Root/
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing |
3 | * objects in per cpu and per node lists. |
4 | * |
5 | * The allocator synchronizes using per slab locks or atomic operatios |
6 | * and only uses a centralized lock to manage a pool of partial slabs. |
7 | * |
8 | * (C) 2007 SGI, Christoph Lameter |
9 | * (C) 2011 Linux Foundation, Christoph Lameter |
10 | */ |
11 | |
12 | #include <linux/mm.h> |
13 | #include <linux/swap.h> /* struct reclaim_state */ |
14 | #include <linux/module.h> |
15 | #include <linux/bit_spinlock.h> |
16 | #include <linux/interrupt.h> |
17 | #include <linux/bitops.h> |
18 | #include <linux/slab.h> |
19 | #include "slab.h" |
20 | #include <linux/proc_fs.h> |
21 | #include <linux/seq_file.h> |
22 | #include <linux/kmemcheck.h> |
23 | #include <linux/cpu.h> |
24 | #include <linux/cpuset.h> |
25 | #include <linux/mempolicy.h> |
26 | #include <linux/ctype.h> |
27 | #include <linux/debugobjects.h> |
28 | #include <linux/kallsyms.h> |
29 | #include <linux/memory.h> |
30 | #include <linux/math64.h> |
31 | #include <linux/fault-inject.h> |
32 | #include <linux/stacktrace.h> |
33 | #include <linux/prefetch.h> |
34 | #include <linux/memcontrol.h> |
35 | |
36 | #include <trace/events/kmem.h> |
37 | |
38 | #include "internal.h" |
39 | |
40 | /* |
41 | * Lock order: |
42 | * 1. slab_mutex (Global Mutex) |
43 | * 2. node->list_lock |
44 | * 3. slab_lock(page) (Only on some arches and for debugging) |
45 | * |
46 | * slab_mutex |
47 | * |
48 | * The role of the slab_mutex is to protect the list of all the slabs |
49 | * and to synchronize major metadata changes to slab cache structures. |
50 | * |
51 | * The slab_lock is only used for debugging and on arches that do not |
52 | * have the ability to do a cmpxchg_double. It only protects the second |
53 | * double word in the page struct. Meaning |
54 | * A. page->freelist -> List of object free in a page |
55 | * B. page->counters -> Counters of objects |
56 | * C. page->frozen -> frozen state |
57 | * |
58 | * If a slab is frozen then it is exempt from list management. It is not |
59 | * on any list. The processor that froze the slab is the one who can |
60 | * perform list operations on the page. Other processors may put objects |
61 | * onto the freelist but the processor that froze the slab is the only |
62 | * one that can retrieve the objects from the page's freelist. |
63 | * |
64 | * The list_lock protects the partial and full list on each node and |
65 | * the partial slab counter. If taken then no new slabs may be added or |
66 | * removed from the lists nor make the number of partial slabs be modified. |
67 | * (Note that the total number of slabs is an atomic value that may be |
68 | * modified without taking the list lock). |
69 | * |
70 | * The list_lock is a centralized lock and thus we avoid taking it as |
71 | * much as possible. As long as SLUB does not have to handle partial |
72 | * slabs, operations can continue without any centralized lock. F.e. |
73 | * allocating a long series of objects that fill up slabs does not require |
74 | * the list lock. |
75 | * Interrupts are disabled during allocation and deallocation in order to |
76 | * make the slab allocator safe to use in the context of an irq. In addition |
77 | * interrupts are disabled to ensure that the processor does not change |
78 | * while handling per_cpu slabs, due to kernel preemption. |
79 | * |
80 | * SLUB assigns one slab for allocation to each processor. |
81 | * Allocations only occur from these slabs called cpu slabs. |
82 | * |
83 | * Slabs with free elements are kept on a partial list and during regular |
84 | * operations no list for full slabs is used. If an object in a full slab is |
85 | * freed then the slab will show up again on the partial lists. |
86 | * We track full slabs for debugging purposes though because otherwise we |
87 | * cannot scan all objects. |
88 | * |
89 | * Slabs are freed when they become empty. Teardown and setup is |
90 | * minimal so we rely on the page allocators per cpu caches for |
91 | * fast frees and allocs. |
92 | * |
93 | * Overloading of page flags that are otherwise used for LRU management. |
94 | * |
95 | * PageActive The slab is frozen and exempt from list processing. |
96 | * This means that the slab is dedicated to a purpose |
97 | * such as satisfying allocations for a specific |
98 | * processor. Objects may be freed in the slab while |
99 | * it is frozen but slab_free will then skip the usual |
100 | * list operations. It is up to the processor holding |
101 | * the slab to integrate the slab into the slab lists |
102 | * when the slab is no longer needed. |
103 | * |
104 | * One use of this flag is to mark slabs that are |
105 | * used for allocations. Then such a slab becomes a cpu |
106 | * slab. The cpu slab may be equipped with an additional |
107 | * freelist that allows lockless access to |
108 | * free objects in addition to the regular freelist |
109 | * that requires the slab lock. |
110 | * |
111 | * PageError Slab requires special handling due to debug |
112 | * options set. This moves slab handling out of |
113 | * the fast path and disables lockless freelists. |
114 | */ |
115 | |
116 | static inline int kmem_cache_debug(struct kmem_cache *s) |
117 | { |
118 | #ifdef CONFIG_SLUB_DEBUG |
119 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
120 | #else |
121 | return 0; |
122 | #endif |
123 | } |
124 | |
125 | /* |
126 | * Issues still to be resolved: |
127 | * |
128 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
129 | * |
130 | * - Variable sizing of the per node arrays |
131 | */ |
132 | |
133 | /* Enable to test recovery from slab corruption on boot */ |
134 | #undef SLUB_RESILIENCY_TEST |
135 | |
136 | /* Enable to log cmpxchg failures */ |
137 | #undef SLUB_DEBUG_CMPXCHG |
138 | |
139 | /* |
140 | * Mininum number of partial slabs. These will be left on the partial |
141 | * lists even if they are empty. kmem_cache_shrink may reclaim them. |
142 | */ |
143 | #define MIN_PARTIAL 5 |
144 | |
145 | /* |
146 | * Maximum number of desirable partial slabs. |
147 | * The existence of more partial slabs makes kmem_cache_shrink |
148 | * sort the partial list by the number of objects in the. |
149 | */ |
150 | #define MAX_PARTIAL 10 |
151 | |
152 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
153 | SLAB_POISON | SLAB_STORE_USER) |
154 | |
155 | /* |
156 | * Debugging flags that require metadata to be stored in the slab. These get |
157 | * disabled when slub_debug=O is used and a cache's min order increases with |
158 | * metadata. |
159 | */ |
160 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
161 | |
162 | /* |
163 | * Set of flags that will prevent slab merging |
164 | */ |
165 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
166 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ |
167 | SLAB_FAILSLAB) |
168 | |
169 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ |
170 | SLAB_CACHE_DMA | SLAB_NOTRACK) |
171 | |
172 | #define OO_SHIFT 16 |
173 | #define OO_MASK ((1 << OO_SHIFT) - 1) |
174 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
175 | |
176 | /* Internal SLUB flags */ |
177 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
178 | #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
179 | |
180 | #ifdef CONFIG_SMP |
181 | static struct notifier_block slab_notifier; |
182 | #endif |
183 | |
184 | /* |
185 | * Tracking user of a slab. |
186 | */ |
187 | #define TRACK_ADDRS_COUNT 16 |
188 | struct track { |
189 | unsigned long addr; /* Called from address */ |
190 | #ifdef CONFIG_STACKTRACE |
191 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ |
192 | #endif |
193 | int cpu; /* Was running on cpu */ |
194 | int pid; /* Pid context */ |
195 | unsigned long when; /* When did the operation occur */ |
196 | }; |
197 | |
198 | enum track_item { TRACK_ALLOC, TRACK_FREE }; |
199 | |
200 | #ifdef CONFIG_SYSFS |
201 | static int sysfs_slab_add(struct kmem_cache *); |
202 | static int sysfs_slab_alias(struct kmem_cache *, const char *); |
203 | static void sysfs_slab_remove(struct kmem_cache *); |
204 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
205 | #else |
206 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
207 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) |
208 | { return 0; } |
209 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
210 | |
211 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
212 | #endif |
213 | |
214 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
215 | { |
216 | #ifdef CONFIG_SLUB_STATS |
217 | __this_cpu_inc(s->cpu_slab->stat[si]); |
218 | #endif |
219 | } |
220 | |
221 | /******************************************************************** |
222 | * Core slab cache functions |
223 | *******************************************************************/ |
224 | |
225 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
226 | { |
227 | return s->node[node]; |
228 | } |
229 | |
230 | /* Verify that a pointer has an address that is valid within a slab page */ |
231 | static inline int check_valid_pointer(struct kmem_cache *s, |
232 | struct page *page, const void *object) |
233 | { |
234 | void *base; |
235 | |
236 | if (!object) |
237 | return 1; |
238 | |
239 | base = page_address(page); |
240 | if (object < base || object >= base + page->objects * s->size || |
241 | (object - base) % s->size) { |
242 | return 0; |
243 | } |
244 | |
245 | return 1; |
246 | } |
247 | |
248 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
249 | { |
250 | return *(void **)(object + s->offset); |
251 | } |
252 | |
253 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
254 | { |
255 | prefetch(object + s->offset); |
256 | } |
257 | |
258 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
259 | { |
260 | void *p; |
261 | |
262 | #ifdef CONFIG_DEBUG_PAGEALLOC |
263 | probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); |
264 | #else |
265 | p = get_freepointer(s, object); |
266 | #endif |
267 | return p; |
268 | } |
269 | |
270 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
271 | { |
272 | *(void **)(object + s->offset) = fp; |
273 | } |
274 | |
275 | /* Loop over all objects in a slab */ |
276 | #define for_each_object(__p, __s, __addr, __objects) \ |
277 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ |
278 | __p += (__s)->size) |
279 | |
280 | /* Determine object index from a given position */ |
281 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) |
282 | { |
283 | return (p - addr) / s->size; |
284 | } |
285 | |
286 | static inline size_t slab_ksize(const struct kmem_cache *s) |
287 | { |
288 | #ifdef CONFIG_SLUB_DEBUG |
289 | /* |
290 | * Debugging requires use of the padding between object |
291 | * and whatever may come after it. |
292 | */ |
293 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) |
294 | return s->object_size; |
295 | |
296 | #endif |
297 | /* |
298 | * If we have the need to store the freelist pointer |
299 | * back there or track user information then we can |
300 | * only use the space before that information. |
301 | */ |
302 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) |
303 | return s->inuse; |
304 | /* |
305 | * Else we can use all the padding etc for the allocation |
306 | */ |
307 | return s->size; |
308 | } |
309 | |
310 | static inline int order_objects(int order, unsigned long size, int reserved) |
311 | { |
312 | return ((PAGE_SIZE << order) - reserved) / size; |
313 | } |
314 | |
315 | static inline struct kmem_cache_order_objects oo_make(int order, |
316 | unsigned long size, int reserved) |
317 | { |
318 | struct kmem_cache_order_objects x = { |
319 | (order << OO_SHIFT) + order_objects(order, size, reserved) |
320 | }; |
321 | |
322 | return x; |
323 | } |
324 | |
325 | static inline int oo_order(struct kmem_cache_order_objects x) |
326 | { |
327 | return x.x >> OO_SHIFT; |
328 | } |
329 | |
330 | static inline int oo_objects(struct kmem_cache_order_objects x) |
331 | { |
332 | return x.x & OO_MASK; |
333 | } |
334 | |
335 | /* |
336 | * Per slab locking using the pagelock |
337 | */ |
338 | static __always_inline void slab_lock(struct page *page) |
339 | { |
340 | bit_spin_lock(PG_locked, &page->flags); |
341 | } |
342 | |
343 | static __always_inline void slab_unlock(struct page *page) |
344 | { |
345 | __bit_spin_unlock(PG_locked, &page->flags); |
346 | } |
347 | |
348 | /* Interrupts must be disabled (for the fallback code to work right) */ |
349 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
350 | void *freelist_old, unsigned long counters_old, |
351 | void *freelist_new, unsigned long counters_new, |
352 | const char *n) |
353 | { |
354 | VM_BUG_ON(!irqs_disabled()); |
355 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
356 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
357 | if (s->flags & __CMPXCHG_DOUBLE) { |
358 | if (cmpxchg_double(&page->freelist, &page->counters, |
359 | freelist_old, counters_old, |
360 | freelist_new, counters_new)) |
361 | return 1; |
362 | } else |
363 | #endif |
364 | { |
365 | slab_lock(page); |
366 | if (page->freelist == freelist_old && page->counters == counters_old) { |
367 | page->freelist = freelist_new; |
368 | page->counters = counters_new; |
369 | slab_unlock(page); |
370 | return 1; |
371 | } |
372 | slab_unlock(page); |
373 | } |
374 | |
375 | cpu_relax(); |
376 | stat(s, CMPXCHG_DOUBLE_FAIL); |
377 | |
378 | #ifdef SLUB_DEBUG_CMPXCHG |
379 | printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); |
380 | #endif |
381 | |
382 | return 0; |
383 | } |
384 | |
385 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
386 | void *freelist_old, unsigned long counters_old, |
387 | void *freelist_new, unsigned long counters_new, |
388 | const char *n) |
389 | { |
390 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
391 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
392 | if (s->flags & __CMPXCHG_DOUBLE) { |
393 | if (cmpxchg_double(&page->freelist, &page->counters, |
394 | freelist_old, counters_old, |
395 | freelist_new, counters_new)) |
396 | return 1; |
397 | } else |
398 | #endif |
399 | { |
400 | unsigned long flags; |
401 | |
402 | local_irq_save(flags); |
403 | slab_lock(page); |
