | * first iovec will be faulted with the current implementation). |
2048 | */ |
2049 | int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) |
2050 | { |
2051 | char __user *buf = i->iov->iov_base + i->iov_offset; |
2052 | bytes = min(bytes, i->iov->iov_len - i->iov_offset); |
2053 | return fault_in_pages_readable(buf, bytes); |
2054 | } |
2055 | EXPORT_SYMBOL(iov_iter_fault_in_readable); |
2056 | |
2057 | /* |
2058 | * Return the count of just the current iov_iter segment. |
2059 | */ |
2060 | size_t iov_iter_single_seg_count(const struct iov_iter *i) |
2061 | { |
2062 | const struct iovec *iov = i->iov; |
2063 | if (i->nr_segs == 1) |
2064 | return i->count; |
2065 | else |
2066 | return min(i->count, iov->iov_len - i->iov_offset); |
2067 | } |
2068 | EXPORT_SYMBOL(iov_iter_single_seg_count); |
2069 | |
2070 | /* |
2071 | * Performs necessary checks before doing a write |
2072 | * |
2073 | * Can adjust writing position or amount of bytes to write. |
2074 | * Returns appropriate error code that caller should return or |
2075 | * zero in case that write should be allowed. |
2076 | */ |
2077 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) |
2078 | { |
2079 | struct inode *inode = file->f_mapping->host; |
2080 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
2081 | |
2082 | if (unlikely(*pos < 0)) |
2083 | return -EINVAL; |
2084 | |
2085 | if (!isblk) { |
2086 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2087 | if (file->f_flags & O_APPEND) |
2088 | *pos = i_size_read(inode); |
2089 | |
2090 | if (limit != RLIM_INFINITY) { |
2091 | if (*pos >= limit) { |
2092 | send_sig(SIGXFSZ, current, 0); |
2093 | return -EFBIG; |
2094 | } |
2095 | if (*count > limit - (typeof(limit))*pos) { |
2096 | *count = limit - (typeof(limit))*pos; |
2097 | } |
2098 | } |
2099 | } |
2100 | |
2101 | /* |
2102 | * LFS rule |
2103 | */ |
2104 | if (unlikely(*pos + *count > MAX_NON_LFS && |
2105 | !(file->f_flags & O_LARGEFILE))) { |
2106 | if (*pos >= MAX_NON_LFS) { |
2107 | return -EFBIG; |
2108 | } |
2109 | if (*count > MAX_NON_LFS - (unsigned long)*pos) { |
2110 | *count = MAX_NON_LFS - (unsigned long)*pos; |
2111 | } |
2112 | } |
2113 | |
2114 | /* |
2115 | * Are we about to exceed the fs block limit ? |
2116 | * |
2117 | * If we have written data it becomes a short write. If we have |
2118 | * exceeded without writing data we send a signal and return EFBIG. |
2119 | * Linus frestrict idea will clean these up nicely.. |
2120 | */ |
2121 | if (likely(!isblk)) { |
2122 | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { |
2123 | if (*count || *pos > inode->i_sb->s_maxbytes) { |
2124 | return -EFBIG; |
2125 | } |
2126 | /* zero-length writes at ->s_maxbytes are OK */ |
2127 | } |
2128 | |
2129 | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) |
2130 | *count = inode->i_sb->s_maxbytes - *pos; |
2131 | } else { |
2132 | #ifdef CONFIG_BLOCK |
2133 | loff_t isize; |
2134 | if (bdev_read_only(I_BDEV(inode))) |
2135 | return -EPERM; |
2136 | isize = i_size_read(inode); |
2137 | if (*pos >= isize) { |
2138 | if (*count || *pos > isize) |
2139 | return -ENOSPC; |
2140 | } |
2141 | |
2142 | if (*pos + *count > isize) |
2143 | *count = isize - *pos; |
2144 | #else |
2145 | return -EPERM; |
2146 | #endif |
2147 | } |
2148 | return 0; |
2149 | } |
2150 | EXPORT_SYMBOL(generic_write_checks); |
2151 | |
2152 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2153 | loff_t pos, unsigned len, unsigned flags, |
2154 | struct page **pagep, void **fsdata) |
2155 | { |
2156 | const struct address_space_operations *aops = mapping->a_ops; |
2157 | |
2158 | return aops->write_begin(file, mapping, pos, len, flags, |
