1 | /* |
2 | * linux/mm/page_alloc.c |
3 | * |
4 | * Manages the free list, the system allocates free pages here. |
5 | * Note that kmalloc() lives in slab.c |
6 | * |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
8 | * Swap reorganised 29.12.95, Stephen Tweedie |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
15 | */ |
16 | |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> |
19 | #include <linux/swap.h> |
20 | #include <linux/interrupt.h> |
21 | #include <linux/pagemap.h> |
22 | #include <linux/jiffies.h> |
23 | #include <linux/bootmem.h> |
24 | #include <linux/memblock.h> |
25 | #include <linux/compiler.h> |
26 | #include <linux/kernel.h> |
27 | #include <linux/kmemcheck.h> |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> |
30 | #include <linux/pagevec.h> |
31 | #include <linux/blkdev.h> |
32 | #include <linux/slab.h> |
33 | #include <linux/ratelimit.h> |
34 | #include <linux/oom.h> |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> |
37 | #include <linux/sysctl.h> |
38 | #include <linux/cpu.h> |
39 | #include <linux/cpuset.h> |
40 | #include <linux/memory_hotplug.h> |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> |
43 | #include <linux/vmstat.h> |
44 | #include <linux/mempolicy.h> |
45 | #include <linux/stop_machine.h> |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> |
48 | #include <linux/backing-dev.h> |
49 | #include <linux/fault-inject.h> |
50 | #include <linux/page-isolation.h> |
51 | #include <linux/page_cgroup.h> |
52 | #include <linux/debugobjects.h> |
53 | #include <linux/kmemleak.h> |
54 | #include <linux/compaction.h> |
55 | #include <trace/events/kmem.h> |
56 | #include <linux/ftrace_event.h> |
57 | #include <linux/memcontrol.h> |
58 | #include <linux/prefetch.h> |
59 | #include <linux/migrate.h> |
60 | #include <linux/page-debug-flags.h> |
61 | #include <linux/sched/rt.h> |
62 | |
63 | #include <asm/tlbflush.h> |
64 | #include <asm/div64.h> |
65 | #include "internal.h" |
66 | |
67 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
68 | DEFINE_PER_CPU(int, numa_node); |
69 | EXPORT_PER_CPU_SYMBOL(numa_node); |
70 | #endif |
71 | |
72 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
73 | /* |
74 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. |
75 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. |
76 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() |
77 | * defined in <linux/topology.h>. |
78 | */ |
79 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ |
80 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); |
81 | #endif |
82 | |
83 | /* |
84 | * Array of node states. |
85 | */ |
86 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
87 | [N_POSSIBLE] = NODE_MASK_ALL, |
88 | [N_ONLINE] = { { [0] = 1UL } }, |
89 | #ifndef CONFIG_NUMA |
90 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, |
91 | #ifdef CONFIG_HIGHMEM |
92 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, |
93 | #endif |
94 | #ifdef CONFIG_MOVABLE_NODE |
95 | [N_MEMORY] = { { [0] = 1UL } }, |
96 | #endif |
97 | [N_CPU] = { { [0] = 1UL } }, |
98 | #endif /* NUMA */ |
99 | }; |
100 | EXPORT_SYMBOL(node_states); |
101 | |
102 | unsigned long totalram_pages __read_mostly; |
103 | unsigned long totalreserve_pages __read_mostly; |
104 | /* |
105 | * When calculating the number of globally allowed dirty pages, there |
106 | * is a certain number of per-zone reserves that should not be |
107 | * considered dirtyable memory. This is the sum of those reserves |
108 | * over all existing zones that contribute dirtyable memory. |
109 | */ |
110 | unsigned long dirty_balance_reserve __read_mostly; |
111 | |
112 | int percpu_pagelist_fraction; |
113 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
114 | |
115 | #ifdef CONFIG_PM_SLEEP |
116 | /* |
117 | * The following functions are used by the suspend/hibernate code to temporarily |
118 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations |
119 | * while devices are suspended. To avoid races with the suspend/hibernate code, |
120 | * they should always be called with pm_mutex held (gfp_allowed_mask also should |
121 | * only be modified with pm_mutex held, unless the suspend/hibernate code is |
122 | * guaranteed not to run in parallel with that modification). |
123 | */ |
124 | |
125 | static gfp_t saved_gfp_mask; |
126 | |
127 | void pm_restore_gfp_mask(void) |
128 | { |
129 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
130 | if (saved_gfp_mask) { |
131 | gfp_allowed_mask = saved_gfp_mask; |
132 | saved_gfp_mask = 0; |
133 | } |
134 | } |
135 | |
136 | void pm_restrict_gfp_mask(void) |
137 | { |
138 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
139 | WARN_ON(saved_gfp_mask); |
140 | saved_gfp_mask = gfp_allowed_mask; |
141 | gfp_allowed_mask &= ~GFP_IOFS; |
142 | } |
143 | |
144 | bool pm_suspended_storage(void) |
145 | { |
146 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) |
147 | return false; |
148 | return true; |
149 | } |
150 | #endif /* CONFIG_PM_SLEEP */ |
151 | |
152 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
153 | int pageblock_order __read_mostly; |
154 | #endif |
155 | |
156 | static void __free_pages_ok(struct page *page, unsigned int order); |
157 | |
158 | /* |
159 | * results with 256, 32 in the lowmem_reserve sysctl: |
160 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
161 | * 1G machine -> (16M dma, 784M normal, 224M high) |
162 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
163 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
164 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA |
165 | * |
166 | * TBD: should special case ZONE_DMA32 machines here - in those we normally |
167 | * don't need any ZONE_NORMAL reservation |
168 | */ |
169 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
170 | #ifdef CONFIG_ZONE_DMA |
171 | 256, |
172 | #endif |
173 | #ifdef CONFIG_ZONE_DMA32 |
174 | 256, |
175 | #endif |
176 | #ifdef CONFIG_HIGHMEM |
177 | 32, |
178 | #endif |
179 | 32, |
180 | }; |
181 | |
182 | EXPORT_SYMBOL(totalram_pages); |
183 | |
184 | static char * const zone_names[MAX_NR_ZONES] = { |
185 | #ifdef CONFIG_ZONE_DMA |
186 | "DMA", |
187 | #endif |
188 | #ifdef CONFIG_ZONE_DMA32 |
189 | "DMA32", |
190 | #endif |
191 | "Normal", |
192 | #ifdef CONFIG_HIGHMEM |
193 | "HighMem", |
194 | #endif |
195 | "Movable", |
196 | }; |
197 | |
198 | int min_free_kbytes = 1024; |
199 | |
200 | static unsigned long __meminitdata nr_kernel_pages; |
201 | static unsigned long __meminitdata nr_all_pages; |
202 | static unsigned long __meminitdata dma_reserve; |
203 | |
204 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
205 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; |
206 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; |
207 | static unsigned long __initdata required_kernelcore; |
208 | static unsigned long __initdata required_movablecore; |
209 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; |
210 | |
211 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
212 | int movable_zone; |
213 | EXPORT_SYMBOL(movable_zone); |
214 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
215 | |
216 | #if MAX_NUMNODES > 1 |
217 | int nr_node_ids __read_mostly = MAX_NUMNODES; |
218 | int nr_online_nodes __read_mostly = 1; |
219 | EXPORT_SYMBOL(nr_node_ids); |
220 | EXPORT_SYMBOL(nr_online_nodes); |
221 | #endif |
222 | |
223 | int page_group_by_mobility_disabled __read_mostly; |
224 | |
225 | void set_pageblock_migratetype(struct page *page, int migratetype) |
226 | { |
227 | |
228 | if (unlikely(page_group_by_mobility_disabled)) |
229 | migratetype = MIGRATE_UNMOVABLE; |
230 | |
231 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
232 | PB_migrate, PB_migrate_end); |
233 | } |
234 | |
235 | bool oom_killer_disabled __read_mostly; |
236 | |
237 | #ifdef CONFIG_DEBUG_VM |
238 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
239 | { |
240 | int ret = 0; |
241 | unsigned seq; |
242 | unsigned long pfn = page_to_pfn(page); |
243 | unsigned long sp, start_pfn; |
244 | |
245 | do { |
246 | seq = zone_span_seqbegin(zone); |
247 | start_pfn = zone->zone_start_pfn; |
248 | sp = zone->spanned_pages; |
249 | if (!zone_spans_pfn(zone, pfn)) |
250 | ret = 1; |
251 | } while (zone_span_seqretry(zone, seq)); |
252 | |
253 | if (ret) |
254 | pr_err("page %lu outside zone [ %lu - %lu ]\n", |
255 | pfn, start_pfn, start_pfn + sp); |
256 | |
257 | return ret; |
258 | } |
259 | |
260 | static int page_is_consistent(struct zone *zone, struct page *page) |
261 | { |
262 | if (!pfn_valid_within(page_to_pfn(page))) |
263 | return 0; |
264 | if (zone != page_zone(page)) |
265 | return 0; |
266 | |
267 | return 1; |
268 | } |
269 | /* |
270 | * Temporary debugging check for pages not lying within a given zone. |
271 | */ |
272 | static int bad_range(struct zone *zone, struct page *page) |
273 | { |
274 | if (page_outside_zone_boundaries(zone, page)) |
275 | return 1; |
276 | if (!page_is_consistent(zone, page)) |
277 | return 1; |
278 | |
279 | return 0; |
280 | } |
281 | #else |
282 | static inline int bad_range(struct zone *zone, struct page *page) |
283 | { |
284 | return 0; |
285 | } |
286 | #endif |
287 | |
288 | static void bad_page(struct page *page) |
289 | { |
290 | static unsigned long resume; |
291 | static unsigned long nr_shown; |
292 | static unsigned long nr_unshown; |
293 | |
294 | /* Don't complain about poisoned pages */ |
295 | if (PageHWPoison(page)) { |
296 | page_mapcount_reset(page); /* remove PageBuddy */ |
297 | return; |
298 | } |
299 | |
300 | /* |
301 | * Allow a burst of 60 reports, then keep quiet for that minute; |
302 | * or allow a steady drip of one report per second. |
303 | */ |
304 | if (nr_shown == 60) { |
305 | if (time_before(jiffies, resume)) { |
306 | nr_unshown++; |
307 | goto out; |
308 | } |
309 | if (nr_unshown) { |
310 | printk(KERN_ALERT |
311 | "BUG: Bad page state: %lu messages suppressed\n", |
312 | nr_unshown); |
313 | nr_unshown = 0; |
314 | } |
315 | nr_shown = 0; |
316 | } |
317 | if (nr_shown++ == 0) |
318 | resume = jiffies + 60 * HZ; |
319 | |
320 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
321 | current->comm, page_to_pfn(page)); |
322 | dump_page(page); |
323 | |
324 | print_modules(); |
325 | dump_stack(); |
326 | out: |
327 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
328 | page_mapcount_reset(page); /* remove PageBuddy */ |
329 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
330 | } |
331 | |
332 | /* |
333 | * Higher-order pages are called "compound pages". They are structured thusly: |
334 | * |
335 | * The first PAGE_SIZE page is called the "head page". |
336 | * |
337 | * The remaining PAGE_SIZE pages are called "tail pages". |
338 | * |
339 | * All pages have PG_compound set. All tail pages have their ->first_page |
340 | * pointing at the head page. |
341 | * |
342 | * The first tail page's ->lru.next holds the address of the compound page's |
343 | * put_page() function. Its ->lru.prev holds the order of allocation. |
344 | * This usage means that zero-order pages may not be compound. |
345 | */ |
346 | |
347 | static void free_compound_page(struct page *page) |
348 | { |
349 | __free_pages_ok(page, compound_order(page)); |
350 | } |
351 | |
352 | void prep_compound_page(struct page *page, unsigned long order) |
353 | { |
354 | int i; |
355 | int nr_pages = 1 << order; |
356 | |
357 | set_compound_page_dtor(page, free_compound_page); |
358 | set_compound_order(page, order); |
359 | __SetPageHead(page); |
360 | for (i = 1; i < nr_pages; i++) { |
361 | struct page *p = page + i; |
362 | __SetPageTail(p); |
363 | set_page_count(p, 0); |
364 | p->first_page = page; |
365 | } |
366 | } |
367 | |
368 | /* update __split_huge_page_refcount if you change this function */ |
369 | static int destroy_compound_page(struct page *page, unsigned long order) |
370 | { |
371 | int i; |
372 | int nr_pages = 1 << order; |
373 | int bad = 0; |
374 | |
375 | if (unlikely(compound_order(page) != order)) { |
376 | bad_page(page); |
377 | bad++; |
378 | } |
379 | |
380 | __ClearPageHead(page); |
381 | |
382 | for (i = 1; i < nr_pages; i++) { |
383 | struct page *p = page + i; |
384 | |
385 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
386 | bad_page(page); |
387 | bad++; |
388 | } |
389 | __ClearPageTail(p); |
390 | } |
391 | |
392 | return bad; |
393 | } |
394 | |
395 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
396 | { |
397 | int i; |
398 | |
399 | /* |
400 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO |
401 | * and __GFP_HIGHMEM from hard or soft interrupt context. |
402 | */ |
403 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
404 | for (i = 0; i < (1 << order); i++) |
405 | clear_highpage(page + i); |
406 | } |
407 | |
408 | #ifdef CONFIG_DEBUG_PAGEALLOC |
409 | unsigned int _debug_guardpage_minorder; |
410 | |
411 | static int __init debug_guardpage_minorder_setup(char *buf) |
412 | { |
413 | unsigned long res; |
414 | |
415 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { |
416 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); |
417 | return 0; |
418 | } |
419 | _debug_guardpage_minorder = res; |
420 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); |
421 | return 0; |
422 | } |
423 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); |
424 | |
425 | static inline void set_page_guard_flag(struct page *page) |
426 | { |
427 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); |
428 | } |
429 | |
430 | static inline void clear_page_guard_flag(struct page *page) |
431 | { |
432 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); |
433 | } |
434 | #else |
435 | static inline void set_page_guard_flag(struct page *page) { } |
436 | static inline void clear_page_guard_flag(struct page *page) { } |
437 | #endif |
438 | |
439 | static inline void set_page_order(struct page *page, int order) |
440 | { |
441 | set_page_private(page, order); |
442 | __SetPageBuddy(page); |
443 | } |
444 | |
445 | static inline void rmv_page_order(struct page *page) |
446 | { |
447 | __ClearPageBuddy(page); |
448 | set_page_private(page, 0); |
449 | } |
450 | |
451 | /* |
452 | * Locate the struct page for both the matching buddy in our |
453 | * pair (buddy1) and the combined O(n+1) page they form (page). |
454 | * |
455 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
456 | * the following equation: |
457 | * B2 = B1 ^ (1 << O) |
458 | * For example, if the starting buddy (buddy2) is #8 its order |
459 | * 1 buddy is #10: |
460 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
461 | * |
462 | * 2) Any buddy B will have an order O+1 parent P which |
463 | * satisfies the following equation: |
464 | * P = B & ~(1 << O) |
465 | * |
466 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
467 | */ |
468 | static inline unsigned long |
469 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
470 | { |
471 | return page_idx ^ (1 << order); |
472 | } |
473 | |
474 | /* |
475 | * This function checks whether a page is free && is the buddy |
476 | * we can do coalesce a page and its buddy if |
477 | * (a) the buddy is not in a hole && |
478 | * (b) the buddy is in the buddy system && |
479 | * (c) a page and its buddy have the same order && |
480 | * (d) a page and its buddy are in the same zone. |
481 | * |
482 | * For recording whether a page is in the buddy system, we set ->_mapcount -2. |
483 | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. |
484 | * |
485 | * For recording page's order, we use page_private(page). |
486 | */ |
487 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
488 | int order) |
489 | { |
490 | if (!pfn_valid_within(page_to_pfn(buddy))) |
491 | return 0; |
492 | |
493 | if (page_zone_id(page) != page_zone_id(buddy)) |
494 | return 0; |
495 | |
496 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
497 | VM_BUG_ON(page_count(buddy) != 0); |
498 | return 1; |
499 | } |
500 | |
501 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
502 | VM_BUG_ON(page_count(buddy) != 0); |
503 | return 1; |
504 | } |
505 | return 0; |
506 | } |
507 | |
508 | /* |
509 | * Freeing function for a buddy system allocator. |
510 | * |
511 | * The concept of a buddy system is to maintain direct-mapped table |
512 | * (containing bit values) for memory blocks of various "orders". |
513 | * The bottom level table contains the map for the smallest allocatable |
514 | * units of memory (here, pages), and each level above it describes |
515 | * pairs of units from the levels below, hence, "buddies". |
516 | * At a high level, all that happens here is marking the table entry |
517 | * at the bottom level available, and propagating the changes upward |
518 | * as necessary, plus some accounting needed to play nicely with other |
519 | * parts of the VM system. |
520 | * At each level, we keep a list of pages, which are heads of continuous |
521 | * free pages of length of (1 << order) and marked with _mapcount -2. Page's |
522 | * order is recorded in page_private(page) field. |
523 | * So when we are allocating or freeing one, we can derive the state of the |
524 | * other. That is, if we allocate a small block, and both were |
525 | * free, the remainder of the region must be split into blocks. |
526 | * If a block is freed, and its buddy is also free, then this |
527 | * triggers coalescing into a block of larger size. |
528 | * |
529 | * -- nyc |
530 | */ |
531 | |
532 | static inline void __free_one_page(struct page *page, |
533 | struct zone *zone, unsigned int order, |
534 | int migratetype) |
535 | { |
536 | unsigned long page_idx; |
537 | unsigned long combined_idx; |
538 | unsigned long uninitialized_var(buddy_idx); |
539 | struct page *buddy; |
540 | |
541 | VM_BUG_ON(!zone_is_initialized(zone)); |
542 | |
543 | if (unlikely(PageCompound(page))) |
544 | if (unlikely(destroy_compound_page(page, order))) |
545 | return; |
546 | |
547 | VM_BUG_ON(migratetype == -1); |
548 | |
549 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
550 | |
551 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
552 | VM_BUG_ON(bad_range(zone, page)); |
553 | |
554 | while (order < MAX_ORDER-1) { |
555 | buddy_idx = __find_buddy_index(page_idx, order); |
556 | buddy = page + (buddy_idx - page_idx); |
557 | if (!page_is_buddy(page, buddy, order)) |
558 | break; |
559 | /* |
560 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, |
561 | * merge with it and move up one order. |
562 | */ |
563 | if (page_is_guard(buddy)) { |
564 | clear_page_guard_flag(buddy); |
565 | set_page_private(page, 0); |
566 | __mod_zone_freepage_state(zone, 1 << order, |
567 | migratetype); |
568 | } else { |
569 | list_del(&buddy->lru); |
570 | zone->free_area[order].nr_free--; |
571 | rmv_page_order(buddy); |
572 | } |
573 | combined_idx = buddy_idx & page_idx; |
574 | page = page + (combined_idx - page_idx); |
575 | page_idx = combined_idx; |
576 | order++; |
577 | } |
578 | set_page_order(page, order); |
579 | |
580 | /* |
581 | * If this is not the largest possible page, check if the buddy |
582 | * of the next-highest order is free. If it is, it's possible |
583 | * that pages are being freed that will coalesce soon. In case, |
584 | * that is happening, add the free page to the tail of the list |
585 | * so it's less likely to be used soon and more likely to be merged |
586 | * as a higher order page |
587 | */ |
588 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
589 | struct page *higher_page, *higher_buddy; |
590 | combined_idx = buddy_idx & page_idx; |
591 | higher_page = page + (combined_idx - page_idx); |
592 | buddy_idx = __find_buddy_index(combined_idx, order + 1); |
593 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
594 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
595 | list_add_tail(&page->lru, |
596 | &zone->free_area[order].free_list[migratetype]); |
597 | goto out; |
598 | } |
599 | } |
600 | |
601 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); |
602 | out: |
603 | zone->free_area[order].nr_free++; |
604 | } |
605 | |
606 | static inline int free_pages_check(struct page *page) |
607 | { |
608 | if (unlikely(page_mapcount(page) | |
609 | (page->mapping != NULL) | |
610 | (atomic_read(&page->_count) != 0) | |
611 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | |
612 | (mem_cgroup_bad_page_check(page)))) { |
613 | bad_page(page); |
614 | return 1; |
615 | } |
616 | page_nid_reset_last(page); |
617 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
618 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
619 | return 0; |
620 | } |
621 | |
622 | /* |
623 | * Frees a number of pages from the PCP lists |
624 | * Assumes all pages on list are in same zone, and of same order. |
625 | * count is the number of pages to free. |
626 | * |
627 | * If the zone was previously in an "all pages pinned" state then look to |
628 | * see if this freeing clears that state. |
629 | * |
630 | * And clear the zone's pages_scanned counter, to hold off the "all pages are |
631 | * pinned" detection logic. |
632 | */ |
633 | static void free_pcppages_bulk(struct zone *zone, int count, |
634 | struct per_cpu_pages *pcp) |
635 | { |
636 | int migratetype = 0; |
637 | int batch_free = 0; |
638 | int to_free = count; |
639 | |
640 | spin_lock(&zone->lock); |
641 | zone->all_unreclaimable = 0; |
642 | zone->pages_scanned = 0; |
643 | |
644 | while (to_free) { |
645 | struct page *page; |
646 | struct list_head *list; |
647 | |
648 | /* |
649 | * Remove pages from lists in a round-robin fashion. A |
650 | * batch_free count is maintained that is incremented when an |
651 | * empty list is encountered. This is so more pages are freed |
652 | * off fuller lists instead of spinning excessively around empty |
653 | * lists |
654 | */ |
655 | do { |
656 | batch_free++; |
657 | if (++migratetype == MIGRATE_PCPTYPES) |
658 | migratetype = 0; |
659 | list = &pcp->lists[migratetype]; |
660 | } while (list_empty(list)); |
661 | |
662 | /* This is the only non-empty list. Free them all. */ |
663 | if (batch_free == MIGRATE_PCPTYPES) |
664 | batch_free = to_free; |
665 | |
666 | do { |
667 | int mt; /* migratetype of the to-be-freed page */ |
668 | |
669 | page = list_entry(list->prev, struct page, lru); |
670 | /* must delete as __free_one_page list manipulates */ |
671 | list_del(&page->lru); |
672 | mt = get_freepage_migratetype(page); |
673 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
674 | __free_one_page(page, zone, 0, mt); |
675 | trace_mm_page_pcpu_drain(page, 0, mt); |
676 | if (likely(!is_migrate_isolate_page(page))) { |
677 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1); |
678 | if (is_migrate_cma(mt)) |
679 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); |
680 | } |
681 | } while (--to_free && --batch_free && !list_empty(list)); |
682 | } |
683 | spin_unlock(&zone->lock); |
684 | } |
685 | |
686 | static void free_one_page(struct zone *zone, struct page *page, int order, |
687 | int migratetype) |
688 | { |
689 | spin_lock(&zone->lock); |
690 | zone->all_unreclaimable = 0; |
691 | zone->pages_scanned = 0; |
692 | |
693 | __free_one_page(page, zone, order, migratetype); |
694 | if (unlikely(!is_migrate_isolate(migratetype))) |
695 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
696 | spin_unlock(&zone->lock); |
697 | } |
698 | |
699 | static bool free_pages_prepare(struct page *page, unsigned int order) |
700 | { |
701 | int i; |
702 | int bad = 0; |
703 | |
704 | trace_mm_page_free(page, order); |
705 | kmemcheck_free_shadow(page, order); |
706 | |
707 | if (PageAnon(page)) |
708 | page->mapping = NULL; |
709 | for (i = 0; i < (1 << order); i++) |
710 | bad += free_pages_check(page + i); |
711 | if (bad) |
712 | return false; |
713 | |
714 | if (!PageHighMem(page)) { |
715 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
716 | debug_check_no_obj_freed(page_address(page), |
717 | PAGE_SIZE << order); |
718 | } |
719 | arch_free_page(page, order); |
720 | kernel_map_pages(page, 1 << order, 0); |
721 | |
722 | return true; |
723 | } |
724 | |
725 | static void __free_pages_ok(struct page *page, unsigned int order) |
726 | { |
727 | unsigned long flags; |
728 | int migratetype; |
729 | |
730 | if (!free_pages_prepare(page, order)) |
731 | return; |
732 | |
733 | local_irq_save(flags); |
734 | __count_vm_events(PGFREE, 1 << order); |
735 | migratetype = get_pageblock_migratetype(page); |
736 | set_freepage_migratetype(page, migratetype); |
737 | free_one_page(page_zone(page), page, order, migratetype); |
738 | local_irq_restore(flags); |
739 | } |
740 | |
741 | /* |
742 | * Read access to zone->managed_pages is safe because it's unsigned long, |
743 | * but we still need to serialize writers. Currently all callers of |
744 | * __free_pages_bootmem() except put_page_bootmem() should only be used |
745 | * at boot time. So for shorter boot time, we shift the burden to |
746 | * put_page_bootmem() to serialize writers. |
747 | */ |
748 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
749 | { |
750 | unsigned int nr_pages = 1 << order; |
751 | unsigned int loop; |
752 | |
753 | prefetchw(page); |
754 | for (loop = 0; loop < nr_pages; loop++) { |
755 | struct page *p = &page[loop]; |
756 | |
757 | if (loop + 1 < nr_pages) |
758 | prefetchw(p + 1); |