404 | if (page->freelist == freelist_old && page->counters == counters_old) { |
405 | page->freelist = freelist_new; |
406 | page->counters = counters_new; |
407 | slab_unlock(page); |
408 | local_irq_restore(flags); |
409 | return 1; |
410 | } |
411 | slab_unlock(page); |
412 | local_irq_restore(flags); |
413 | } |
414 | |
415 | cpu_relax(); |
416 | stat(s, CMPXCHG_DOUBLE_FAIL); |
417 | |
418 | #ifdef SLUB_DEBUG_CMPXCHG |
419 | printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); |
420 | #endif |
421 | |
422 | return 0; |
423 | } |
424 | |
425 | #ifdef CONFIG_SLUB_DEBUG |
426 | /* |
427 | * Determine a map of object in use on a page. |
428 | * |
429 | * Node listlock must be held to guarantee that the page does |
430 | * not vanish from under us. |
431 | */ |
432 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) |
433 | { |
434 | void *p; |
435 | void *addr = page_address(page); |
436 | |
437 | for (p = page->freelist; p; p = get_freepointer(s, p)) |
438 | set_bit(slab_index(p, s, addr), map); |
439 | } |
440 | |
441 | /* |
442 | * Debug settings: |
443 | */ |
444 | #ifdef CONFIG_SLUB_DEBUG_ON |
445 | static int slub_debug = DEBUG_DEFAULT_FLAGS; |
446 | #else |
447 | static int slub_debug; |
448 | #endif |
449 | |
450 | static char *slub_debug_slabs; |
451 | static int disable_higher_order_debug; |
452 | |
453 | /* |
454 | * Object debugging |
455 | */ |
456 | static void print_section(char *text, u8 *addr, unsigned int length) |
457 | { |
458 | print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
459 | length, 1); |
460 | } |
461 | |
462 | static struct track *get_track(struct kmem_cache *s, void *object, |
463 | enum track_item alloc) |
464 | { |
465 | struct track *p; |
466 | |
467 | if (s->offset) |
468 | p = object + s->offset + sizeof(void *); |
469 | else |
470 | p = object + s->inuse; |
471 | |
472 | return p + alloc; |
473 | } |
474 | |
475 | static void set_track(struct kmem_cache *s, void *object, |
476 | enum track_item alloc, unsigned long addr) |
477 | { |
478 | struct track *p = get_track(s, object, alloc); |
479 | |
480 | if (addr) { |
481 | #ifdef CONFIG_STACKTRACE |
482 | struct stack_trace trace; |
483 | int i; |
484 | |
485 | trace.nr_entries = 0; |
486 | trace.max_entries = TRACK_ADDRS_COUNT; |
487 | trace.entries = p->addrs; |
488 | trace.skip = 3; |
489 | save_stack_trace(&trace); |
490 | |
491 | /* See rant in lockdep.c */ |
492 | if (trace.nr_entries != 0 && |
493 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) |
494 | trace.nr_entries--; |
495 | |
496 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) |
497 | p->addrs[i] = 0; |
498 | #endif |
499 | p->addr = addr; |
500 | p->cpu = smp_processor_id(); |
501 | p->pid = current->pid; |
502 | p->when = jiffies; |
503 | } else |
504 | memset(p, 0, sizeof(struct track)); |
505 | } |
506 | |
507 | static void init_tracking(struct kmem_cache *s, void *object) |
508 | { |
509 | if (!(s->flags & SLAB_STORE_USER)) |
510 | return; |
511 | |
512 | set_track(s, object, TRACK_FREE, 0UL); |
513 | set_track(s, object, TRACK_ALLOC, 0UL); |
514 | } |
515 | |
516 | static void print_track(const char *s, struct track *t) |
517 | { |
518 | if (!t->addr) |
519 | return; |
520 | |
521 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
522 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
523 | #ifdef CONFIG_STACKTRACE |
524 | { |
525 | int i; |
526 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) |
527 | if (t->addrs[i]) |
528 | printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); |
529 | else |
530 | break; |
531 | } |
532 | #endif |
533 | } |
534 | |
535 | static void print_tracking(struct kmem_cache *s, void *object) |
536 | { |
537 | if (!(s->flags & SLAB_STORE_USER)) |
538 | return; |
539 | |
540 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); |
541 | print_track("Freed", get_track(s, object, TRACK_FREE)); |
542 | } |
543 | |
544 | static void print_page_info(struct page *page) |
545 | { |
546 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
547 | page, page->objects, page->inuse, page->freelist, page->flags); |
548 | |
549 | } |
550 | |
551 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
552 | { |
553 | va_list args; |
554 | char buf[100]; |
555 | |
556 | va_start(args, fmt); |
557 | vsnprintf(buf, sizeof(buf), fmt, args); |
558 | va_end(args); |
559 | printk(KERN_ERR "========================================" |
560 | "=====================================\n"); |
561 | printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); |
562 | printk(KERN_ERR "----------------------------------------" |
563 | "-------------------------------------\n\n"); |
564 | |
565 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
566 | } |
567 | |
568 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
569 | { |
570 | va_list args; |
571 | char buf[100]; |
572 | |
573 | va_start(args, fmt); |
574 | vsnprintf(buf, sizeof(buf), fmt, args); |
575 | va_end(args); |
576 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); |
577 | } |
578 | |
579 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
580 | { |
581 | unsigned int off; /* Offset of last byte */ |
582 | u8 *addr = page_address(page); |
583 | |
584 | print_tracking(s, p); |
585 | |
586 | print_page_info(page); |
587 | |
588 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
589 | p, p - addr, get_freepointer(s, p)); |
590 | |
591 | if (p > addr + 16) |
592 | print_section("Bytes b4 ", p - 16, 16); |
593 | |
594 | print_section("Object ", p, min_t(unsigned long, s->object_size, |
595 | PAGE_SIZE)); |
596 | if (s->flags & SLAB_RED_ZONE) |
597 | print_section("Redzone ", p + s->object_size, |
598 | s->inuse - s->object_size); |
599 | |
600 | if (s->offset) |
601 | off = s->offset + sizeof(void *); |
602 | else |
603 | off = s->inuse; |
604 | |
605 | if (s->flags & SLAB_STORE_USER) |
606 | off += 2 * sizeof(struct track); |
607 | |
608 | if (off != s->size) |
609 | /* Beginning of the filler is the free pointer */ |
610 | print_section("Padding ", p + off, s->size - off); |
611 | |
612 | dump_stack(); |
613 | } |
614 | |
615 | static void object_err(struct kmem_cache *s, struct page *page, |
616 | u8 *object, char *reason) |
617 | { |
618 | slab_bug(s, "%s", reason); |
619 | print_trailer(s, page, object); |
620 | } |
621 | |
622 | static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) |
623 | { |
624 | va_list args; |
625 | char buf[100]; |
626 | |
627 | va_start(args, fmt); |
628 | vsnprintf(buf, sizeof(buf), fmt, args); |
629 | va_end(args); |
630 | slab_bug(s, "%s", buf); |
631 | print_page_info(page); |
632 | dump_stack(); |
633 | } |
634 | |
635 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
636 | { |
637 | u8 *p = object; |
638 | |
639 | if (s->flags & __OBJECT_POISON) { |
640 | memset(p, POISON_FREE, s->object_size - 1); |
641 | p[s->object_size - 1] = POISON_END; |
642 | } |
643 | |
644 | if (s->flags & SLAB_RED_ZONE) |
645 | memset(p + s->object_size, val, s->inuse - s->object_size); |
646 | } |
647 | |
648 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
649 | void *from, void *to) |
650 | { |
651 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); |
652 | memset(from, data, to - from); |
653 | } |
654 | |
655 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, |
656 | u8 *object, char *what, |
657 | u8 *start, unsigned int value, unsigned int bytes) |
658 | { |
659 | u8 *fault; |
660 | u8 *end; |
661 | |
662 | fault = memchr_inv(start, value, bytes); |
663 | if (!fault) |
664 | return 1; |
665 | |
666 | end = start + bytes; |
667 | while (end > fault && end[-1] == value) |
668 | end--; |
669 | |
670 | slab_bug(s, "%s overwritten", what); |
671 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
672 | fault, end - 1, fault[0], value); |
673 | print_trailer(s, page, object); |
674 | |
675 | restore_bytes(s, what, value, fault, end); |
676 | return 0; |
677 | } |
678 | |
679 | /* |
680 | * Object layout: |
681 | * |
682 | * object address |
683 | * Bytes of the object to be managed. |
684 | * If the freepointer may overlay the object then the free |
685 | * pointer is the first word of the object. |
686 | * |
687 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
688 | * 0xa5 (POISON_END) |
689 | * |
690 | * object + s->object_size |
691 | * Padding to reach word boundary. This is also used for Redzoning. |
692 | * Padding is extended by another word if Redzoning is enabled and |
693 | * object_size == inuse. |
694 | * |
695 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
696 | * 0xcc (RED_ACTIVE) for objects in use. |
697 | * |
698 | * object + s->inuse |
699 | * Meta data starts here. |
700 | * |
701 | * A. Free pointer (if we cannot overwrite object on free) |
702 | * B. Tracking data for SLAB_STORE_USER |
703 | * C. Padding to reach required alignment boundary or at mininum |
704 | * one word if debugging is on to be able to detect writes |
705 | * before the word boundary. |
706 | * |
707 | * Padding is done using 0x5a (POISON_INUSE) |
708 | * |
709 | * object + s->size |
710 | * Nothing is used beyond s->size. |
711 | * |
712 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
713 | * ignored. And therefore no slab options that rely on these boundaries |
714 | * may be used with merged slabcaches. |
715 | */ |
716 | |
717 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
718 | { |
719 | unsigned long off = s->inuse; /* The end of info */ |
720 | |
721 | if (s->offset) |
722 | /* Freepointer is placed after the object. */ |
723 | off += sizeof(void *); |
724 | |
725 | if (s->flags & SLAB_STORE_USER) |
726 | /* We also have user information there */ |
727 | off += 2 * sizeof(struct track); |
728 | |
729 | if (s->size == off) |
730 | return 1; |
731 | |
732 | return check_bytes_and_report(s, page, p, "Object padding", |
733 | p + off, POISON_INUSE, s->size - off); |
734 | } |
735 | |
736 | /* Check the pad bytes at the end of a slab page */ |
737 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
738 | { |
739 | u8 *start; |
740 | u8 *fault; |
741 | u8 *end; |
742 | int length; |
743 | int remainder; |
744 | |
745 | if (!(s->flags & SLAB_POISON)) |
746 | return 1; |
747 | |
748 | start = page_address(page); |
749 | length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
750 | end = start + length; |
751 | remainder = length % s->size; |
752 | if (!remainder) |
753 | return 1; |
754 | |
755 | fault = memchr_inv(end - remainder, POISON_INUSE, remainder); |
756 | if (!fault) |
757 | return 1; |
758 | while (end > fault && end[-1] == POISON_INUSE) |
759 | end--; |
760 | |
761 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); |
762 | print_section("Padding ", end - remainder, remainder); |
763 | |
764 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
765 | return 0; |
766 | } |
767 | |
768 | static int check_object(struct kmem_cache *s, struct page *page, |
769 | void *object, u8 val) |
770 | { |
771 | u8 *p = object; |
772 | u8 *endobject = object + s->object_size; |
773 | |
774 | if (s->flags & SLAB_RED_ZONE) { |
775 | if (!check_bytes_and_report(s, page, object, "Redzone", |
776 | endobject, val, s->inuse - s->object_size)) |
777 | return 0; |
778 | } else { |
779 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
780 | check_bytes_and_report(s, page, p, "Alignment padding", |
781 | endobject, POISON_INUSE, s->inuse - s->object_size); |
782 | } |
783 | } |
784 | |
785 | if (s->flags & SLAB_POISON) { |
786 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
787 | (!check_bytes_and_report(s, page, p, "Poison", p, |
788 | POISON_FREE, s->object_size - 1) || |
789 | !check_bytes_and_report(s, page, p, "Poison", |
790 | p + s->object_size - 1, POISON_END, 1))) |
791 | return 0; |
792 | /* |
793 | * check_pad_bytes cleans up on its own. |
794 | */ |
795 | check_pad_bytes(s, page, p); |
796 | } |
797 | |
798 | if (!s->offset && val == SLUB_RED_ACTIVE) |
799 | /* |
800 | * Object and freepointer overlap. Cannot check |
801 | * freepointer while object is allocated. |
802 | */ |
803 | return 1; |
804 | |
805 | /* Check free pointer validity */ |
806 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { |
807 | object_err(s, page, p, "Freepointer corrupt"); |
808 | /* |
809 | * No choice but to zap it and thus lose the remainder |
810 | * of the free objects in this slab. May cause |
811 | * another error because the object count is now wrong. |
812 | */ |
813 | set_freepointer(s, p, NULL); |
814 | return 0; |
815 | } |
816 | return 1; |
817 | } |
818 | |
819 | static int check_slab(struct kmem_cache *s, struct page *page) |
820 | { |
821 | int maxobj; |
822 | |
823 | VM_BUG_ON(!irqs_disabled()); |
824 | |
825 | if (!PageSlab(page)) { |
826 | slab_err(s, page, "Not a valid slab page"); |
827 | return 0; |
828 | } |
829 | |
830 | maxobj = order_objects(compound_order(page), s->size, s->reserved); |
831 | if (page->objects > maxobj) { |
832 | slab_err(s, page, "objects %u > max %u", |
833 | s->name, page->objects, maxobj); |
834 | return 0; |
835 | } |
836 | if (page->inuse > page->objects) { |
837 | slab_err(s, page, "inuse %u > max %u", |
838 | s->name, page->inuse, page->objects); |
839 | return 0; |
840 | } |
841 | /* Slab_pad_check fixes things up after itself */ |
842 | slab_pad_check(s, page); |
843 | return 1; |
844 | } |
845 | |
846 | /* |
847 | * Determine if a certain object on a page is on the freelist. Must hold the |
848 | * slab lock to guarantee that the chains are in a consistent state. |
849 | */ |
850 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) |
851 | { |
852 | int nr = 0; |
853 | void *fp; |
854 | void *object = NULL; |
855 | unsigned long max_objects; |
856 | |
857 | fp = page->freelist; |
858 | while (fp && nr <= page->objects) { |
859 | if (fp == search) |
860 | return 1; |
861 | if (!check_valid_pointer(s, page, fp)) { |
862 | if (object) { |
863 | object_err(s, page, object, |
864 | "Freechain corrupt"); |
865 | set_freepointer(s, object, NULL); |
866 | break; |
867 | } else { |
868 | slab_err(s, page, "Freepointer corrupt"); |
869 | page->freelist = NULL; |
870 | page->inuse = page->objects; |
871 | slab_fix(s, "Freelist cleared"); |
872 | return 0; |
873 | } |
874 | break; |
875 | } |
876 | object = fp; |
877 | fp = get_freepointer(s, object); |
878 | nr++; |