2159 | pagep, fsdata); |
2160 | } |
2161 | EXPORT_SYMBOL(pagecache_write_begin); |
2162 | |
2163 | int pagecache_write_end(struct file *file, struct address_space *mapping, |
2164 | loff_t pos, unsigned len, unsigned copied, |
2165 | struct page *page, void *fsdata) |
2166 | { |
2167 | const struct address_space_operations *aops = mapping->a_ops; |
2168 | |
2169 | mark_page_accessed(page); |
2170 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
2171 | } |
2172 | EXPORT_SYMBOL(pagecache_write_end); |
2173 | |
2174 | ssize_t |
2175 | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, |
2176 | unsigned long *nr_segs, loff_t pos, loff_t *ppos, |
2177 | size_t count, size_t ocount) |
2178 | { |
2179 | struct file *file = iocb->ki_filp; |
2180 | struct address_space *mapping = file->f_mapping; |
2181 | struct inode *inode = mapping->host; |
2182 | ssize_t written; |
2183 | size_t write_len; |
2184 | pgoff_t end; |
2185 | |
2186 | if (count != ocount) |
2187 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); |
2188 | |
2189 | write_len = iov_length(iov, *nr_segs); |
2190 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; |
2191 | |
2192 | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); |
2193 | if (written) |
2194 | goto out; |
2195 | |
2196 | /* |
2197 | * After a write we want buffered reads to be sure to go to disk to get |
2198 | * the new data. We invalidate clean cached page from the region we're |
2199 | * about to write. We do this *before* the write so that we can return |
2200 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
2201 | */ |
2202 | if (mapping->nrpages) { |
2203 | written = invalidate_inode_pages2_range(mapping, |
2204 | pos >> PAGE_CACHE_SHIFT, end); |
2205 | /* |
2206 | * If a page can not be invalidated, return 0 to fall back |
2207 | * to buffered write. |
2208 | */ |
2209 | if (written) { |
2210 | if (written == -EBUSY) |
2211 | return 0; |
2212 | goto out; |
2213 | } |
2214 | } |
2215 | |
2216 | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); |
2217 | |
2218 | /* |
2219 | * Finally, try again to invalidate clean pages which might have been |
2220 | * cached by non-direct readahead, or faulted in by get_user_pages() |
2221 | * if the source of the write was an mmap'ed region of the file |
2222 | * we're writing. Either one is a pretty crazy thing to do, |
2223 | * so we don't support it 100%. If this invalidation |
2224 | * fails, tough, the write still worked... |
2225 | */ |
2226 | if (mapping->nrpages) { |
2227 | invalidate_inode_pages2_range(mapping, |
2228 | pos >> PAGE_CACHE_SHIFT, end); |
2229 | } |
2230 | |
2231 | if (written > 0) { |
2232 | pos += written; |
2233 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2234 | i_size_write(inode, pos); |
2235 | mark_inode_dirty(inode); |
2236 | } |
2237 | *ppos = pos; |
2238 | } |
2239 | out: |
2240 | return written; |
2241 | } |
2242 | EXPORT_SYMBOL(generic_file_direct_write); |
2243 | |
2244 | /* |
2245 | * Find or create a page at the given pagecache position. Return the locked |
2246 | * page. This function is specifically for buffered writes. |
2247 | */ |
2248 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2249 | pgoff_t index, unsigned flags) |
2250 | { |
2251 | int status; |
2252 | gfp_t gfp_mask; |
2253 | struct page *page; |
2254 | gfp_t gfp_notmask = 0; |
2255 | |
2256 | gfp_mask = mapping_gfp_mask(mapping); |
2257 | if (mapping_cap_account_dirty(mapping)) |
2258 | gfp_mask |= __GFP_WRITE; |
2259 | if (flags & AOP_FLAG_NOFS) |
2260 | gfp_notmask = __GFP_FS; |
2261 | repeat: |
2262 | page = find_lock_page(mapping, index); |