759 | __ClearPageReserved(p); |
760 | set_page_count(p, 0); |
761 | } |
762 | |
763 | page_zone(page)->managed_pages += 1 << order; |
764 | set_page_refcounted(page); |
765 | __free_pages(page, order); |
766 | } |
767 | |
768 | #ifdef CONFIG_CMA |
769 | /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ |
770 | void __init init_cma_reserved_pageblock(struct page *page) |
771 | { |
772 | unsigned i = pageblock_nr_pages; |
773 | struct page *p = page; |
774 | |
775 | do { |
776 | __ClearPageReserved(p); |
777 | set_page_count(p, 0); |
778 | } while (++p, --i); |
779 | |
780 | set_page_refcounted(page); |
781 | set_pageblock_migratetype(page, MIGRATE_CMA); |
782 | __free_pages(page, pageblock_order); |
783 | totalram_pages += pageblock_nr_pages; |
784 | #ifdef CONFIG_HIGHMEM |
785 | if (PageHighMem(page)) |
786 | totalhigh_pages += pageblock_nr_pages; |
787 | #endif |
788 | } |
789 | #endif |
790 | |
791 | /* |
792 | * The order of subdivision here is critical for the IO subsystem. |
793 | * Please do not alter this order without good reasons and regression |
794 | * testing. Specifically, as large blocks of memory are subdivided, |
795 | * the order in which smaller blocks are delivered depends on the order |
796 | * they're subdivided in this function. This is the primary factor |
797 | * influencing the order in which pages are delivered to the IO |
798 | * subsystem according to empirical testing, and this is also justified |
799 | * by considering the behavior of a buddy system containing a single |
800 | * large block of memory acted on by a series of small allocations. |
801 | * This behavior is a critical factor in sglist merging's success. |
802 | * |
803 | * -- nyc |
804 | */ |
805 | static inline void expand(struct zone *zone, struct page *page, |
806 | int low, int high, struct free_area *area, |
807 | int migratetype) |
808 | { |
809 | unsigned long size = 1 << high; |
810 | |
811 | while (high > low) { |
812 | area--; |
813 | high--; |
814 | size >>= 1; |
815 | VM_BUG_ON(bad_range(zone, &page[size])); |
816 | |
817 | #ifdef CONFIG_DEBUG_PAGEALLOC |
818 | if (high < debug_guardpage_minorder()) { |
819 | /* |
820 | * Mark as guard pages (or page), that will allow to |
821 | * merge back to allocator when buddy will be freed. |
822 | * Corresponding page table entries will not be touched, |
823 | * pages will stay not present in virtual address space |
824 | */ |
825 | INIT_LIST_HEAD(&page[size].lru); |
826 | set_page_guard_flag(&page[size]); |
827 | set_page_private(&page[size], high); |
828 | /* Guard pages are not available for any usage */ |
829 | __mod_zone_freepage_state(zone, -(1 << high), |
830 | migratetype); |
831 | continue; |
832 | } |
833 | #endif |
834 | list_add(&page[size].lru, &area->free_list[migratetype]); |
835 | area->nr_free++; |
836 | set_page_order(&page[size], high); |
837 | } |
838 | } |
839 | |
840 | /* |
841 | * This page is about to be returned from the page allocator |
842 | */ |
843 | static inline int check_new_page(struct page *page) |
844 | { |
845 | if (unlikely(page_mapcount(page) | |
846 | (page->mapping != NULL) | |
847 | (atomic_read(&page->_count) != 0) | |
848 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | |
849 | (mem_cgroup_bad_page_check(page)))) { |
850 | bad_page(page); |
851 | return 1; |
852 | } |
853 | return 0; |
854 | } |
855 | |
856 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) |
857 | { |
858 | int i; |
859 | |
860 | for (i = 0; i < (1 << order); i++) { |
861 | struct page *p = page + i; |
862 | if (unlikely(check_new_page(p))) |
863 | return 1; |
864 | } |
865 | |
866 | set_page_private(page, 0); |
867 | set_page_refcounted(page); |
868 | |
869 | arch_alloc_page(page, order); |
870 | kernel_map_pages(page, 1 << order, 1); |
871 | |
872 | if (gfp_flags & __GFP_ZERO) |
873 | prep_zero_page(page, order, gfp_flags); |
874 | |
875 | if (order && (gfp_flags & __GFP_COMP)) |
876 | prep_compound_page(page, order); |
877 | |
878 | return 0; |
879 | } |
880 | |
881 | /* |
882 | * Go through the free lists for the given migratetype and remove |
883 | * the smallest available page from the freelists |
884 | */ |
885 | static inline |
886 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
887 | int migratetype) |
888 | { |
889 | unsigned int current_order; |
890 | struct free_area * area; |
891 | struct page *page; |
892 | |
893 | /* Find a page of the appropriate size in the preferred list */ |
894 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { |
895 | area = &(zone->free_area[current_order]); |
896 | if (list_empty(&area->free_list[migratetype])) |
897 | continue; |
898 | |
899 | page = list_entry(area->free_list[migratetype].next, |
900 | struct page, lru); |
901 | list_del(&page->lru); |
902 | rmv_page_order(page); |
903 | area->nr_free--; |
904 | expand(zone, page, order, current_order, area, migratetype); |
905 | return page; |
906 | } |
907 | |
908 | return NULL; |
909 | } |
910 | |
911 | |
912 | /* |
913 | * This array describes the order lists are fallen back to when |
914 | * the free lists for the desirable migrate type are depleted |
915 | */ |
916 | static int fallbacks[MIGRATE_TYPES][4] = { |
917 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
918 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
919 | #ifdef CONFIG_CMA |
920 | [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, |
921 | [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ |
922 | #else |
923 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, |
924 | #endif |
925 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ |
926 | #ifdef CONFIG_MEMORY_ISOLATION |
927 | [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ |
928 | #endif |
929 | }; |
930 | |
931 | /* |
932 | * Move the free pages in a range to the free lists of the requested type. |
933 | * Note that start_page and end_pages are not aligned on a pageblock |
934 | * boundary. If alignment is required, use move_freepages_block() |
935 | */ |
936 | int move_freepages(struct zone *zone, |
937 | struct page *start_page, struct page *end_page, |
938 | int migratetype) |
939 | { |
940 | struct page *page; |
941 | unsigned long order; |
942 | int pages_moved = 0; |
943 | |
944 | #ifndef CONFIG_HOLES_IN_ZONE |
945 | /* |
946 | * page_zone is not safe to call in this context when |
947 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant |
948 | * anyway as we check zone boundaries in move_freepages_block(). |
949 | * Remove at a later date when no bug reports exist related to |
950 | * grouping pages by mobility |
951 | */ |
952 | BUG_ON(page_zone(start_page) != page_zone(end_page)); |
953 | #endif |
954 | |
955 | for (page = start_page; page <= end_page;) { |
956 | /* Make sure we are not inadvertently changing nodes */ |
957 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); |
958 | |
959 | if (!pfn_valid_within(page_to_pfn(page))) { |
960 | page++; |
961 | continue; |
962 | } |
963 | |
964 | if (!PageBuddy(page)) { |
965 | page++; |
966 | continue; |
967 | } |
968 | |
969 | order = page_order(page); |
970 | list_move(&page->lru, |
971 | &zone->free_area[order].free_list[migratetype]); |
972 | set_freepage_migratetype(page, migratetype); |
973 | page += 1 << order; |
974 | pages_moved += 1 << order; |
975 | } |
976 | |
977 | return pages_moved; |
978 | } |
979 | |
980 | int move_freepages_block(struct zone *zone, struct page *page, |
981 | int migratetype) |
982 | { |
983 | unsigned long start_pfn, end_pfn; |
984 | struct page *start_page, *end_page; |
985 | |
986 | start_pfn = page_to_pfn(page); |
987 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
988 | start_page = pfn_to_page(start_pfn); |
989 | end_page = start_page + pageblock_nr_pages - 1; |
990 | end_pfn = start_pfn + pageblock_nr_pages - 1; |
991 | |
992 | /* Do not cross zone boundaries */ |
993 | if (!zone_spans_pfn(zone, start_pfn)) |
994 | start_page = page; |
995 | if (!zone_spans_pfn(zone, end_pfn)) |
996 | return 0; |
997 | |
998 | return move_freepages(zone, start_page, end_page, migratetype); |
999 | } |
1000 | |
1001 | static void change_pageblock_range(struct page *pageblock_page, |
1002 | int start_order, int migratetype) |
1003 | { |
1004 | int nr_pageblocks = 1 << (start_order - pageblock_order); |
1005 | |
1006 | while (nr_pageblocks--) { |
1007 | set_pageblock_migratetype(pageblock_page, migratetype); |
1008 | pageblock_page += pageblock_nr_pages; |
1009 | } |
1010 | } |
1011 | |
1012 | /* Remove an element from the buddy allocator from the fallback list */ |
1013 | static inline struct page * |
1014 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) |
1015 | { |
1016 | struct free_area * area; |
1017 | int current_order; |
1018 | struct page *page; |
1019 | int migratetype, i; |
1020 | |
1021 | /* Find the largest possible block of pages in the other list */ |
1022 | for (current_order = MAX_ORDER-1; current_order >= order; |
1023 | --current_order) { |
1024 | for (i = 0;; i++) { |
1025 | migratetype = fallbacks[start_migratetype][i]; |
1026 | |
1027 | /* MIGRATE_RESERVE handled later if necessary */ |
1028 | if (migratetype == MIGRATE_RESERVE) |
1029 | break; |
1030 | |
1031 | area = &(zone->free_area[current_order]); |
1032 | if (list_empty(&area->free_list[migratetype])) |
1033 | continue; |
1034 | |
1035 | page = list_entry(area->free_list[migratetype].next, |
1036 | struct page, lru); |
1037 | area->nr_free--; |
1038 | |
1039 | /* |
1040 | * If breaking a large block of pages, move all free |
1041 | * pages to the preferred allocation list. If falling |
1042 | * back for a reclaimable kernel allocation, be more |
1043 | * aggressive about taking ownership of free pages |
1044 | * |
1045 | * On the other hand, never change migration |
1046 | * type of MIGRATE_CMA pageblocks nor move CMA |
1047 | * pages on different free lists. We don't |
1048 | * want unmovable pages to be allocated from |
1049 | * MIGRATE_CMA areas. |
1050 | */ |
1051 | if (!is_migrate_cma(migratetype) && |
1052 | (unlikely(current_order >= pageblock_order / 2) || |
1053 | start_migratetype == MIGRATE_RECLAIMABLE || |
1054 | page_group_by_mobility_disabled)) { |
1055 | int pages; |
1056 | pages = move_freepages_block(zone, page, |
1057 | start_migratetype); |
1058 | |
1059 | /* Claim the whole block if over half of it is free */ |
1060 | if (pages >= (1 << (pageblock_order-1)) || |
1061 | page_group_by_mobility_disabled) |
1062 | set_pageblock_migratetype(page, |
1063 | start_migratetype); |
1064 | |
1065 | migratetype = start_migratetype; |
1066 | } |
1067 | |
1068 | /* Remove the page from the freelists */ |
1069 | list_del(&page->lru); |
1070 | rmv_page_order(page); |
1071 | |
1072 | /* Take ownership for orders >= pageblock_order */ |
1073 | if (current_order >= pageblock_order && |
1074 | !is_migrate_cma(migratetype)) |
1075 | change_pageblock_range(page, current_order, |
1076 | start_migratetype); |
1077 | |
1078 | expand(zone, page, order, current_order, area, |
1079 | is_migrate_cma(migratetype) |
1080 | ? migratetype : start_migratetype); |
1081 | |
1082 | trace_mm_page_alloc_extfrag(page, order, current_order, |
1083 | start_migratetype, migratetype); |
1084 | |
1085 | return page; |
1086 | } |
1087 | } |
1088 | |
1089 | return NULL; |
1090 | } |
1091 | |
1092 | /* |
1093 | * Do the hard work of removing an element from the buddy allocator. |
1094 | * Call me with the zone->lock already held. |
1095 | */ |
1096 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1097 | int migratetype) |
1098 | { |
1099 | struct page *page; |
1100 | |
1101 | retry_reserve: |
1102 | page = __rmqueue_smallest(zone, order, migratetype); |
1103 | |
1104 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
1105 | page = __rmqueue_fallback(zone, order, migratetype); |
1106 | |
1107 | /* |
1108 | * Use MIGRATE_RESERVE rather than fail an allocation. goto |
1109 | * is used because __rmqueue_smallest is an inline function |
1110 | * and we want just one call site |
1111 | */ |
1112 | if (!page) { |
1113 | migratetype = MIGRATE_RESERVE; |
1114 | goto retry_reserve; |
1115 | } |
1116 | } |
1117 | |
1118 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
1119 | return page; |
1120 | } |
1121 | |
1122 | /* |
1123 | * Obtain a specified number of elements from the buddy allocator, all under |
1124 | * a single hold of the lock, for efficiency. Add them to the supplied list. |
1125 | * Returns the number of new pages which were placed at *list. |
1126 | */ |
1127 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
1128 | unsigned long count, struct list_head *list, |
1129 | int migratetype, int cold) |
1130 | { |
1131 | int mt = migratetype, i; |
1132 | |
1133 | spin_lock(&zone->lock); |
1134 | for (i = 0; i < count; ++i) { |
1135 | struct page *page = __rmqueue(zone, order, migratetype); |
1136 | if (unlikely(page == NULL)) |
1137 | break; |
1138 | |
1139 | /* |
1140 | * Split buddy pages returned by expand() are received here |
1141 | * in physical page order. The page is added to the callers and |
1142 | * list and the list head then moves forward. From the callers |
1143 | * perspective, the linked list is ordered by page number in |
1144 | * some conditions. This is useful for IO devices that can |
1145 | * merge IO requests if the physical pages are ordered |
1146 | * properly. |
1147 | */ |
1148 | if (likely(cold == 0)) |
1149 | list_add(&page->lru, list); |
1150 | else |
1151 | list_add_tail(&page->lru, list); |
1152 | if (IS_ENABLED(CONFIG_CMA)) { |
1153 | mt = get_pageblock_migratetype(page); |
1154 | if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) |
1155 | mt = migratetype; |
1156 | } |
1157 | set_freepage_migratetype(page, mt); |
1158 | list = &page->lru; |
1159 | if (is_migrate_cma(mt)) |
1160 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
1161 | -(1 << order)); |
1162 | } |
1163 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
1164 | spin_unlock(&zone->lock); |
1165 | return i; |
1166 | } |
1167 | |
1168 | #ifdef CONFIG_NUMA |
1169 | /* |
1170 | * Called from the vmstat counter updater to drain pagesets of this |
1171 | * currently executing processor on remote nodes after they have |
1172 | * expired. |
1173 | * |
1174 | * Note that this function must be called with the thread pinned to |
1175 | * a single processor. |
1176 | */ |
1177 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
1178 | { |
1179 | unsigned long flags; |
1180 | int to_drain; |
1181 | |
1182 | local_irq_save(flags); |
1183 | if (pcp->count >= pcp->batch) |
1184 | to_drain = pcp->batch; |
1185 | else |
1186 | to_drain = pcp->count; |
1187 | if (to_drain > 0) { |
1188 | free_pcppages_bulk(zone, to_drain, pcp); |
1189 | pcp->count -= to_drain; |
1190 | } |
1191 | local_irq_restore(flags); |
1192 | } |
1193 | #endif |
1194 | |
1195 | /* |
1196 | * Drain pages of the indicated processor. |
1197 | * |
1198 | * The processor must either be the current processor and the |
1199 | * thread pinned to the current processor or a processor that |
1200 | * is not online. |
1201 | */ |
1202 | static void drain_pages(unsigned int cpu) |
1203 | { |
1204 | unsigned long flags; |
1205 | struct zone *zone; |
1206 | |
1207 | for_each_populated_zone(zone) { |
1208 | struct per_cpu_pageset *pset; |
1209 | struct per_cpu_pages *pcp; |
1210 | |
1211 | local_irq_save(flags); |
1212 | pset = per_cpu_ptr(zone->pageset, cpu); |
1213 | |
1214 | pcp = &pset->pcp; |
1215 | if (pcp->count) { |
1216 | free_pcppages_bulk(zone, pcp->count, pcp); |
1217 | pcp->count = 0; |
1218 | } |
1219 | local_irq_restore(flags); |
1220 | } |
1221 | } |
1222 | |
1223 | /* |
1224 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
1225 | */ |
1226 | void drain_local_pages(void *arg) |
1227 | { |
1228 | drain_pages(smp_processor_id()); |
1229 | } |
1230 | |
1231 | /* |
1232 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1233 | * |
1234 | * Note that this code is protected against sending an IPI to an offline |
1235 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: |
1236 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but |
1237 | * nothing keeps CPUs from showing up after we populated the cpumask and |
1238 | * before the call to on_each_cpu_mask(). |
1239 | */ |
1240 | void drain_all_pages(void) |
1241 | { |
1242 | int cpu; |
1243 | struct per_cpu_pageset *pcp; |
1244 | struct zone *zone; |
1245 | |
1246 | /* |
1247 | * Allocate in the BSS so we wont require allocation in |
1248 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
1249 | */ |
1250 | static cpumask_t cpus_with_pcps; |
1251 | |
1252 | /* |
1253 | * We don't care about racing with CPU hotplug event |
1254 | * as offline notification will cause the notified |
1255 | * cpu to drain that CPU pcps and on_each_cpu_mask |
1256 | * disables preemption as part of its processing |
1257 | */ |
1258 | for_each_online_cpu(cpu) { |
1259 | bool has_pcps = false; |
1260 | for_each_populated_zone(zone) { |
1261 | pcp = per_cpu_ptr(zone->pageset, cpu); |
1262 | if (pcp->pcp.count) { |
1263 | has_pcps = true; |
1264 | break; |
1265 | } |
1266 | } |
1267 | if (has_pcps) |
1268 | cpumask_set_cpu(cpu, &cpus_with_pcps); |
1269 | else |
1270 | cpumask_clear_cpu(cpu, &cpus_with_pcps); |
1271 | } |
1272 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); |
1273 | } |
1274 | |
1275 | #ifdef CONFIG_HIBERNATION |
1276 | |
1277 | void mark_free_pages(struct zone *zone) |
1278 | { |
1279 | unsigned long pfn, max_zone_pfn; |
1280 | unsigned long flags; |
1281 | int order, t; |
1282 | struct list_head *curr; |
1283 | |
1284 | if (!zone->spanned_pages) |
1285 | return; |
1286 | |
1287 | spin_lock_irqsave(&zone->lock, flags); |
1288 | |
1289 | max_zone_pfn = zone_end_pfn(zone); |
1290 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1291 | if (pfn_valid(pfn)) { |
1292 | struct page *page = pfn_to_page(pfn); |
1293 | |
1294 | if (!swsusp_page_is_forbidden(page)) |
1295 | swsusp_unset_page_free(page); |
1296 | } |
1297 | |
1298 | for_each_migratetype_order(order, t) { |
1299 | list_for_each(curr, &zone->free_area[order].free_list[t]) { |
1300 | unsigned long i; |
1301 | |
1302 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1303 | for (i = 0; i < (1UL << order); i++) |
1304 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
1305 | } |
1306 | } |
1307 | spin_unlock_irqrestore(&zone->lock, flags); |
1308 | } |
1309 | #endif /* CONFIG_PM */ |
1310 | |
1311 | /* |
1312 | * Free a 0-order page |
1313 | * cold == 1 ? free a cold page : free a hot page |
1314 | */ |
1315 | void free_hot_cold_page(struct page *page, int cold) |
1316 | { |
1317 | struct zone *zone = page_zone(page); |
1318 | struct per_cpu_pages *pcp; |
1319 | unsigned long flags; |
1320 | int migratetype; |
1321 | |
1322 | if (!free_pages_prepare(page, 0)) |
1323 | return; |
1324 | |
1325 | migratetype = get_pageblock_migratetype(page); |
1326 | set_freepage_migratetype(page, migratetype); |
1327 | local_irq_save(flags); |
1328 | __count_vm_event(PGFREE); |
1329 | |
1330 | /* |
1331 | * We only track unmovable, reclaimable and movable on pcp lists. |
1332 | * Free ISOLATE pages back to the allocator because they are being |
1333 | * offlined but treat RESERVE as movable pages so we can get those |
1334 | * areas back if necessary. Otherwise, we may have to free |
1335 | * excessively into the page allocator |
1336 | */ |
1337 | if (migratetype >= MIGRATE_PCPTYPES) { |
1338 | if (unlikely(is_migrate_isolate(migratetype))) { |
1339 | free_one_page(zone, page, 0, migratetype); |
1340 | goto out; |
1341 | } |
1342 | migratetype = MIGRATE_MOVABLE; |
1343 | } |
1344 | |
1345 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1346 | if (cold) |
1347 | list_add_tail(&page->lru, &pcp->lists[migratetype]); |
1348 | else |
1349 | list_add(&page->lru, &pcp->lists[migratetype]); |
1350 | pcp->count++; |
1351 | if (pcp->count >= pcp->high) { |
1352 | free_pcppages_bulk(zone, pcp->batch, pcp); |
1353 | pcp->count -= pcp->batch; |
1354 | } |
1355 | |
1356 | out: |
1357 | local_irq_restore(flags); |
1358 | } |
1359 | |
1360 | /* |
1361 | * Free a list of 0-order pages |
1362 | */ |
1363 | void free_hot_cold_page_list(struct list_head *list, int cold) |
1364 | { |
1365 | struct page *page, *next; |
1366 | |
1367 | list_for_each_entry_safe(page, next, list, lru) { |
1368 | trace_mm_page_free_batched(page, cold); |
1369 | free_hot_cold_page(page, cold); |
1370 | } |
1371 | } |
1372 | |
1373 | /* |
1374 | * split_page takes a non-compound higher-order page, and splits it into |
1375 | * n (1<<order) sub-pages: page[0..n] |
1376 | * Each sub-page must be freed individually. |
1377 | * |
1378 | * Note: this is probably too low level an operation for use in drivers. |
1379 | * Please consult with lkml before using this in your driver. |
1380 | */ |
1381 | void split_page(struct page *page, unsigned int order) |
1382 | { |
1383 | int i; |
1384 | |
1385 | VM_BUG_ON(PageCompound(page)); |
1386 | VM_BUG_ON(!page_count(page)); |
1387 | |
1388 | #ifdef CONFIG_KMEMCHECK |
1389 | /* |
1390 | * Split shadow pages too, because free(page[0]) would |
1391 | * otherwise free the whole shadow. |
1392 | */ |
1393 | if (kmemcheck_page_is_tracked(page)) |
1394 | split_page(virt_to_page(page[0].shadow), order); |
1395 | #endif |
1396 | |
1397 | for (i = 1; i < (1 << order); i++) |
1398 | set_page_refcounted(page + i); |
1399 | } |
1400 | |
1401 | static int __isolate_free_page(struct page *page, unsigned int order) |
1402 | { |
1403 | unsigned long watermark; |
1404 | struct zone *zone; |
1405 | int mt; |
1406 | |
1407 | BUG_ON(!PageBuddy(page)); |
1408 | |
1409 | zone = page_zone(page); |
1410 | mt = get_pageblock_migratetype(page); |
1411 | |
1412 | if (!is_migrate_isolate(mt)) { |
1413 | /* Obey watermarks as if the page was being allocated */ |
1414 | watermark = low_wmark_pages(zone) + (1 << order); |
1415 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) |
1416 | return 0; |
1417 | |
1418 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
1419 | } |
1420 | |
1421 | /* Remove page from free list */ |
1422 | list_del(&page->lru); |
1423 | zone->free_area[order].nr_free--; |
1424 | rmv_page_order(page); |
1425 | |
1426 | /* Set the pageblock if the isolated page is at least a pageblock */ |
1427 | if (order >= pageblock_order - 1) { |
1428 | struct page *endpage = page + (1 << order) - 1; |
1429 | for (; page < endpage; page += pageblock_nr_pages) { |
1430 | int mt = get_pageblock_migratetype(page); |
1431 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
1432 | set_pageblock_migratetype(page, |
1433 | MIGRATE_MOVABLE); |
1434 | } |
1435 | } |
1436 | |
1437 | return 1UL << order; |
1438 | } |
1439 | |
1440 | /* |
1441 | * Similar to split_page except the page is already free. As this is only |
1442 | * being used for migration, the migratetype of the block also changes. |
1443 | * As this is called with interrupts disabled, the caller is responsible |
1444 | * for calling arch_alloc_page() and kernel_map_page() after interrupts |
1445 | * are enabled. |
1446 | * |
1447 | * Note: this is probably too low level an operation for use in drivers. |
1448 | * Please consult with lkml before using this in your driver. |
1449 | */ |
1450 | int split_free_page(struct page *page) |
1451 | { |
1452 | unsigned int order; |
1453 | int nr_pages; |
1454 | |
1455 | order = page_order(page); |
1456 | |
1457 | nr_pages = __isolate_free_page(page, order); |
1458 | if (!nr_pages) |
1459 | return 0; |
1460 | |
1461 | /* Split into individual pages */ |
1462 | set_page_refcounted(page); |
1463 | split_page(page, order); |
1464 | return nr_pages; |
1465 | } |
1466 | |
1467 | /* |
1468 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But |
1469 | * we cheat by calling it from here, in the order > 0 path. Saves a branch |
1470 | * or two. |
1471 | */ |
1472 | static inline |
1473 | struct page *buffered_rmqueue(struct zone *preferred_zone, |
1474 | struct zone *zone, int order, gfp_t gfp_flags, |
1475 | int migratetype) |
1476 | { |
1477 | unsigned long flags; |
1478 | struct page *page; |
1479 | int cold = !!(gfp_flags & __GFP_COLD); |
1480 | |
1481 | again: |
1482 | if (likely(order == 0)) { |
1483 | struct per_cpu_pages *pcp; |
1484 | struct list_head *list; |
1485 | |
1486 | local_irq_save(flags); |
1487 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1488 | list = &pcp->lists[migratetype]; |
1489 | if (list_empty(list)) { |
1490 | pcp->count += rmqueue_bulk(zone, 0, |
1491 | pcp->batch, list, |
1492 | migratetype, cold); |
1493 | if (unlikely(list_empty(list))) |
1494 | goto failed; |
1495 | } |
1496 | |
1497 | if (cold) |
1498 | page = list_entry(list->prev, struct page, lru); |
1499 | else |
1500 | page = list_entry(list->next, struct page, lru); |
1501 | |
1502 | list_del(&page->lru); |
1503 | pcp->count--; |
1504 | } else { |
1505 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1506 | /* |
1507 | * __GFP_NOFAIL is not to be used in new code. |
1508 | * |
1509 | * All __GFP_NOFAIL callers should be fixed so that they |
1510 | * properly detect and handle allocation failures. |
1511 | * |
1512 | * We most definitely don't want callers attempting to |
1513 | * allocate greater than order-1 page units with |
1514 | * __GFP_NOFAIL. |
1515 | */ |