879 | } |
880 | |
881 | max_objects = order_objects(compound_order(page), s->size, s->reserved); |
882 | if (max_objects > MAX_OBJS_PER_PAGE) |
883 | max_objects = MAX_OBJS_PER_PAGE; |
884 | |
885 | if (page->objects != max_objects) { |
886 | slab_err(s, page, "Wrong number of objects. Found %d but " |
887 | "should be %d", page->objects, max_objects); |
888 | page->objects = max_objects; |
889 | slab_fix(s, "Number of objects adjusted."); |
890 | } |
891 | if (page->inuse != page->objects - nr) { |
892 | slab_err(s, page, "Wrong object count. Counter is %d but " |
893 | "counted were %d", page->inuse, page->objects - nr); |
894 | page->inuse = page->objects - nr; |
895 | slab_fix(s, "Object count adjusted."); |
896 | } |
897 | return search == NULL; |
898 | } |
899 | |
900 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
901 | int alloc) |
902 | { |
903 | if (s->flags & SLAB_TRACE) { |
904 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
905 | s->name, |
906 | alloc ? "alloc" : "free", |
907 | object, page->inuse, |
908 | page->freelist); |
909 | |
910 | if (!alloc) |
911 | print_section("Object ", (void *)object, s->object_size); |
912 | |
913 | dump_stack(); |
914 | } |
915 | } |
916 | |
917 | /* |
918 | * Hooks for other subsystems that check memory allocations. In a typical |
919 | * production configuration these hooks all should produce no code at all. |
920 | */ |
921 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) |
922 | { |
923 | flags &= gfp_allowed_mask; |
924 | lockdep_trace_alloc(flags); |
925 | might_sleep_if(flags & __GFP_WAIT); |
926 | |
927 | return should_failslab(s->object_size, flags, s->flags); |
928 | } |
929 | |
930 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) |
931 | { |
932 | flags &= gfp_allowed_mask; |
933 | kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); |
934 | kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); |
935 | } |
936 | |
937 | static inline void slab_free_hook(struct kmem_cache *s, void *x) |
938 | { |
939 | kmemleak_free_recursive(x, s->flags); |
940 | |
941 | /* |
942 | * Trouble is that we may no longer disable interupts in the fast path |
943 | * So in order to make the debug calls that expect irqs to be |
944 | * disabled we need to disable interrupts temporarily. |
945 | */ |
946 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) |
947 | { |
948 | unsigned long flags; |
949 | |
950 | local_irq_save(flags); |
951 | kmemcheck_slab_free(s, x, s->object_size); |
952 | debug_check_no_locks_freed(x, s->object_size); |
953 | local_irq_restore(flags); |
954 | } |
955 | #endif |
956 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
957 | debug_check_no_obj_freed(x, s->object_size); |
958 | } |
959 | |
960 | /* |
961 | * Tracking of fully allocated slabs for debugging purposes. |
962 | * |
963 | * list_lock must be held. |
964 | */ |
965 | static void add_full(struct kmem_cache *s, |
966 | struct kmem_cache_node *n, struct page *page) |
967 | { |
968 | if (!(s->flags & SLAB_STORE_USER)) |
969 | return; |
970 | |
971 | list_add(&page->lru, &n->full); |
972 | } |
973 | |
974 | /* |
975 | * list_lock must be held. |
976 | */ |
977 | static void remove_full(struct kmem_cache *s, struct page *page) |
978 | { |
979 | if (!(s->flags & SLAB_STORE_USER)) |
980 | return; |
981 | |
982 | list_del(&page->lru); |
983 | } |
984 | |
985 | /* Tracking of the number of slabs for debugging purposes */ |
986 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
987 | { |
988 | struct kmem_cache_node *n = get_node(s, node); |
989 | |
990 | return atomic_long_read(&n->nr_slabs); |
991 | } |
992 | |
993 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
994 | { |
995 | return atomic_long_read(&n->nr_slabs); |
996 | } |
997 | |
998 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
999 | { |
1000 | struct kmem_cache_node *n = get_node(s, node); |
1001 | |
1002 | /* |
1003 | * May be called early in order to allocate a slab for the |
1004 | * kmem_cache_node structure. Solve the chicken-egg |
1005 | * dilemma by deferring the increment of the count during |
1006 | * bootstrap (see early_kmem_cache_node_alloc). |
1007 | */ |
1008 | if (n) { |
1009 | atomic_long_inc(&n->nr_slabs); |
1010 | atomic_long_add(objects, &n->total_objects); |
1011 | } |
1012 | } |
1013 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
1014 | { |
1015 | struct kmem_cache_node *n = get_node(s, node); |
1016 | |
1017 | atomic_long_dec(&n->nr_slabs); |
1018 | atomic_long_sub(objects, &n->total_objects); |
1019 | } |
1020 | |
1021 | /* Object debug checks for alloc/free paths */ |
1022 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1023 | void *object) |
1024 | { |
1025 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) |
1026 | return; |
1027 | |
1028 | init_object(s, object, SLUB_RED_INACTIVE); |
1029 | init_tracking(s, object); |
1030 | } |
1031 | |
1032 | static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, |
1033 | void *object, unsigned long addr) |
1034 | { |
1035 | if (!check_slab(s, page)) |
1036 | goto bad; |
1037 | |
1038 | if (!check_valid_pointer(s, page, object)) { |
1039 | object_err(s, page, object, "Freelist Pointer check fails"); |
1040 | goto bad; |
1041 | } |
1042 | |
1043 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
1044 | goto bad; |
1045 | |
1046 | /* Success perform special debug activities for allocs */ |
1047 | if (s->flags & SLAB_STORE_USER) |
1048 | set_track(s, object, TRACK_ALLOC, addr); |
1049 | trace(s, page, object, 1); |
1050 | init_object(s, object, SLUB_RED_ACTIVE); |
1051 | return 1; |
1052 | |
1053 | bad: |
1054 | if (PageSlab(page)) { |
1055 | /* |
1056 | * If this is a slab page then lets do the best we can |
1057 | * to avoid issues in the future. Marking all objects |
1058 | * as used avoids touching the remaining objects. |
1059 | */ |
1060 | slab_fix(s, "Marking all objects used"); |
1061 | page->inuse = page->objects; |
1062 | page->freelist = NULL; |
1063 | } |
1064 | return 0; |
1065 | } |
1066 | |
1067 | static noinline struct kmem_cache_node *free_debug_processing( |
1068 | struct kmem_cache *s, struct page *page, void *object, |
1069 | unsigned long addr, unsigned long *flags) |
1070 | { |
1071 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1072 | |
1073 | spin_lock_irqsave(&n->list_lock, *flags); |
1074 | slab_lock(page); |
1075 | |
1076 | if (!check_slab(s, page)) |
1077 | goto fail; |
1078 | |
1079 | if (!check_valid_pointer(s, page, object)) { |
1080 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
1081 | goto fail; |
1082 | } |
1083 | |
1084 | if (on_freelist(s, page, object)) { |
1085 | object_err(s, page, object, "Object already free"); |
1086 | goto fail; |
1087 | } |
1088 | |
1089 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
1090 | goto out; |
1091 | |
1092 | if (unlikely(s != page->slab_cache)) { |
1093 | if (!PageSlab(page)) { |
1094 | slab_err(s, page, "Attempt to free object(0x%p) " |
1095 | "outside of slab", object); |
1096 | } else if (!page->slab_cache) { |
1097 | printk(KERN_ERR |
1098 | "SLUB <none>: no slab for object 0x%p.\n", |
1099 | object); |
1100 | dump_stack(); |
1101 | } else |
1102 | object_err(s, page, object, |
1103 | "page slab pointer corrupt."); |
1104 | goto fail; |
1105 | } |
1106 | |
1107 | if (s->flags & SLAB_STORE_USER) |
1108 | set_track(s, object, TRACK_FREE, addr); |
1109 | trace(s, page, object, 0); |
1110 | init_object(s, object, SLUB_RED_INACTIVE); |
1111 | out: |
1112 | slab_unlock(page); |
1113 | /* |
1114 | * Keep node_lock to preserve integrity |
1115 | * until the object is actually freed |
1116 | */ |
1117 | return n; |
1118 | |
1119 | fail: |
1120 | slab_unlock(page); |
1121 | spin_unlock_irqrestore(&n->list_lock, *flags); |
1122 | slab_fix(s, "Object at 0x%p not freed", object); |
1123 | return NULL; |
1124 | } |
1125 | |
1126 | static int __init setup_slub_debug(char *str) |
1127 | { |
1128 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1129 | if (*str++ != '=' || !*str) |
1130 | /* |
1131 | * No options specified. Switch on full debugging. |
1132 | */ |
1133 | goto out; |
1134 | |
1135 | if (*str == ',') |
1136 | /* |
1137 | * No options but restriction on slabs. This means full |
1138 | * debugging for slabs matching a pattern. |
1139 | */ |
1140 | goto check_slabs; |
1141 | |
1142 | if (tolower(*str) == 'o') { |
1143 | /* |
1144 | * Avoid enabling debugging on caches if its minimum order |
1145 | * would increase as a result. |
1146 | */ |
1147 | disable_higher_order_debug = 1; |
1148 | goto out; |
1149 | } |
1150 | |
1151 | slub_debug = 0; |
1152 | if (*str == '-') |
1153 | /* |
1154 | * Switch off all debugging measures. |
1155 | */ |
1156 | goto out; |
1157 | |
1158 | /* |
1159 | * Determine which debug features should be switched on |
1160 | */ |
1161 | for (; *str && *str != ','; str++) { |
1162 | switch (tolower(*str)) { |
1163 | case 'f': |
1164 | slub_debug |= SLAB_DEBUG_FREE; |
1165 | break; |
1166 | case 'z': |
1167 | slub_debug |= SLAB_RED_ZONE; |
1168 | break; |
1169 | case 'p': |
1170 | slub_debug |= SLAB_POISON; |
1171 | break; |
1172 | case 'u': |
1173 | slub_debug |= SLAB_STORE_USER; |
1174 | break; |
1175 | case 't': |
1176 | slub_debug |= SLAB_TRACE; |
1177 | break; |
1178 | case 'a': |
1179 | slub_debug |= SLAB_FAILSLAB; |
1180 | break; |
1181 | default: |
1182 | printk(KERN_ERR "slub_debug option '%c' " |
1183 | "unknown. skipped\n", *str); |
1184 | } |
1185 | } |
1186 | |
1187 | check_slabs: |
1188 | if (*str == ',') |
1189 | slub_debug_slabs = str + 1; |
1190 | out: |
1191 | return 1; |
1192 | } |
1193 | |
1194 | __setup("slub_debug", setup_slub_debug); |
1195 | |
1196 | static unsigned long kmem_cache_flags(unsigned long object_size, |
1197 | unsigned long flags, const char *name, |
1198 | void (*ctor)(void *)) |
1199 | { |
1200 | /* |
1201 | * Enable debugging if selected on the kernel commandline. |
1202 | */ |
1203 | if (slub_debug && (!slub_debug_slabs || |
1204 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) |
1205 | flags |= slub_debug; |
1206 | |
1207 | return flags; |
1208 | } |
1209 | #else |
1210 | static inline void setup_object_debug(struct kmem_cache *s, |
1211 | struct page *page, void *object) {} |
1212 | |
1213 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1214 | struct page *page, void *object, unsigned long addr) { return 0; } |
1215 | |
1216 | static inline struct kmem_cache_node *free_debug_processing( |
1217 | struct kmem_cache *s, struct page *page, void *object, |
1218 | unsigned long addr, unsigned long *flags) { return NULL; } |
1219 | |
1220 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1221 | { return 1; } |
1222 | static inline int check_object(struct kmem_cache *s, struct page *page, |
1223 | void *object, u8 val) { return 1; } |
1224 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1225 | struct page *page) {} |
1226 | static inline void remove_full(struct kmem_cache *s, struct page *page) {} |
1227 | static inline unsigned long kmem_cache_flags(unsigned long object_size, |
1228 | unsigned long flags, const char *name, |
1229 | void (*ctor)(void *)) |
1230 | { |
1231 | return flags; |
1232 | } |
1233 | #define slub_debug 0 |
1234 | |
1235 | #define disable_higher_order_debug 0 |
1236 | |
1237 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1238 | { return 0; } |
1239 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1240 | { return 0; } |
1241 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1242 | int objects) {} |
1243 | static inline void dec_slabs_node(struct kmem_cache *s, int node, |
1244 | int objects) {} |
1245 | |
1246 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) |
1247 | { return 0; } |
1248 | |
1249 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, |
1250 | void *object) {} |
1251 | |
1252 | static inline void slab_free_hook(struct kmem_cache *s, void *x) {} |
1253 | |
1254 | #endif /* CONFIG_SLUB_DEBUG */ |
1255 | |
1256 | /* |
1257 | * Slab allocation and freeing |
1258 | */ |
1259 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1260 | struct kmem_cache_order_objects oo) |
1261 | { |
1262 | int order = oo_order(oo); |
1263 | |
1264 | flags |= __GFP_NOTRACK; |
1265 | |
1266 | if (node == NUMA_NO_NODE) |
1267 | return alloc_pages(flags, order); |
1268 | else |
1269 | return alloc_pages_exact_node(node, flags, order); |
1270 | } |
1271 | |
1272 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1273 | { |
1274 | struct page *page; |
1275 | struct kmem_cache_order_objects oo = s->oo; |
1276 | gfp_t alloc_gfp; |
1277 | |
1278 | flags &= gfp_allowed_mask; |
1279 | |
1280 | if (flags & __GFP_WAIT) |
1281 | local_irq_enable(); |
1282 | |
1283 | flags |= s->allocflags; |
1284 | |
1285 | /* |
1286 | * Let the initial higher-order allocation fail under memory pressure |
1287 | * so we fall-back to the minimum order allocation. |
1288 | */ |
1289 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; |
1290 | |
1291 | page = alloc_slab_page(alloc_gfp, node, oo); |
1292 | if (unlikely(!page)) { |
1293 | oo = s->min; |
1294 | /* |
1295 | * Allocation may have failed due to fragmentation. |
1296 | * Try a lower order alloc if possible |
1297 | */ |
1298 | page = alloc_slab_page(flags, node, oo); |
1299 | |
1300 | if (page) |
1301 | stat(s, ORDER_FALLBACK); |
1302 | } |
1303 | |
1304 | if (kmemcheck_enabled && page |
1305 | && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { |
1306 | int pages = 1 << oo_order(oo); |
1307 | |
1308 | kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); |
1309 | |
1310 | /* |
1311 | * Objects from caches that have a constructor don't get |
1312 | * cleared when they're allocated, so we need to do it here. |
1313 | */ |
1314 | if (s->ctor) |
1315 | kmemcheck_mark_uninitialized_pages(page, pages); |
1316 | else |
1317 | kmemcheck_mark_unallocated_pages(page, pages); |
1318 | } |
1319 | |
1320 | if (flags & __GFP_WAIT) |
1321 | local_irq_disable(); |
1322 | if (!page) |
1323 | return NULL; |
1324 | |
1325 | page->objects = oo_objects(oo); |
1326 | mod_zone_page_state(page_zone(page), |
1327 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1328 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
1329 | 1 << oo_order(oo)); |
1330 | |