2263 | if (page) |
2264 | goto found; |
2265 | |
2266 | page = __page_cache_alloc(gfp_mask & ~gfp_notmask); |
2267 | if (!page) |
2268 | return NULL; |
2269 | status = add_to_page_cache_lru(page, mapping, index, |
2270 | GFP_KERNEL & ~gfp_notmask); |
2271 | if (unlikely(status)) { |
2272 | page_cache_release(page); |
2273 | if (status == -EEXIST) |
2274 | goto repeat; |
2275 | return NULL; |
2276 | } |
2277 | found: |
2278 | wait_for_stable_page(page); |
2279 | return page; |
2280 | } |
2281 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
2282 | |
2283 | static ssize_t generic_perform_write(struct file *file, |
2284 | struct iov_iter *i, loff_t pos) |
2285 | { |
2286 | struct address_space *mapping = file->f_mapping; |
2287 | const struct address_space_operations *a_ops = mapping->a_ops; |
2288 | long status = 0; |
2289 | ssize_t written = 0; |
2290 | unsigned int flags = 0; |
2291 | |
2292 | /* |
2293 | * Copies from kernel address space cannot fail (NFSD is a big user). |
2294 | */ |
2295 | if (segment_eq(get_fs(), KERNEL_DS)) |
2296 | flags |= AOP_FLAG_UNINTERRUPTIBLE; |
2297 | |
2298 | do { |
2299 | struct page *page; |
2300 | unsigned long offset; /* Offset into pagecache page */ |
2301 | unsigned long bytes; /* Bytes to write to page */ |
2302 | size_t copied; /* Bytes copied from user */ |
2303 | void *fsdata; |
2304 | |
2305 | offset = (pos & (PAGE_CACHE_SIZE - 1)); |
2306 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2307 | iov_iter_count(i)); |
2308 | |
2309 | again: |
2310 | /* |
2311 | * Bring in the user page that we will copy from _first_. |
2312 | * Otherwise there's a nasty deadlock on copying from the |
2313 | * same page as we're writing to, without it being marked |
2314 | * up-to-date. |
2315 | * |
2316 | * Not only is this an optimisation, but it is also required |
2317 | * to check that the address is actually valid, when atomic |
2318 | * usercopies are used, below. |
2319 | */ |
2320 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { |
2321 | status = -EFAULT; |
2322 | break; |
2323 | } |
2324 | |
2325 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
2326 | &page, &fsdata); |
2327 | if (unlikely(status)) |
2328 | break; |
2329 | |
2330 | if (mapping_writably_mapped(mapping)) |
2331 | flush_dcache_page(page); |
2332 | |
2333 | pagefault_disable(); |
2334 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
2335 | pagefault_enable(); |
2336 | flush_dcache_page(page); |
2337 | |
2338 | mark_page_accessed(page); |
2339 | status = a_ops->write_end(file, mapping, pos, bytes, copied, |
2340 | page, fsdata); |
2341 | if (unlikely(status < 0)) |
2342 | break; |
2343 | copied = status; |
2344 | |
2345 | cond_resched(); |
2346 | |
2347 | iov_iter_advance(i, copied); |
2348 | if (unlikely(copied == 0)) { |
2349 | /* |
2350 | * If we were unable to copy any data at all, we must |
2351 | * fall back to a single segment length write. |
2352 | * |
2353 | * If we didn't fallback here, we could livelock |
2354 | * because not all segments in the iov can be copied at |
2355 | * once without a pagefault. |
2356 | */ |
2357 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2358 | iov_iter_single_seg_count(i)); |
2359 | goto again; |
2360 | } |
2361 | pos += copied; |
2362 | written += copied; |
2363 | |
2364 | balance_dirty_pages_ratelimited(mapping); |
2365 | if (fatal_signal_pending(current)) { |
2366 | status = -EINTR; |
2367 | break; |
2368 | } |
2369 | } while (iov_iter_count(i)); |
2370 | |
2371 | return written ? written : status; |
2372 | } |
2373 | |
2374 | ssize_t |
2375 | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, |