1516 | WARN_ON_ONCE(order > 1); |
1517 | } |
1518 | spin_lock_irqsave(&zone->lock, flags); |
1519 | page = __rmqueue(zone, order, migratetype); |
1520 | spin_unlock(&zone->lock); |
1521 | if (!page) |
1522 | goto failed; |
1523 | __mod_zone_freepage_state(zone, -(1 << order), |
1524 | get_pageblock_migratetype(page)); |
1525 | } |
1526 | |
1527 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
1528 | zone_statistics(preferred_zone, zone, gfp_flags); |
1529 | local_irq_restore(flags); |
1530 | |
1531 | VM_BUG_ON(bad_range(zone, page)); |
1532 | if (prep_new_page(page, order, gfp_flags)) |
1533 | goto again; |
1534 | return page; |
1535 | |
1536 | failed: |
1537 | local_irq_restore(flags); |
1538 | return NULL; |
1539 | } |
1540 | |
1541 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1542 | |
1543 | static struct { |
1544 | struct fault_attr attr; |
1545 | |
1546 | u32 ignore_gfp_highmem; |
1547 | u32 ignore_gfp_wait; |
1548 | u32 min_order; |
1549 | } fail_page_alloc = { |
1550 | .attr = FAULT_ATTR_INITIALIZER, |
1551 | .ignore_gfp_wait = 1, |
1552 | .ignore_gfp_highmem = 1, |
1553 | .min_order = 1, |
1554 | }; |
1555 | |
1556 | static int __init setup_fail_page_alloc(char *str) |
1557 | { |
1558 | return setup_fault_attr(&fail_page_alloc.attr, str); |
1559 | } |
1560 | __setup("fail_page_alloc=", setup_fail_page_alloc); |
1561 | |
1562 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
1563 | { |
1564 | if (order < fail_page_alloc.min_order) |
1565 | return false; |
1566 | if (gfp_mask & __GFP_NOFAIL) |
1567 | return false; |
1568 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
1569 | return false; |
1570 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) |
1571 | return false; |
1572 | |
1573 | return should_fail(&fail_page_alloc.attr, 1 << order); |
1574 | } |
1575 | |
1576 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS |
1577 | |
1578 | static int __init fail_page_alloc_debugfs(void) |
1579 | { |
1580 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
1581 | struct dentry *dir; |
1582 | |
1583 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1584 | &fail_page_alloc.attr); |
1585 | if (IS_ERR(dir)) |
1586 | return PTR_ERR(dir); |
1587 | |
1588 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1589 | &fail_page_alloc.ignore_gfp_wait)) |
1590 | goto fail; |
1591 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, |
1592 | &fail_page_alloc.ignore_gfp_highmem)) |
1593 | goto fail; |
1594 | if (!debugfs_create_u32("min-order", mode, dir, |
1595 | &fail_page_alloc.min_order)) |
1596 | goto fail; |
1597 | |
1598 | return 0; |
1599 | fail: |
1600 | debugfs_remove_recursive(dir); |
1601 | |
1602 | return -ENOMEM; |
1603 | } |
1604 | |
1605 | late_initcall(fail_page_alloc_debugfs); |
1606 | |
1607 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ |
1608 | |
1609 | #else /* CONFIG_FAIL_PAGE_ALLOC */ |
1610 | |
1611 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
1612 | { |
1613 | return false; |
1614 | } |
1615 | |
1616 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ |
1617 | |
1618 | /* |
1619 | * Return true if free pages are above 'mark'. This takes into account the order |
1620 | * of the allocation. |
1621 | */ |
1622 | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1623 | int classzone_idx, int alloc_flags, long free_pages) |
1624 | { |
1625 | /* free_pages my go negative - that's OK */ |
1626 | long min = mark; |
1627 | long lowmem_reserve = z->lowmem_reserve[classzone_idx]; |
1628 | int o; |
1629 | |
1630 | free_pages -= (1 << order) - 1; |
1631 | if (alloc_flags & ALLOC_HIGH) |
1632 | min -= min / 2; |
1633 | if (alloc_flags & ALLOC_HARDER) |
1634 | min -= min / 4; |
1635 | #ifdef CONFIG_CMA |
1636 | /* If allocation can't use CMA areas don't use free CMA pages */ |
1637 | if (!(alloc_flags & ALLOC_CMA)) |
1638 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); |
1639 | #endif |
1640 | if (free_pages <= min + lowmem_reserve) |
1641 | return false; |
1642 | for (o = 0; o < order; o++) { |
1643 | /* At the next order, this order's pages become unavailable */ |
1644 | free_pages -= z->free_area[o].nr_free << o; |
1645 | |
1646 | /* Require fewer higher order pages to be free */ |
1647 | min >>= 1; |
1648 | |
1649 | if (free_pages <= min) |
1650 | return false; |
1651 | } |
1652 | return true; |
1653 | } |
1654 | |
1655 | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1656 | int classzone_idx, int alloc_flags) |
1657 | { |
1658 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, |
1659 | zone_page_state(z, NR_FREE_PAGES)); |
1660 | } |
1661 | |
1662 | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, |
1663 | int classzone_idx, int alloc_flags) |
1664 | { |
1665 | long free_pages = zone_page_state(z, NR_FREE_PAGES); |
1666 | |
1667 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) |
1668 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); |
1669 | |
1670 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, |
1671 | free_pages); |
1672 | } |
1673 | |
1674 | #ifdef CONFIG_NUMA |
1675 | /* |
1676 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to |
1677 | * skip over zones that are not allowed by the cpuset, or that have |
1678 | * been recently (in last second) found to be nearly full. See further |
1679 | * comments in mmzone.h. Reduces cache footprint of zonelist scans |
1680 | * that have to skip over a lot of full or unallowed zones. |
1681 | * |
1682 | * If the zonelist cache is present in the passed in zonelist, then |
1683 | * returns a pointer to the allowed node mask (either the current |
1684 | * tasks mems_allowed, or node_states[N_MEMORY].) |
1685 | * |
1686 | * If the zonelist cache is not available for this zonelist, does |
1687 | * nothing and returns NULL. |
1688 | * |
1689 | * If the fullzones BITMAP in the zonelist cache is stale (more than |
1690 | * a second since last zap'd) then we zap it out (clear its bits.) |
1691 | * |
1692 | * We hold off even calling zlc_setup, until after we've checked the |
1693 | * first zone in the zonelist, on the theory that most allocations will |
1694 | * be satisfied from that first zone, so best to examine that zone as |
1695 | * quickly as we can. |
1696 | */ |
1697 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
1698 | { |
1699 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1700 | nodemask_t *allowednodes; /* zonelist_cache approximation */ |
1701 | |
1702 | zlc = zonelist->zlcache_ptr; |
1703 | if (!zlc) |
1704 | return NULL; |
1705 | |
1706 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
1707 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1708 | zlc->last_full_zap = jiffies; |
1709 | } |
1710 | |
1711 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? |
1712 | &cpuset_current_mems_allowed : |
1713 | &node_states[N_MEMORY]; |
1714 | return allowednodes; |
1715 | } |
1716 | |
1717 | /* |
1718 | * Given 'z' scanning a zonelist, run a couple of quick checks to see |
1719 | * if it is worth looking at further for free memory: |
1720 | * 1) Check that the zone isn't thought to be full (doesn't have its |
1721 | * bit set in the zonelist_cache fullzones BITMAP). |
1722 | * 2) Check that the zones node (obtained from the zonelist_cache |
1723 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. |
1724 | * Return true (non-zero) if zone is worth looking at further, or |
1725 | * else return false (zero) if it is not. |
1726 | * |
1727 | * This check -ignores- the distinction between various watermarks, |
1728 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is |
1729 | * found to be full for any variation of these watermarks, it will |
1730 | * be considered full for up to one second by all requests, unless |
1731 | * we are so low on memory on all allowed nodes that we are forced |
1732 | * into the second scan of the zonelist. |
1733 | * |
1734 | * In the second scan we ignore this zonelist cache and exactly |
1735 | * apply the watermarks to all zones, even it is slower to do so. |
1736 | * We are low on memory in the second scan, and should leave no stone |
1737 | * unturned looking for a free page. |
1738 | */ |
1739 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
1740 | nodemask_t *allowednodes) |
1741 | { |
1742 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1743 | int i; /* index of *z in zonelist zones */ |
1744 | int n; /* node that zone *z is on */ |
1745 | |
1746 | zlc = zonelist->zlcache_ptr; |
1747 | if (!zlc) |
1748 | return 1; |
1749 | |
1750 | i = z - zonelist->_zonerefs; |
1751 | n = zlc->z_to_n[i]; |
1752 | |
1753 | /* This zone is worth trying if it is allowed but not full */ |
1754 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); |
1755 | } |
1756 | |
1757 | /* |
1758 | * Given 'z' scanning a zonelist, set the corresponding bit in |
1759 | * zlc->fullzones, so that subsequent attempts to allocate a page |
1760 | * from that zone don't waste time re-examining it. |
1761 | */ |
1762 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
1763 | { |
1764 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1765 | int i; /* index of *z in zonelist zones */ |
1766 | |
1767 | zlc = zonelist->zlcache_ptr; |
1768 | if (!zlc) |
1769 | return; |
1770 | |
1771 | i = z - zonelist->_zonerefs; |
1772 | |
1773 | set_bit(i, zlc->fullzones); |
1774 | } |
1775 | |
1776 | /* |
1777 | * clear all zones full, called after direct reclaim makes progress so that |
1778 | * a zone that was recently full is not skipped over for up to a second |
1779 | */ |
1780 | static void zlc_clear_zones_full(struct zonelist *zonelist) |
1781 | { |
1782 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ |
1783 | |
1784 | zlc = zonelist->zlcache_ptr; |
1785 | if (!zlc) |
1786 | return; |
1787 | |
1788 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1789 | } |
1790 | |
1791 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
1792 | { |
1793 | return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); |
1794 | } |
1795 | |
1796 | static void __paginginit init_zone_allows_reclaim(int nid) |
1797 | { |
1798 | int i; |
1799 | |
1800 | for_each_online_node(i) |
1801 | if (node_distance(nid, i) <= RECLAIM_DISTANCE) |
1802 | node_set(i, NODE_DATA(nid)->reclaim_nodes); |
1803 | else |
1804 | zone_reclaim_mode = 1; |
1805 | } |
1806 | |
1807 | #else /* CONFIG_NUMA */ |
1808 | |
1809 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) |
1810 | { |
1811 | return NULL; |
1812 | } |
1813 | |
1814 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
1815 | nodemask_t *allowednodes) |
1816 | { |
1817 | return 1; |
1818 | } |
1819 | |
1820 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
1821 | { |
1822 | } |
1823 | |
1824 | static void zlc_clear_zones_full(struct zonelist *zonelist) |
1825 | { |
1826 | } |
1827 | |
1828 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
1829 | { |
1830 | return true; |
1831 | } |
1832 | |
1833 | static inline void init_zone_allows_reclaim(int nid) |
1834 | { |
1835 | } |
1836 | #endif /* CONFIG_NUMA */ |
1837 | |
1838 | /* |
1839 | * get_page_from_freelist goes through the zonelist trying to allocate |
1840 | * a page. |
1841 | */ |
1842 | static struct page * |
1843 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
1844 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
1845 | struct zone *preferred_zone, int migratetype) |
1846 | { |
1847 | struct zoneref *z; |
1848 | struct page *page = NULL; |
1849 | int classzone_idx; |
1850 | struct zone *zone; |
1851 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1852 | int zlc_active = 0; /* set if using zonelist_cache */ |
1853 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ |
1854 | |
1855 | classzone_idx = zone_idx(preferred_zone); |
1856 | zonelist_scan: |
1857 | /* |
1858 | * Scan zonelist, looking for a zone with enough free. |
1859 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1860 | */ |
1861 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1862 | high_zoneidx, nodemask) { |
1863 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
1864 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1865 | continue; |
1866 | if ((alloc_flags & ALLOC_CPUSET) && |
1867 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
1868 | continue; |
1869 | /* |
1870 | * When allocating a page cache page for writing, we |
1871 | * want to get it from a zone that is within its dirty |
1872 | * limit, such that no single zone holds more than its |
1873 | * proportional share of globally allowed dirty pages. |
1874 | * The dirty limits take into account the zone's |
1875 | * lowmem reserves and high watermark so that kswapd |
1876 | * should be able to balance it without having to |
1877 | * write pages from its LRU list. |
1878 | * |
1879 | * This may look like it could increase pressure on |
1880 | * lower zones by failing allocations in higher zones |
1881 | * before they are full. But the pages that do spill |
1882 | * over are limited as the lower zones are protected |
1883 | * by this very same mechanism. It should not become |
1884 | * a practical burden to them. |
1885 | * |
1886 | * XXX: For now, allow allocations to potentially |
1887 | * exceed the per-zone dirty limit in the slowpath |
1888 | * (ALLOC_WMARK_LOW unset) before going into reclaim, |
1889 | * which is important when on a NUMA setup the allowed |
1890 | * zones are together not big enough to reach the |
1891 | * global limit. The proper fix for these situations |
1892 | * will require awareness of zones in the |
1893 | * dirty-throttling and the flusher threads. |
1894 | */ |
1895 | if ((alloc_flags & ALLOC_WMARK_LOW) && |
1896 | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) |
1897 | goto this_zone_full; |
1898 | |
1899 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
1900 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
1901 | unsigned long mark; |
1902 | int ret; |
1903 | |
1904 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
1905 | if (zone_watermark_ok(zone, order, mark, |
1906 | classzone_idx, alloc_flags)) |
1907 | goto try_this_zone; |
1908 | |
1909 | if (IS_ENABLED(CONFIG_NUMA) && |
1910 | !did_zlc_setup && nr_online_nodes > 1) { |
1911 | /* |
1912 | * we do zlc_setup if there are multiple nodes |
1913 | * and before considering the first zone allowed |
1914 | * by the cpuset. |
1915 | */ |
1916 | allowednodes = zlc_setup(zonelist, alloc_flags); |
1917 | zlc_active = 1; |
1918 | did_zlc_setup = 1; |
1919 | } |
1920 | |
1921 | if (zone_reclaim_mode == 0 || |
1922 | !zone_allows_reclaim(preferred_zone, zone)) |
1923 | goto this_zone_full; |
1924 | |
1925 | /* |
1926 | * As we may have just activated ZLC, check if the first |
1927 | * eligible zone has failed zone_reclaim recently. |
1928 | */ |
1929 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
1930 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1931 | continue; |
1932 | |
1933 | ret = zone_reclaim(zone, gfp_mask, order); |
1934 | switch (ret) { |
1935 | case ZONE_RECLAIM_NOSCAN: |
1936 | /* did not scan */ |
1937 | continue; |
1938 | case ZONE_RECLAIM_FULL: |
1939 | /* scanned but unreclaimable */ |
1940 | continue; |
1941 | default: |
1942 | /* did we reclaim enough */ |
1943 | if (!zone_watermark_ok(zone, order, mark, |
1944 | classzone_idx, alloc_flags)) |
1945 | goto this_zone_full; |
1946 | } |
1947 | } |
1948 | |
1949 | try_this_zone: |
1950 | page = buffered_rmqueue(preferred_zone, zone, order, |
1951 | gfp_mask, migratetype); |
1952 | if (page) |
1953 | break; |
1954 | this_zone_full: |
1955 | if (IS_ENABLED(CONFIG_NUMA)) |
1956 | zlc_mark_zone_full(zonelist, z); |
1957 | } |
1958 | |
1959 | if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { |
1960 | /* Disable zlc cache for second zonelist scan */ |
1961 | zlc_active = 0; |
1962 | goto zonelist_scan; |
1963 | } |
1964 | |
1965 | if (page) |
1966 | /* |
1967 | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was |
1968 | * necessary to allocate the page. The expectation is |
1969 | * that the caller is taking steps that will free more |
1970 | * memory. The caller should avoid the page being used |
1971 | * for !PFMEMALLOC purposes. |
1972 | */ |
1973 | page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); |
1974 | |
1975 | return page; |
1976 | } |
1977 | |
1978 | /* |
1979 | * Large machines with many possible nodes should not always dump per-node |
1980 | * meminfo in irq context. |
1981 | */ |
1982 | static inline bool should_suppress_show_mem(void) |
1983 | { |
1984 | bool ret = false; |
1985 | |
1986 | #if NODES_SHIFT > 8 |
1987 | ret = in_interrupt(); |
1988 | #endif |
1989 | return ret; |
1990 | } |
1991 | |
1992 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
1993 | DEFAULT_RATELIMIT_INTERVAL, |
1994 | DEFAULT_RATELIMIT_BURST); |
1995 | |
1996 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) |
1997 | { |
1998 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
1999 | |
2000 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2001 | debug_guardpage_minorder() > 0) |
2002 | return; |
2003 | |
2004 | /* |
2005 | * This documents exceptions given to allocations in certain |
2006 | * contexts that are allowed to allocate outside current's set |
2007 | * of allowed nodes. |
2008 | */ |
2009 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
2010 | if (test_thread_flag(TIF_MEMDIE) || |
2011 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
2012 | filter &= ~SHOW_MEM_FILTER_NODES; |
2013 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) |
2014 | filter &= ~SHOW_MEM_FILTER_NODES; |
2015 | |
2016 | if (fmt) { |
2017 | struct va_format vaf; |
2018 | va_list args; |
2019 | |
2020 | va_start(args, fmt); |
2021 | |
2022 | vaf.fmt = fmt; |
2023 | vaf.va = &args; |
2024 | |
2025 | pr_warn("%pV", &vaf); |
2026 | |
2027 | va_end(args); |
2028 | } |
2029 | |
2030 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
2031 | current->comm, order, gfp_mask); |
2032 | |
2033 | dump_stack(); |
2034 | if (!should_suppress_show_mem()) |
2035 | show_mem(filter); |
2036 | } |
2037 | |
2038 | static inline int |
2039 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, |
2040 | unsigned long did_some_progress, |
2041 | unsigned long pages_reclaimed) |
2042 | { |
2043 | /* Do not loop if specifically requested */ |
2044 | if (gfp_mask & __GFP_NORETRY) |
2045 | return 0; |
2046 | |
2047 | /* Always retry if specifically requested */ |
2048 | if (gfp_mask & __GFP_NOFAIL) |
2049 | return 1; |
2050 | |
2051 | /* |
2052 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim |
2053 | * making forward progress without invoking OOM. Suspend also disables |
2054 | * storage devices so kswapd will not help. Bail if we are suspending. |
2055 | */ |
2056 | if (!did_some_progress && pm_suspended_storage()) |
2057 | return 0; |
2058 | |
2059 | /* |
2060 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER |
2061 | * means __GFP_NOFAIL, but that may not be true in other |
2062 | * implementations. |
2063 | */ |
2064 | if (order <= PAGE_ALLOC_COSTLY_ORDER) |
2065 | return 1; |
2066 | |
2067 | /* |
2068 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is |
2069 | * specified, then we retry until we no longer reclaim any pages |
2070 | * (above), or we've reclaimed an order of pages at least as |
2071 | * large as the allocation's order. In both cases, if the |
2072 | * allocation still fails, we stop retrying. |
2073 | */ |
2074 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) |
2075 | return 1; |
2076 | |
2077 | return 0; |
2078 | } |
2079 | |
2080 | static inline struct page * |
2081 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, |
2082 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2083 | nodemask_t *nodemask, struct zone *preferred_zone, |
2084 | int migratetype) |
2085 | { |
2086 | struct page *page; |
2087 | |
2088 | /* Acquire the OOM killer lock for the zones in zonelist */ |
2089 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
2090 | schedule_timeout_uninterruptible(1); |
2091 | return NULL; |
2092 | } |
2093 | |
2094 | /* |
2095 | * Go through the zonelist yet one more time, keep very high watermark |
2096 | * here, this is only to catch a parallel oom killing, we must fail if |
2097 | * we're still under heavy pressure. |
2098 | */ |
2099 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, |
2100 | order, zonelist, high_zoneidx, |
2101 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
2102 | preferred_zone, migratetype); |
2103 | if (page) |
2104 | goto out; |
2105 | |
2106 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2107 | /* The OOM killer will not help higher order allocs */ |
2108 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2109 | goto out; |
2110 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
2111 | if (high_zoneidx < ZONE_NORMAL) |
2112 | goto out; |
2113 | /* |
2114 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. |
2115 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. |
2116 | * The caller should handle page allocation failure by itself if |
2117 | * it specifies __GFP_THISNODE. |
2118 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. |
2119 | */ |
2120 | if (gfp_mask & __GFP_THISNODE) |
2121 | goto out; |
2122 | } |
2123 | /* Exhausted what can be done so it's blamo time */ |
2124 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
2125 | |
2126 | out: |
2127 | clear_zonelist_oom(zonelist, gfp_mask); |
2128 | return page; |
2129 | } |
2130 | |
2131 | #ifdef CONFIG_COMPACTION |
2132 | /* Try memory compaction for high-order allocations before reclaim */ |
2133 | static struct page * |
2134 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
2135 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2136 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2137 | int migratetype, bool sync_migration, |
2138 | bool *contended_compaction, bool *deferred_compaction, |
2139 | unsigned long *did_some_progress) |
2140 | { |
2141 | if (!order) |
2142 | return NULL; |
2143 | |
2144 | if (compaction_deferred(preferred_zone, order)) { |
2145 | *deferred_compaction = true; |
2146 | return NULL; |
2147 | } |
2148 | |
2149 | current->flags |= PF_MEMALLOC; |
2150 | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, |
2151 | nodemask, sync_migration, |
2152 | contended_compaction); |
2153 | current->flags &= ~PF_MEMALLOC; |
2154 | |
2155 | if (*did_some_progress != COMPACT_SKIPPED) { |
2156 | struct page *page; |
2157 | |
2158 | /* Page migration frees to the PCP lists but we want merging */ |
2159 | drain_pages(get_cpu()); |
2160 | put_cpu(); |
2161 | |
2162 | page = get_page_from_freelist(gfp_mask, nodemask, |
2163 | order, zonelist, high_zoneidx, |
2164 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2165 | preferred_zone, migratetype); |
2166 | if (page) { |
2167 | preferred_zone->compact_blockskip_flush = false; |
2168 | preferred_zone->compact_considered = 0; |
2169 | preferred_zone->compact_defer_shift = 0; |
2170 | if (order >= preferred_zone->compact_order_failed) |
2171 | preferred_zone->compact_order_failed = order + 1; |
2172 | count_vm_event(COMPACTSUCCESS); |
2173 | return page; |
2174 | } |
2175 | |
2176 | /* |
2177 | * It's bad if compaction run occurs and fails. |
2178 | * The most likely reason is that pages exist, |
2179 | * but not enough to satisfy watermarks. |
2180 | */ |
2181 | count_vm_event(COMPACTFAIL); |
2182 | |
2183 | /* |
2184 | * As async compaction considers a subset of pageblocks, only |
2185 | * defer if the failure was a sync compaction failure. |
2186 | */ |
2187 | if (sync_migration) |
2188 | defer_compaction(preferred_zone, order); |
2189 | |
2190 | cond_resched(); |
2191 | } |
2192 | |
2193 | return NULL; |
2194 | } |
2195 | #else |
2196 | static inline struct page * |
2197 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
2198 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2199 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2200 | int migratetype, bool sync_migration, |
2201 | bool *contended_compaction, bool *deferred_compaction, |
2202 | unsigned long *did_some_progress) |
2203 | { |
2204 | return NULL; |
2205 | } |
2206 | #endif /* CONFIG_COMPACTION */ |
2207 | |
2208 | /* Perform direct synchronous page reclaim */ |
2209 | static int |
2210 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, |
2211 | nodemask_t *nodemask) |
2212 | { |
2213 | struct reclaim_state reclaim_state; |
2214 | int progress; |
2215 | |
2216 | cond_resched(); |
2217 | |
2218 | /* We now go into synchronous reclaim */ |
2219 | cpuset_memory_pressure_bump(); |
2220 | current->flags |= PF_MEMALLOC; |
2221 | lockdep_set_current_reclaim_state(gfp_mask); |
2222 | reclaim_state.reclaimed_slab = 0; |
2223 | current->reclaim_state = &reclaim_state; |
2224 | |
2225 | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); |
2226 | |
2227 | current->reclaim_state = NULL; |
2228 | lockdep_clear_current_reclaim_state(); |
2229 | current->flags &= ~PF_MEMALLOC; |
2230 | |
2231 | cond_resched(); |
2232 | |
2233 | return progress; |
2234 | } |
2235 | |
2236 | /* The really slow allocator path where we enter direct reclaim */ |
2237 | static inline struct page * |
2238 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, |