1331 | return page; |
1332 | } |
1333 | |
1334 | static void setup_object(struct kmem_cache *s, struct page *page, |
1335 | void *object) |
1336 | { |
1337 | setup_object_debug(s, page, object); |
1338 | if (unlikely(s->ctor)) |
1339 | s->ctor(object); |
1340 | } |
1341 | |
1342 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
1343 | { |
1344 | struct page *page; |
1345 | void *start; |
1346 | void *last; |
1347 | void *p; |
1348 | int order; |
1349 | |
1350 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
1351 | |
1352 | page = allocate_slab(s, |
1353 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); |
1354 | if (!page) |
1355 | goto out; |
1356 | |
1357 | order = compound_order(page); |
1358 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1359 | memcg_bind_pages(s, order); |
1360 | page->slab_cache = s; |
1361 | __SetPageSlab(page); |
1362 | if (page->pfmemalloc) |
1363 | SetPageSlabPfmemalloc(page); |
1364 | |
1365 | start = page_address(page); |
1366 | |
1367 | if (unlikely(s->flags & SLAB_POISON)) |
1368 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
1369 | |
1370 | last = start; |
1371 | for_each_object(p, s, start, page->objects) { |
1372 | setup_object(s, page, last); |
1373 | set_freepointer(s, last, p); |
1374 | last = p; |
1375 | } |
1376 | setup_object(s, page, last); |
1377 | set_freepointer(s, last, NULL); |
1378 | |
1379 | page->freelist = start; |
1380 | page->inuse = page->objects; |
1381 | page->frozen = 1; |
1382 | out: |
1383 | return page; |
1384 | } |
1385 | |
1386 | static void __free_slab(struct kmem_cache *s, struct page *page) |
1387 | { |
1388 | int order = compound_order(page); |
1389 | int pages = 1 << order; |
1390 | |
1391 | if (kmem_cache_debug(s)) { |
1392 | void *p; |
1393 | |
1394 | slab_pad_check(s, page); |
1395 | for_each_object(p, s, page_address(page), |
1396 | page->objects) |
1397 | check_object(s, page, p, SLUB_RED_INACTIVE); |
1398 | } |
1399 | |
1400 | kmemcheck_free_shadow(page, compound_order(page)); |
1401 | |
1402 | mod_zone_page_state(page_zone(page), |
1403 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
1404 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
1405 | -pages); |
1406 | |
1407 | __ClearPageSlabPfmemalloc(page); |
1408 | __ClearPageSlab(page); |
1409 | |
1410 | memcg_release_pages(s, order); |
1411 | page_mapcount_reset(page); |
1412 | if (current->reclaim_state) |
1413 | current->reclaim_state->reclaimed_slab += pages; |
1414 | __free_memcg_kmem_pages(page, order); |
1415 | } |
1416 | |
1417 | #define need_reserve_slab_rcu \ |
1418 | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) |
1419 | |
1420 | static void rcu_free_slab(struct rcu_head *h) |
1421 | { |
1422 | struct page *page; |
1423 | |
1424 | if (need_reserve_slab_rcu) |
1425 | page = virt_to_head_page(h); |
1426 | else |
1427 | page = container_of((struct list_head *)h, struct page, lru); |
1428 | |
1429 | __free_slab(page->slab_cache, page); |
1430 | } |
1431 | |
1432 | static void free_slab(struct kmem_cache *s, struct page *page) |
1433 | { |
1434 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { |
1435 | struct rcu_head *head; |
1436 | |
1437 | if (need_reserve_slab_rcu) { |
1438 | int order = compound_order(page); |
1439 | int offset = (PAGE_SIZE << order) - s->reserved; |
1440 | |
1441 | VM_BUG_ON(s->reserved != sizeof(*head)); |
1442 | head = page_address(page) + offset; |
1443 | } else { |
1444 | /* |
1445 | * RCU free overloads the RCU head over the LRU |
1446 | */ |
1447 | head = (void *)&page->lru; |
1448 | } |
1449 | |
1450 | call_rcu(head, rcu_free_slab); |
1451 | } else |
1452 | __free_slab(s, page); |
1453 | } |
1454 | |
1455 | static void discard_slab(struct kmem_cache *s, struct page *page) |
1456 | { |
1457 | dec_slabs_node(s, page_to_nid(page), page->objects); |
1458 | free_slab(s, page); |
1459 | } |
1460 | |
1461 | /* |
1462 | * Management of partially allocated slabs. |
1463 | * |
1464 | * list_lock must be held. |
1465 | */ |
1466 | static inline void add_partial(struct kmem_cache_node *n, |
1467 | struct page *page, int tail) |
1468 | { |
1469 | n->nr_partial++; |
1470 | if (tail == DEACTIVATE_TO_TAIL) |
1471 | list_add_tail(&page->lru, &n->partial); |
1472 | else |
1473 | list_add(&page->lru, &n->partial); |
1474 | } |
1475 | |
1476 | /* |
1477 | * list_lock must be held. |
1478 | */ |
1479 | static inline void remove_partial(struct kmem_cache_node *n, |
1480 | struct page *page) |
1481 | { |
1482 | list_del(&page->lru); |
1483 | n->nr_partial--; |
1484 | } |
1485 | |
1486 | /* |
1487 | * Remove slab from the partial list, freeze it and |
1488 | * return the pointer to the freelist. |
1489 | * |
1490 | * Returns a list of objects or NULL if it fails. |
1491 | * |
1492 | * Must hold list_lock since we modify the partial list. |
1493 | */ |
1494 | static inline void *acquire_slab(struct kmem_cache *s, |
1495 | struct kmem_cache_node *n, struct page *page, |
1496 | int mode) |
1497 | { |
1498 | void *freelist; |
1499 | unsigned long counters; |
1500 | struct page new; |
1501 | |
1502 | /* |
1503 | * Zap the freelist and set the frozen bit. |
1504 | * The old freelist is the list of objects for the |
1505 | * per cpu allocation list. |
1506 | */ |
1507 | freelist = page->freelist; |
1508 | counters = page->counters; |
1509 | new.counters = counters; |
1510 | if (mode) { |
1511 | new.inuse = page->objects; |
1512 | new.freelist = NULL; |
1513 | } else { |
1514 | new.freelist = freelist; |
1515 | } |
1516 | |
1517 | VM_BUG_ON(new.frozen); |
1518 | new.frozen = 1; |
1519 | |
1520 | if (!__cmpxchg_double_slab(s, page, |
1521 | freelist, counters, |
1522 | new.freelist, new.counters, |
1523 | "acquire_slab")) |
1524 | return NULL; |
1525 | |
1526 | remove_partial(n, page); |
1527 | WARN_ON(!freelist); |
1528 | return freelist; |
1529 | } |
1530 | |
1531 | static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
1532 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
1533 | |
1534 | /* |
1535 | * Try to allocate a partial slab from a specific node. |
1536 | */ |
1537 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1538 | struct kmem_cache_cpu *c, gfp_t flags) |
1539 | { |
1540 | struct page *page, *page2; |
1541 | void *object = NULL; |
1542 | |
1543 | /* |
1544 | * Racy check. If we mistakenly see no partial slabs then we |
1545 | * just allocate an empty slab. If we mistakenly try to get a |
1546 | * partial slab and there is none available then get_partials() |
1547 | * will return NULL. |
1548 | */ |
1549 | if (!n || !n->nr_partial) |
1550 | return NULL; |
1551 | |
1552 | spin_lock(&n->list_lock); |
1553 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
1554 | void *t; |
1555 | int available; |
1556 | |
1557 | if (!pfmemalloc_match(page, flags)) |
1558 | continue; |
1559 | |
1560 | t = acquire_slab(s, n, page, object == NULL); |
1561 | if (!t) |
1562 | break; |
1563 | |
1564 | if (!object) { |
1565 | c->page = page; |
1566 | stat(s, ALLOC_FROM_PARTIAL); |
1567 | object = t; |
1568 | available = page->objects - page->inuse; |
1569 | } else { |
1570 | available = put_cpu_partial(s, page, 0); |
1571 | stat(s, CPU_PARTIAL_NODE); |
1572 | } |
1573 | if (kmem_cache_debug(s) || available > s->cpu_partial / 2) |
1574 | break; |
1575 | |
1576 | } |
1577 | spin_unlock(&n->list_lock); |
1578 | return object; |
1579 | } |
1580 | |
1581 | /* |
1582 | * Get a page from somewhere. Search in increasing NUMA distances. |
1583 | */ |
1584 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
1585 | struct kmem_cache_cpu *c) |
1586 | { |
1587 | #ifdef CONFIG_NUMA |
1588 | struct zonelist *zonelist; |
1589 | struct zoneref *z; |
1590 | struct zone *zone; |
1591 | enum zone_type high_zoneidx = gfp_zone(flags); |
1592 | void *object; |
1593 | unsigned int cpuset_mems_cookie; |
1594 | |
1595 | /* |
1596 | * The defrag ratio allows a configuration of the tradeoffs between |
1597 | * inter node defragmentation and node local allocations. A lower |
1598 | * defrag_ratio increases the tendency to do local allocations |
1599 | * instead of attempting to obtain partial slabs from other nodes. |
1600 | * |
1601 | * If the defrag_ratio is set to 0 then kmalloc() always |
1602 | * returns node local objects. If the ratio is higher then kmalloc() |
1603 | * may return off node objects because partial slabs are obtained |
1604 | * from other nodes and filled up. |
1605 | * |
1606 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
1607 | * defrag_ratio = 1000) then every (well almost) allocation will |
1608 | * first attempt to defrag slab caches on other nodes. This means |
1609 | * scanning over all nodes to look for partial slabs which may be |
1610 | * expensive if we do it every time we are trying to find a slab |
1611 | * with available objects. |
1612 | */ |
1613 | if (!s->remote_node_defrag_ratio || |
1614 | get_cycles() % 1024 > s->remote_node_defrag_ratio) |
1615 | return NULL; |
1616 | |
1617 | do { |
1618 | cpuset_mems_cookie = get_mems_allowed(); |
1619 | zonelist = node_zonelist(slab_node(), flags); |
1620 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1621 | struct kmem_cache_node *n; |
1622 | |
1623 | n = get_node(s, zone_to_nid(zone)); |
1624 | |
1625 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
1626 | n->nr_partial > s->min_partial) { |
1627 | object = get_partial_node(s, n, c, flags); |
1628 | if (object) { |
1629 | /* |
1630 | * Return the object even if |
1631 | * put_mems_allowed indicated that |
1632 | * the cpuset mems_allowed was |
1633 | * updated in parallel. It's a |
1634 | * harmless race between the alloc |
1635 | * and the cpuset update. |
1636 | */ |
1637 | put_mems_allowed(cpuset_mems_cookie); |
1638 | return object; |
1639 | } |
1640 | } |
1641 | } |
1642 | } while (!put_mems_allowed(cpuset_mems_cookie)); |
1643 | #endif |
1644 | return NULL; |
1645 | } |
1646 | |
1647 | /* |
1648 | * Get a partial page, lock it and return it. |
1649 | */ |
1650 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
1651 | struct kmem_cache_cpu *c) |
1652 | { |
1653 | void *object; |
1654 | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; |
1655 | |
1656 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
1657 | if (object || node != NUMA_NO_NODE) |
1658 | return object; |
1659 | |
1660 | return get_any_partial(s, flags, c); |
1661 | } |
1662 | |
1663 | #ifdef CONFIG_PREEMPT |
1664 | /* |
1665 | * Calculate the next globally unique transaction for disambiguiation |
1666 | * during cmpxchg. The transactions start with the cpu number and are then |
1667 | * incremented by CONFIG_NR_CPUS. |
1668 | */ |
1669 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) |
1670 | #else |
1671 | /* |
1672 | * No preemption supported therefore also no need to check for |
1673 | * different cpus. |
1674 | */ |
1675 | #define TID_STEP 1 |
1676 | #endif |
1677 | |
1678 | static inline unsigned long next_tid(unsigned long tid) |
1679 | { |
1680 | return tid + TID_STEP; |
1681 | } |
1682 | |
1683 | static inline unsigned int tid_to_cpu(unsigned long tid) |
1684 | { |
1685 | return tid % TID_STEP; |
1686 | } |
1687 | |
1688 | static inline unsigned long tid_to_event(unsigned long tid) |
1689 | { |
1690 | return tid / TID_STEP; |
1691 | } |
1692 | |
1693 | static inline unsigned int init_tid(int cpu) |
1694 | { |
1695 | return cpu; |
1696 | } |
1697 | |
1698 | static inline void note_cmpxchg_failure(const char *n, |
1699 | const struct kmem_cache *s, unsigned long tid) |
1700 | { |
1701 | #ifdef SLUB_DEBUG_CMPXCHG |
1702 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); |
1703 | |
1704 | printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); |
1705 | |
1706 | #ifdef CONFIG_PREEMPT |
1707 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
1708 | printk("due to cpu change %d -> %d\n", |
1709 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
1710 | else |
1711 | #endif |
1712 | if (tid_to_event(tid) != tid_to_event(actual_tid)) |
1713 | printk("due to cpu running other code. Event %ld->%ld\n", |
1714 | tid_to_event(tid), tid_to_event(actual_tid)); |
1715 | else |
1716 | printk("for unknown reason: actual=%lx was=%lx target=%lx\n", |
1717 | actual_tid, tid, next_tid(tid)); |
1718 | #endif |
1719 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
1720 | } |
1721 | |
1722 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
1723 | { |
1724 | int cpu; |
1725 | |
1726 | for_each_possible_cpu(cpu) |
1727 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); |
1728 | } |
1729 | |
1730 | /* |
1731 | * Remove the cpu slab |
1732 | */ |
1733 | static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) |
1734 | { |
1735 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
1736 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1737 | int lock = 0; |
1738 | enum slab_modes l = M_NONE, m = M_NONE; |
1739 | void *nextfree; |
1740 | int tail = DEACTIVATE_TO_HEAD; |
1741 | struct page new; |
1742 | struct page old; |
1743 | |
1744 | if (page->freelist) { |
1745 | stat(s, DEACTIVATE_REMOTE_FREES); |
1746 | tail = DEACTIVATE_TO_TAIL; |
1747 | } |
1748 | |
1749 | /* |
1750 | * Stage one: Free all available per cpu objects back |
1751 | * to the page freelist while it is still frozen. Leave the |
1752 | * last one. |
1753 | * |
1754 | * There is no need to take the list->lock because the page |
1755 | * is still frozen. |
1756 | */ |
1757 | while (freelist && (nextfree = get_freepointer(s, freelist))) { |
1758 | void *prior; |
1759 | unsigned long counters; |
1760 | |
1761 | do { |
1762 | prior = page->freelist; |
1763 | counters = page->counters; |
1764 | set_freepointer(s, freelist, prior); |
1765 | new.counters = counters; |
1766 | new.inuse--; |
1767 | VM_BUG_ON(!new.frozen); |
1768 | |
1769 | } while (!__cmpxchg_double_slab(s, page, |
1770 | prior, counters, |
1771 | freelist, new.counters, |
1772 | "drain percpu freelist")); |
1773 | |
1774 | freelist = nextfree; |
1775 | } |
1776 | |
1777 | /* |
1778 | * Stage two: Ensure that the page is unfrozen while the |
1779 | * list presence reflects the actual number of objects |
1780 | * during unfreeze. |
1781 | * |
1782 | * We setup the list membership and then perform a cmpxchg |
1783 | * with the count. If there is a mismatch then the page |