2376 | unsigned long nr_segs, loff_t pos, loff_t *ppos, |
2377 | size_t count, ssize_t written) |
2378 | { |
2379 | struct file *file = iocb->ki_filp; |
2380 | ssize_t status; |
2381 | struct iov_iter i; |
2382 | |
2383 | iov_iter_init(&i, iov, nr_segs, count, written); |
2384 | status = generic_perform_write(file, &i, pos); |
2385 | |
2386 | if (likely(status >= 0)) { |
2387 | written += status; |
2388 | *ppos = pos + status; |
2389 | } |
2390 | |
2391 | return written ? written : status; |
2392 | } |
2393 | EXPORT_SYMBOL(generic_file_buffered_write); |
2394 | |
2395 | /** |
2396 | * __generic_file_aio_write - write data to a file |
2397 | * @iocb: IO state structure (file, offset, etc.) |
2398 | * @iov: vector with data to write |
2399 | * @nr_segs: number of segments in the vector |
2400 | * @ppos: position where to write |
2401 | * |
2402 | * This function does all the work needed for actually writing data to a |
2403 | * file. It does all basic checks, removes SUID from the file, updates |
2404 | * modification times and calls proper subroutines depending on whether we |
2405 | * do direct IO or a standard buffered write. |
2406 | * |
2407 | * It expects i_mutex to be grabbed unless we work on a block device or similar |
2408 | * object which does not need locking at all. |
2409 | * |
2410 | * This function does *not* take care of syncing data in case of O_SYNC write. |
2411 | * A caller has to handle it. This is mainly due to the fact that we want to |
2412 | * avoid syncing under i_mutex. |
2413 | */ |
2414 | ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2415 | unsigned long nr_segs, loff_t *ppos) |
2416 | { |
2417 | struct file *file = iocb->ki_filp; |
2418 | struct address_space * mapping = file->f_mapping; |
2419 | size_t ocount; /* original count */ |
2420 | size_t count; /* after file limit checks */ |
2421 | struct inode *inode = mapping->host; |
2422 | loff_t pos; |
2423 | ssize_t written; |
2424 | ssize_t err; |
2425 | |
2426 | ocount = 0; |
2427 | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); |
2428 | if (err) |
2429 | return err; |
2430 | |
2431 | count = ocount; |
2432 | pos = *ppos; |
2433 | |
2434 | /* We can write back this queue in page reclaim */ |
2435 | current->backing_dev_info = mapping->backing_dev_info; |
2436 | written = 0; |
2437 | |
2438 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); |
2439 | if (err) |
2440 | goto out; |
2441 | |
2442 | if (count == 0) |
2443 | goto out; |
2444 | |
2445 | err = file_remove_suid(file); |
2446 | if (err) |
2447 | goto out; |
2448 | |
2449 | err = file_update_time(file); |
2450 | if (err) |
2451 | goto out; |
2452 | |
2453 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ |
2454 | if (unlikely(file->f_flags & O_DIRECT)) { |
2455 | loff_t endbyte; |
2456 | ssize_t written_buffered; |
2457 | |
2458 | written = generic_file_direct_write(iocb, iov, &nr_segs, pos, |
2459 | ppos, count, ocount); |
2460 | if (written < 0 || written == count) |
2461 | goto out; |
2462 | /* |
2463 | * direct-io write to a hole: fall through to buffered I/O |
2464 | * for completing the rest of the request. |
2465 | */ |
2466 | pos += written; |
2467 | count -= written; |
2468 | written_buffered = generic_file_buffered_write(iocb, iov, |
2469 | nr_segs, pos, ppos, count, |
2470 | written); |
2471 | /* |
2472 | * If generic_file_buffered_write() retuned a synchronous error |
2473 | * then we want to return the number of bytes which were |
2474 | * direct-written, or the error code if that was zero. Note |
2475 | * that this differs from normal direct-io semantics, which |
2476 | * will return -EFOO even if some bytes were written. |