2239 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2240 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
2241 | int migratetype, unsigned long *did_some_progress) |
2242 | { |
2243 | struct page *page = NULL; |
2244 | bool drained = false; |
2245 | |
2246 | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, |
2247 | nodemask); |
2248 | if (unlikely(!(*did_some_progress))) |
2249 | return NULL; |
2250 | |
2251 | /* After successful reclaim, reconsider all zones for allocation */ |
2252 | if (IS_ENABLED(CONFIG_NUMA)) |
2253 | zlc_clear_zones_full(zonelist); |
2254 | |
2255 | retry: |
2256 | page = get_page_from_freelist(gfp_mask, nodemask, order, |
2257 | zonelist, high_zoneidx, |
2258 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2259 | preferred_zone, migratetype); |
2260 | |
2261 | /* |
2262 | * If an allocation failed after direct reclaim, it could be because |
2263 | * pages are pinned on the per-cpu lists. Drain them and try again |
2264 | */ |
2265 | if (!page && !drained) { |
2266 | drain_all_pages(); |
2267 | drained = true; |
2268 | goto retry; |
2269 | } |
2270 | |
2271 | return page; |
2272 | } |
2273 | |
2274 | /* |
2275 | * This is called in the allocator slow-path if the allocation request is of |
2276 | * sufficient urgency to ignore watermarks and take other desperate measures |
2277 | */ |
2278 | static inline struct page * |
2279 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, |
2280 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2281 | nodemask_t *nodemask, struct zone *preferred_zone, |
2282 | int migratetype) |
2283 | { |
2284 | struct page *page; |
2285 | |
2286 | do { |
2287 | page = get_page_from_freelist(gfp_mask, nodemask, order, |
2288 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
2289 | preferred_zone, migratetype); |
2290 | |
2291 | if (!page && gfp_mask & __GFP_NOFAIL) |
2292 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
2293 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2294 | |
2295 | return page; |
2296 | } |
2297 | |
2298 | static inline |
2299 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, |
2300 | enum zone_type high_zoneidx, |
2301 | enum zone_type classzone_idx) |
2302 | { |
2303 | struct zoneref *z; |
2304 | struct zone *zone; |
2305 | |
2306 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
2307 | wakeup_kswapd(zone, order, classzone_idx); |
2308 | } |
2309 | |
2310 | static inline int |
2311 | gfp_to_alloc_flags(gfp_t gfp_mask) |
2312 | { |
2313 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
2314 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
2315 | |
2316 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
2317 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
2318 | |
2319 | /* |
2320 | * The caller may dip into page reserves a bit more if the caller |
2321 | * cannot run direct reclaim, or if the caller has realtime scheduling |
2322 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
2323 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). |
2324 | */ |
2325 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
2326 | |
2327 | if (!wait) { |
2328 | /* |
2329 | * Not worth trying to allocate harder for |
2330 | * __GFP_NOMEMALLOC even if it can't schedule. |
2331 | */ |
2332 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
2333 | alloc_flags |= ALLOC_HARDER; |
2334 | /* |
2335 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
2336 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
2337 | */ |
2338 | alloc_flags &= ~ALLOC_CPUSET; |
2339 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
2340 | alloc_flags |= ALLOC_HARDER; |
2341 | |
2342 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2343 | if (gfp_mask & __GFP_MEMALLOC) |
2344 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2345 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2346 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2347 | else if (!in_interrupt() && |
2348 | ((current->flags & PF_MEMALLOC) || |
2349 | unlikely(test_thread_flag(TIF_MEMDIE)))) |
2350 | alloc_flags |= ALLOC_NO_WATERMARKS; |
2351 | } |
2352 | #ifdef CONFIG_CMA |
2353 | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
2354 | alloc_flags |= ALLOC_CMA; |
2355 | #endif |
2356 | return alloc_flags; |
2357 | } |
2358 | |
2359 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2360 | { |
2361 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
2362 | } |
2363 | |
2364 | static inline struct page * |
2365 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, |
2366 | struct zonelist *zonelist, enum zone_type high_zoneidx, |
2367 | nodemask_t *nodemask, struct zone *preferred_zone, |
2368 | int migratetype) |
2369 | { |
2370 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
2371 | struct page *page = NULL; |
2372 | int alloc_flags; |
2373 | unsigned long pages_reclaimed = 0; |
2374 | unsigned long did_some_progress; |
2375 | bool sync_migration = false; |
2376 | bool deferred_compaction = false; |
2377 | bool contended_compaction = false; |
2378 | |
2379 | /* |
2380 | * In the slowpath, we sanity check order to avoid ever trying to |
2381 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may |
2382 | * be using allocators in order of preference for an area that is |
2383 | * too large. |
2384 | */ |
2385 | if (order >= MAX_ORDER) { |
2386 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); |
2387 | return NULL; |
2388 | } |
2389 | |
2390 | /* |
2391 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and |
2392 | * __GFP_NOWARN set) should not cause reclaim since the subsystem |
2393 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim |
2394 | * using a larger set of nodes after it has established that the |
2395 | * allowed per node queues are empty and that nodes are |
2396 | * over allocated. |
2397 | */ |
2398 | if (IS_ENABLED(CONFIG_NUMA) && |
2399 | (gfp_mask & GFP_THISNODE) == GFP_THISNODE) |
2400 | goto nopage; |
2401 | |
2402 | restart: |
2403 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
2404 | wake_all_kswapd(order, zonelist, high_zoneidx, |
2405 | zone_idx(preferred_zone)); |
2406 | |
2407 | /* |
2408 | * OK, we're below the kswapd watermark and have kicked background |
2409 | * reclaim. Now things get more complex, so set up alloc_flags according |
2410 | * to how we want to proceed. |
2411 | */ |
2412 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
2413 | |
2414 | /* |
2415 | * Find the true preferred zone if the allocation is unconstrained by |
2416 | * cpusets. |
2417 | */ |
2418 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) |
2419 | first_zones_zonelist(zonelist, high_zoneidx, NULL, |
2420 | &preferred_zone); |
2421 | |
2422 | rebalance: |
2423 | /* This is the last chance, in general, before the goto nopage. */ |
2424 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
2425 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
2426 | preferred_zone, migratetype); |
2427 | if (page) |
2428 | goto got_pg; |
2429 | |
2430 | /* Allocate without watermarks if the context allows */ |
2431 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
2432 | /* |
2433 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds |
2434 | * the allocation is high priority and these type of |
2435 | * allocations are system rather than user orientated |
2436 | */ |
2437 | zonelist = node_zonelist(numa_node_id(), gfp_mask); |
2438 | |
2439 | page = __alloc_pages_high_priority(gfp_mask, order, |
2440 | zonelist, high_zoneidx, nodemask, |
2441 | preferred_zone, migratetype); |
2442 | if (page) { |
2443 | goto got_pg; |
2444 | } |
2445 | } |
2446 | |
2447 | /* Atomic allocations - we can't balance anything */ |
2448 | if (!wait) |
2449 | goto nopage; |
2450 | |
2451 | /* Avoid recursion of direct reclaim */ |
2452 | if (current->flags & PF_MEMALLOC) |
2453 | goto nopage; |
2454 | |
2455 | /* Avoid allocations with no watermarks from looping endlessly */ |
2456 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) |
2457 | goto nopage; |
2458 | |
2459 | /* |
2460 | * Try direct compaction. The first pass is asynchronous. Subsequent |
2461 | * attempts after direct reclaim are synchronous |
2462 | */ |
2463 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2464 | zonelist, high_zoneidx, |
2465 | nodemask, |
2466 | alloc_flags, preferred_zone, |
2467 | migratetype, sync_migration, |
2468 | &contended_compaction, |
2469 | &deferred_compaction, |
2470 | &did_some_progress); |
2471 | if (page) |
2472 | goto got_pg; |
2473 | sync_migration = true; |
2474 | |
2475 | /* |
2476 | * If compaction is deferred for high-order allocations, it is because |
2477 | * sync compaction recently failed. In this is the case and the caller |
2478 | * requested a movable allocation that does not heavily disrupt the |
2479 | * system then fail the allocation instead of entering direct reclaim. |
2480 | */ |
2481 | if ((deferred_compaction || contended_compaction) && |
2482 | (gfp_mask & __GFP_NO_KSWAPD)) |
2483 | goto nopage; |
2484 | |
2485 | /* Try direct reclaim and then allocating */ |
2486 | page = __alloc_pages_direct_reclaim(gfp_mask, order, |
2487 | zonelist, high_zoneidx, |
2488 | nodemask, |
2489 | alloc_flags, preferred_zone, |
2490 | migratetype, &did_some_progress); |
2491 | if (page) |
2492 | goto got_pg; |
2493 | |
2494 | /* |
2495 | * If we failed to make any progress reclaiming, then we are |
2496 | * running out of options and have to consider going OOM |
2497 | */ |
2498 | if (!did_some_progress) { |
2499 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { |
2500 | if (oom_killer_disabled) |
2501 | goto nopage; |
2502 | /* Coredumps can quickly deplete all memory reserves */ |
2503 | if ((current->flags & PF_DUMPCORE) && |
2504 | !(gfp_mask & __GFP_NOFAIL)) |
2505 | goto nopage; |
2506 | page = __alloc_pages_may_oom(gfp_mask, order, |
2507 | zonelist, high_zoneidx, |
2508 | nodemask, preferred_zone, |
2509 | migratetype); |
2510 | if (page) |
2511 | goto got_pg; |
2512 | |
2513 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2514 | /* |
2515 | * The oom killer is not called for high-order |
2516 | * allocations that may fail, so if no progress |
2517 | * is being made, there are no other options and |
2518 | * retrying is unlikely to help. |
2519 | */ |
2520 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2521 | goto nopage; |
2522 | /* |
2523 | * The oom killer is not called for lowmem |
2524 | * allocations to prevent needlessly killing |
2525 | * innocent tasks. |
2526 | */ |
2527 | if (high_zoneidx < ZONE_NORMAL) |
2528 | goto nopage; |
2529 | } |
2530 | |
2531 | goto restart; |
2532 | } |
2533 | } |
2534 | |
2535 | /* Check if we should retry the allocation */ |
2536 | pages_reclaimed += did_some_progress; |
2537 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2538 | pages_reclaimed)) { |
2539 | /* Wait for some write requests to complete then retry */ |
2540 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
2541 | goto rebalance; |
2542 | } else { |
2543 | /* |
2544 | * High-order allocations do not necessarily loop after |
2545 | * direct reclaim and reclaim/compaction depends on compaction |
2546 | * being called after reclaim so call directly if necessary |
2547 | */ |
2548 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2549 | zonelist, high_zoneidx, |
2550 | nodemask, |
2551 | alloc_flags, preferred_zone, |
2552 | migratetype, sync_migration, |
2553 | &contended_compaction, |
2554 | &deferred_compaction, |
2555 | &did_some_progress); |
2556 | if (page) |
2557 | goto got_pg; |
2558 | } |
2559 | |
2560 | nopage: |
2561 | warn_alloc_failed(gfp_mask, order, NULL); |
2562 | return page; |
2563 | got_pg: |
2564 | if (kmemcheck_enabled) |
2565 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); |
2566 | |
2567 | return page; |
2568 | } |
2569 | |
2570 | /* |
2571 | * This is the 'heart' of the zoned buddy allocator. |
2572 | */ |
2573 | struct page * |
2574 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, |
2575 | struct zonelist *zonelist, nodemask_t *nodemask) |
2576 | { |
2577 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
2578 | struct zone *preferred_zone; |
2579 | struct page *page = NULL; |
2580 | int migratetype = allocflags_to_migratetype(gfp_mask); |
2581 | unsigned int cpuset_mems_cookie; |
2582 | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; |
2583 | struct mem_cgroup *memcg = NULL; |
2584 | |
2585 | gfp_mask &= gfp_allowed_mask; |
2586 | |
2587 | lockdep_trace_alloc(gfp_mask); |
2588 | |
2589 | might_sleep_if(gfp_mask & __GFP_WAIT); |
2590 | |
2591 | if (should_fail_alloc_page(gfp_mask, order)) |
2592 | return NULL; |
2593 | |
2594 | /* |
2595 | * Check the zones suitable for the gfp_mask contain at least one |
2596 | * valid zone. It's possible to have an empty zonelist as a result |
2597 | * of GFP_THISNODE and a memoryless node |
2598 | */ |
2599 | if (unlikely(!zonelist->_zonerefs->zone)) |
2600 | return NULL; |
2601 | |
2602 | /* |
2603 | * Will only have any effect when __GFP_KMEMCG is set. This is |
2604 | * verified in the (always inline) callee |
2605 | */ |
2606 | if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) |
2607 | return NULL; |
2608 | |
2609 | retry_cpuset: |
2610 | cpuset_mems_cookie = get_mems_allowed(); |
2611 | |
2612 | /* The preferred zone is used for statistics later */ |
2613 | first_zones_zonelist(zonelist, high_zoneidx, |
2614 | nodemask ? : &cpuset_current_mems_allowed, |
2615 | &preferred_zone); |
2616 | if (!preferred_zone) |
2617 | goto out; |
2618 | |
2619 | #ifdef CONFIG_CMA |
2620 | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
2621 | alloc_flags |= ALLOC_CMA; |
2622 | #endif |
2623 | /* First allocation attempt */ |
2624 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
2625 | zonelist, high_zoneidx, alloc_flags, |
2626 | preferred_zone, migratetype); |
2627 | if (unlikely(!page)) { |
2628 | /* |
2629 | * Runtime PM, block IO and its error handling path |
2630 | * can deadlock because I/O on the device might not |
2631 | * complete. |
2632 | */ |
2633 | gfp_mask = memalloc_noio_flags(gfp_mask); |
2634 | page = __alloc_pages_slowpath(gfp_mask, order, |
2635 | zonelist, high_zoneidx, nodemask, |
2636 | preferred_zone, migratetype); |
2637 | } |
2638 | |
2639 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
2640 | |
2641 | out: |
2642 | /* |
2643 | * When updating a task's mems_allowed, it is possible to race with |
2644 | * parallel threads in such a way that an allocation can fail while |
2645 | * the mask is being updated. If a page allocation is about to fail, |
2646 | * check if the cpuset changed during allocation and if so, retry. |
2647 | */ |
2648 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
2649 | goto retry_cpuset; |
2650 | |
2651 | memcg_kmem_commit_charge(page, memcg, order); |
2652 | |
2653 | return page; |
2654 | } |
2655 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
2656 | |
2657 | /* |
2658 | * Common helper functions. |
2659 | */ |
2660 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
2661 | { |
2662 | struct page *page; |
2663 | |
2664 | /* |
2665 | * __get_free_pages() returns a 32-bit address, which cannot represent |
2666 | * a highmem page |
2667 | */ |
2668 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); |
2669 | |
2670 | page = alloc_pages(gfp_mask, order); |
2671 | if (!page) |
2672 | return 0; |
2673 | return (unsigned long) page_address(page); |
2674 | } |
2675 | EXPORT_SYMBOL(__get_free_pages); |
2676 | |
2677 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
2678 | { |
2679 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
2680 | } |
2681 | EXPORT_SYMBOL(get_zeroed_page); |
2682 | |
2683 | void __free_pages(struct page *page, unsigned int order) |
2684 | { |
2685 | if (put_page_testzero(page)) { |
2686 | if (order == 0) |
2687 | free_hot_cold_page(page, 0); |
2688 | else |
2689 | __free_pages_ok(page, order); |
2690 | } |
2691 | } |
2692 | |
2693 | EXPORT_SYMBOL(__free_pages); |
2694 | |
2695 | void free_pages(unsigned long addr, unsigned int order) |
2696 | { |
2697 | if (addr != 0) { |
2698 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
2699 | __free_pages(virt_to_page((void *)addr), order); |
2700 | } |
2701 | } |
2702 | |
2703 | EXPORT_SYMBOL(free_pages); |
2704 | |
2705 | /* |
2706 | * __free_memcg_kmem_pages and free_memcg_kmem_pages will free |
2707 | * pages allocated with __GFP_KMEMCG. |
2708 | * |
2709 | * Those pages are accounted to a particular memcg, embedded in the |
2710 | * corresponding page_cgroup. To avoid adding a hit in the allocator to search |
2711 | * for that information only to find out that it is NULL for users who have no |
2712 | * interest in that whatsoever, we provide these functions. |
2713 | * |
2714 | * The caller knows better which flags it relies on. |
2715 | */ |
2716 | void __free_memcg_kmem_pages(struct page *page, unsigned int order) |
2717 | { |
2718 | memcg_kmem_uncharge_pages(page, order); |
2719 | __free_pages(page, order); |
2720 | } |
2721 | |
2722 | void free_memcg_kmem_pages(unsigned long addr, unsigned int order) |
2723 | { |
2724 | if (addr != 0) { |
2725 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
2726 | __free_memcg_kmem_pages(virt_to_page((void *)addr), order); |
2727 | } |
2728 | } |
2729 | |
2730 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2731 | { |
2732 | if (addr) { |
2733 | unsigned long alloc_end = addr + (PAGE_SIZE << order); |
2734 | unsigned long used = addr + PAGE_ALIGN(size); |
2735 | |
2736 | split_page(virt_to_page((void *)addr), order); |
2737 | while (used < alloc_end) { |
2738 | free_page(used); |
2739 | used += PAGE_SIZE; |
2740 | } |
2741 | } |
2742 | return (void *)addr; |
2743 | } |
2744 | |
2745 | /** |
2746 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. |
2747 | * @size: the number of bytes to allocate |
2748 | * @gfp_mask: GFP flags for the allocation |
2749 | * |
2750 | * This function is similar to alloc_pages(), except that it allocates the |
2751 | * minimum number of pages to satisfy the request. alloc_pages() can only |
2752 | * allocate memory in power-of-two pages. |
2753 | * |
2754 | * This function is also limited by MAX_ORDER. |
2755 | * |
2756 | * Memory allocated by this function must be released by free_pages_exact(). |
2757 | */ |
2758 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) |
2759 | { |
2760 | unsigned int order = get_order(size); |
2761 | unsigned long addr; |
2762 | |
2763 | addr = __get_free_pages(gfp_mask, order); |
2764 | return make_alloc_exact(addr, order, size); |
2765 | } |
2766 | EXPORT_SYMBOL(alloc_pages_exact); |
2767 | |
2768 | /** |
2769 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous |
2770 | * pages on a node. |
2771 | * @nid: the preferred node ID where memory should be allocated |
2772 | * @size: the number of bytes to allocate |
2773 | * @gfp_mask: GFP flags for the allocation |
2774 | * |
2775 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling |
2776 | * back. |
2777 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, |
2778 | * but is not exact. |
2779 | */ |
2780 | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
2781 | { |
2782 | unsigned order = get_order(size); |
2783 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
2784 | if (!p) |
2785 | return NULL; |
2786 | return make_alloc_exact((unsigned long)page_address(p), order, size); |
2787 | } |
2788 | EXPORT_SYMBOL(alloc_pages_exact_nid); |
2789 | |
2790 | /** |
2791 | * free_pages_exact - release memory allocated via alloc_pages_exact() |
2792 | * @virt: the value returned by alloc_pages_exact. |
2793 | * @size: size of allocation, same value as passed to alloc_pages_exact(). |
2794 | * |
2795 | * Release the memory allocated by a previous call to alloc_pages_exact. |
2796 | */ |
2797 | void free_pages_exact(void *virt, size_t size) |
2798 | { |
2799 | unsigned long addr = (unsigned long)virt; |
2800 | unsigned long end = addr + PAGE_ALIGN(size); |
2801 | |
2802 | while (addr < end) { |
2803 | free_page(addr); |
2804 | addr += PAGE_SIZE; |
2805 | } |
2806 | } |
2807 | EXPORT_SYMBOL(free_pages_exact); |
2808 | |
2809 | /** |
2810 | * nr_free_zone_pages - count number of pages beyond high watermark |
2811 | * @offset: The zone index of the highest zone |
2812 | * |
2813 | * nr_free_zone_pages() counts the number of counts pages which are beyond the |
2814 | * high watermark within all zones at or below a given zone index. For each |
2815 | * zone, the number of pages is calculated as: |
2816 | * present_pages - high_pages |
2817 | */ |
2818 | static unsigned long nr_free_zone_pages(int offset) |
2819 | { |
2820 | struct zoneref *z; |
2821 | struct zone *zone; |
2822 | |
2823 | /* Just pick one node, since fallback list is circular */ |
2824 | unsigned long sum = 0; |
2825 | |
2826 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
2827 | |
2828 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
2829 | unsigned long size = zone->managed_pages; |
2830 | unsigned long high = high_wmark_pages(zone); |
2831 | if (size > high) |
2832 | sum += size - high; |
2833 | } |
2834 | |
2835 | return sum; |
2836 | } |
2837 | |
2838 | /** |
2839 | * nr_free_buffer_pages - count number of pages beyond high watermark |
2840 | * |
2841 | * nr_free_buffer_pages() counts the number of pages which are beyond the high |
2842 | * watermark within ZONE_DMA and ZONE_NORMAL. |
2843 | */ |
2844 | unsigned long nr_free_buffer_pages(void) |
2845 | { |
2846 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
2847 | } |
2848 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
2849 | |
2850 | /** |
2851 | * nr_free_pagecache_pages - count number of pages beyond high watermark |
2852 | * |
2853 | * nr_free_pagecache_pages() counts the number of pages which are beyond the |
2854 | * high watermark within all zones. |
2855 | */ |
2856 | unsigned long nr_free_pagecache_pages(void) |
2857 | { |
2858 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
2859 | } |
2860 | |
2861 | static inline void show_node(struct zone *zone) |
2862 | { |
2863 | if (IS_ENABLED(CONFIG_NUMA)) |
2864 | printk("Node %d ", zone_to_nid(zone)); |
2865 | } |
2866 | |
2867 | void si_meminfo(struct sysinfo *val) |
2868 | { |
2869 | val->totalram = totalram_pages; |
2870 | val->sharedram = 0; |
2871 | val->freeram = global_page_state(NR_FREE_PAGES); |
2872 | val->bufferram = nr_blockdev_pages(); |
2873 | val->totalhigh = totalhigh_pages; |
2874 | val->freehigh = nr_free_highpages(); |
2875 | val->mem_unit = PAGE_SIZE; |
2876 | } |
2877 | |
2878 | EXPORT_SYMBOL(si_meminfo); |
2879 | |
2880 | #ifdef CONFIG_NUMA |
2881 | void si_meminfo_node(struct sysinfo *val, int nid) |
2882 | { |
2883 | pg_data_t *pgdat = NODE_DATA(nid); |
2884 | |
2885 | val->totalram = pgdat->node_present_pages; |
2886 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
2887 | #ifdef CONFIG_HIGHMEM |
2888 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; |
2889 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2890 | NR_FREE_PAGES); |
2891 | #else |
2892 | val->totalhigh = 0; |
2893 | val->freehigh = 0; |
2894 | #endif |
2895 | val->mem_unit = PAGE_SIZE; |
2896 | } |
2897 | #endif |
2898 | |
2899 | /* |
2900 | * Determine whether the node should be displayed or not, depending on whether |
2901 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). |
2902 | */ |
2903 | bool skip_free_areas_node(unsigned int flags, int nid) |
2904 | { |
2905 | bool ret = false; |
2906 | unsigned int cpuset_mems_cookie; |
2907 | |
2908 | if (!(flags & SHOW_MEM_FILTER_NODES)) |
2909 | goto out; |
2910 | |
2911 | do { |
2912 | cpuset_mems_cookie = get_mems_allowed(); |
2913 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
2914 | } while (!put_mems_allowed(cpuset_mems_cookie)); |
2915 | out: |
2916 | return ret; |
2917 | } |
2918 | |
2919 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
2920 | |
2921 | static void show_migration_types(unsigned char type) |
2922 | { |
2923 | static const char types[MIGRATE_TYPES] = { |
2924 | [MIGRATE_UNMOVABLE] = 'U', |
2925 | [MIGRATE_RECLAIMABLE] = 'E', |
2926 | [MIGRATE_MOVABLE] = 'M', |
2927 | [MIGRATE_RESERVE] = 'R', |
2928 | #ifdef CONFIG_CMA |
2929 | [MIGRATE_CMA] = 'C', |
2930 | #endif |
2931 | #ifdef CONFIG_MEMORY_ISOLATION |
2932 | [MIGRATE_ISOLATE] = 'I', |
2933 | #endif |
2934 | }; |
2935 | char tmp[MIGRATE_TYPES + 1]; |
2936 | char *p = tmp; |
2937 | int i; |
2938 | |
2939 | for (i = 0; i < MIGRATE_TYPES; i++) { |
2940 | if (type & (1 << i)) |
2941 | *p++ = types[i]; |
2942 | } |
2943 | |
2944 | *p = '\0'; |
2945 | printk("(%s) ", tmp); |
2946 | } |
2947 | |
2948 | /* |
2949 | * Show free area list (used inside shift_scroll-lock stuff) |
2950 | * We also calculate the percentage fragmentation. We do this by counting the |
2951 | * memory on each free list with the exception of the first item on the list. |
2952 | * Suppresses nodes that are not allowed by current's cpuset if |
2953 | * SHOW_MEM_FILTER_NODES is passed. |
2954 | */ |
2955 | void show_free_areas(unsigned int filter) |
2956 | { |
2957 | int cpu; |
2958 | struct zone *zone; |
2959 | |
2960 | for_each_populated_zone(zone) { |
2961 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
2962 | continue; |
2963 | show_node(zone); |
2964 | printk("%s per-cpu:\n", zone->name); |