1784 | * is not unfrozen but the page is on the wrong list. |
1785 | * |
1786 | * Then we restart the process which may have to remove |
1787 | * the page from the list that we just put it on again |
1788 | * because the number of objects in the slab may have |
1789 | * changed. |
1790 | */ |
1791 | redo: |
1792 | |
1793 | old.freelist = page->freelist; |
1794 | old.counters = page->counters; |
1795 | VM_BUG_ON(!old.frozen); |
1796 | |
1797 | /* Determine target state of the slab */ |
1798 | new.counters = old.counters; |
1799 | if (freelist) { |
1800 | new.inuse--; |
1801 | set_freepointer(s, freelist, old.freelist); |
1802 | new.freelist = freelist; |
1803 | } else |
1804 | new.freelist = old.freelist; |
1805 | |
1806 | new.frozen = 0; |
1807 | |
1808 | if (!new.inuse && n->nr_partial > s->min_partial) |
1809 | m = M_FREE; |
1810 | else if (new.freelist) { |
1811 | m = M_PARTIAL; |
1812 | if (!lock) { |
1813 | lock = 1; |
1814 | /* |
1815 | * Taking the spinlock removes the possiblity |
1816 | * that acquire_slab() will see a slab page that |
1817 | * is frozen |
1818 | */ |
1819 | spin_lock(&n->list_lock); |
1820 | } |
1821 | } else { |
1822 | m = M_FULL; |
1823 | if (kmem_cache_debug(s) && !lock) { |
1824 | lock = 1; |
1825 | /* |
1826 | * This also ensures that the scanning of full |
1827 | * slabs from diagnostic functions will not see |
1828 | * any frozen slabs. |
1829 | */ |
1830 | spin_lock(&n->list_lock); |
1831 | } |
1832 | } |
1833 | |
1834 | if (l != m) { |
1835 | |
1836 | if (l == M_PARTIAL) |
1837 | |
1838 | remove_partial(n, page); |
1839 | |
1840 | else if (l == M_FULL) |
1841 | |
1842 | remove_full(s, page); |
1843 | |
1844 | if (m == M_PARTIAL) { |
1845 | |
1846 | add_partial(n, page, tail); |
1847 | stat(s, tail); |
1848 | |
1849 | } else if (m == M_FULL) { |
1850 | |
1851 | stat(s, DEACTIVATE_FULL); |
1852 | add_full(s, n, page); |
1853 | |
1854 | } |
1855 | } |
1856 | |
1857 | l = m; |
1858 | if (!__cmpxchg_double_slab(s, page, |
1859 | old.freelist, old.counters, |
1860 | new.freelist, new.counters, |
1861 | "unfreezing slab")) |
1862 | goto redo; |
1863 | |
1864 | if (lock) |
1865 | spin_unlock(&n->list_lock); |
1866 | |
1867 | if (m == M_FREE) { |
1868 | stat(s, DEACTIVATE_EMPTY); |
1869 | discard_slab(s, page); |
1870 | stat(s, FREE_SLAB); |
1871 | } |
1872 | } |
1873 | |
1874 | /* |
1875 | * Unfreeze all the cpu partial slabs. |
1876 | * |
1877 | * This function must be called with interrupts disabled |
1878 | * for the cpu using c (or some other guarantee must be there |
1879 | * to guarantee no concurrent accesses). |
1880 | */ |
1881 | static void unfreeze_partials(struct kmem_cache *s, |
1882 | struct kmem_cache_cpu *c) |
1883 | { |
1884 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
1885 | struct page *page, *discard_page = NULL; |
1886 | |
1887 | while ((page = c->partial)) { |
1888 | struct page new; |
1889 | struct page old; |
1890 | |
1891 | c->partial = page->next; |
1892 | |
1893 | n2 = get_node(s, page_to_nid(page)); |
1894 | if (n != n2) { |
1895 | if (n) |
1896 | spin_unlock(&n->list_lock); |
1897 | |
1898 | n = n2; |
1899 | spin_lock(&n->list_lock); |
1900 | } |
1901 | |
1902 | do { |
1903 | |
1904 | old.freelist = page->freelist; |
1905 | old.counters = page->counters; |
1906 | VM_BUG_ON(!old.frozen); |
1907 | |
1908 | new.counters = old.counters; |
1909 | new.freelist = old.freelist; |
1910 | |
1911 | new.frozen = 0; |
1912 | |
1913 | } while (!__cmpxchg_double_slab(s, page, |
1914 | old.freelist, old.counters, |
1915 | new.freelist, new.counters, |
1916 | "unfreezing slab")); |
1917 | |
1918 | if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { |
1919 | page->next = discard_page; |
1920 | discard_page = page; |
1921 | } else { |
1922 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
1923 | stat(s, FREE_ADD_PARTIAL); |
1924 | } |
1925 | } |
1926 | |
1927 | if (n) |
1928 | spin_unlock(&n->list_lock); |
1929 | |
1930 | while (discard_page) { |
1931 | page = discard_page; |
1932 | discard_page = discard_page->next; |
1933 | |
1934 | stat(s, DEACTIVATE_EMPTY); |
1935 | discard_slab(s, page); |
1936 | stat(s, FREE_SLAB); |
1937 | } |
1938 | } |
1939 | |
1940 | /* |
1941 | * Put a page that was just frozen (in __slab_free) into a partial page |
1942 | * slot if available. This is done without interrupts disabled and without |
1943 | * preemption disabled. The cmpxchg is racy and may put the partial page |
1944 | * onto a random cpus partial slot. |
1945 | * |
1946 | * If we did not find a slot then simply move all the partials to the |
1947 | * per node partial list. |
1948 | */ |
1949 | static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
1950 | { |
1951 | struct page *oldpage; |
1952 | int pages; |
1953 | int pobjects; |
1954 | |
1955 | do { |
1956 | pages = 0; |
1957 | pobjects = 0; |
1958 | oldpage = this_cpu_read(s->cpu_slab->partial); |
1959 | |
1960 | if (oldpage) { |
1961 | pobjects = oldpage->pobjects; |
1962 | pages = oldpage->pages; |
1963 | if (drain && pobjects > s->cpu_partial) { |
1964 | unsigned long flags; |
1965 | /* |
1966 | * partial array is full. Move the existing |
1967 | * set to the per node partial list. |
1968 | */ |
1969 | local_irq_save(flags); |
1970 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
1971 | local_irq_restore(flags); |
1972 | oldpage = NULL; |
1973 | pobjects = 0; |
1974 | pages = 0; |
1975 | stat(s, CPU_PARTIAL_DRAIN); |
1976 | } |
1977 | } |
1978 | |
1979 | pages++; |
1980 | pobjects += page->objects - page->inuse; |
1981 | |
1982 | page->pages = pages; |
1983 | page->pobjects = pobjects; |
1984 | page->next = oldpage; |
1985 | |
1986 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); |
1987 | return pobjects; |
1988 | } |
1989 | |
1990 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
1991 | { |
1992 | stat(s, CPUSLAB_FLUSH); |
1993 | deactivate_slab(s, c->page, c->freelist); |
1994 | |
1995 | c->tid = next_tid(c->tid); |
1996 | c->page = NULL; |
1997 | c->freelist = NULL; |
1998 | } |
1999 | |
2000 | /* |
2001 | * Flush cpu slab. |
2002 | * |
2003 | * Called from IPI handler with interrupts disabled. |
2004 | */ |
2005 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
2006 | { |
2007 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2008 | |
2009 | if (likely(c)) { |
2010 | if (c->page) |
2011 | flush_slab(s, c); |
2012 | |
2013 | unfreeze_partials(s, c); |
2014 | } |
2015 | } |
2016 | |
2017 | static void flush_cpu_slab(void *d) |
2018 | { |
2019 | struct kmem_cache *s = d; |
2020 | |
2021 | __flush_cpu_slab(s, smp_processor_id()); |
2022 | } |
2023 | |
2024 | static bool has_cpu_slab(int cpu, void *info) |
2025 | { |
2026 | struct kmem_cache *s = info; |
2027 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
2028 | |
2029 | return c->page || c->partial; |
2030 | } |
2031 | |
2032 | static void flush_all(struct kmem_cache *s) |
2033 | { |
2034 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
2035 | } |
2036 | |
2037 | /* |
2038 | * Check if the objects in a per cpu structure fit numa |
2039 | * locality expectations. |
2040 | */ |
2041 | static inline int node_match(struct page *page, int node) |
2042 | { |
2043 | #ifdef CONFIG_NUMA |
2044 | if (node != NUMA_NO_NODE && page_to_nid(page) != node) |
2045 | return 0; |
2046 | #endif |
2047 | return 1; |
2048 | } |
2049 | |
2050 | static int count_free(struct page *page) |
2051 | { |
2052 | return page->objects - page->inuse; |
2053 | } |
2054 | |
2055 | static unsigned long count_partial(struct kmem_cache_node *n, |
2056 | int (*get_count)(struct page *)) |
2057 | { |
2058 | unsigned long flags; |
2059 | unsigned long x = 0; |
2060 | struct page *page; |
2061 | |
2062 | spin_lock_irqsave(&n->list_lock, flags); |
2063 | list_for_each_entry(page, &n->partial, lru) |
2064 | x += get_count(page); |
2065 | spin_unlock_irqrestore(&n->list_lock, flags); |
2066 | return x; |
2067 | } |
2068 | |
2069 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2070 | { |
2071 | #ifdef CONFIG_SLUB_DEBUG |
2072 | return atomic_long_read(&n->total_objects); |
2073 | #else |
2074 | return 0; |
2075 | #endif |
2076 | } |
2077 | |
2078 | static noinline void |
2079 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) |
2080 | { |
2081 | int node; |
2082 | |
2083 | printk(KERN_WARNING |
2084 | "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", |
2085 | nid, gfpflags); |
2086 | printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " |
2087 | "default order: %d, min order: %d\n", s->name, s->object_size, |
2088 | s->size, oo_order(s->oo), oo_order(s->min)); |
2089 | |
2090 | if (oo_order(s->min) > get_order(s->object_size)) |
2091 | printk(KERN_WARNING " %s debugging increased min order, use " |
2092 | "slub_debug=O to disable.\n", s->name); |
2093 | |
2094 | for_each_online_node(node) { |
2095 | struct kmem_cache_node *n = get_node(s, node); |
2096 | unsigned long nr_slabs; |
2097 | unsigned long nr_objs; |
2098 | unsigned long nr_free; |
2099 | |
2100 | if (!n) |
2101 | continue; |
2102 | |
2103 | nr_free = count_partial(n, count_free); |
2104 | nr_slabs = node_nr_slabs(n); |
2105 | nr_objs = node_nr_objs(n); |
2106 | |
2107 | printk(KERN_WARNING |
2108 | " node %d: slabs: %ld, objs: %ld, free: %ld\n", |
2109 | node, nr_slabs, nr_objs, nr_free); |
2110 | } |
2111 | } |
2112 | |
2113 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2114 | int node, struct kmem_cache_cpu **pc) |
2115 | { |
2116 | void *freelist; |
2117 | struct kmem_cache_cpu *c = *pc; |
2118 | struct page *page; |
2119 | |
2120 | freelist = get_partial(s, flags, node, c); |
2121 | |
2122 | if (freelist) |
2123 | return freelist; |
2124 | |
2125 | page = new_slab(s, flags, node); |
2126 | if (page) { |
2127 | c = __this_cpu_ptr(s->cpu_slab); |
2128 | if (c->page) |
2129 | flush_slab(s, c); |
2130 | |
2131 | /* |
2132 | * No other reference to the page yet so we can |
2133 | * muck around with it freely without cmpxchg |
2134 | */ |
2135 | freelist = page->freelist; |
2136 | page->freelist = NULL; |
2137 | |
2138 | stat(s, ALLOC_SLAB); |
2139 | c->page = page; |
2140 | *pc = c; |
2141 | } else |
2142 | freelist = NULL; |
2143 | |
2144 | return freelist; |
2145 | } |
2146 | |
2147 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2148 | { |
2149 | if (unlikely(PageSlabPfmemalloc(page))) |
2150 | return gfp_pfmemalloc_allowed(gfpflags); |
2151 | |
2152 | return true; |
2153 | } |
2154 | |
2155 | /* |
2156 | * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist |
2157 | * or deactivate the page. |
2158 | * |
2159 | * The page is still frozen if the return value is not NULL. |
2160 | * |
2161 | * If this function returns NULL then the page has been unfrozen. |
2162 | * |
2163 | * This function must be called with interrupt disabled. |
2164 | */ |
2165 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) |
2166 | { |
2167 | struct page new; |
2168 | unsigned long counters; |
2169 | void *freelist; |
2170 | |
2171 | do { |
2172 | freelist = page->freelist; |
2173 | counters = page->counters; |
2174 | |
2175 | new.counters = counters; |
2176 | VM_BUG_ON(!new.frozen); |
2177 | |
2178 | new.inuse = page->objects; |
2179 | new.frozen = freelist != NULL; |
2180 | |
2181 | } while (!__cmpxchg_double_slab(s, page, |
2182 | freelist, counters, |
2183 | NULL, new.counters, |
2184 | "get_freelist")); |
2185 | |
2186 | return freelist; |
2187 | } |
2188 | |
2189 | /* |
2190 | * Slow path. The lockless freelist is empty or we need to perform |
2191 | * debugging duties. |
2192 | * |
2193 | * Processing is still very fast if new objects have been freed to the |
2194 | * regular freelist. In that case we simply take over the regular freelist |
2195 | * as the lockless freelist and zap the regular freelist. |
2196 | * |
2197 | * If that is not working then we fall back to the partial lists. We take the |
2198 | * first element of the freelist as the object to allocate now and move the |
2199 | * rest of the freelist to the lockless freelist. |
2200 | * |
2201 | * And if we were unable to get a new slab from the partial slab lists then |
2202 | * we need to allocate a new slab. This is the slowest path since it involves |
2203 | * a call to the page allocator and the setup of a new slab. |
2204 | */ |
2205 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
2206 | unsigned long addr, struct kmem_cache_cpu *c) |
2207 | { |
2208 | void *freelist; |
2209 | struct page *page; |
2210 | unsigned long flags; |
2211 | |
2212 | local_irq_save(flags); |
2213 | #ifdef CONFIG_PREEMPT |
2214 | /* |
2215 | * We may have been preempted and rescheduled on a different |
2216 | * cpu before disabling interrupts. Need to reload cpu area |
2217 | * pointer. |
2218 | */ |
2219 | c = this_cpu_ptr(s->cpu_slab); |
2220 | #endif |
2221 | |
2222 | page = c->page; |
2223 | if (!page) |
2224 | goto new_slab; |
2225 | redo: |
2226 | |
2227 | if (unlikely(!node_match(page, node))) { |
2228 | stat(s, ALLOC_NODE_MISMATCH); |
2229 | deactivate_slab(s, page, c->freelist); |
2230 | c->page = NULL; |
2231 | c->freelist = NULL; |
2232 | goto new_slab; |
2233 | } |
2234 | |
2235 | /* |
2236 | * By rights, we should be searching for a slab page that was |
2237 | * PFMEMALLOC but right now, we are losing the pfmemalloc |
2238 | * information when the page leaves the per-cpu allocator |
2239 | */ |
2240 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { |
2241 | deactivate_slab(s, page, c->freelist); |
2242 | c->page = NULL; |
2243 | c->freelist = NULL; |
2244 | goto new_slab; |
2245 | } |
2246 | |
2247 | /* must check again c->freelist in case of cpu migration or IRQ */ |
2248 | freelist = c->freelist; |
2249 | if (freelist) |
2250 | goto load_freelist; |
2251 | |
2252 | stat(s, ALLOC_SLOWPATH); |
2253 | |
2254 | freelist = get_freelist(s, page); |
2255 | |
2256 | if (!freelist) { |
2257 | c->page = NULL; |
2258 | stat(s, DEACTIVATE_BYPASS); |
2259 | goto new_slab; |
2260 | } |
2261 | |
2262 | stat(s, ALLOC_REFILL); |
2263 | |
2264 | load_freelist: |
2265 | /* |
2266 | * freelist is pointing to the list of objects to be used. |
2267 | * page is pointing to the page from which the objects are obtained. |
2268 | * That page must be frozen for per cpu allocations to work. |
2269 | */ |
2270 | VM_BUG_ON(!c->page->frozen); |