2477 | */ |
2478 | if (written_buffered < 0) { |
2479 | err = written_buffered; |
2480 | goto out; |
2481 | } |
2482 | |
2483 | /* |
2484 | * We need to ensure that the page cache pages are written to |
2485 | * disk and invalidated to preserve the expected O_DIRECT |
2486 | * semantics. |
2487 | */ |
2488 | endbyte = pos + written_buffered - written - 1; |
2489 | err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); |
2490 | if (err == 0) { |
2491 | written = written_buffered; |
2492 | invalidate_mapping_pages(mapping, |
2493 | pos >> PAGE_CACHE_SHIFT, |
2494 | endbyte >> PAGE_CACHE_SHIFT); |
2495 | } else { |
2496 | /* |
2497 | * We don't know how much we wrote, so just return |
2498 | * the number of bytes which were direct-written |
2499 | */ |
2500 | } |
2501 | } else { |
2502 | written = generic_file_buffered_write(iocb, iov, nr_segs, |
2503 | pos, ppos, count, written); |
2504 | } |
2505 | out: |
2506 | current->backing_dev_info = NULL; |
2507 | return written ? written : err; |
2508 | } |
2509 | EXPORT_SYMBOL(__generic_file_aio_write); |
2510 | |
2511 | /** |
2512 | * generic_file_aio_write - write data to a file |
2513 | * @iocb: IO state structure |
2514 | * @iov: vector with data to write |
2515 | * @nr_segs: number of segments in the vector |
2516 | * @pos: position in file where to write |
2517 | * |
2518 | * This is a wrapper around __generic_file_aio_write() to be used by most |
2519 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
2520 | * and acquires i_mutex as needed. |
2521 | */ |
2522 | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2523 | unsigned long nr_segs, loff_t pos) |
2524 | { |
2525 | struct file *file = iocb->ki_filp; |
2526 | struct inode *inode = file->f_mapping->host; |
2527 | ssize_t ret; |
2528 | |
2529 | BUG_ON(iocb->ki_pos != pos); |
2530 | |
2531 | sb_start_write(inode->i_sb); |
2532 | mutex_lock(&inode->i_mutex); |
2533 | ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); |
2534 | mutex_unlock(&inode->i_mutex); |
2535 | |
2536 | if (ret > 0 || ret == -EIOCBQUEUED) { |
2537 | ssize_t err; |
2538 | |
2539 | err = generic_write_sync(file, pos, ret); |
2540 | if (err < 0 && ret > 0) |
2541 | ret = err; |
2542 | } |
2543 | sb_end_write(inode->i_sb); |
2544 | return ret; |
2545 | } |
2546 | EXPORT_SYMBOL(generic_file_aio_write); |
2547 | |
2548 | /** |
2549 | * try_to_release_page() - release old fs-specific metadata on a page |
2550 | * |
2551 | * @page: the page which the kernel is trying to free |
2552 | * @gfp_mask: memory allocation flags (and I/O mode) |
2553 | * |
2554 | * The address_space is to try to release any data against the page |
2555 | * (presumably at page->private). If the release was successful, return `1'. |
2556 | * Otherwise return zero. |
2557 | * |
2558 | * This may also be called if PG_fscache is set on a page, indicating that the |
2559 | * page is known to the local caching routines. |
2560 | * |
2561 | * The @gfp_mask argument specifies whether I/O may be performed to release |
2562 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
2563 | * |
2564 | */ |
2565 | int try_to_release_page(struct page *page, gfp_t gfp_mask) |
2566 | { |
2567 | struct address_space * const mapping = page->mapping; |
2568 | |
2569 | BUG_ON(!PageLocked(page)); |
2570 | if (PageWriteback(page)) |
2571 | return 0; |
2572 | |
2573 | if (mapping && mapping->a_ops->releasepage) |
2574 | return mapping->a_ops->releasepage(page, gfp_mask); |
2575 | return try_to_free_buffers(page); |
2576 | } |
2577 | |
2578 | EXPORT_SYMBOL(try_to_release_page); |
2579 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9