2965 | |
2966 | for_each_online_cpu(cpu) { |
2967 | struct per_cpu_pageset *pageset; |
2968 | |
2969 | pageset = per_cpu_ptr(zone->pageset, cpu); |
2970 | |
2971 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
2972 | cpu, pageset->pcp.high, |
2973 | pageset->pcp.batch, pageset->pcp.count); |
2974 | } |
2975 | } |
2976 | |
2977 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
2978 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" |
2979 | " unevictable:%lu" |
2980 | " dirty:%lu writeback:%lu unstable:%lu\n" |
2981 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
2982 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
2983 | " free_cma:%lu\n", |
2984 | global_page_state(NR_ACTIVE_ANON), |
2985 | global_page_state(NR_INACTIVE_ANON), |
2986 | global_page_state(NR_ISOLATED_ANON), |
2987 | global_page_state(NR_ACTIVE_FILE), |
2988 | global_page_state(NR_INACTIVE_FILE), |
2989 | global_page_state(NR_ISOLATED_FILE), |
2990 | global_page_state(NR_UNEVICTABLE), |
2991 | global_page_state(NR_FILE_DIRTY), |
2992 | global_page_state(NR_WRITEBACK), |
2993 | global_page_state(NR_UNSTABLE_NFS), |
2994 | global_page_state(NR_FREE_PAGES), |
2995 | global_page_state(NR_SLAB_RECLAIMABLE), |
2996 | global_page_state(NR_SLAB_UNRECLAIMABLE), |
2997 | global_page_state(NR_FILE_MAPPED), |
2998 | global_page_state(NR_SHMEM), |
2999 | global_page_state(NR_PAGETABLE), |
3000 | global_page_state(NR_BOUNCE), |
3001 | global_page_state(NR_FREE_CMA_PAGES)); |
3002 | |
3003 | for_each_populated_zone(zone) { |
3004 | int i; |
3005 | |
3006 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
3007 | continue; |
3008 | show_node(zone); |
3009 | printk("%s" |
3010 | " free:%lukB" |
3011 | " min:%lukB" |
3012 | " low:%lukB" |
3013 | " high:%lukB" |
3014 | " active_anon:%lukB" |
3015 | " inactive_anon:%lukB" |
3016 | " active_file:%lukB" |
3017 | " inactive_file:%lukB" |
3018 | " unevictable:%lukB" |
3019 | " isolated(anon):%lukB" |
3020 | " isolated(file):%lukB" |
3021 | " present:%lukB" |
3022 | " managed:%lukB" |
3023 | " mlocked:%lukB" |
3024 | " dirty:%lukB" |
3025 | " writeback:%lukB" |
3026 | " mapped:%lukB" |
3027 | " shmem:%lukB" |
3028 | " slab_reclaimable:%lukB" |
3029 | " slab_unreclaimable:%lukB" |
3030 | " kernel_stack:%lukB" |
3031 | " pagetables:%lukB" |
3032 | " unstable:%lukB" |
3033 | " bounce:%lukB" |
3034 | " free_cma:%lukB" |
3035 | " writeback_tmp:%lukB" |
3036 | " pages_scanned:%lu" |
3037 | " all_unreclaimable? %s" |
3038 | "\n", |
3039 | zone->name, |
3040 | K(zone_page_state(zone, NR_FREE_PAGES)), |
3041 | K(min_wmark_pages(zone)), |
3042 | K(low_wmark_pages(zone)), |
3043 | K(high_wmark_pages(zone)), |
3044 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
3045 | K(zone_page_state(zone, NR_INACTIVE_ANON)), |
3046 | K(zone_page_state(zone, NR_ACTIVE_FILE)), |
3047 | K(zone_page_state(zone, NR_INACTIVE_FILE)), |
3048 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
3049 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
3050 | K(zone_page_state(zone, NR_ISOLATED_FILE)), |
3051 | K(zone->present_pages), |
3052 | K(zone->managed_pages), |
3053 | K(zone_page_state(zone, NR_MLOCK)), |
3054 | K(zone_page_state(zone, NR_FILE_DIRTY)), |
3055 | K(zone_page_state(zone, NR_WRITEBACK)), |
3056 | K(zone_page_state(zone, NR_FILE_MAPPED)), |
3057 | K(zone_page_state(zone, NR_SHMEM)), |
3058 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
3059 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), |
3060 | zone_page_state(zone, NR_KERNEL_STACK) * |
3061 | THREAD_SIZE / 1024, |
3062 | K(zone_page_state(zone, NR_PAGETABLE)), |
3063 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), |
3064 | K(zone_page_state(zone, NR_BOUNCE)), |
3065 | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), |
3066 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
3067 | zone->pages_scanned, |
3068 | (zone->all_unreclaimable ? "yes" : "no") |
3069 | ); |
3070 | printk("lowmem_reserve[]:"); |
3071 | for (i = 0; i < MAX_NR_ZONES; i++) |
3072 | printk(" %lu", zone->lowmem_reserve[i]); |
3073 | printk("\n"); |
3074 | } |
3075 | |
3076 | for_each_populated_zone(zone) { |
3077 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
3078 | unsigned char types[MAX_ORDER]; |
3079 | |
3080 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
3081 | continue; |
3082 | show_node(zone); |
3083 | printk("%s: ", zone->name); |
3084 | |
3085 | spin_lock_irqsave(&zone->lock, flags); |
3086 | for (order = 0; order < MAX_ORDER; order++) { |
3087 | struct free_area *area = &zone->free_area[order]; |
3088 | int type; |
3089 | |
3090 | nr[order] = area->nr_free; |
3091 | total += nr[order] << order; |
3092 | |
3093 | types[order] = 0; |
3094 | for (type = 0; type < MIGRATE_TYPES; type++) { |
3095 | if (!list_empty(&area->free_list[type])) |
3096 | types[order] |= 1 << type; |
3097 | } |
3098 | } |
3099 | spin_unlock_irqrestore(&zone->lock, flags); |
3100 | for (order = 0; order < MAX_ORDER; order++) { |
3101 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
3102 | if (nr[order]) |
3103 | show_migration_types(types[order]); |
3104 | } |
3105 | printk("= %lukB\n", K(total)); |
3106 | } |
3107 | |
3108 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
3109 | |
3110 | show_swap_cache_info(); |
3111 | } |
3112 | |
3113 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
3114 | { |
3115 | zoneref->zone = zone; |
3116 | zoneref->zone_idx = zone_idx(zone); |
3117 | } |
3118 | |
3119 | /* |
3120 | * Builds allocation fallback zone lists. |
3121 | * |
3122 | * Add all populated zones of a node to the zonelist. |
3123 | */ |
3124 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
3125 | int nr_zones, enum zone_type zone_type) |
3126 | { |
3127 | struct zone *zone; |
3128 | |
3129 | BUG_ON(zone_type >= MAX_NR_ZONES); |
3130 | zone_type++; |
3131 | |
3132 | do { |
3133 | zone_type--; |
3134 | zone = pgdat->node_zones + zone_type; |
3135 | if (populated_zone(zone)) { |
3136 | zoneref_set_zone(zone, |
3137 | &zonelist->_zonerefs[nr_zones++]); |
3138 | check_highest_zone(zone_type); |
3139 | } |
3140 | |
3141 | } while (zone_type); |
3142 | return nr_zones; |
3143 | } |
3144 | |
3145 | |
3146 | /* |
3147 | * zonelist_order: |
3148 | * 0 = automatic detection of better ordering. |
3149 | * 1 = order by ([node] distance, -zonetype) |
3150 | * 2 = order by (-zonetype, [node] distance) |
3151 | * |
3152 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create |
3153 | * the same zonelist. So only NUMA can configure this param. |
3154 | */ |
3155 | #define ZONELIST_ORDER_DEFAULT 0 |
3156 | #define ZONELIST_ORDER_NODE 1 |
3157 | #define ZONELIST_ORDER_ZONE 2 |
3158 | |
3159 | /* zonelist order in the kernel. |
3160 | * set_zonelist_order() will set this to NODE or ZONE. |
3161 | */ |
3162 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3163 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; |
3164 | |
3165 | |
3166 | #ifdef CONFIG_NUMA |
3167 | /* The value user specified ....changed by config */ |
3168 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3169 | /* string for sysctl */ |
3170 | #define NUMA_ZONELIST_ORDER_LEN 16 |
3171 | char numa_zonelist_order[16] = "default"; |
3172 | |
3173 | /* |
3174 | * interface for configure zonelist ordering. |
3175 | * command line option "numa_zonelist_order" |
3176 | * = "[dD]efault - default, automatic configuration. |
3177 | * = "[nN]ode - order by node locality, then by zone within node |
3178 | * = "[zZ]one - order by zone, then by locality within zone |
3179 | */ |
3180 | |
3181 | static int __parse_numa_zonelist_order(char *s) |
3182 | { |
3183 | if (*s == 'd' || *s == 'D') { |
3184 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; |
3185 | } else if (*s == 'n' || *s == 'N') { |
3186 | user_zonelist_order = ZONELIST_ORDER_NODE; |
3187 | } else if (*s == 'z' || *s == 'Z') { |
3188 | user_zonelist_order = ZONELIST_ORDER_ZONE; |
3189 | } else { |
3190 | printk(KERN_WARNING |
3191 | "Ignoring invalid numa_zonelist_order value: " |
3192 | "%s\n", s); |
3193 | return -EINVAL; |
3194 | } |
3195 | return 0; |
3196 | } |
3197 | |
3198 | static __init int setup_numa_zonelist_order(char *s) |
3199 | { |
3200 | int ret; |
3201 | |
3202 | if (!s) |
3203 | return 0; |
3204 | |
3205 | ret = __parse_numa_zonelist_order(s); |
3206 | if (ret == 0) |
3207 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); |
3208 | |
3209 | return ret; |
3210 | } |
3211 | early_param("numa_zonelist_order", setup_numa_zonelist_order); |
3212 | |
3213 | /* |
3214 | * sysctl handler for numa_zonelist_order |
3215 | */ |
3216 | int numa_zonelist_order_handler(ctl_table *table, int write, |
3217 | void __user *buffer, size_t *length, |
3218 | loff_t *ppos) |
3219 | { |
3220 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; |
3221 | int ret; |
3222 | static DEFINE_MUTEX(zl_order_mutex); |
3223 | |
3224 | mutex_lock(&zl_order_mutex); |
3225 | if (write) |
3226 | strcpy(saved_string, (char*)table->data); |
3227 | ret = proc_dostring(table, write, buffer, length, ppos); |
3228 | if (ret) |
3229 | goto out; |
3230 | if (write) { |
3231 | int oldval = user_zonelist_order; |
3232 | if (__parse_numa_zonelist_order((char*)table->data)) { |
3233 | /* |
3234 | * bogus value. restore saved string |
3235 | */ |
3236 | strncpy((char*)table->data, saved_string, |
3237 | NUMA_ZONELIST_ORDER_LEN); |
3238 | user_zonelist_order = oldval; |
3239 | } else if (oldval != user_zonelist_order) { |
3240 | mutex_lock(&zonelists_mutex); |
3241 | build_all_zonelists(NULL, NULL); |
3242 | mutex_unlock(&zonelists_mutex); |
3243 | } |
3244 | } |
3245 | out: |
3246 | mutex_unlock(&zl_order_mutex); |
3247 | return ret; |
3248 | } |
3249 | |
3250 | |
3251 | #define MAX_NODE_LOAD (nr_online_nodes) |
3252 | static int node_load[MAX_NUMNODES]; |
3253 | |
3254 | /** |
3255 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
3256 | * @node: node whose fallback list we're appending |
3257 | * @used_node_mask: nodemask_t of already used nodes |
3258 | * |
3259 | * We use a number of factors to determine which is the next node that should |
3260 | * appear on a given node's fallback list. The node should not have appeared |
3261 | * already in @node's fallback list, and it should be the next closest node |
3262 | * according to the distance array (which contains arbitrary distance values |
3263 | * from each node to each node in the system), and should also prefer nodes |
3264 | * with no CPUs, since presumably they'll have very little allocation pressure |
3265 | * on them otherwise. |
3266 | * It returns -1 if no node is found. |
3267 | */ |
3268 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
3269 | { |
3270 | int n, val; |
3271 | int min_val = INT_MAX; |
3272 | int best_node = NUMA_NO_NODE; |
3273 | const struct cpumask *tmp = cpumask_of_node(0); |
3274 | |
3275 | /* Use the local node if we haven't already */ |
3276 | if (!node_isset(node, *used_node_mask)) { |
3277 | node_set(node, *used_node_mask); |
3278 | return node; |
3279 | } |
3280 | |
3281 | for_each_node_state(n, N_MEMORY) { |
3282 | |
3283 | /* Don't want a node to appear more than once */ |
3284 | if (node_isset(n, *used_node_mask)) |
3285 | continue; |
3286 | |
3287 | /* Use the distance array to find the distance */ |
3288 | val = node_distance(node, n); |
3289 | |
3290 | /* Penalize nodes under us ("prefer the next node") */ |
3291 | val += (n < node); |
3292 | |
3293 | /* Give preference to headless and unused nodes */ |
3294 | tmp = cpumask_of_node(n); |
3295 | if (!cpumask_empty(tmp)) |
3296 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3297 | |
3298 | /* Slight preference for less loaded node */ |
3299 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); |
3300 | val += node_load[n]; |
3301 | |
3302 | if (val < min_val) { |
3303 | min_val = val; |
3304 | best_node = n; |
3305 | } |
3306 | } |
3307 | |
3308 | if (best_node >= 0) |
3309 | node_set(best_node, *used_node_mask); |
3310 | |
3311 | return best_node; |
3312 | } |
3313 | |
3314 | |
3315 | /* |
3316 | * Build zonelists ordered by node and zones within node. |
3317 | * This results in maximum locality--normal zone overflows into local |
3318 | * DMA zone, if any--but risks exhausting DMA zone. |
3319 | */ |
3320 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) |
3321 | { |
3322 | int j; |
3323 | struct zonelist *zonelist; |
3324 | |
3325 | zonelist = &pgdat->node_zonelists[0]; |
3326 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
3327 | ; |
3328 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3329 | MAX_NR_ZONES - 1); |
3330 | zonelist->_zonerefs[j].zone = NULL; |
3331 | zonelist->_zonerefs[j].zone_idx = 0; |
3332 | } |
3333 | |
3334 | /* |
3335 | * Build gfp_thisnode zonelists |
3336 | */ |
3337 | static void build_thisnode_zonelists(pg_data_t *pgdat) |
3338 | { |
3339 | int j; |
3340 | struct zonelist *zonelist; |
3341 | |
3342 | zonelist = &pgdat->node_zonelists[1]; |
3343 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); |
3344 | zonelist->_zonerefs[j].zone = NULL; |
3345 | zonelist->_zonerefs[j].zone_idx = 0; |
3346 | } |
3347 | |
3348 | /* |
3349 | * Build zonelists ordered by zone and nodes within zones. |
3350 | * This results in conserving DMA zone[s] until all Normal memory is |
3351 | * exhausted, but results in overflowing to remote node while memory |
3352 | * may still exist in local DMA zone. |
3353 | */ |
3354 | static int node_order[MAX_NUMNODES]; |
3355 | |
3356 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) |
3357 | { |
3358 | int pos, j, node; |
3359 | int zone_type; /* needs to be signed */ |
3360 | struct zone *z; |
3361 | struct zonelist *zonelist; |
3362 | |
3363 | zonelist = &pgdat->node_zonelists[0]; |
3364 | pos = 0; |
3365 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { |
3366 | for (j = 0; j < nr_nodes; j++) { |
3367 | node = node_order[j]; |
3368 | z = &NODE_DATA(node)->node_zones[zone_type]; |
3369 | if (populated_zone(z)) { |
3370 | zoneref_set_zone(z, |
3371 | &zonelist->_zonerefs[pos++]); |
3372 | check_highest_zone(zone_type); |
3373 | } |
3374 | } |
3375 | } |
3376 | zonelist->_zonerefs[pos].zone = NULL; |
3377 | zonelist->_zonerefs[pos].zone_idx = 0; |
3378 | } |
3379 | |
3380 | static int default_zonelist_order(void) |
3381 | { |
3382 | int nid, zone_type; |
3383 | unsigned long low_kmem_size,total_size; |
3384 | struct zone *z; |
3385 | int average_size; |
3386 | /* |
3387 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
3388 | * If they are really small and used heavily, the system can fall |
3389 | * into OOM very easily. |
3390 | * This function detect ZONE_DMA/DMA32 size and configures zone order. |
3391 | */ |
3392 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ |
3393 | low_kmem_size = 0; |
3394 | total_size = 0; |
3395 | for_each_online_node(nid) { |
3396 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
3397 | z = &NODE_DATA(nid)->node_zones[zone_type]; |
3398 | if (populated_zone(z)) { |
3399 | if (zone_type < ZONE_NORMAL) |
3400 | low_kmem_size += z->present_pages; |
3401 | total_size += z->present_pages; |
3402 | } else if (zone_type == ZONE_NORMAL) { |
3403 | /* |
3404 | * If any node has only lowmem, then node order |
3405 | * is preferred to allow kernel allocations |
3406 | * locally; otherwise, they can easily infringe |
3407 | * on other nodes when there is an abundance of |
3408 | * lowmem available to allocate from. |
3409 | */ |
3410 | return ZONELIST_ORDER_NODE; |
3411 | } |
3412 | } |
3413 | } |
3414 | if (!low_kmem_size || /* there are no DMA area. */ |
3415 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ |
3416 | return ZONELIST_ORDER_NODE; |
3417 | /* |
3418 | * look into each node's config. |
3419 | * If there is a node whose DMA/DMA32 memory is very big area on |
3420 | * local memory, NODE_ORDER may be suitable. |
3421 | */ |
3422 | average_size = total_size / |
3423 | (nodes_weight(node_states[N_MEMORY]) + 1); |
3424 | for_each_online_node(nid) { |
3425 | low_kmem_size = 0; |
3426 | total_size = 0; |
3427 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
3428 | z = &NODE_DATA(nid)->node_zones[zone_type]; |
3429 | if (populated_zone(z)) { |
3430 | if (zone_type < ZONE_NORMAL) |
3431 | low_kmem_size += z->present_pages; |
3432 | total_size += z->present_pages; |
3433 | } |
3434 | } |
3435 | if (low_kmem_size && |
3436 | total_size > average_size && /* ignore small node */ |
3437 | low_kmem_size > total_size * 70/100) |
3438 | return ZONELIST_ORDER_NODE; |
3439 | } |
3440 | return ZONELIST_ORDER_ZONE; |
3441 | } |
3442 | |
3443 | static void set_zonelist_order(void) |
3444 | { |
3445 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) |
3446 | current_zonelist_order = default_zonelist_order(); |
3447 | else |
3448 | current_zonelist_order = user_zonelist_order; |
3449 | } |
3450 | |
3451 | static void build_zonelists(pg_data_t *pgdat) |
3452 | { |
3453 | int j, node, load; |
3454 | enum zone_type i; |
3455 | nodemask_t used_mask; |
3456 | int local_node, prev_node; |
3457 | struct zonelist *zonelist; |
3458 | int order = current_zonelist_order; |
3459 | |
3460 | /* initialize zonelists */ |
3461 | for (i = 0; i < MAX_ZONELISTS; i++) { |
3462 | zonelist = pgdat->node_zonelists + i; |
3463 | zonelist->_zonerefs[0].zone = NULL; |
3464 | zonelist->_zonerefs[0].zone_idx = 0; |
3465 | } |
3466 | |
3467 | /* NUMA-aware ordering of nodes */ |
3468 | local_node = pgdat->node_id; |
3469 | load = nr_online_nodes; |
3470 | prev_node = local_node; |
3471 | nodes_clear(used_mask); |
3472 | |
3473 | memset(node_order, 0, sizeof(node_order)); |
3474 | j = 0; |
3475 | |
3476 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
3477 | /* |
3478 | * We don't want to pressure a particular node. |
3479 | * So adding penalty to the first node in same |
3480 | * distance group to make it round-robin. |
3481 | */ |
3482 | if (node_distance(local_node, node) != |
3483 | node_distance(local_node, prev_node)) |
3484 | node_load[node] = load; |
3485 | |
3486 | prev_node = node; |
3487 | load--; |
3488 | if (order == ZONELIST_ORDER_NODE) |
3489 | build_zonelists_in_node_order(pgdat, node); |
3490 | else |
3491 | node_order[j++] = node; /* remember order */ |
3492 | } |
3493 | |
3494 | if (order == ZONELIST_ORDER_ZONE) { |
3495 | /* calculate node order -- i.e., DMA last! */ |
3496 | build_zonelists_in_zone_order(pgdat, j); |
3497 | } |
3498 | |
3499 | build_thisnode_zonelists(pgdat); |
3500 | } |
3501 | |
3502 | /* Construct the zonelist performance cache - see further mmzone.h */ |
3503 | static void build_zonelist_cache(pg_data_t *pgdat) |
3504 | { |
3505 | struct zonelist *zonelist; |
3506 | struct zonelist_cache *zlc; |
3507 | struct zoneref *z; |
3508 | |
3509 | zonelist = &pgdat->node_zonelists[0]; |
3510 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; |
3511 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
3512 | for (z = zonelist->_zonerefs; z->zone; z++) |
3513 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); |
3514 | } |
3515 | |
3516 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3517 | /* |
3518 | * Return node id of node used for "local" allocations. |
3519 | * I.e., first node id of first zone in arg node's generic zonelist. |
3520 | * Used for initializing percpu 'numa_mem', which is used primarily |
3521 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. |
3522 | */ |
3523 | int local_memory_node(int node) |
3524 | { |
3525 | struct zone *zone; |
3526 | |
3527 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
3528 | gfp_zone(GFP_KERNEL), |
3529 | NULL, |
3530 | &zone); |
3531 | return zone->node; |
3532 | } |
3533 | #endif |
3534 | |
3535 | #else /* CONFIG_NUMA */ |
3536 | |
3537 | static void set_zonelist_order(void) |
3538 | { |
3539 | current_zonelist_order = ZONELIST_ORDER_ZONE; |
3540 | } |
3541 | |
3542 | static void build_zonelists(pg_data_t *pgdat) |
3543 | { |
3544 | int node, local_node; |
3545 | enum zone_type j; |
3546 | struct zonelist *zonelist; |
3547 | |
3548 | local_node = pgdat->node_id; |
3549 | |
3550 | zonelist = &pgdat->node_zonelists[0]; |
3551 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); |
3552 | |
3553 | /* |
3554 | * Now we build the zonelist so that it contains the zones |
3555 | * of all the other nodes. |
3556 | * We don't want to pressure a particular node, so when |
3557 | * building the zones for node N, we make sure that the |
3558 | * zones coming right after the local ones are those from |
3559 | * node N+1 (modulo N) |
3560 | */ |
3561 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { |
3562 | if (!node_online(node)) |
3563 | continue; |
3564 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3565 | MAX_NR_ZONES - 1); |
3566 | } |
3567 | for (node = 0; node < local_node; node++) { |
3568 | if (!node_online(node)) |
3569 | continue; |
3570 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, |
3571 | MAX_NR_ZONES - 1); |
3572 | } |
3573 | |
3574 | zonelist->_zonerefs[j].zone = NULL; |
3575 | zonelist->_zonerefs[j].zone_idx = 0; |
3576 | } |
3577 | |
3578 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
3579 | static void build_zonelist_cache(pg_data_t *pgdat) |
3580 | { |
3581 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
3582 | } |
3583 | |
3584 | #endif /* CONFIG_NUMA */ |
3585 | |
3586 | /* |
3587 | * Boot pageset table. One per cpu which is going to be used for all |
3588 | * zones and all nodes. The parameters will be set in such a way |
3589 | * that an item put on a list will immediately be handed over to |
3590 | * the buddy list. This is safe since pageset manipulation is done |
3591 | * with interrupts disabled. |
3592 | * |
3593 | * The boot_pagesets must be kept even after bootup is complete for |
3594 | * unused processors and/or zones. They do play a role for bootstrapping |
3595 | * hotplugged processors. |
3596 | * |
3597 | * zoneinfo_show() and maybe other functions do |
3598 | * not check if the processor is online before following the pageset pointer. |
3599 | * Other parts of the kernel may not check if the zone is available. |
3600 | */ |
3601 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); |
3602 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); |
3603 | static void setup_zone_pageset(struct zone *zone); |
3604 | |
3605 | /* |
3606 | * Global mutex to protect against size modification of zonelists |
3607 | * as well as to serialize pageset setup for the new populated zone. |
3608 | */ |
3609 | DEFINE_MUTEX(zonelists_mutex); |
3610 | |
3611 | /* return values int ....just for stop_machine() */ |
3612 | static int __build_all_zonelists(void *data) |
3613 | { |
3614 | int nid; |
3615 | int cpu; |
3616 | pg_data_t *self = data; |
3617 | |
3618 | #ifdef CONFIG_NUMA |
3619 | memset(node_load, 0, sizeof(node_load)); |
3620 | #endif |
3621 | |
3622 | if (self && !node_online(self->node_id)) { |
3623 | build_zonelists(self); |
3624 | build_zonelist_cache(self); |
3625 | } |
3626 | |
3627 | for_each_online_node(nid) { |
3628 | pg_data_t *pgdat = NODE_DATA(nid); |
3629 | |
3630 | build_zonelists(pgdat); |
3631 | build_zonelist_cache(pgdat); |
3632 | } |
3633 | |
3634 | /* |
3635 | * Initialize the boot_pagesets that are going to be used |
3636 | * for bootstrapping processors. The real pagesets for |
3637 | * each zone will be allocated later when the per cpu |
3638 | * allocator is available. |
3639 | * |
3640 | * boot_pagesets are used also for bootstrapping offline |
3641 | * cpus if the system is already booted because the pagesets |
3642 | * are needed to initialize allocators on a specific cpu too. |
3643 | * F.e. the percpu allocator needs the page allocator which |
3644 | * needs the percpu allocator in order to allocate its pagesets |
3645 | * (a chicken-egg dilemma). |
3646 | */ |
3647 | for_each_possible_cpu(cpu) { |
3648 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3649 | |
3650 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3651 | /* |
3652 | * We now know the "local memory node" for each node-- |
3653 | * i.e., the node of the first zone in the generic zonelist. |
3654 | * Set up numa_mem percpu variable for on-line cpus. During |
3655 | * boot, only the boot cpu should be on-line; we'll init the |
3656 | * secondary cpus' numa_mem as they come on-line. During |
3657 | * node/memory hotplug, we'll fixup all on-line cpus. |
3658 | */ |
3659 | if (cpu_online(cpu)) |
3660 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
3661 | #endif |
3662 | } |
3663 | |
3664 | return 0; |
3665 | } |
3666 | |
3667 | /* |
3668 | * Called with zonelists_mutex held always |
3669 | * unless system_state == SYSTEM_BOOTING. |
3670 | */ |
3671 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
3672 | { |
3673 | set_zonelist_order(); |
3674 | |
3675 | if (system_state == SYSTEM_BOOTING) { |
3676 | __build_all_zonelists(NULL); |
3677 | mminit_verify_zonelist(); |
3678 | cpuset_init_current_mems_allowed(); |
3679 | } else { |
3680 | /* we have to stop all cpus to guarantee there is no user |
3681 | of zonelist */ |
3682 | #ifdef CONFIG_MEMORY_HOTPLUG |
3683 | if (zone) |
3684 | setup_zone_pageset(zone); |
3685 | #endif |
3686 | stop_machine(__build_all_zonelists, pgdat, NULL); |
3687 | /* cpuset refresh routine should be here */ |