2271 | c->freelist = get_freepointer(s, freelist); |
2272 | c->tid = next_tid(c->tid); |
2273 | local_irq_restore(flags); |
2274 | return freelist; |
2275 | |
2276 | new_slab: |
2277 | |
2278 | if (c->partial) { |
2279 | page = c->page = c->partial; |
2280 | c->partial = page->next; |
2281 | stat(s, CPU_PARTIAL_ALLOC); |
2282 | c->freelist = NULL; |
2283 | goto redo; |
2284 | } |
2285 | |
2286 | freelist = new_slab_objects(s, gfpflags, node, &c); |
2287 | |
2288 | if (unlikely(!freelist)) { |
2289 | if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) |
2290 | slab_out_of_memory(s, gfpflags, node); |
2291 | |
2292 | local_irq_restore(flags); |
2293 | return NULL; |
2294 | } |
2295 | |
2296 | page = c->page; |
2297 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
2298 | goto load_freelist; |
2299 | |
2300 | /* Only entered in the debug case */ |
2301 | if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) |
2302 | goto new_slab; /* Slab failed checks. Next slab needed */ |
2303 | |
2304 | deactivate_slab(s, page, get_freepointer(s, freelist)); |
2305 | c->page = NULL; |
2306 | c->freelist = NULL; |
2307 | local_irq_restore(flags); |
2308 | return freelist; |
2309 | } |
2310 | |
2311 | /* |
2312 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) |
2313 | * have the fastpath folded into their functions. So no function call |
2314 | * overhead for requests that can be satisfied on the fastpath. |
2315 | * |
2316 | * The fastpath works by first checking if the lockless freelist can be used. |
2317 | * If not then __slab_alloc is called for slow processing. |
2318 | * |
2319 | * Otherwise we can simply pick the next object from the lockless free list. |
2320 | */ |
2321 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
2322 | gfp_t gfpflags, int node, unsigned long addr) |
2323 | { |
2324 | void **object; |
2325 | struct kmem_cache_cpu *c; |
2326 | struct page *page; |
2327 | unsigned long tid; |
2328 | |
2329 | if (slab_pre_alloc_hook(s, gfpflags)) |
2330 | return NULL; |
2331 | |
2332 | s = memcg_kmem_get_cache(s, gfpflags); |
2333 | redo: |
2334 | |
2335 | /* |
2336 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is |
2337 | * enabled. We may switch back and forth between cpus while |
2338 | * reading from one cpu area. That does not matter as long |
2339 | * as we end up on the original cpu again when doing the cmpxchg. |
2340 | */ |
2341 | c = __this_cpu_ptr(s->cpu_slab); |
2342 | |
2343 | /* |
2344 | * The transaction ids are globally unique per cpu and per operation on |
2345 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double |
2346 | * occurs on the right processor and that there was no operation on the |
2347 | * linked list in between. |
2348 | */ |
2349 | tid = c->tid; |
2350 | barrier(); |
2351 | |
2352 | object = c->freelist; |
2353 | page = c->page; |
2354 | if (unlikely(!object || !node_match(page, node))) |
2355 | object = __slab_alloc(s, gfpflags, node, addr, c); |
2356 | |
2357 | else { |
2358 | void *next_object = get_freepointer_safe(s, object); |
2359 | |
2360 | /* |
2361 | * The cmpxchg will only match if there was no additional |
2362 | * operation and if we are on the right processor. |
2363 | * |
2364 | * The cmpxchg does the following atomically (without lock semantics!) |
2365 | * 1. Relocate first pointer to the current per cpu area. |
2366 | * 2. Verify that tid and freelist have not been changed |
2367 | * 3. If they were not changed replace tid and freelist |
2368 | * |
2369 | * Since this is without lock semantics the protection is only against |
2370 | * code executing on this cpu *not* from access by other cpus. |
2371 | */ |
2372 | if (unlikely(!this_cpu_cmpxchg_double( |
2373 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2374 | object, tid, |
2375 | next_object, next_tid(tid)))) { |
2376 | |
2377 | note_cmpxchg_failure("slab_alloc", s, tid); |
2378 | goto redo; |
2379 | } |
2380 | prefetch_freepointer(s, next_object); |
2381 | stat(s, ALLOC_FASTPATH); |
2382 | } |
2383 | |
2384 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
2385 | memset(object, 0, s->object_size); |
2386 | |
2387 | slab_post_alloc_hook(s, gfpflags, object); |
2388 | |
2389 | return object; |
2390 | } |
2391 | |
2392 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2393 | gfp_t gfpflags, unsigned long addr) |
2394 | { |
2395 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); |
2396 | } |
2397 | |
2398 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2399 | { |
2400 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
2401 | |
2402 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); |
2403 | |
2404 | return ret; |
2405 | } |
2406 | EXPORT_SYMBOL(kmem_cache_alloc); |
2407 | |
2408 | #ifdef CONFIG_TRACING |
2409 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2410 | { |
2411 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
2412 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
2413 | return ret; |
2414 | } |
2415 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
2416 | |
2417 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) |
2418 | { |
2419 | void *ret = kmalloc_order(size, flags, order); |
2420 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); |
2421 | return ret; |
2422 | } |
2423 | EXPORT_SYMBOL(kmalloc_order_trace); |
2424 | #endif |
2425 | |
2426 | #ifdef CONFIG_NUMA |
2427 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
2428 | { |
2429 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
2430 | |
2431 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
2432 | s->object_size, s->size, gfpflags, node); |
2433 | |
2434 | return ret; |
2435 | } |
2436 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
2437 | |
2438 | #ifdef CONFIG_TRACING |
2439 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
2440 | gfp_t gfpflags, |
2441 | int node, size_t size) |
2442 | { |
2443 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
2444 | |
2445 | trace_kmalloc_node(_RET_IP_, ret, |
2446 | size, s->size, gfpflags, node); |
2447 | return ret; |
2448 | } |
2449 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
2450 | #endif |
2451 | #endif |
2452 | |
2453 | /* |
2454 | * Slow patch handling. This may still be called frequently since objects |
2455 | * have a longer lifetime than the cpu slabs in most processing loads. |
2456 | * |
2457 | * So we still attempt to reduce cache line usage. Just take the slab |
2458 | * lock and free the item. If there is no additional partial page |
2459 | * handling required then we can return immediately. |
2460 | */ |
2461 | static void __slab_free(struct kmem_cache *s, struct page *page, |
2462 | void *x, unsigned long addr) |
2463 | { |
2464 | void *prior; |
2465 | void **object = (void *)x; |
2466 | int was_frozen; |
2467 | struct page new; |
2468 | unsigned long counters; |
2469 | struct kmem_cache_node *n = NULL; |
2470 | unsigned long uninitialized_var(flags); |
2471 | |
2472 | stat(s, FREE_SLOWPATH); |
2473 | |
2474 | if (kmem_cache_debug(s) && |
2475 | !(n = free_debug_processing(s, page, x, addr, &flags))) |
2476 | return; |
2477 | |
2478 | do { |
2479 | if (unlikely(n)) { |
2480 | spin_unlock_irqrestore(&n->list_lock, flags); |
2481 | n = NULL; |
2482 | } |
2483 | prior = page->freelist; |
2484 | counters = page->counters; |
2485 | set_freepointer(s, object, prior); |
2486 | new.counters = counters; |
2487 | was_frozen = new.frozen; |
2488 | new.inuse--; |
2489 | if ((!new.inuse || !prior) && !was_frozen) { |
2490 | |
2491 | if (!kmem_cache_debug(s) && !prior) |
2492 | |
2493 | /* |
2494 | * Slab was on no list before and will be partially empty |
2495 | * We can defer the list move and instead freeze it. |
2496 | */ |
2497 | new.frozen = 1; |
2498 | |
2499 | else { /* Needs to be taken off a list */ |
2500 | |
2501 | n = get_node(s, page_to_nid(page)); |
2502 | /* |
2503 | * Speculatively acquire the list_lock. |
2504 | * If the cmpxchg does not succeed then we may |
2505 | * drop the list_lock without any processing. |
2506 | * |
2507 | * Otherwise the list_lock will synchronize with |
2508 | * other processors updating the list of slabs. |
2509 | */ |
2510 | spin_lock_irqsave(&n->list_lock, flags); |
2511 | |
2512 | } |
2513 | } |
2514 | |
2515 | } while (!cmpxchg_double_slab(s, page, |
2516 | prior, counters, |
2517 | object, new.counters, |
2518 | "__slab_free")); |
2519 | |
2520 | if (likely(!n)) { |
2521 | |
2522 | /* |
2523 | * If we just froze the page then put it onto the |
2524 | * per cpu partial list. |
2525 | */ |
2526 | if (new.frozen && !was_frozen) { |
2527 | put_cpu_partial(s, page, 1); |
2528 | stat(s, CPU_PARTIAL_FREE); |
2529 | } |
2530 | /* |
2531 | * The list lock was not taken therefore no list |
2532 | * activity can be necessary. |
2533 | */ |
2534 | if (was_frozen) |
2535 | stat(s, FREE_FROZEN); |
2536 | return; |
2537 | } |
2538 | |
2539 | if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) |
2540 | goto slab_empty; |
2541 | |
2542 | /* |
2543 | * Objects left in the slab. If it was not on the partial list before |
2544 | * then add it. |
2545 | */ |
2546 | if (kmem_cache_debug(s) && unlikely(!prior)) { |
2547 | remove_full(s, page); |
2548 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2549 | stat(s, FREE_ADD_PARTIAL); |
2550 | } |
2551 | spin_unlock_irqrestore(&n->list_lock, flags); |
2552 | return; |
2553 | |
2554 | slab_empty: |
2555 | if (prior) { |
2556 | /* |
2557 | * Slab on the partial list. |
2558 | */ |
2559 | remove_partial(n, page); |
2560 | stat(s, FREE_REMOVE_PARTIAL); |
2561 | } else |
2562 | /* Slab must be on the full list */ |
2563 | remove_full(s, page); |
2564 | |
2565 | spin_unlock_irqrestore(&n->list_lock, flags); |
2566 | stat(s, FREE_SLAB); |
2567 | discard_slab(s, page); |
2568 | } |
2569 | |
2570 | /* |
2571 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that |
2572 | * can perform fastpath freeing without additional function calls. |
2573 | * |
2574 | * The fastpath is only possible if we are freeing to the current cpu slab |
2575 | * of this processor. This typically the case if we have just allocated |
2576 | * the item before. |
2577 | * |
2578 | * If fastpath is not possible then fall back to __slab_free where we deal |
2579 | * with all sorts of special processing. |
2580 | */ |
2581 | static __always_inline void slab_free(struct kmem_cache *s, |
2582 | struct page *page, void *x, unsigned long addr) |
2583 | { |
2584 | void **object = (void *)x; |
2585 | struct kmem_cache_cpu *c; |
2586 | unsigned long tid; |
2587 | |
2588 | slab_free_hook(s, x); |
2589 | |
2590 | redo: |
2591 | /* |
2592 | * Determine the currently cpus per cpu slab. |
2593 | * The cpu may change afterward. However that does not matter since |
2594 | * data is retrieved via this pointer. If we are on the same cpu |
2595 | * during the cmpxchg then the free will succedd. |
2596 | */ |
2597 | c = __this_cpu_ptr(s->cpu_slab); |
2598 | |
2599 | tid = c->tid; |
2600 | barrier(); |
2601 | |
2602 | if (likely(page == c->page)) { |
2603 | set_freepointer(s, object, c->freelist); |
2604 | |
2605 | if (unlikely(!this_cpu_cmpxchg_double( |
2606 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2607 | c->freelist, tid, |
2608 | object, next_tid(tid)))) { |
2609 | |
2610 | note_cmpxchg_failure("slab_free", s, tid); |
2611 | goto redo; |
2612 | } |
2613 | stat(s, FREE_FASTPATH); |
2614 | } else |
2615 | __slab_free(s, page, x, addr); |
2616 | |
2617 | } |
2618 | |
2619 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2620 | { |
2621 | s = cache_from_obj(s, x); |
2622 | if (!s) |
2623 | return; |
2624 | slab_free(s, virt_to_head_page(x), x, _RET_IP_); |
2625 | trace_kmem_cache_free(_RET_IP_, x); |
2626 | } |
2627 | EXPORT_SYMBOL(kmem_cache_free); |
2628 | |
2629 | /* |
2630 | * Object placement in a slab is made very easy because we always start at |
2631 | * offset 0. If we tune the size of the object to the alignment then we can |
2632 | * get the required alignment by putting one properly sized object after |
2633 | * another. |
2634 | * |
2635 | * Notice that the allocation order determines the sizes of the per cpu |
2636 | * caches. Each processor has always one slab available for allocations. |
2637 | * Increasing the allocation order reduces the number of times that slabs |
2638 | * must be moved on and off the partial lists and is therefore a factor in |
2639 | * locking overhead. |
2640 | */ |
2641 | |
2642 | /* |
2643 | * Mininum / Maximum order of slab pages. This influences locking overhead |
2644 | * and slab fragmentation. A higher order reduces the number of partial slabs |
2645 | * and increases the number of allocations possible without having to |
2646 | * take the list_lock. |
2647 | */ |
2648 | static int slub_min_order; |
2649 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
2650 | static int slub_min_objects; |
2651 | |
2652 | /* |
2653 | * Merge control. If this is set then no merging of slab caches will occur. |
2654 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
2655 | */ |
2656 | static int slub_nomerge; |
2657 | |
2658 | /* |
2659 | * Calculate the order of allocation given an slab object size. |
2660 | * |
2661 | * The order of allocation has significant impact on performance and other |
2662 | * system components. Generally order 0 allocations should be preferred since |
2663 | * order 0 does not cause fragmentation in the page allocator. Larger objects |
2664 | * be problematic to put into order 0 slabs because there may be too much |
2665 | * unused space left. We go to a higher order if more than 1/16th of the slab |
2666 | * would be wasted. |
2667 | * |
2668 | * In order to reach satisfactory performance we must ensure that a minimum |
2669 | * number of objects is in one slab. Otherwise we may generate too much |
2670 | * activity on the partial lists which requires taking the list_lock. This is |
2671 | * less a concern for large slabs though which are rarely used. |
2672 | * |
2673 | * slub_max_order specifies the order where we begin to stop considering the |
2674 | * number of objects in a slab as critical. If we reach slub_max_order then |
2675 | * we try to keep the page order as low as possible. So we accept more waste |
2676 | * of space in favor of a small page order. |
2677 | * |
2678 | * Higher order allocations also allow the placement of more objects in a |
2679 | * slab and thereby reduce object handling overhead. If the user has |
2680 | * requested a higher mininum order then we start with that one instead of |
2681 | * the smallest order which will fit the object. |
2682 | */ |
2683 | static inline int slab_order(int size, int min_objects, |
2684 | int max_order, int fract_leftover, int reserved) |
2685 | { |
2686 | int order; |
2687 | int rem; |
2688 | int min_order = slub_min_order; |
2689 | |
2690 | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
2691 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
2692 | |
2693 | for (order = max(min_order, |
2694 | fls(min_objects * size - 1) - PAGE_SHIFT); |
2695 | order <= max_order; order++) { |
2696 | |
2697 | unsigned long slab_size = PAGE_SIZE << order; |
2698 | |
2699 | if (slab_size < min_objects * size + reserved) |
2700 | continue; |
2701 | |
2702 | rem = (slab_size - reserved) % size; |
2703 | |
2704 | if (rem <= slab_size / fract_leftover) |
2705 | break; |
2706 | |
2707 | } |
2708 | |
2709 | return order; |
2710 | } |
2711 | |
2712 | static inline int calculate_order(int size, int reserved) |
2713 | { |
2714 | int order; |
2715 | int min_objects; |
2716 | int fraction; |
2717 | int max_objects; |
2718 | |
2719 | /* |
2720 | * Attempt to find best configuration for a slab. This |
2721 | * works by first attempting to generate a layout with |
2722 | * the best configuration and backing off gradually. |
2723 | * |
2724 | * First we reduce the acceptable waste in a slab. Then |
2725 | * we reduce the minimum objects required in a slab. |
2726 | */ |
2727 | min_objects = slub_min_objects; |
2728 | if (!min_objects) |
2729 | min_objects = 4 * (fls(nr_cpu_ids) + 1); |
2730 | max_objects = order_objects(slub_max_order, size, reserved); |
2731 | min_objects = min(min_objects, max_objects); |
2732 | |
2733 | while (min_objects > 1) { |
2734 | fraction = 16; |
2735 | while (fraction >= 4) { |
2736 | order = slab_order(size, min_objects, |
2737 | slub_max_order, fraction, reserved); |
2738 | if (order <= slub_max_order) |
2739 | return order; |
2740 | fraction /= 2; |
2741 | } |
2742 | min_objects--; |
2743 | } |
2744 | |
2745 | /* |
2746 | * We were unable to place multiple objects in a slab. Now |
2747 | * lets see if we can place a single object there. |
2748 | */ |
2749 | order = slab_order(size, 1, slub_max_order, 1, reserved); |
2750 | if (order <= slub_max_order) |
2751 | return order; |
2752 | |
2753 | /* |
2754 | * Doh this slab cannot be placed using slub_max_order. |
2755 | */ |
2756 | order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
2757 | if (order < MAX_ORDER) |
2758 | return order; |
2759 | return -ENOSYS; |
2760 | } |
2761 | |
2762 | static void |
2763 | init_kmem_cache_node(struct kmem_cache_node *n) |
2764 | { |
2765 | n->nr_partial = 0; |
2766 | spin_lock_init(&n->list_lock); |
2767 | INIT_LIST_HEAD(&n->partial); |
2768 | #ifdef CONFIG_SLUB_DEBUG |
2769 | atomic_long_set(&n->nr_slabs, 0); |
2770 | atomic_long_set(&n->total_objects, 0); |
2771 | INIT_LIST_HEAD(&n->full); |
2772 | #endif |
2773 | } |
2774 | |
2775 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
2776 | { |
2777 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
2778 | SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); |
2779 | |
2780 | /* |
2781 | * Must align to double word boundary for the double cmpxchg |
2782 | * instructions to work; see __pcpu_double_call_return_bool(). |
2783 | */ |
2784 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
2785 | 2 * sizeof(void *)); |
2786 | |
2787 | if (!s->cpu_slab) |
2788 | return 0; |
2789 | |
2790 | init_kmem_cache_cpus(s); |
2791 | |
2792 | return 1; |
2793 | } |
2794 | |
2795 | static struct kmem_cache *kmem_cache_node; |
2796 | |
2797 | /* |
2798 | * No kmalloc_node yet so do it by hand. We know that this is the first |
2799 | * slab on the node for this slabcache. There are no concurrent accesses |
2800 | * possible. |
2801 | * |
2802 | * Note that this function only works on the kmalloc_node_cache |
2803 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2804 | * memory on a fresh node that has no slab structures yet. |
2805 | */ |
2806 | static void early_kmem_cache_node_alloc(int node) |
2807 | { |
2808 | struct page *page; |
2809 | struct kmem_cache_node *n; |
2810 | |
2811 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
2812 | |
2813 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
2814 | |
2815 | BUG_ON(!page); |
2816 | if (page_to_nid(page) != node) { |
2817 | printk(KERN_ERR "SLUB: Unable to allocate memory from " |
2818 | "node %d\n", node); |
2819 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " |
2820 | "in order to be able to continue\n"); |
2821 | } |
2822 | |
2823 | n = page->freelist; |
2824 | BUG_ON(!n); |
2825 | page->freelist = get_freepointer(kmem_cache_node, n); |
2826 | page->inuse = 1; |
2827 | page->frozen = 0; |
2828 | kmem_cache_node->node[node] = n; |
2829 | #ifdef CONFIG_SLUB_DEBUG |
2830 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
2831 | init_tracking(kmem_cache_node, n); |
2832 | #endif |
2833 | init_kmem_cache_node(n); |
2834 | inc_slabs_node(kmem_cache_node, node, page->objects); |
2835 | |
2836 | add_partial(n, page, DEACTIVATE_TO_HEAD); |
2837 | } |
2838 | |
2839 | static void free_kmem_cache_nodes(struct kmem_cache *s) |
2840 | { |
2841 | int node; |
2842 | |
2843 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2844 | struct kmem_cache_node *n = s->node[node]; |
2845 | |
2846 | if (n) |
2847 | kmem_cache_free(kmem_cache_node, n); |
2848 | |
2849 | s->node[node] = NULL; |
2850 | } |
2851 | } |
2852 | |
2853 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
2854 | { |
2855 | int node; |
2856 | |
2857 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2858 | struct kmem_cache_node *n; |
2859 | |
2860 | if (slab_state == DOWN) { |
2861 | early_kmem_cache_node_alloc(node); |
2862 | continue; |
2863 | } |
2864 | n = kmem_cache_alloc_node(kmem_cache_node, |
2865 | GFP_KERNEL, node); |
2866 | |
2867 | if (!n) { |
2868 | free_kmem_cache_nodes(s); |
2869 | return 0; |
2870 | } |
2871 | |
2872 | s->node[node] = n; |
2873 | init_kmem_cache_node(n); |
2874 | } |
2875 | return 1; |
2876 | } |
2877 | |
2878 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
2879 | { |
2880 | if (min < MIN_PARTIAL) |
2881 | min = MIN_PARTIAL; |
2882 | else if (min > MAX_PARTIAL) |
2883 | min = MAX_PARTIAL; |
2884 | s->min_partial = min; |
2885 | } |
2886 | |
2887 | /* |
2888 | * calculate_sizes() determines the order and the distribution of data within |
2889 | * a slab object. |
2890 | */ |
2891 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
2892 | { |
2893 | unsigned long flags = s->flags; |
2894 | unsigned long size = s->object_size; |
2895 | int order; |
2896 | |
2897 | /* |
2898 | * Round up object size to the next word boundary. We can only |
2899 | * place the free pointer at word boundaries and this determines |
2900 | * the possible location of the free pointer. |
2901 | */ |
2902 | size = ALIGN(size, sizeof(void *)); |
2903 | |
2904 | #ifdef CONFIG_SLUB_DEBUG |
2905 | /* |
2906 | * Determine if we can poison the object itself. If the user of |
2907 | * the slab may touch the object after free or before allocation |
2908 | * then we should never poison the object itself. |
2909 | */ |
2910 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && |
2911 | !s->ctor) |
2912 | s->flags |= __OBJECT_POISON; |
2913 | else |
2914 | s->flags &= ~__OBJECT_POISON; |
2915 | |
2916 | |
2917 | /* |
2918 | * If we are Redzoning then check if there is some space between the |
2919 | * end of the object and the free pointer. If not then add an |
2920 | * additional word to have some bytes to store Redzone information. |
2921 | */ |
2922 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
2923 | size += sizeof(void *); |
2924 | #endif |
2925 | |
2926 | /* |
2927 | * With that we have determined the number of bytes in actual use |
2928 | * by the object. This is the potential offset to the free pointer. |
2929 | */ |
2930 | s->inuse = size; |
2931 | |
2932 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || |
2933 | s->ctor)) { |
2934 | /* |
2935 | * Relocate free pointer after the object if it is not |
2936 | * permitted to overwrite the first word of the object on |
2937 | * kmem_cache_free. |
2938 | * |
2939 | * This is the case if we do RCU, have a constructor or |
2940 | * destructor or are poisoning the objects. |
2941 | */ |
2942 | s->offset = size; |
2943 | size += sizeof(void *); |
2944 | } |
2945 | |
2946 | #ifdef CONFIG_SLUB_DEBUG |
2947 | if (flags & SLAB_STORE_USER) |
2948 | /* |
2949 | * Need to store information about allocs and frees after |
2950 | * the object. |
2951 | */ |
2952 | size += 2 * sizeof(struct track); |
2953 | |
2954 | if (flags & SLAB_RED_ZONE) |
2955 | /* |
2956 | * Add some empty padding so that we can catch |
2957 | * overwrites from earlier objects rather than let |
2958 | * tracking information or the free pointer be |
2959 | * corrupted if a user writes before the start |
2960 | * of the object. |
2961 | */ |
2962 | size += sizeof(void *); |
2963 | #endif |
2964 | |
2965 | /* |
2966 | * SLUB stores one object immediately after another beginning from |
2967 | * offset 0. In order to align the objects we have to simply size |
2968 | * each object to conform to the alignment. |
2969 | */ |
2970 | size = ALIGN(size, s->align); |
2971 | s->size = size; |
2972 | if (forced_order >= 0) |
2973 | order = forced_order; |
2974 | else |
2975 | order = calculate_order(size, s->reserved); |
2976 | |
2977 | if (order < 0) |
2978 | return 0; |
2979 | |
2980 | s->allocflags = 0; |
2981 | if (order) |
2982 | s->allocflags |= __GFP_COMP; |
2983 | |
2984 | if (s->flags & SLAB_CACHE_DMA) |
2985 | s->allocflags |= SLUB_DMA; |
2986 | |
2987 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
2988 | s->allocflags |= __GFP_RECLAIMABLE; |
2989 | |
2990 | /* |
2991 | * Determine the number of objects per slab |
2992 | */ |
2993 | s->oo = oo_make(order, size, s->reserved); |
2994 | s->min = oo_make(get_order(size), size, s->reserved); |
2995 | if (oo_objects(s->oo) > oo_objects(s->max)) |
2996 | s->max = s->oo; |
2997 | |
2998 | return !!oo_objects(s->oo); |
2999 | } |
3000 | |
3001 | static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) |
3002 | { |
3003 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
3004 | s->reserved = 0; |
3005 | |
3006 | if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) |
3007 | s->reserved = sizeof(struct rcu_head); |
3008 | |
3009 | if (!calculate_sizes(s, -1)) |
3010 | goto error; |
3011 | if (disable_higher_order_debug) { |
3012 | /* |
3013 | * Disable debugging flags that store metadata if the min slab |
3014 | * order increased. |
3015 | */ |
3016 | if (get_order(s->size) > get_order(s->object_size)) { |
3017 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3018 | s->offset = 0; |
3019 | if (!calculate_sizes(s, -1)) |
3020 | goto error; |
3021 | } |
3022 | } |
3023 | |
3024 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3025 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
3026 | if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) |
3027 | /* Enable fast mode */ |
3028 | s->flags |= __CMPXCHG_DOUBLE; |
3029 | #endif |
3030 | |
3031 | /* |
3032 | * The larger the object size is, the more pages we want on the partial |
3033 | * list to avoid pounding the page allocator excessively. |
3034 | */ |
3035 | set_min_partial(s, ilog2(s->size) / 2); |
3036 | |
3037 | /* |
3038 | * cpu_partial determined the maximum number of objects kept in the |
3039 | * per cpu partial lists of a processor. |
3040 | * |
3041 | * Per cpu partial lists mainly contain slabs that just have one |
3042 | * object freed. If they are used for allocation then they can be |
3043 | * filled up again with minimal effort. The slab will never hit the |
3044 | * per node partial lists and therefore no locking will be required. |
3045 | * |
3046 | * This setting also determines |
3047 | * |
3048 | * A) The number of objects from per cpu partial slabs dumped to the |
3049 | * per node list when we reach the limit. |
3050 | * B) The number of objects in cpu partial slabs to extract from the |
3051 | * per node list when we run out of per cpu objects. We only fetch 50% |
3052 | * to keep some capacity around for frees. |
3053 | */ |
3054 | if (kmem_cache_debug(s)) |
3055 | s->cpu_partial = 0; |
3056 | else if (s->size >= PAGE_SIZE) |
3057 | s->cpu_partial = 2; |
3058 | else if (s->size >= 1024) |
3059 | s->cpu_partial = 6; |
3060 | else if (s->size >= 256) |
3061 | s->cpu_partial = 13; |
3062 | else |
3063 | s->cpu_partial = 30; |
3064 | |
3065 | #ifdef CONFIG_NUMA |
3066 | s->remote_node_defrag_ratio = 1000; |
3067 | #endif |
3068 | if (!init_kmem_cache_nodes(s)) |
3069 | goto error; |
3070 | |
3071 | if (alloc_kmem_cache_cpus(s)) |
3072 | return 0; |
3073 | |
3074 | free_kmem_cache_nodes(s); |
3075 | error: |
3076 | if (flags & SLAB_PANIC) |
3077 | panic("Cannot create slab %s size=%lu realsize=%u " |
3078 | "order=%u offset=%u flags=%lx\n", |
3079 | s->name, (unsigned long)s->size, s->size, oo_order(s->oo), |
3080 | s->offset, flags); |
3081 | return -EINVAL; |
3082 | } |
3083 | |
3084 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3085 | const char *text) |
3086 | { |
3087 | #ifdef CONFIG_SLUB_DEBUG |
3088 | void *addr = page_address(page); |
3089 | void *p; |
3090 | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
3091 | sizeof(long), GFP_ATOMIC); |
3092 | if (!map) |
3093 | return; |
3094 | slab_err(s, page, text, s->name); |
3095 | slab_lock(page); |
3096 | |
3097 | get_map(s, page, map); |
3098 | for_each_object(p, s, addr, page->objects) { |
3099 | |
3100 | if (!test_bit(slab_index(p, s, addr), map)) { |
3101 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", |
3102 | p, p - addr); |
3103 | print_tracking(s, p); |
3104 | } |
3105 | } |
3106 | slab_unlock(page); |
3107 | kfree(map); |
3108 | #endif |
3109 | } |
3110 | |
3111 | /* |
3112 | * Attempt to free all partial slabs on a node. |
3113 | * This is called from kmem_cache_close(). We must be the last thread |