3688 | } |
3689 | vm_total_pages = nr_free_pagecache_pages(); |
3690 | /* |
3691 | * Disable grouping by mobility if the number of pages in the |
3692 | * system is too low to allow the mechanism to work. It would be |
3693 | * more accurate, but expensive to check per-zone. This check is |
3694 | * made on memory-hotadd so a system can start with mobility |
3695 | * disabled and enable it later |
3696 | */ |
3697 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
3698 | page_group_by_mobility_disabled = 1; |
3699 | else |
3700 | page_group_by_mobility_disabled = 0; |
3701 | |
3702 | printk("Built %i zonelists in %s order, mobility grouping %s. " |
3703 | "Total pages: %ld\n", |
3704 | nr_online_nodes, |
3705 | zonelist_order_name[current_zonelist_order], |
3706 | page_group_by_mobility_disabled ? "off" : "on", |
3707 | vm_total_pages); |
3708 | #ifdef CONFIG_NUMA |
3709 | printk("Policy zone: %s\n", zone_names[policy_zone]); |
3710 | #endif |
3711 | } |
3712 | |
3713 | /* |
3714 | * Helper functions to size the waitqueue hash table. |
3715 | * Essentially these want to choose hash table sizes sufficiently |
3716 | * large so that collisions trying to wait on pages are rare. |
3717 | * But in fact, the number of active page waitqueues on typical |
3718 | * systems is ridiculously low, less than 200. So this is even |
3719 | * conservative, even though it seems large. |
3720 | * |
3721 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to |
3722 | * waitqueues, i.e. the size of the waitq table given the number of pages. |
3723 | */ |
3724 | #define PAGES_PER_WAITQUEUE 256 |
3725 | |
3726 | #ifndef CONFIG_MEMORY_HOTPLUG |
3727 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
3728 | { |
3729 | unsigned long size = 1; |
3730 | |
3731 | pages /= PAGES_PER_WAITQUEUE; |
3732 | |
3733 | while (size < pages) |
3734 | size <<= 1; |
3735 | |
3736 | /* |
3737 | * Once we have dozens or even hundreds of threads sleeping |
3738 | * on IO we've got bigger problems than wait queue collision. |
3739 | * Limit the size of the wait table to a reasonable size. |
3740 | */ |
3741 | size = min(size, 4096UL); |
3742 | |
3743 | return max(size, 4UL); |
3744 | } |
3745 | #else |
3746 | /* |
3747 | * A zone's size might be changed by hot-add, so it is not possible to determine |
3748 | * a suitable size for its wait_table. So we use the maximum size now. |
3749 | * |
3750 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: |
3751 | * |
3752 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. |
3753 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. |
3754 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. |
3755 | * |
3756 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages |
3757 | * or more by the traditional way. (See above). It equals: |
3758 | * |
3759 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. |
3760 | * ia64(16K page size) : = ( 8G + 4M)byte. |
3761 | * powerpc (64K page size) : = (32G +16M)byte. |
3762 | */ |
3763 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
3764 | { |
3765 | return 4096UL; |
3766 | } |
3767 | #endif |
3768 | |
3769 | /* |
3770 | * This is an integer logarithm so that shifts can be used later |
3771 | * to extract the more random high bits from the multiplicative |
3772 | * hash function before the remainder is taken. |
3773 | */ |
3774 | static inline unsigned long wait_table_bits(unsigned long size) |
3775 | { |
3776 | return ffz(~size); |
3777 | } |
3778 | |
3779 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) |
3780 | |
3781 | /* |
3782 | * Check if a pageblock contains reserved pages |
3783 | */ |
3784 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) |
3785 | { |
3786 | unsigned long pfn; |
3787 | |
3788 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
3789 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) |
3790 | return 1; |
3791 | } |
3792 | return 0; |
3793 | } |
3794 | |
3795 | /* |
3796 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
3797 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3798 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes |
3799 | * higher will lead to a bigger reserve which will get freed as contiguous |
3800 | * blocks as reclaim kicks in |
3801 | */ |
3802 | static void setup_zone_migrate_reserve(struct zone *zone) |
3803 | { |
3804 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
3805 | struct page *page; |
3806 | unsigned long block_migratetype; |
3807 | int reserve; |
3808 | |
3809 | /* |
3810 | * Get the start pfn, end pfn and the number of blocks to reserve |
3811 | * We have to be careful to be aligned to pageblock_nr_pages to |
3812 | * make sure that we always check pfn_valid for the first page in |
3813 | * the block. |
3814 | */ |
3815 | start_pfn = zone->zone_start_pfn; |
3816 | end_pfn = zone_end_pfn(zone); |
3817 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
3818 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
3819 | pageblock_order; |
3820 | |
3821 | /* |
3822 | * Reserve blocks are generally in place to help high-order atomic |
3823 | * allocations that are short-lived. A min_free_kbytes value that |
3824 | * would result in more than 2 reserve blocks for atomic allocations |
3825 | * is assumed to be in place to help anti-fragmentation for the |
3826 | * future allocation of hugepages at runtime. |
3827 | */ |
3828 | reserve = min(2, reserve); |
3829 | |
3830 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
3831 | if (!pfn_valid(pfn)) |
3832 | continue; |
3833 | page = pfn_to_page(pfn); |
3834 | |
3835 | /* Watch out for overlapping nodes */ |
3836 | if (page_to_nid(page) != zone_to_nid(zone)) |
3837 | continue; |
3838 | |
3839 | block_migratetype = get_pageblock_migratetype(page); |
3840 | |
3841 | /* Only test what is necessary when the reserves are not met */ |
3842 | if (reserve > 0) { |
3843 | /* |
3844 | * Blocks with reserved pages will never free, skip |
3845 | * them. |
3846 | */ |
3847 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); |
3848 | if (pageblock_is_reserved(pfn, block_end_pfn)) |
3849 | continue; |
3850 | |
3851 | /* If this block is reserved, account for it */ |
3852 | if (block_migratetype == MIGRATE_RESERVE) { |
3853 | reserve--; |
3854 | continue; |
3855 | } |
3856 | |
3857 | /* Suitable for reserving if this block is movable */ |
3858 | if (block_migratetype == MIGRATE_MOVABLE) { |
3859 | set_pageblock_migratetype(page, |
3860 | MIGRATE_RESERVE); |
3861 | move_freepages_block(zone, page, |
3862 | MIGRATE_RESERVE); |
3863 | reserve--; |
3864 | continue; |
3865 | } |
3866 | } |
3867 | |
3868 | /* |
3869 | * If the reserve is met and this is a previous reserved block, |
3870 | * take it back |
3871 | */ |
3872 | if (block_migratetype == MIGRATE_RESERVE) { |
3873 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
3874 | move_freepages_block(zone, page, MIGRATE_MOVABLE); |
3875 | } |
3876 | } |
3877 | } |
3878 | |
3879 | /* |
3880 | * Initially all pages are reserved - free ones are freed |
3881 | * up by free_all_bootmem() once the early boot process is |
3882 | * done. Non-atomic initialization, single-pass. |
3883 | */ |
3884 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
3885 | unsigned long start_pfn, enum memmap_context context) |
3886 | { |
3887 | struct page *page; |
3888 | unsigned long end_pfn = start_pfn + size; |
3889 | unsigned long pfn; |
3890 | struct zone *z; |
3891 | |
3892 | if (highest_memmap_pfn < end_pfn - 1) |
3893 | highest_memmap_pfn = end_pfn - 1; |
3894 | |
3895 | z = &NODE_DATA(nid)->node_zones[zone]; |
3896 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
3897 | /* |
3898 | * There can be holes in boot-time mem_map[]s |
3899 | * handed to this function. They do not |
3900 | * exist on hotplugged memory. |
3901 | */ |
3902 | if (context == MEMMAP_EARLY) { |
3903 | if (!early_pfn_valid(pfn)) |
3904 | continue; |
3905 | if (!early_pfn_in_nid(pfn, nid)) |
3906 | continue; |
3907 | } |
3908 | page = pfn_to_page(pfn); |
3909 | set_page_links(page, zone, nid, pfn); |
3910 | mminit_verify_page_links(page, zone, nid, pfn); |
3911 | init_page_count(page); |
3912 | page_mapcount_reset(page); |
3913 | page_nid_reset_last(page); |
3914 | SetPageReserved(page); |
3915 | /* |
3916 | * Mark the block movable so that blocks are reserved for |
3917 | * movable at startup. This will force kernel allocations |
3918 | * to reserve their blocks rather than leaking throughout |
3919 | * the address space during boot when many long-lived |
3920 | * kernel allocations are made. Later some blocks near |
3921 | * the start are marked MIGRATE_RESERVE by |
3922 | * setup_zone_migrate_reserve() |
3923 | * |
3924 | * bitmap is created for zone's valid pfn range. but memmap |
3925 | * can be created for invalid pages (for alignment) |
3926 | * check here not to call set_pageblock_migratetype() against |
3927 | * pfn out of zone. |
3928 | */ |
3929 | if ((z->zone_start_pfn <= pfn) |
3930 | && (pfn < zone_end_pfn(z)) |
3931 | && !(pfn & (pageblock_nr_pages - 1))) |
3932 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
3933 | |
3934 | INIT_LIST_HEAD(&page->lru); |
3935 | #ifdef WANT_PAGE_VIRTUAL |
3936 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
3937 | if (!is_highmem_idx(zone)) |
3938 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
3939 | #endif |
3940 | } |
3941 | } |
3942 | |
3943 | static void __meminit zone_init_free_lists(struct zone *zone) |
3944 | { |
3945 | int order, t; |
3946 | for_each_migratetype_order(order, t) { |
3947 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); |
3948 | zone->free_area[order].nr_free = 0; |
3949 | } |
3950 | } |
3951 | |
3952 | #ifndef __HAVE_ARCH_MEMMAP_INIT |
3953 | #define memmap_init(size, nid, zone, start_pfn) \ |
3954 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
3955 | #endif |
3956 | |
3957 | static int __meminit zone_batchsize(struct zone *zone) |
3958 | { |
3959 | #ifdef CONFIG_MMU |
3960 | int batch; |
3961 | |
3962 | /* |
3963 | * The per-cpu-pages pools are set to around 1000th of the |
3964 | * size of the zone. But no more than 1/2 of a meg. |
3965 | * |
3966 | * OK, so we don't know how big the cache is. So guess. |
3967 | */ |
3968 | batch = zone->managed_pages / 1024; |
3969 | if (batch * PAGE_SIZE > 512 * 1024) |
3970 | batch = (512 * 1024) / PAGE_SIZE; |
3971 | batch /= 4; /* We effectively *= 4 below */ |
3972 | if (batch < 1) |
3973 | batch = 1; |
3974 | |
3975 | /* |
3976 | * Clamp the batch to a 2^n - 1 value. Having a power |
3977 | * of 2 value was found to be more likely to have |
3978 | * suboptimal cache aliasing properties in some cases. |
3979 | * |
3980 | * For example if 2 tasks are alternately allocating |
3981 | * batches of pages, one task can end up with a lot |
3982 | * of pages of one half of the possible page colors |
3983 | * and the other with pages of the other colors. |
3984 | */ |
3985 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
3986 | |
3987 | return batch; |
3988 | |
3989 | #else |
3990 | /* The deferral and batching of frees should be suppressed under NOMMU |
3991 | * conditions. |
3992 | * |
3993 | * The problem is that NOMMU needs to be able to allocate large chunks |
3994 | * of contiguous memory as there's no hardware page translation to |
3995 | * assemble apparent contiguous memory from discontiguous pages. |
3996 | * |
3997 | * Queueing large contiguous runs of pages for batching, however, |
3998 | * causes the pages to actually be freed in smaller chunks. As there |
3999 | * can be a significant delay between the individual batches being |
4000 | * recycled, this leads to the once large chunks of space being |
4001 | * fragmented and becoming unavailable for high-order allocations. |
4002 | */ |
4003 | return 0; |
4004 | #endif |
4005 | } |
4006 | |
4007 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
4008 | { |
4009 | struct per_cpu_pages *pcp; |
4010 | int migratetype; |
4011 | |
4012 | memset(p, 0, sizeof(*p)); |
4013 | |
4014 | pcp = &p->pcp; |
4015 | pcp->count = 0; |
4016 | pcp->high = 6 * batch; |
4017 | pcp->batch = max(1UL, 1 * batch); |
4018 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
4019 | INIT_LIST_HEAD(&pcp->lists[migratetype]); |
4020 | } |
4021 | |
4022 | /* |
4023 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist |
4024 | * to the value high for the pageset p. |
4025 | */ |
4026 | |
4027 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, |
4028 | unsigned long high) |
4029 | { |
4030 | struct per_cpu_pages *pcp; |
4031 | |
4032 | pcp = &p->pcp; |
4033 | pcp->high = high; |
4034 | pcp->batch = max(1UL, high/4); |
4035 | if ((high/4) > (PAGE_SHIFT * 8)) |
4036 | pcp->batch = PAGE_SHIFT * 8; |
4037 | } |
4038 | |
4039 | static void __meminit setup_zone_pageset(struct zone *zone) |
4040 | { |
4041 | int cpu; |
4042 | |
4043 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
4044 | |
4045 | for_each_possible_cpu(cpu) { |
4046 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); |
4047 | |
4048 | setup_pageset(pcp, zone_batchsize(zone)); |
4049 | |
4050 | if (percpu_pagelist_fraction) |
4051 | setup_pagelist_highmark(pcp, |
4052 | (zone->managed_pages / |
4053 | percpu_pagelist_fraction)); |
4054 | } |
4055 | } |
4056 | |
4057 | /* |
4058 | * Allocate per cpu pagesets and initialize them. |
4059 | * Before this call only boot pagesets were available. |
4060 | */ |
4061 | void __init setup_per_cpu_pageset(void) |
4062 | { |
4063 | struct zone *zone; |
4064 | |
4065 | for_each_populated_zone(zone) |
4066 | setup_zone_pageset(zone); |
4067 | } |
4068 | |
4069 | static noinline __init_refok |
4070 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
4071 | { |
4072 | int i; |
4073 | struct pglist_data *pgdat = zone->zone_pgdat; |
4074 | size_t alloc_size; |
4075 | |
4076 | /* |
4077 | * The per-page waitqueue mechanism uses hashed waitqueues |
4078 | * per zone. |
4079 | */ |
4080 | zone->wait_table_hash_nr_entries = |
4081 | wait_table_hash_nr_entries(zone_size_pages); |
4082 | zone->wait_table_bits = |
4083 | wait_table_bits(zone->wait_table_hash_nr_entries); |
4084 | alloc_size = zone->wait_table_hash_nr_entries |
4085 | * sizeof(wait_queue_head_t); |
4086 | |
4087 | if (!slab_is_available()) { |
4088 | zone->wait_table = (wait_queue_head_t *) |
4089 | alloc_bootmem_node_nopanic(pgdat, alloc_size); |
4090 | } else { |
4091 | /* |
4092 | * This case means that a zone whose size was 0 gets new memory |
4093 | * via memory hot-add. |
4094 | * But it may be the case that a new node was hot-added. In |
4095 | * this case vmalloc() will not be able to use this new node's |
4096 | * memory - this wait_table must be initialized to use this new |
4097 | * node itself as well. |
4098 | * To use this new node's memory, further consideration will be |
4099 | * necessary. |
4100 | */ |
4101 | zone->wait_table = vmalloc(alloc_size); |
4102 | } |
4103 | if (!zone->wait_table) |
4104 | return -ENOMEM; |
4105 | |
4106 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
4107 | init_waitqueue_head(zone->wait_table + i); |
4108 | |
4109 | return 0; |
4110 | } |
4111 | |
4112 | static __meminit void zone_pcp_init(struct zone *zone) |
4113 | { |
4114 | /* |
4115 | * per cpu subsystem is not up at this point. The following code |
4116 | * relies on the ability of the linker to provide the |
4117 | * offset of a (static) per cpu variable into the per cpu area. |
4118 | */ |
4119 | zone->pageset = &boot_pageset; |
4120 | |
4121 | if (zone->present_pages) |
4122 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
4123 | zone->name, zone->present_pages, |
4124 | zone_batchsize(zone)); |
4125 | } |
4126 | |
4127 | int __meminit init_currently_empty_zone(struct zone *zone, |
4128 | unsigned long zone_start_pfn, |
4129 | unsigned long size, |
4130 | enum memmap_context context) |
4131 | { |
4132 | struct pglist_data *pgdat = zone->zone_pgdat; |
4133 | int ret; |
4134 | ret = zone_wait_table_init(zone, size); |
4135 | if (ret) |
4136 | return ret; |
4137 | pgdat->nr_zones = zone_idx(zone) + 1; |
4138 | |
4139 | zone->zone_start_pfn = zone_start_pfn; |
4140 | |
4141 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
4142 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", |
4143 | pgdat->node_id, |
4144 | (unsigned long)zone_idx(zone), |
4145 | zone_start_pfn, (zone_start_pfn + size)); |
4146 | |
4147 | zone_init_free_lists(zone); |
4148 | |
4149 | return 0; |
4150 | } |
4151 | |
4152 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4153 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
4154 | /* |
4155 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. |
4156 | * Architectures may implement their own version but if add_active_range() |
4157 | * was used and there are no special requirements, this is a convenient |
4158 | * alternative |
4159 | */ |
4160 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
4161 | { |
4162 | unsigned long start_pfn, end_pfn; |
4163 | int i, nid; |
4164 | |
4165 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
4166 | if (start_pfn <= pfn && pfn < end_pfn) |
4167 | return nid; |
4168 | /* This is a memory hole */ |
4169 | return -1; |
4170 | } |
4171 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ |
4172 | |
4173 | int __meminit early_pfn_to_nid(unsigned long pfn) |
4174 | { |
4175 | int nid; |
4176 | |
4177 | nid = __early_pfn_to_nid(pfn); |
4178 | if (nid >= 0) |
4179 | return nid; |
4180 | /* just returns 0 */ |
4181 | return 0; |
4182 | } |
4183 | |
4184 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
4185 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) |
4186 | { |
4187 | int nid; |
4188 | |
4189 | nid = __early_pfn_to_nid(pfn); |
4190 | if (nid >= 0 && nid != node) |
4191 | return false; |
4192 | return true; |
4193 | } |
4194 | #endif |
4195 | |
4196 | /** |
4197 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range |
4198 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
4199 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node |
4200 | * |
4201 | * If an architecture guarantees that all ranges registered with |
4202 | * add_active_ranges() contain no holes and may be freed, this |
4203 | * this function may be used instead of calling free_bootmem() manually. |
4204 | */ |
4205 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
4206 | { |
4207 | unsigned long start_pfn, end_pfn; |
4208 | int i, this_nid; |
4209 | |
4210 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4211 | start_pfn = min(start_pfn, max_low_pfn); |
4212 | end_pfn = min(end_pfn, max_low_pfn); |
4213 | |
4214 | if (start_pfn < end_pfn) |
4215 | free_bootmem_node(NODE_DATA(this_nid), |
4216 | PFN_PHYS(start_pfn), |
4217 | (end_pfn - start_pfn) << PAGE_SHIFT); |
4218 | } |
4219 | } |
4220 | |
4221 | /** |
4222 | * sparse_memory_present_with_active_regions - Call memory_present for each active range |
4223 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
4224 | * |
4225 | * If an architecture guarantees that all ranges registered with |
4226 | * add_active_ranges() contain no holes and may be freed, this |
4227 | * function may be used instead of calling memory_present() manually. |
4228 | */ |
4229 | void __init sparse_memory_present_with_active_regions(int nid) |
4230 | { |
4231 | unsigned long start_pfn, end_pfn; |
4232 | int i, this_nid; |
4233 | |
4234 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4235 | memory_present(this_nid, start_pfn, end_pfn); |
4236 | } |
4237 | |
4238 | /** |
4239 | * get_pfn_range_for_nid - Return the start and end page frames for a node |
4240 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4241 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. |
4242 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. |
4243 | * |
4244 | * It returns the start and end page frame of a node based on information |
4245 | * provided by an arch calling add_active_range(). If called for a node |
4246 | * with no available memory, a warning is printed and the start and end |
4247 | * PFNs will be 0. |
4248 | */ |
4249 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
4250 | unsigned long *start_pfn, unsigned long *end_pfn) |
4251 | { |
4252 | unsigned long this_start_pfn, this_end_pfn; |
4253 | int i; |
4254 | |
4255 | *start_pfn = -1UL; |
4256 | *end_pfn = 0; |
4257 | |
4258 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4259 | *start_pfn = min(*start_pfn, this_start_pfn); |
4260 | *end_pfn = max(*end_pfn, this_end_pfn); |
4261 | } |
4262 | |
4263 | if (*start_pfn == -1UL) |
4264 | *start_pfn = 0; |
4265 | } |
4266 | |
4267 | /* |
4268 | * This finds a zone that can be used for ZONE_MOVABLE pages. The |
4269 | * assumption is made that zones within a node are ordered in monotonic |
4270 | * increasing memory addresses so that the "highest" populated zone is used |
4271 | */ |
4272 | static void __init find_usable_zone_for_movable(void) |
4273 | { |
4274 | int zone_index; |
4275 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
4276 | if (zone_index == ZONE_MOVABLE) |
4277 | continue; |
4278 | |
4279 | if (arch_zone_highest_possible_pfn[zone_index] > |
4280 | arch_zone_lowest_possible_pfn[zone_index]) |
4281 | break; |
4282 | } |
4283 | |
4284 | VM_BUG_ON(zone_index == -1); |
4285 | movable_zone = zone_index; |
4286 | } |
4287 | |
4288 | /* |
4289 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE |
4290 | * because it is sized independent of architecture. Unlike the other zones, |
4291 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4292 | * in each node depending on the size of each node and how evenly kernelcore |
4293 | * is distributed. This helper function adjusts the zone ranges |
4294 | * provided by the architecture for a given node by using the end of the |
4295 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
4296 | * zones within a node are in order of monotonic increases memory addresses |
4297 | */ |
4298 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
4299 | unsigned long zone_type, |
4300 | unsigned long node_start_pfn, |
4301 | unsigned long node_end_pfn, |
4302 | unsigned long *zone_start_pfn, |
4303 | unsigned long *zone_end_pfn) |
4304 | { |
4305 | /* Only adjust if ZONE_MOVABLE is on this node */ |
4306 | if (zone_movable_pfn[nid]) { |
4307 | /* Size ZONE_MOVABLE */ |
4308 | if (zone_type == ZONE_MOVABLE) { |
4309 | *zone_start_pfn = zone_movable_pfn[nid]; |
4310 | *zone_end_pfn = min(node_end_pfn, |
4311 | arch_zone_highest_possible_pfn[movable_zone]); |
4312 | |
4313 | /* Adjust for ZONE_MOVABLE starting within this range */ |
4314 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && |
4315 | *zone_end_pfn > zone_movable_pfn[nid]) { |
4316 | *zone_end_pfn = zone_movable_pfn[nid]; |
4317 | |
4318 | /* Check if this whole range is within ZONE_MOVABLE */ |
4319 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) |
4320 | *zone_start_pfn = *zone_end_pfn; |
4321 | } |
4322 | } |
4323 | |
4324 | /* |
4325 | * Return the number of pages a zone spans in a node, including holes |
4326 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() |
4327 | */ |
4328 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
4329 | unsigned long zone_type, |
4330 | unsigned long *ignored) |
4331 | { |
4332 | unsigned long node_start_pfn, node_end_pfn; |
4333 | unsigned long zone_start_pfn, zone_end_pfn; |
4334 | |
4335 | /* Get the start and end of the node and zone */ |
4336 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
4337 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
4338 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; |
4339 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4340 | node_start_pfn, node_end_pfn, |
4341 | &zone_start_pfn, &zone_end_pfn); |
4342 | |
4343 | /* Check that this node has pages within the zone's required range */ |
4344 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) |
4345 | return 0; |
4346 | |
4347 | /* Move the zone boundaries inside the node if necessary */ |
4348 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); |
4349 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); |
4350 | |
4351 | /* Return the spanned pages */ |
4352 | return zone_end_pfn - zone_start_pfn; |
4353 | } |
4354 | |
4355 | /* |
4356 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
4357 | * then all holes in the requested range will be accounted for. |
4358 | */ |
4359 | unsigned long __meminit __absent_pages_in_range(int nid, |
4360 | unsigned long range_start_pfn, |
4361 | unsigned long range_end_pfn) |
4362 | { |
4363 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4364 | unsigned long start_pfn, end_pfn; |
4365 | int i; |
4366 | |
4367 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4368 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); |
4369 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); |
4370 | nr_absent -= end_pfn - start_pfn; |
4371 | } |
4372 | return nr_absent; |
4373 | } |
4374 | |
4375 | /** |
4376 | * absent_pages_in_range - Return number of page frames in holes within a range |
4377 | * @start_pfn: The start PFN to start searching for holes |
4378 | * @end_pfn: The end PFN to stop searching for holes |
4379 | * |
4380 | * It returns the number of pages frames in memory holes within a range. |
4381 | */ |
4382 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, |
4383 | unsigned long end_pfn) |
4384 | { |
4385 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); |
4386 | } |
4387 | |
4388 | /* Return the number of page frames in holes in a zone on a node */ |
4389 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
4390 | unsigned long zone_type, |
4391 | unsigned long *ignored) |
4392 | { |
4393 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4394 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; |
4395 | unsigned long node_start_pfn, node_end_pfn; |
4396 | unsigned long zone_start_pfn, zone_end_pfn; |
4397 | |
4398 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); |
4399 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4400 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); |
4401 | |
4402 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4403 | node_start_pfn, node_end_pfn, |
4404 | &zone_start_pfn, &zone_end_pfn); |
4405 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
4406 | } |
4407 | |
4408 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4409 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
4410 | unsigned long zone_type, |
4411 | unsigned long *zones_size) |
4412 | { |
4413 | return zones_size[zone_type]; |
4414 | } |
4415 | |
4416 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
4417 | unsigned long zone_type, |
4418 | unsigned long *zholes_size) |
4419 | { |
4420 | if (!zholes_size) |
4421 | return 0; |
4422 | |
4423 | return zholes_size[zone_type]; |
4424 | } |
4425 | |
4426 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4427 | |
4428 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
4429 | unsigned long *zones_size, unsigned long *zholes_size) |
4430 | { |
4431 | unsigned long realtotalpages, totalpages = 0; |
4432 | enum zone_type i; |
4433 | |
4434 | for (i = 0; i < MAX_NR_ZONES; i++) |
4435 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, |
4436 | zones_size); |
4437 | pgdat->node_spanned_pages = totalpages; |
4438 | |
4439 | realtotalpages = totalpages; |
4440 | for (i = 0; i < MAX_NR_ZONES; i++) |
4441 | realtotalpages -= |
4442 | zone_absent_pages_in_node(pgdat->node_id, i, |
4443 | zholes_size); |
4444 | pgdat->node_present_pages = realtotalpages; |
4445 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, |
4446 | realtotalpages); |
4447 | } |
4448 | |
4449 | #ifndef CONFIG_SPARSEMEM |
4450 | /* |
4451 | * Calculate the size of the zone->blockflags rounded to an unsigned long |
4452 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4453 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally |
4454 | * round what is now in bits to nearest long in bits, then return it in |
4455 | * bytes. |
4456 | */ |
4457 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
4458 | { |
4459 | unsigned long usemapsize; |
4460 | |
4461 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
4462 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4463 | usemapsize = usemapsize >> pageblock_order; |
4464 | usemapsize *= NR_PAGEBLOCK_BITS; |
4465 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); |
4466 | |
4467 | return usemapsize / 8; |
4468 | } |
4469 | |
4470 | static void __init setup_usemap(struct pglist_data *pgdat, |
4471 | struct zone *zone, |
4472 | unsigned long zone_start_pfn, |
4473 | unsigned long zonesize) |
4474 | { |
4475 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
4476 | zone->pageblock_flags = NULL; |
4477 | if (usemapsize) |
4478 | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, |
4479 | usemapsize); |
4480 | } |
4481 | #else |
4482 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
4483 | unsigned long zone_start_pfn, unsigned long zonesize) {} |
4484 | #endif /* CONFIG_SPARSEMEM */ |
4485 | |
4486 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
4487 | |
4488 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
4489 | void __init set_pageblock_order(void) |
4490 | { |
4491 | unsigned int order; |
4492 | |
4493 | /* Check that pageblock_nr_pages has not already been setup */ |
4494 | if (pageblock_order) |
4495 | return; |
4496 | |
4497 | if (HPAGE_SHIFT > PAGE_SHIFT) |
4498 | order = HUGETLB_PAGE_ORDER; |
4499 | else |
4500 | order = MAX_ORDER - 1; |
4501 | |
4502 | /* |
4503 | * Assume the largest contiguous order of interest is a huge page. |
4504 | * This value may be variable depending on boot parameters on IA64 and |
4505 | * powerpc. |
4506 | */ |
4507 | pageblock_order = order; |
4508 | } |
4509 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
4510 | |
4511 | /* |
4512 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() |
4513 | * is unused as pageblock_order is set at compile-time. See |
4514 | * include/linux/pageblock-flags.h for the values of pageblock_order based on |
4515 | * the kernel config |
4516 | */ |
4517 | void __init set_pageblock_order(void) |
4518 | { |
4519 | } |
4520 | |
4521 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ |
4522 | |
4523 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
4524 | unsigned long present_pages) |
4525 | { |
4526 | unsigned long pages = spanned_pages; |
4527 | |
4528 | /* |
4529 | * Provide a more accurate estimation if there are holes within |
4530 | * the zone and SPARSEMEM is in use. If there are holes within the |
4531 | * zone, each populated memory region may cost us one or two extra |
4532 | * memmap pages due to alignment because memmap pages for each |
4533 | * populated regions may not naturally algined on page boundary. |
4534 | * So the (present_pages >> 4) heuristic is a tradeoff for that. |
4535 | */ |
4536 | if (spanned_pages > present_pages + (present_pages >> 4) && |
4537 | IS_ENABLED(CONFIG_SPARSEMEM)) |
4538 | pages = present_pages; |
4539 | |
4540 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; |
4541 | } |
4542 | |
4543 | /* |
4544 | * Set up the zone data structures: |
4545 | * - mark all pages reserved |
4546 | * - mark all memory queues empty |
4547 | * - clear the memory bitmaps |
4548 | * |
4549 | * NOTE: pgdat should get zeroed by caller. |
4550 | */ |
4551 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
4552 | unsigned long *zones_size, unsigned long *zholes_size) |
4553 | { |
4554 | enum zone_type j; |
4555 | int nid = pgdat->node_id; |
4556 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
4557 | int ret; |
4558 | |
4559 | pgdat_resize_init(pgdat); |
4560 | #ifdef CONFIG_NUMA_BALANCING |
4561 | spin_lock_init(&pgdat->numabalancing_migrate_lock); |
4562 | pgdat->numabalancing_migrate_nr_pages = 0; |
4563 | pgdat->numabalancing_migrate_next_window = jiffies; |
4564 | #endif |
4565 | init_waitqueue_head(&pgdat->kswapd_wait); |
4566 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
4567 | pgdat_page_cgroup_init(pgdat); |
4568 | |
4569 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4570 | struct zone *zone = pgdat->node_zones + j; |
4571 | unsigned long size, realsize, freesize, memmap_pages; |
4572 | |
4573 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
4574 | realsize = freesize = size - zone_absent_pages_in_node(nid, j, |
4575 | zholes_size); |
4576 | |
4577 | /* |
4578 | * Adjust freesize so that it accounts for how much memory |
4579 | * is used by this zone for memmap. This affects the watermark |
4580 | * and per-cpu initialisations |
4581 | */ |
4582 | memmap_pages = calc_memmap_size(size, realsize); |
4583 | if (freesize >= memmap_pages) { |
4584 | freesize -= memmap_pages; |
4585 | if (memmap_pages) |
4586 | printk(KERN_DEBUG |
4587 | " %s zone: %lu pages used for memmap\n", |
4588 | zone_names[j], memmap_pages); |
4589 | } else |
4590 | printk(KERN_WARNING |
4591 | " %s zone: %lu pages exceeds freesize %lu\n", |
4592 | zone_names[j], memmap_pages, freesize); |
4593 | |
4594 | /* Account for reserved pages */ |
4595 | if (j == 0 && freesize > dma_reserve) { |
4596 | freesize -= dma_reserve; |
4597 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
4598 | zone_names[0], dma_reserve); |
4599 | } |
4600 | |
4601 | if (!is_highmem_idx(j)) |
4602 | nr_kernel_pages += freesize; |
4603 | /* Charge for highmem memmap if there are enough kernel pages */ |
4604 | else if (nr_kernel_pages > memmap_pages * 2) |
4605 | nr_kernel_pages -= memmap_pages; |
4606 | nr_all_pages += freesize; |
4607 | |
4608 | zone->spanned_pages = size; |
4609 | zone->present_pages = realsize; |
4610 | /* |
4611 | * Set an approximate value for lowmem here, it will be adjusted |
4612 | * when the bootmem allocator frees pages into the buddy system. |
4613 | * And all highmem pages will be managed by the buddy system. |
4614 | */ |
4615 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; |
4616 | #ifdef CONFIG_NUMA |
4617 | zone->node = nid; |
4618 | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) |
4619 | / 100; |
4620 | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; |
4621 | #endif |
4622 | zone->name = zone_names[j]; |
4623 | spin_lock_init(&zone->lock); |
4624 | spin_lock_init(&zone->lru_lock); |
4625 | zone_seqlock_init(zone); |
4626 | zone->zone_pgdat = pgdat; |
4627 | |
4628 | zone_pcp_init(zone); |
4629 | lruvec_init(&zone->lruvec); |
4630 | if (!size) |
4631 | continue; |
4632 | |
4633 | set_pageblock_order(); |
4634 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
4635 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4636 | size, MEMMAP_EARLY); |
4637 | BUG_ON(ret); |
4638 | memmap_init(size, nid, j, zone_start_pfn); |
4639 | zone_start_pfn += size; |
4640 | } |
4641 | } |
4642 | |
4643 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
4644 | { |
4645 | /* Skip empty nodes */ |
4646 | if (!pgdat->node_spanned_pages) |
4647 | return; |
4648 | |
4649 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4650 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4651 | if (!pgdat->node_mem_map) { |
4652 | unsigned long size, start, end; |
4653 | struct page *map; |
4654 | |
4655 | /* |
4656 | * The zone's endpoints aren't required to be MAX_ORDER |
4657 | * aligned but the node_mem_map endpoints must be in order |
4658 | * for the buddy allocator to function correctly. |
4659 | */ |
4660 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
4661 | end = pgdat_end_pfn(pgdat); |
4662 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
4663 | size = (end - start) * sizeof(struct page); |
4664 | map = alloc_remap(pgdat->node_id, size); |
4665 | if (!map) |
4666 | map = alloc_bootmem_node_nopanic(pgdat, size); |
4667 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
4668 | } |
4669 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
4670 | /* |
4671 | * With no DISCONTIG, the global mem_map is just set as node 0's |
4672 | */ |
4673 | if (pgdat == NODE_DATA(0)) { |
4674 | mem_map = NODE_DATA(0)->node_mem_map; |
4675 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4676 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
4677 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
4678 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
4679 | } |
4680 | #endif |
4681 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
4682 | } |
4683 | |
4684 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4685 | unsigned long node_start_pfn, unsigned long *zholes_size) |
4686 | { |
4687 | pg_data_t *pgdat = NODE_DATA(nid); |
4688 | |
4689 | /* pg_data_t should be reset to zero when it's allocated */ |
4690 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
4691 | |
4692 | pgdat->node_id = nid; |
4693 | pgdat->node_start_pfn = node_start_pfn; |
4694 | init_zone_allows_reclaim(nid); |
4695 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
4696 | |
4697 | alloc_node_mem_map(pgdat); |
4698 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4699 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", |
4700 | nid, (unsigned long)pgdat, |
4701 | (unsigned long)pgdat->node_mem_map); |
4702 | #endif |
4703 | |
4704 | free_area_init_core(pgdat, zones_size, zholes_size); |
4705 | } |
4706 | |
4707 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4708 | |
4709 | #if MAX_NUMNODES > 1 |
4710 | /* |
4711 | * Figure out the number of possible node ids. |
4712 | */ |
4713 | static void __init setup_nr_node_ids(void) |
4714 | { |
4715 | unsigned int node; |
4716 | unsigned int highest = 0; |
4717 | |
4718 | for_each_node_mask(node, node_possible_map) |
4719 | highest = node; |
4720 | nr_node_ids = highest + 1; |
4721 | } |
4722 | #else |
4723 | static inline void setup_nr_node_ids(void) |
4724 | { |
4725 | } |
4726 | #endif |
4727 | |
4728 | /** |
4729 | * node_map_pfn_alignment - determine the maximum internode alignment |
4730 | * |
4731 | * This function should be called after node map is populated and sorted. |
4732 | * It calculates the maximum power of two alignment which can distinguish |
4733 | * all the nodes. |
4734 | * |
4735 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value |
4736 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the |
4737 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is |
4738 | * shifted, 1GiB is enough and this function will indicate so. |
4739 | * |
4740 | * This is used to test whether pfn -> nid mapping of the chosen memory |
4741 | * model has fine enough granularity to avoid incorrect mapping for the |
4742 | * populated node map. |
4743 | * |
4744 | * Returns the determined alignment in pfn's. 0 if there is no alignment |
4745 | * requirement (single node). |
4746 | */ |
4747 | unsigned long __init node_map_pfn_alignment(void) |
4748 | { |
4749 | unsigned long accl_mask = 0, last_end = 0; |
4750 | unsigned long start, end, mask; |
4751 | int last_nid = -1; |
4752 | int i, nid; |
4753 | |
4754 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
4755 | if (!start || last_nid < 0 || last_nid == nid) { |
4756 | last_nid = nid; |
4757 | last_end = end; |
4758 | continue; |
4759 | } |
4760 | |
4761 | /* |
4762 | * Start with a mask granular enough to pin-point to the |
4763 | * start pfn and tick off bits one-by-one until it becomes |
4764 | * too coarse to separate the current node from the last. |
4765 | */ |
4766 | mask = ~((1 << __ffs(start)) - 1); |
4767 | while (mask && last_end <= (start & (mask << 1))) |
4768 | mask <<= 1; |
4769 | |
4770 | /* accumulate all internode masks */ |
4771 | accl_mask |= mask; |
4772 | } |
4773 | |
4774 | /* convert mask to number of pages */ |
4775 | return ~accl_mask + 1; |
4776 | } |
4777 | |
4778 | /* Find the lowest pfn for a node */ |
4779 | static unsigned long __init find_min_pfn_for_node(int nid) |
4780 | { |
4781 | unsigned long min_pfn = ULONG_MAX; |
4782 | unsigned long start_pfn; |
4783 | int i; |
4784 | |
4785 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
4786 | min_pfn = min(min_pfn, start_pfn); |
4787 | |
4788 | if (min_pfn == ULONG_MAX) { |
4789 | printk(KERN_WARNING |
4790 | "Could not find start_pfn for node %d\n", nid); |
4791 | return 0; |
4792 | } |
4793 | |
4794 | return min_pfn; |
4795 | } |
4796 | |
4797 | /** |
4798 | * find_min_pfn_with_active_regions - Find the minimum PFN registered |
4799 | * |
4800 | * It returns the minimum PFN based on information provided via |
4801 | * add_active_range(). |
4802 | */ |
4803 | unsigned long __init find_min_pfn_with_active_regions(void) |
4804 | { |
4805 | return find_min_pfn_for_node(MAX_NUMNODES); |
4806 | } |
4807 | |
4808 | /* |
4809 | * early_calculate_totalpages() |
4810 | * Sum pages in active regions for movable zone. |
4811 | * Populate N_MEMORY for calculating usable_nodes. |
4812 | */ |
4813 | static unsigned long __init early_calculate_totalpages(void) |
4814 | { |
4815 | unsigned long totalpages = 0; |
4816 | unsigned long start_pfn, end_pfn; |
4817 | int i, nid; |
4818 | |
4819 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
4820 | unsigned long pages = end_pfn - start_pfn; |
4821 | |
4822 | totalpages += pages; |
4823 | if (pages) |
4824 | node_set_state(nid, N_MEMORY); |
4825 | } |
4826 | return totalpages; |
4827 | } |
4828 | |
4829 | /* |
4830 | * Find the PFN the Movable zone begins in each node. Kernel memory |
4831 | * is spread evenly between nodes as long as the nodes have enough |
4832 | * memory. When they don't, some nodes will have more kernelcore than |
4833 | * others |
4834 | */ |
4835 | static void __init find_zone_movable_pfns_for_nodes(void) |
4836 | { |
4837 | int i, nid; |
4838 | unsigned long usable_startpfn; |
4839 | unsigned long kernelcore_node, kernelcore_remaining; |
4840 | /* save the state before borrow the nodemask */ |
4841 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
4842 | unsigned long totalpages = early_calculate_totalpages(); |
4843 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
4844 | |
4845 | /* |
4846 | * If movablecore was specified, calculate what size of |
4847 | * kernelcore that corresponds so that memory usable for |
4848 | * any allocation type is evenly spread. If both kernelcore |
4849 | * and movablecore are specified, then the value of kernelcore |
4850 | * will be used for required_kernelcore if it's greater than |
4851 | * what movablecore would have allowed. |
4852 | */ |
4853 | if (required_movablecore) { |
4854 | unsigned long corepages; |
4855 | |
4856 | /* |
4857 | * Round-up so that ZONE_MOVABLE is at least as large as what |
4858 | * was requested by the user |
4859 | */ |
4860 | required_movablecore = |
4861 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); |
4862 | corepages = totalpages - required_movablecore; |
4863 | |
4864 | required_kernelcore = max(required_kernelcore, corepages); |
4865 | } |
4866 | |
4867 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4868 | if (!required_kernelcore) |
4869 | goto out; |
4870 | |
4871 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ |
4872 | find_usable_zone_for_movable(); |
4873 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
4874 | |
4875 | restart: |
4876 | /* Spread kernelcore memory as evenly as possible throughout nodes */ |
4877 | kernelcore_node = required_kernelcore / usable_nodes; |
4878 | for_each_node_state(nid, N_MEMORY) { |
4879 | unsigned long start_pfn, end_pfn; |
4880 | |
4881 | /* |
4882 | * Recalculate kernelcore_node if the division per node |
4883 | * now exceeds what is necessary to satisfy the requested |
4884 | * amount of memory for the kernel |
4885 | */ |
4886 | if (required_kernelcore < kernelcore_node) |
4887 | kernelcore_node = required_kernelcore / usable_nodes; |
4888 | |
4889 | /* |
4890 | * As the map is walked, we track how much memory is usable |
4891 | * by the kernel using kernelcore_remaining. When it is |
4892 | * 0, the rest of the node is usable by ZONE_MOVABLE |
4893 | */ |
4894 | kernelcore_remaining = kernelcore_node; |
4895 | |
4896 | /* Go through each range of PFNs within this node */ |
4897 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4898 | unsigned long size_pages; |
4899 | |
4900 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
4901 | if (start_pfn >= end_pfn) |
4902 | continue; |
4903 | |
4904 | /* Account for what is only usable for kernelcore */ |
4905 | if (start_pfn < usable_startpfn) { |
4906 | unsigned long kernel_pages; |
4907 | kernel_pages = min(end_pfn, usable_startpfn) |
4908 | - start_pfn; |
4909 | |
4910 | kernelcore_remaining -= min(kernel_pages, |
4911 | kernelcore_remaining); |
4912 | required_kernelcore -= min(kernel_pages, |
4913 | required_kernelcore); |
4914 | |
4915 | /* Continue if range is now fully accounted */ |
4916 | if (end_pfn <= usable_startpfn) { |
4917 | |
4918 | /* |
4919 | * Push zone_movable_pfn to the end so |
4920 | * that if we have to rebalance |
4921 | * kernelcore across nodes, we will |
4922 | * not double account here |
4923 | */ |
4924 | zone_movable_pfn[nid] = end_pfn; |
4925 | continue; |
4926 | } |
4927 | start_pfn = usable_startpfn; |
4928 | } |
4929 | |
4930 | /* |
4931 | * The usable PFN range for ZONE_MOVABLE is from |
4932 | * start_pfn->end_pfn. Calculate size_pages as the |
4933 | * number of pages used as kernelcore |
4934 | */ |
4935 | size_pages = end_pfn - start_pfn; |
4936 | if (size_pages > kernelcore_remaining) |
4937 | size_pages = kernelcore_remaining; |
4938 | zone_movable_pfn[nid] = start_pfn + size_pages; |
4939 | |
4940 | /* |
4941 | * Some kernelcore has been met, update counts and |
4942 | * break if the kernelcore for this node has been |
4943 | * satisified |
4944 | */ |
4945 | required_kernelcore -= min(required_kernelcore, |
4946 | size_pages); |
4947 | kernelcore_remaining -= size_pages; |
4948 | if (!kernelcore_remaining) |
4949 | break; |
4950 | } |
4951 | } |
4952 | |
4953 | /* |
4954 | * If there is still required_kernelcore, we do another pass with one |
4955 | * less node in the count. This will push zone_movable_pfn[nid] further |
4956 | * along on the nodes that still have memory until kernelcore is |
4957 | * satisified |
4958 | */ |
4959 | usable_nodes--; |
4960 | if (usable_nodes && required_kernelcore > usable_nodes) |
4961 | goto restart; |
4962 | |
4963 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
4964 | for (nid = 0; nid < MAX_NUMNODES; nid++) |
4965 | zone_movable_pfn[nid] = |
4966 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); |
4967 | |
4968 | out: |
4969 | /* restore the node_state */ |
4970 | node_states[N_MEMORY] = saved_node_state; |
4971 | } |
4972 | |
4973 | /* Any regular or high memory on that node ? */ |
4974 | static void check_for_memory(pg_data_t *pgdat, int nid) |
4975 | { |
4976 | enum zone_type zone_type; |
4977 | |
4978 | if (N_MEMORY == N_NORMAL_MEMORY) |
4979 | return; |
4980 | |
4981 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { |
4982 | struct zone *zone = &pgdat->node_zones[zone_type]; |
4983 | if (zone->present_pages) { |
4984 | node_set_state(nid, N_HIGH_MEMORY); |
4985 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && |
4986 | zone_type <= ZONE_NORMAL) |
4987 | node_set_state(nid, N_NORMAL_MEMORY); |
4988 | break; |
4989 | } |
4990 | } |
4991 | } |
4992 | |
4993 | /** |
4994 | * free_area_init_nodes - Initialise all pg_data_t and zone data |
4995 | * @max_zone_pfn: an array of max PFNs for each zone |
4996 | * |
4997 | * This will call free_area_init_node() for each active node in the system. |
4998 | * Using the page ranges provided by add_active_range(), the size of each |
4999 | * zone in each node and their holes is calculated. If the maximum PFN |
5000 | * between two adjacent zones match, it is assumed that the zone is empty. |
5001 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed |
5002 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone |
5003 | * starts where the previous one ended. For example, ZONE_DMA32 starts |
5004 | * at arch_max_dma_pfn. |
5005 | */ |
5006 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) |
5007 | { |
5008 | unsigned long start_pfn, end_pfn; |
5009 | int i, nid; |
5010 | |
5011 | /* Record where the zone boundaries are */ |
5012 | memset(arch_zone_lowest_possible_pfn, 0, |
5013 | sizeof(arch_zone_lowest_possible_pfn)); |
5014 | memset(arch_zone_highest_possible_pfn, 0, |
5015 | sizeof(arch_zone_highest_possible_pfn)); |
5016 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); |
5017 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; |
5018 | for (i = 1; i < MAX_NR_ZONES; i++) { |
5019 | if (i == ZONE_MOVABLE) |
5020 | continue; |
5021 | arch_zone_lowest_possible_pfn[i] = |
5022 | arch_zone_highest_possible_pfn[i-1]; |
5023 | arch_zone_highest_possible_pfn[i] = |
5024 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); |
5025 | } |
5026 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
5027 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; |
5028 | |
5029 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ |
5030 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); |
5031 | find_zone_movable_pfns_for_nodes(); |
5032 | |
5033 | /* Print out the zone ranges */ |
5034 | printk("Zone ranges:\n"); |
5035 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5036 | if (i == ZONE_MOVABLE) |
5037 | continue; |
5038 | printk(KERN_CONT " %-8s ", zone_names[i]); |
5039 | if (arch_zone_lowest_possible_pfn[i] == |
5040 | arch_zone_highest_possible_pfn[i]) |
5041 | printk(KERN_CONT "empty\n"); |
5042 | else |
5043 | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", |
5044 | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, |
5045 | (arch_zone_highest_possible_pfn[i] |
5046 | << PAGE_SHIFT) - 1); |
5047 | } |
5048 | |
5049 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ |
5050 | printk("Movable zone start for each node\n"); |
5051 | for (i = 0; i < MAX_NUMNODES; i++) { |
5052 | if (zone_movable_pfn[i]) |
5053 | printk(" Node %d: %#010lx\n", i, |
5054 | zone_movable_pfn[i] << PAGE_SHIFT); |
5055 | } |
5056 | |
5057 | /* Print out the early node map */ |
5058 | printk("Early memory node ranges\n"); |
5059 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
5060 | printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, |
5061 | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); |
5062 | |
5063 | /* Initialise every node */ |
5064 | mminit_verify_pageflags_layout(); |
5065 | setup_nr_node_ids(); |
5066 | for_each_online_node(nid) { |
5067 | pg_data_t *pgdat = NODE_DATA(nid); |
5068 | free_area_init_node(nid, NULL, |
5069 | find_min_pfn_for_node(nid), NULL); |
5070 | |
5071 | /* Any memory on that node */ |
5072 | if (pgdat->node_present_pages) |
5073 | node_set_state(nid, N_MEMORY); |
5074 | check_for_memory(pgdat, nid); |
5075 | } |
5076 | } |
5077 | |
5078 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
5079 | { |
5080 | unsigned long long coremem; |
5081 | if (!p) |
5082 | return -EINVAL; |
5083 | |
5084 | coremem = memparse(p, &p); |
5085 | *core = coremem >> PAGE_SHIFT; |
5086 | |
5087 | /* Paranoid check that UL is enough for the coremem value */ |
5088 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
5089 | |
5090 | return 0; |
5091 | } |
5092 | |
5093 | /* |
5094 | * kernelcore=size sets the amount of memory for use for allocations that |
5095 | * cannot be reclaimed or migrated. |
5096 | */ |
5097 | static int __init cmdline_parse_kernelcore(char *p) |
5098 | { |
5099 | return cmdline_parse_core(p, &required_kernelcore); |
5100 | } |
5101 | |
5102 | /* |
5103 | * movablecore=size sets the amount of memory for use for allocations that |
5104 | * can be reclaimed or migrated. |
5105 | */ |
5106 | static int __init cmdline_parse_movablecore(char *p) |
5107 | { |
5108 | return cmdline_parse_core(p, &required_movablecore); |
5109 | } |
5110 | |
5111 | early_param("kernelcore", cmdline_parse_kernelcore); |
5112 | early_param("movablecore", cmdline_parse_movablecore); |
5113 | |
5114 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
5115 | |
5116 | /** |
5117 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
5118 | * @new_dma_reserve: The number of pages to mark reserved |
5119 | * |
5120 | * The per-cpu batchsize and zone watermarks are determined by present_pages. |
5121 | * In the DMA zone, a significant percentage may be consumed by kernel image |
5122 | * and other unfreeable allocations which can skew the watermarks badly. This |
5123 | * function may optionally be used to account for unfreeable pages in the |
5124 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and |
5125 | * smaller per-cpu batchsize. |
5126 | */ |
5127 | void __init set_dma_reserve(unsigned long new_dma_reserve) |
5128 | { |
5129 | dma_reserve = new_dma_reserve; |
5130 | } |
5131 | |
5132 | void __init free_area_init(unsigned long *zones_size) |
5133 | { |
5134 | free_area_init_node(0, zones_size, |
5135 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
5136 | } |
5137 | |
5138 | static int page_alloc_cpu_notify(struct notifier_block *self, |
5139 | unsigned long action, void *hcpu) |
5140 | { |
5141 | int cpu = (unsigned long)hcpu; |
5142 | |
5143 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
5144 | lru_add_drain_cpu(cpu); |
5145 | drain_pages(cpu); |
5146 | |
5147 | /* |
5148 | * Spill the event counters of the dead processor |
5149 | * into the current processors event counters. |
5150 | * This artificially elevates the count of the current |
5151 | * processor. |
5152 | */ |
5153 | vm_events_fold_cpu(cpu); |
5154 | |
5155 | /* |
5156 | * Zero the differential counters of the dead processor |
5157 | * so that the vm statistics are consistent. |
5158 | * |
5159 | * This is only okay since the processor is dead and cannot |
5160 | * race with what we are doing. |
5161 | */ |
5162 | refresh_cpu_vm_stats(cpu); |
5163 | } |
5164 | return NOTIFY_OK; |
5165 | } |
5166 | |
5167 | void __init page_alloc_init(void) |
5168 | { |
5169 | hotcpu_notifier(page_alloc_cpu_notify, 0); |
5170 | } |
5171 | |
5172 | /* |
5173 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio |
5174 | * or min_free_kbytes changes. |
5175 | */ |
5176 | static void calculate_totalreserve_pages(void) |
5177 | { |
5178 | struct pglist_data *pgdat; |
5179 | unsigned long reserve_pages = 0; |
5180 | enum zone_type i, j; |
5181 | |
5182 | for_each_online_pgdat(pgdat) { |
5183 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5184 | struct zone *zone = pgdat->node_zones + i; |
5185 | unsigned long max = 0; |
5186 | |
5187 | /* Find valid and maximum lowmem_reserve in the zone */ |
5188 | for (j = i; j < MAX_NR_ZONES; j++) { |
5189 | if (zone->lowmem_reserve[j] > max) |
5190 | max = zone->lowmem_reserve[j]; |
5191 | } |
5192 | |
5193 | /* we treat the high watermark as reserved pages. */ |
5194 | max += high_wmark_pages(zone); |
5195 | |
5196 | if (max > zone->managed_pages) |
5197 | max = zone->managed_pages; |
5198 | reserve_pages += max; |
5199 | /* |
5200 | * Lowmem reserves are not available to |
5201 | * GFP_HIGHUSER page cache allocations and |
5202 | * kswapd tries to balance zones to their high |
5203 | * watermark. As a result, neither should be |
5204 | * regarded as dirtyable memory, to prevent a |
5205 | * situation where reclaim has to clean pages |
5206 | * in order to balance the zones. |
5207 | */ |
5208 | zone->dirty_balance_reserve = max; |
5209 | } |
5210 | } |
5211 | dirty_balance_reserve = reserve_pages; |
5212 | totalreserve_pages = reserve_pages; |
5213 | } |
5214 | |
5215 | /* |
5216 | * setup_per_zone_lowmem_reserve - called whenever |
5217 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone |
5218 | * has a correct pages reserved value, so an adequate number of |
5219 | * pages are left in the zone after a successful __alloc_pages(). |
5220 | */ |
5221 | static void setup_per_zone_lowmem_reserve(void) |
5222 | { |
5223 | struct pglist_data *pgdat; |
5224 | enum zone_type j, idx; |
5225 | |
5226 | for_each_online_pgdat(pgdat) { |
5227 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5228 | struct zone *zone = pgdat->node_zones + j; |
5229 | unsigned long managed_pages = zone->managed_pages; |
5230 | |
5231 | zone->lowmem_reserve[j] = 0; |
5232 | |
5233 | idx = j; |
5234 | while (idx) { |
5235 | struct zone *lower_zone; |
5236 | |
5237 | idx--; |
5238 | |
5239 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5240 | sysctl_lowmem_reserve_ratio[idx] = 1; |
5241 | |
5242 | lower_zone = pgdat->node_zones + idx; |
5243 | lower_zone->lowmem_reserve[j] = managed_pages / |
5244 | sysctl_lowmem_reserve_ratio[idx]; |
5245 | managed_pages += lower_zone->managed_pages; |
5246 | } |
5247 | } |
5248 | } |
5249 | |
5250 | /* update totalreserve_pages */ |
5251 | calculate_totalreserve_pages(); |
5252 | } |
5253 | |
5254 | static void __setup_per_zone_wmarks(void) |
5255 | { |
5256 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
5257 | unsigned long lowmem_pages = 0; |
5258 | struct zone *zone; |
5259 | unsigned long flags; |
5260 | |
5261 | /* Calculate total number of !ZONE_HIGHMEM pages */ |
5262 | for_each_zone(zone) { |
5263 | if (!is_highmem(zone)) |
5264 | lowmem_pages += zone->managed_pages; |
5265 | } |
5266 | |
5267 | for_each_zone(zone) { |
5268 | u64 tmp; |
5269 | |
5270 | spin_lock_irqsave(&zone->lock, flags); |
5271 | tmp = (u64)pages_min * zone->managed_pages; |
5272 | do_div(tmp, lowmem_pages); |
5273 | if (is_highmem(zone)) { |
5274 | /* |
5275 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5276 | * need highmem pages, so cap pages_min to a small |
5277 | * value here. |
5278 | * |
5279 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
5280 | * deltas controls asynch page reclaim, and so should |
5281 | * not be capped for highmem. |
5282 | */ |
5283 | unsigned long min_pages; |
5284 | |
5285 | min_pages = zone->managed_pages / 1024; |
5286 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
5287 | zone->watermark[WMARK_MIN] = min_pages; |
5288 | } else { |
5289 | /* |
5290 | * If it's a lowmem zone, reserve a number of pages |
5291 | * proportionate to the zone's size. |
5292 | */ |
5293 | zone->watermark[WMARK_MIN] = tmp; |
5294 | } |
5295 | |
5296 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5297 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); |
5298 | |
5299 | setup_zone_migrate_reserve(zone); |
5300 | spin_unlock_irqrestore(&zone->lock, flags); |
5301 | } |
5302 | |
5303 | /* update totalreserve_pages */ |
5304 | calculate_totalreserve_pages(); |
5305 | } |
5306 | |
5307 | /** |
5308 | * setup_per_zone_wmarks - called when min_free_kbytes changes |
5309 | * or when memory is hot-{added|removed} |
5310 | * |
5311 | * Ensures that the watermark[min,low,high] values for each zone are set |
5312 | * correctly with respect to min_free_kbytes. |
5313 | */ |
5314 | void setup_per_zone_wmarks(void) |
5315 | { |
5316 | mutex_lock(&zonelists_mutex); |
5317 | __setup_per_zone_wmarks(); |
5318 | mutex_unlock(&zonelists_mutex); |
5319 | } |
5320 | |
5321 | /* |
5322 | * The inactive anon list should be small enough that the VM never has to |
5323 | * do too much work, but large enough that each inactive page has a chance |
5324 | * to be referenced again before it is swapped out. |
5325 | * |
5326 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to |
5327 | * INACTIVE_ANON pages on this zone's LRU, maintained by the |
5328 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of |
5329 | * the anonymous pages are kept on the inactive list. |
5330 | * |
5331 | * total target max |
5332 | * memory ratio inactive anon |
5333 | * ------------------------------------- |
5334 | * 10MB 1 5MB |
5335 | * 100MB 1 50MB |
5336 | * 1GB 3 250MB |
5337 | * 10GB 10 0.9GB |
5338 | * 100GB 31 3GB |
5339 | * 1TB 101 10GB |
5340 | * 10TB 320 32GB |
5341 | */ |
5342 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
5343 | { |
5344 | unsigned int gb, ratio; |
5345 | |
5346 | /* Zone size in gigabytes */ |
5347 | gb = zone->managed_pages >> (30 - PAGE_SHIFT); |
5348 | if (gb) |
5349 | ratio = int_sqrt(10 * gb); |
5350 | else |
5351 | ratio = 1; |
5352 | |
5353 | zone->inactive_ratio = ratio; |
5354 | } |
5355 | |
5356 | static void __meminit setup_per_zone_inactive_ratio(void) |
5357 | { |
5358 | struct zone *zone; |
5359 | |
5360 | for_each_zone(zone) |
5361 | calculate_zone_inactive_ratio(zone); |
5362 | } |
5363 | |
5364 | /* |
5365 | * Initialise min_free_kbytes. |
5366 | * |
5367 | * For small machines we want it small (128k min). For large machines |
5368 | * we want it large (64MB max). But it is not linear, because network |
5369 | * bandwidth does not increase linearly with machine size. We use |
5370 | * |
5371 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
5372 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
5373 | * |
5374 | * which yields |
5375 | * |
5376 | * 16MB: 512k |
5377 | * 32MB: 724k |
5378 | * 64MB: 1024k |
5379 | * 128MB: 1448k |
5380 | * 256MB: 2048k |
5381 | * 512MB: 2896k |
5382 | * 1024MB: 4096k |
5383 | * 2048MB: 5792k |
5384 | * 4096MB: 8192k |
5385 | * 8192MB: 11584k |
5386 | * 16384MB: 16384k |
5387 | */ |
5388 | int __meminit init_per_zone_wmark_min(void) |
5389 | { |
5390 | unsigned long lowmem_kbytes; |
5391 | |
5392 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
5393 | |
5394 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
5395 | if (min_free_kbytes < 128) |
5396 | min_free_kbytes = 128; |
5397 | if (min_free_kbytes > 65536) |
5398 | min_free_kbytes = 65536; |
5399 | setup_per_zone_wmarks(); |
5400 | refresh_zone_stat_thresholds(); |
5401 | setup_per_zone_lowmem_reserve(); |
5402 | setup_per_zone_inactive_ratio(); |
5403 | return 0; |
5404 | } |
5405 | module_init(init_per_zone_wmark_min) |
5406 | |
5407 | /* |
5408 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
5409 | * that we can call two helper functions whenever min_free_kbytes |
5410 | * changes. |
5411 | */ |
5412 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, |
5413 | void __user *buffer, size_t *length, loff_t *ppos) |
5414 | { |
5415 | proc_dointvec(table, write, buffer, length, ppos); |
5416 | if (write) |
5417 | setup_per_zone_wmarks(); |
5418 | return 0; |
5419 | } |
5420 | |
5421 | #ifdef CONFIG_NUMA |
5422 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, |
5423 | void __user *buffer, size_t *length, loff_t *ppos) |
5424 | { |
5425 | struct zone *zone; |
5426 | int rc; |
5427 | |
5428 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5429 | if (rc) |
5430 | return rc; |
5431 | |
5432 | for_each_zone(zone) |
5433 | zone->min_unmapped_pages = (zone->managed_pages * |
5434 | sysctl_min_unmapped_ratio) / 100; |
5435 | return 0; |
5436 | } |
5437 | |
5438 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, |
5439 | void __user *buffer, size_t *length, loff_t *ppos) |
5440 | { |
5441 | struct zone *zone; |
5442 | int rc; |
5443 | |
5444 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5445 | if (rc) |
5446 | return rc; |
5447 | |
5448 | for_each_zone(zone) |
5449 | zone->min_slab_pages = (zone->managed_pages * |
5450 | sysctl_min_slab_ratio) / 100; |
5451 | return 0; |
5452 | } |
5453 | #endif |
5454 | |
5455 | /* |
5456 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
5457 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
5458 | * whenever sysctl_lowmem_reserve_ratio changes. |
5459 | * |
5460 | * The reserve ratio obviously has absolutely no relation with the |
5461 | * minimum watermarks. The lowmem reserve ratio can only make sense |
5462 | * if in function of the boot time zone sizes. |
5463 | */ |
5464 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, |
5465 | void __user *buffer, size_t *length, loff_t *ppos) |
5466 | { |
5467 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
5468 | setup_per_zone_lowmem_reserve(); |
5469 | return 0; |
5470 | } |
5471 | |
5472 | /* |
5473 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each |
5474 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist |
5475 | * can have before it gets flushed back to buddy allocator. |
5476 | */ |
5477 | |
5478 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, |
5479 | void __user *buffer, size_t *length, loff_t *ppos) |
5480 | { |
5481 | struct zone *zone; |
5482 | unsigned int cpu; |
5483 | int ret; |
5484 | |
5485 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
5486 | if (!write || (ret < 0)) |
5487 | return ret; |
5488 | for_each_populated_zone(zone) { |
5489 | for_each_possible_cpu(cpu) { |
5490 | unsigned long high; |
5491 | high = zone->managed_pages / percpu_pagelist_fraction; |
5492 | setup_pagelist_highmark( |
5493 | per_cpu_ptr(zone->pageset, cpu), high); |
5494 | } |
5495 | } |
5496 | return 0; |
5497 | } |
5498 | |
5499 | int hashdist = HASHDIST_DEFAULT; |
5500 | |
5501 | #ifdef CONFIG_NUMA |
5502 | static int __init set_hashdist(char *str) |
5503 | { |
5504 | if (!str) |
5505 | return 0; |
5506 | hashdist = simple_strtoul(str, &str, 0); |
5507 | return 1; |
5508 | } |
5509 | __setup("hashdist=", set_hashdist); |
5510 | #endif |
5511 | |
5512 | /* |
5513 | * allocate a large system hash table from bootmem |
5514 | * - it is assumed that the hash table must contain an exact power-of-2 |
5515 | * quantity of entries |
5516 | * - limit is the number of hash buckets, not the total allocation size |
5517 | */ |
5518 | void *__init alloc_large_system_hash(const char *tablename, |
5519 | unsigned long bucketsize, |
5520 | unsigned long numentries, |
5521 | int scale, |
5522 | int flags, |
5523 | unsigned int *_hash_shift, |
5524 | unsigned int *_hash_mask, |
5525 | unsigned long low_limit, |
5526 | unsigned long high_limit) |
5527 | { |
5528 | unsigned long long max = high_limit; |
5529 | unsigned long log2qty, size; |
5530 | void *table = NULL; |
5531 | |
5532 | /* allow the kernel cmdline to have a say */ |
5533 | if (!numentries) { |
5534 | /* round applicable memory size up to nearest megabyte */ |
5535 | numentries = nr_kernel_pages; |
5536 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
5537 | numentries >>= 20 - PAGE_SHIFT; |
5538 | numentries <<= 20 - PAGE_SHIFT; |
5539 | |
5540 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
5541 | if (scale > PAGE_SHIFT) |
5542 | numentries >>= (scale - PAGE_SHIFT); |
5543 | else |
5544 | numentries <<= (PAGE_SHIFT - scale); |
5545 | |
5546 | /* Make sure we've got at least a 0-order allocation.. */ |
5547 | if (unlikely(flags & HASH_SMALL)) { |
5548 | /* Makes no sense without HASH_EARLY */ |
5549 | WARN_ON(!(flags & HASH_EARLY)); |
5550 | if (!(numentries >> *_hash_shift)) { |
5551 | numentries = 1UL << *_hash_shift; |
5552 | BUG_ON(!numentries); |
5553 | } |
5554 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
5555 | numentries = PAGE_SIZE / bucketsize; |
5556 | } |
5557 | numentries = roundup_pow_of_two(numentries); |
5558 | |
5559 | /* limit allocation size to 1/16 total memory by default */ |
5560 | if (max == 0) { |
5561 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
5562 | do_div(max, bucketsize); |
5563 | } |
5564 | max = min(max, 0x80000000ULL); |
5565 | |
5566 | if (numentries < low_limit) |
5567 | numentries = low_limit; |
5568 | if (numentries > max) |
5569 | numentries = max; |
5570 | |
5571 | log2qty = ilog2(numentries); |
5572 | |
5573 | do { |
5574 | size = bucketsize << log2qty; |
5575 | if (flags & HASH_EARLY) |
5576 | table = alloc_bootmem_nopanic(size); |
5577 | else if (hashdist) |
5578 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); |
5579 | else { |
5580 | /* |
5581 | * If bucketsize is not a power-of-two, we may free |
5582 | * some pages at the end of hash table which |
5583 | * alloc_pages_exact() automatically does |
5584 | */ |
5585 | if (get_order(size) < MAX_ORDER) { |
5586 | table = alloc_pages_exact(size, GFP_ATOMIC); |
5587 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
5588 | } |
5589 | } |
5590 | } while (!table && size > PAGE_SIZE && --log2qty); |
5591 | |
5592 | if (!table) |
5593 | panic("Failed to allocate %s hash table\n", tablename); |
5594 | |
5595 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
5596 | tablename, |
5597 | (1UL << log2qty), |
5598 | ilog2(size) - PAGE_SHIFT, |
5599 | size); |
5600 | |
5601 | if (_hash_shift) |
5602 | *_hash_shift = log2qty; |
5603 | if (_hash_mask) |
5604 | *_hash_mask = (1 << log2qty) - 1; |
5605 | |
5606 | return table; |
5607 | } |
5608 | |
5609 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
5610 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, |
5611 | unsigned long pfn) |
5612 | { |
5613 | #ifdef CONFIG_SPARSEMEM |
5614 | return __pfn_to_section(pfn)->pageblock_flags; |
5615 | #else |
5616 | return zone->pageblock_flags; |
5617 | #endif /* CONFIG_SPARSEMEM */ |
5618 | } |
5619 | |
5620 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) |
5621 | { |
5622 | #ifdef CONFIG_SPARSEMEM |
5623 | pfn &= (PAGES_PER_SECTION-1); |
5624 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
5625 | #else |
5626 | pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); |
5627 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
5628 | #endif /* CONFIG_SPARSEMEM */ |
5629 | } |
5630 | |
5631 | /** |
5632 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
5633 | * @page: The page within the block of interest |
5634 | * @start_bitidx: The first bit of interest to retrieve |
5635 | * @end_bitidx: The last bit of interest |
5636 | * returns pageblock_bits flags |
5637 | */ |
5638 | unsigned long get_pageblock_flags_group(struct page *page, |
5639 | int start_bitidx, int end_bitidx) |
5640 | { |
5641 | struct zone *zone; |
5642 | unsigned long *bitmap; |
5643 | unsigned long pfn, bitidx; |
5644 | unsigned long flags = 0; |
5645 | unsigned long value = 1; |
5646 | |
5647 | zone = page_zone(page); |
5648 | pfn = page_to_pfn(page); |
5649 | bitmap = get_pageblock_bitmap(zone, pfn); |
5650 | bitidx = pfn_to_bitidx(zone, pfn); |
5651 | |
5652 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) |
5653 | if (test_bit(bitidx + start_bitidx, bitmap)) |
5654 | flags |= value; |
5655 | |
5656 | return flags; |
5657 | } |
5658 | |
5659 | /** |
5660 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
5661 | * @page: The page within the block of interest |
5662 | * @start_bitidx: The first bit of interest |
5663 | * @end_bitidx: The last bit of interest |
5664 | * @flags: The flags to set |
5665 | */ |
5666 | void set_pageblock_flags_group(struct page *page, unsigned long flags, |
5667 | int start_bitidx, int end_bitidx) |
5668 | { |
5669 | struct zone *zone; |
5670 | unsigned long *bitmap; |
5671 | unsigned long pfn, bitidx; |
5672 | unsigned long value = 1; |
5673 | |
5674 | zone = page_zone(page); |
5675 | pfn = page_to_pfn(page); |
5676 | bitmap = get_pageblock_bitmap(zone, pfn); |
5677 | bitidx = pfn_to_bitidx(zone, pfn); |
5678 | VM_BUG_ON(!zone_spans_pfn(zone, pfn)); |
5679 | |
5680 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) |
5681 | if (flags & value) |
5682 | __set_bit(bitidx + start_bitidx, bitmap); |
5683 | else |
5684 | __clear_bit(bitidx + start_bitidx, bitmap); |
5685 | } |
5686 | |
5687 | /* |
5688 | * This function checks whether pageblock includes unmovable pages or not. |
5689 | * If @count is not zero, it is okay to include less @count unmovable pages |
5690 | * |
5691 | * PageLRU check wihtout isolation or lru_lock could race so that |
5692 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
5693 | * expect this function should be exact. |
5694 | */ |
5695 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
5696 | bool skip_hwpoisoned_pages) |
5697 | { |
5698 | unsigned long pfn, iter, found; |
5699 | int mt; |
5700 | |
5701 | /* |
5702 | * For avoiding noise data, lru_add_drain_all() should be called |
5703 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
5704 | */ |
5705 | if (zone_idx(zone) == ZONE_MOVABLE) |
5706 | return false; |
5707 | mt = get_pageblock_migratetype(page); |
5708 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) |
5709 | return false; |
5710 | |
5711 | pfn = page_to_pfn(page); |
5712 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { |
5713 | unsigned long check = pfn + iter; |
5714 | |
5715 | if (!pfn_valid_within(check)) |
5716 | continue; |
5717 | |
5718 | page = pfn_to_page(check); |
5719 | /* |
5720 | * We can't use page_count without pin a page |
5721 | * because another CPU can free compound page. |
5722 | * This check already skips compound tails of THP |
5723 | * because their page->_count is zero at all time. |
5724 | */ |
5725 | if (!atomic_read(&page->_count)) { |
5726 | if (PageBuddy(page)) |
5727 | iter += (1 << page_order(page)) - 1; |
5728 | continue; |
5729 | } |
5730 | |
5731 | /* |
5732 | * The HWPoisoned page may be not in buddy system, and |
5733 | * page_count() is not 0. |
5734 | */ |
5735 | if (skip_hwpoisoned_pages && PageHWPoison(page)) |
5736 | continue; |
5737 | |
5738 | if (!PageLRU(page)) |
5739 | found++; |
5740 | /* |
5741 | * If there are RECLAIMABLE pages, we need to check it. |
5742 | * But now, memory offline itself doesn't call shrink_slab() |
5743 | * and it still to be fixed. |
5744 | */ |
5745 | /* |
5746 | * If the page is not RAM, page_count()should be 0. |
5747 | * we don't need more check. This is an _used_ not-movable page. |
5748 | * |
5749 | * The problematic thing here is PG_reserved pages. PG_reserved |
5750 | * is set to both of a memory hole page and a _used_ kernel |
5751 | * page at boot. |
5752 | */ |
5753 | if (found > count) |
5754 | return true; |
5755 | } |
5756 | return false; |
5757 | } |
5758 | |
5759 | bool is_pageblock_removable_nolock(struct page *page) |
5760 | { |
5761 | struct zone *zone; |
5762 | unsigned long pfn; |
5763 | |
5764 | /* |
5765 | * We have to be careful here because we are iterating over memory |
5766 | * sections which are not zone aware so we might end up outside of |
5767 | * the zone but still within the section. |
5768 | * We have to take care about the node as well. If the node is offline |
5769 | * its NODE_DATA will be NULL - see page_zone. |
5770 | */ |
5771 | if (!node_online(page_to_nid(page))) |
5772 | return false; |
5773 | |
5774 | zone = page_zone(page); |
5775 | pfn = page_to_pfn(page); |
5776 | if (!zone_spans_pfn(zone, pfn)) |
5777 | return false; |
5778 | |
5779 | return !has_unmovable_pages(zone, page, 0, true); |
5780 | } |
5781 | |
5782 | #ifdef CONFIG_CMA |
5783 | |
5784 | static unsigned long pfn_max_align_down(unsigned long pfn) |
5785 | { |
5786 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, |
5787 | pageblock_nr_pages) - 1); |
5788 | } |
5789 | |
5790 | static unsigned long pfn_max_align_up(unsigned long pfn) |
5791 | { |
5792 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, |
5793 | pageblock_nr_pages)); |
5794 | } |
5795 | |
5796 | /* [start, end) must belong to a single zone. */ |
5797 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
5798 | unsigned long start, unsigned long end) |
5799 | { |
5800 | /* This function is based on compact_zone() from compaction.c. */ |
5801 | unsigned long nr_reclaimed; |
5802 | unsigned long pfn = start; |
5803 | unsigned int tries = 0; |
5804 | int ret = 0; |
5805 | |
5806 | migrate_prep(); |
5807 | |
5808 | while (pfn < end || !list_empty(&cc->migratepages)) { |
5809 | if (fatal_signal_pending(current)) { |
5810 | ret = -EINTR; |
5811 | break; |
5812 | } |
5813 | |
5814 | if (list_empty(&cc->migratepages)) { |
5815 | cc->nr_migratepages = 0; |
5816 | pfn = isolate_migratepages_range(cc->zone, cc, |
5817 | pfn, end, true); |
5818 | if (!pfn) { |
5819 | ret = -EINTR; |
5820 | break; |
5821 | } |
5822 | tries = 0; |
5823 | } else if (++tries == 5) { |
5824 | ret = ret < 0 ? ret : -EBUSY; |
5825 | break; |
5826 | } |
5827 | |
5828 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
5829 | |