3114 | * using the cache and therefore we do not need to lock anymore. |
3115 | */ |
3116 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
3117 | { |
3118 | struct page *page, *h; |
3119 | |
3120 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
3121 | if (!page->inuse) { |
3122 | remove_partial(n, page); |
3123 | discard_slab(s, page); |
3124 | } else { |
3125 | list_slab_objects(s, page, |
3126 | "Objects remaining in %s on kmem_cache_close()"); |
3127 | } |
3128 | } |
3129 | } |
3130 | |
3131 | /* |
3132 | * Release all resources used by a slab cache. |
3133 | */ |
3134 | static inline int kmem_cache_close(struct kmem_cache *s) |
3135 | { |
3136 | int node; |
3137 | |
3138 | flush_all(s); |
3139 | /* Attempt to free all objects */ |
3140 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3141 | struct kmem_cache_node *n = get_node(s, node); |
3142 | |
3143 | free_partial(s, n); |
3144 | if (n->nr_partial || slabs_node(s, node)) |
3145 | return 1; |
3146 | } |
3147 | free_percpu(s->cpu_slab); |
3148 | free_kmem_cache_nodes(s); |
3149 | return 0; |
3150 | } |
3151 | |
3152 | int __kmem_cache_shutdown(struct kmem_cache *s) |
3153 | { |
3154 | int rc = kmem_cache_close(s); |
3155 | |
3156 | if (!rc) { |
3157 | /* |
3158 | * We do the same lock strategy around sysfs_slab_add, see |
3159 | * __kmem_cache_create. Because this is pretty much the last |
3160 | * operation we do and the lock will be released shortly after |
3161 | * that in slab_common.c, we could just move sysfs_slab_remove |
3162 | * to a later point in common code. We should do that when we |
3163 | * have a common sysfs framework for all allocators. |
3164 | */ |
3165 | mutex_unlock(&slab_mutex); |
3166 | sysfs_slab_remove(s); |
3167 | mutex_lock(&slab_mutex); |
3168 | } |
3169 | |
3170 | return rc; |
3171 | } |
3172 | |
3173 | /******************************************************************** |
3174 | * Kmalloc subsystem |
3175 | *******************************************************************/ |
3176 | |
3177 | struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; |
3178 | EXPORT_SYMBOL(kmalloc_caches); |
3179 | |
3180 | #ifdef CONFIG_ZONE_DMA |
3181 | static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; |
3182 | #endif |
3183 | |
3184 | static int __init setup_slub_min_order(char *str) |
3185 | { |
3186 | get_option(&str, &slub_min_order); |
3187 | |
3188 | return 1; |
3189 | } |
3190 | |
3191 | __setup("slub_min_order=", setup_slub_min_order); |
3192 | |
3193 | static int __init setup_slub_max_order(char *str) |
3194 | { |
3195 | get_option(&str, &slub_max_order); |
3196 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
3197 | |
3198 | return 1; |
3199 | } |
3200 | |
3201 | __setup("slub_max_order=", setup_slub_max_order); |
3202 | |
3203 | static int __init setup_slub_min_objects(char *str) |
3204 | { |
3205 | get_option(&str, &slub_min_objects); |
3206 | |
3207 | return 1; |
3208 | } |
3209 | |
3210 | __setup("slub_min_objects=", setup_slub_min_objects); |
3211 | |
3212 | static int __init setup_slub_nomerge(char *str) |
3213 | { |
3214 | slub_nomerge = 1; |
3215 | return 1; |
3216 | } |
3217 | |
3218 | __setup("slub_nomerge", setup_slub_nomerge); |
3219 | |
3220 | /* |
3221 | * Conversion table for small slabs sizes / 8 to the index in the |
3222 | * kmalloc array. This is necessary for slabs < 192 since we have non power |
3223 | * of two cache sizes there. The size of larger slabs can be determined using |
3224 | * fls. |
3225 | */ |
3226 | static s8 size_index[24] = { |
3227 | 3, /* 8 */ |
3228 | 4, /* 16 */ |
3229 | 5, /* 24 */ |
3230 | 5, /* 32 */ |
3231 | 6, /* 40 */ |
3232 | 6, /* 48 */ |
3233 | 6, /* 56 */ |
3234 | 6, /* 64 */ |
3235 | 1, /* 72 */ |
3236 | 1, /* 80 */ |
3237 | 1, /* 88 */ |
3238 | 1, /* 96 */ |
3239 | 7, /* 104 */ |
3240 | 7, /* 112 */ |
3241 | 7, /* 120 */ |
3242 | 7, /* 128 */ |
3243 | 2, /* 136 */ |
3244 | 2, /* 144 */ |
3245 | 2, /* 152 */ |
3246 | 2, /* 160 */ |
3247 | 2, /* 168 */ |
3248 | 2, /* 176 */ |
3249 | 2, /* 184 */ |
3250 | 2 /* 192 */ |
3251 | }; |
3252 | |
3253 | static inline int size_index_elem(size_t bytes) |
3254 | { |
3255 | return (bytes - 1) / 8; |
3256 | } |
3257 | |
3258 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
3259 | { |
3260 | int index; |
3261 | |
3262 | if (size <= 192) { |
3263 | if (!size) |
3264 | return ZERO_SIZE_PTR; |
3265 | |
3266 | index = size_index[size_index_elem(size)]; |
3267 | } else |
3268 | index = fls(size - 1); |
3269 | |
3270 | #ifdef CONFIG_ZONE_DMA |
3271 | if (unlikely((flags & SLUB_DMA))) |
3272 | return kmalloc_dma_caches[index]; |
3273 | |
3274 | #endif |
3275 | return kmalloc_caches[index]; |
3276 | } |
3277 | |
3278 | void *__kmalloc(size_t size, gfp_t flags) |
3279 | { |
3280 | struct kmem_cache *s; |
3281 | void *ret; |
3282 | |
3283 | if (unlikely(size > SLUB_MAX_SIZE)) |
3284 | return kmalloc_large(size, flags); |
3285 | |
3286 | s = get_slab(size, flags); |
3287 | |
3288 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3289 | return s; |
3290 | |
3291 | ret = slab_alloc(s, flags, _RET_IP_); |
3292 | |
3293 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
3294 | |
3295 | return ret; |
3296 | } |
3297 | EXPORT_SYMBOL(__kmalloc); |
3298 | |
3299 | #ifdef CONFIG_NUMA |
3300 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3301 | { |
3302 | struct page *page; |
3303 | void *ptr = NULL; |
3304 | |
3305 | flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; |
3306 | page = alloc_pages_node(node, flags, get_order(size)); |
3307 | if (page) |
3308 | ptr = page_address(page); |
3309 | |
3310 | kmemleak_alloc(ptr, size, 1, flags); |
3311 | return ptr; |
3312 | } |
3313 | |
3314 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3315 | { |
3316 | struct kmem_cache *s; |
3317 | void *ret; |
3318 | |
3319 | if (unlikely(size > SLUB_MAX_SIZE)) { |
3320 | ret = kmalloc_large_node(size, flags, node); |
3321 | |
3322 | trace_kmalloc_node(_RET_IP_, ret, |
3323 | size, PAGE_SIZE << get_order(size), |
3324 | flags, node); |
3325 | |
3326 | return ret; |
3327 | } |
3328 | |
3329 | s = get_slab(size, flags); |
3330 | |
3331 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3332 | return s; |
3333 | |
3334 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
3335 | |
3336 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
3337 | |
3338 | return ret; |
3339 | } |
3340 | EXPORT_SYMBOL(__kmalloc_node); |
3341 | #endif |
3342 | |
3343 | size_t ksize(const void *object) |
3344 | { |
3345 | struct page *page; |
3346 | |
3347 | if (unlikely(object == ZERO_SIZE_PTR)) |
3348 | return 0; |
3349 | |
3350 | page = virt_to_head_page(object); |
3351 | |
3352 | if (unlikely(!PageSlab(page))) { |
3353 | WARN_ON(!PageCompound(page)); |
3354 | return PAGE_SIZE << compound_order(page); |
3355 | } |
3356 | |
3357 | return slab_ksize(page->slab_cache); |
3358 | } |
3359 | EXPORT_SYMBOL(ksize); |
3360 | |
3361 | #ifdef CONFIG_SLUB_DEBUG |
3362 | bool verify_mem_not_deleted(const void *x) |
3363 | { |
3364 | struct page *page; |
3365 | void *object = (void *)x; |
3366 | unsigned long flags; |
3367 | bool rv; |
3368 | |
3369 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
3370 | return false; |
3371 | |
3372 | local_irq_save(flags); |
3373 | |
3374 | page = virt_to_head_page(x); |
3375 | if (unlikely(!PageSlab(page))) { |
3376 | /* maybe it was from stack? */ |
3377 | rv = true; |
3378 | goto out_unlock; |
3379 | } |
3380 | |
3381 | slab_lock(page); |
3382 | if (on_freelist(page->slab_cache, page, object)) { |
3383 | object_err(page->slab_cache, page, object, "Object is on free-list"); |
3384 | rv = false; |
3385 | } else { |
3386 | rv = true; |
3387 | } |
3388 | slab_unlock(page); |
3389 | |
3390 | out_unlock: |
3391 | local_irq_restore(flags); |
3392 | return rv; |
3393 | } |
3394 | EXPORT_SYMBOL(verify_mem_not_deleted); |
3395 | #endif |
3396 | |
3397 | void kfree(const void *x) |
3398 | { |
3399 | struct page *page; |
3400 | void *object = (void *)x; |
3401 | |
3402 | trace_kfree(_RET_IP_, x); |
3403 | |
3404 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
3405 | return; |
3406 | |
3407 | page = virt_to_head_page(x); |
3408 | if (unlikely(!PageSlab(page))) { |
3409 | BUG_ON(!PageCompound(page)); |
3410 | kmemleak_free(x); |
3411 | __free_memcg_kmem_pages(page, compound_order(page)); |
3412 | return; |
3413 | } |
3414 | slab_free(page->slab_cache, page, object, _RET_IP_); |
3415 | } |
3416 | EXPORT_SYMBOL(kfree); |
3417 | |
3418 | /* |
3419 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
3420 | * the remaining slabs by the number of items in use. The slabs with the |
3421 | * most items in use come first. New allocations will then fill those up |
3422 | * and thus they can be removed from the partial lists. |
3423 | * |
3424 | * The slabs with the least items are placed last. This results in them |
3425 | * being allocated from last increasing the chance that the last objects |
3426 | * are freed in them. |
3427 | */ |
3428 | int kmem_cache_shrink(struct kmem_cache *s) |
3429 | { |
3430 | int node; |
3431 | int i; |
3432 | struct kmem_cache_node *n; |
3433 | struct page *page; |
3434 | struct page *t; |
3435 | int objects = oo_objects(s->max); |
3436 | struct list_head *slabs_by_inuse = |
3437 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
3438 | unsigned long flags; |
3439 | |
3440 | if (!slabs_by_inuse) |
3441 | return -ENOMEM; |
3442 | |
3443 | flush_all(s); |
3444 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3445 | n = get_node(s, node); |
3446 | |
3447 | if (!n->nr_partial) |
3448 | continue; |
3449 | |
3450 | for (i = 0; i < objects; i++) |
3451 | INIT_LIST_HEAD(slabs_by_inuse + i); |
3452 | |
3453 | spin_lock_irqsave(&n->list_lock, flags); |
3454 | |
3455 | /* |
3456 | * Build lists indexed by the items in use in each slab. |
3457 | * |
3458 | * Note that concurrent frees may occur while we hold the |
3459 | * list_lock. page->inuse here is the upper limit. |
3460 | */ |
3461 | list_for_each_entry_safe(page, t, &n->partial, lru) { |
3462 | list_move(&page->lru, slabs_by_inuse + page->inuse); |
3463 | if (!page->inuse) |
3464 | n->nr_partial--; |
3465 | } |
3466 | |
3467 | /* |
3468 | * Rebuild the partial list with the slabs filled up most |
3469 | * first and the least used slabs at the end. |
3470 | */ |
3471 | for (i = objects - 1; i > 0; i--) |
3472 | list_splice(slabs_by_inuse + i, n->partial.prev); |
3473 | |
3474 | spin_unlock_irqrestore(&n->list_lock, flags); |
3475 | |
3476 | /* Release empty slabs */ |
3477 | list_for_each_entry_safe(page, t, slabs_by_inuse, lru) |
3478 | discard_slab(s, page); |
3479 | } |
3480 | |
3481 | kfree(slabs_by_inuse); |
3482 | return 0; |
3483 | } |
3484 | EXPORT_SYMBOL(kmem_cache_shrink); |
3485 | |
3486 | #if defined(CONFIG_MEMORY_HOTPLUG) |
3487 | static int slab_mem_going_offline_callback(void *arg) |
3488 | { |
3489 | struct kmem_cache *s; |
3490 | |
3491 | mutex_lock(&slab_mutex); |
3492 | list_for_each_entry(s, &slab_caches, list) |
3493 | kmem_cache_shrink(s); |
3494 | mutex_unlock(&slab_mutex); |
3495 | |
3496 | return 0; |
3497 | } |
3498 | |
3499 | static void slab_mem_offline_callback(void *arg) |
3500 | { |
3501 | struct kmem_cache_node *n; |
3502 | struct kmem_cache *s; |
3503 | struct memory_notify *marg = arg; |
3504 | int offline_node; |
3505 | |
3506 | offline_node = marg->status_change_nid_normal; |
3507 | |
3508 | /* |
3509 | * If the node still has available memory. we need kmem_cache_node |
3510 | * for it yet. |
3511 | */ |
3512 | if (offline_node < 0) |
3513 | return; |
3514 | |
3515 | mutex_lock(&slab_mutex); |
3516 | list_for_each_entry(s, &slab_caches, list) { |
3517 | n = get_node(s, offline_node); |
3518 | if (n) { |
3519 | /* |
3520 | * if n->nr_slabs > 0, slabs still exist on the node |
3521 | * that is going down. We were unable to free them, |
3522 | * and offline_pages() function shouldn't call this |
3523 | * callback. So, we must fail. |
3524 | */ |
3525 | BUG_ON(slabs_node(s, offline_node)); |
3526 | |
3527 | s->node[offline_node] = NULL; |
3528 | kmem_cache_free(kmem_cache_node, n); |
3529 | } |
3530 | } |
3531 | mutex_unlock(&slab_mutex); |
3532 | } |
3533 | |
3534 | static int slab_mem_going_online_callback(void *arg) |
3535 | { |
3536 | struct kmem_cache_node *n; |
3537 | struct kmem_cache *s; |
3538 | struct memory_notify *marg = arg; |
3539 | int nid = marg->status_change_nid_normal; |
3540 | int ret = 0; |
3541 | |
3542 | /* |
3543 | * If the node's memory is already available, then kmem_cache_node is |
3544 | * already created. Nothing to do. |
3545 | */ |
3546 | if (nid < 0) |
3547 | return 0; |
3548 | |
3549 | /* |
3550 | * We are bringing a node online. No memory is available yet. We must |
3551 | * allocate a kmem_cache_node structure in order to bring the node |
3552 | * online. |
3553 | */ |
3554 | mutex_lock(&slab_mutex); |
3555 | list_for_each_entry(s, &slab_caches, list) { |
3556 | /* |
3557 | * XXX: kmem_cache_alloc_node will fallback to other nodes |
3558 | * since memory is not yet available from the node that |
3559 | * is brought up. |
3560 | */ |
3561 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
3562 | if (!n) { |
3563 | ret = -ENOMEM; |
3564 | goto out; |
3565 | } |
3566 | init_kmem_cache_node(n); |
3567 | s->node[nid] = n; |
3568 | } |
3569 | out: |
3570 | mutex_unlock(&slab_mutex); |
3571 | return ret; |
3572 | } |
3573 | |
3574 | static int slab_memory_callback(struct notifier_block *self, |
3575 | unsigned long action, void *arg) |
3576 | { |
3577 | int ret = 0; |
3578 | |
3579 | switch (action) { |
3580 | case MEM_GOING_ONLINE: |
3581 | ret = slab_mem_going_online_callback(arg); |
3582 | break; |
3583 | case MEM_GOING_OFFLINE: |
3584 | ret = slab_mem_going_offline_callback(arg); |
3585 | break; |
3586 | case MEM_OFFLINE: |
3587 | case MEM_CANCEL_ONLINE: |
3588 | slab_mem_offline_callback(arg); |
3589 | break; |
3590 | case MEM_ONLINE: |
3591 | case MEM_CANCEL_OFFLINE: |
3592 | break; |
3593 | } |
3594 | if (ret) |
3595 | ret = notifier_from_errno(ret); |
3596 | else |
3597 | ret = NOTIFY_OK; |
3598 | return ret; |
3599 | } |
3600 | |
3601 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
3602 | |
3603 | /******************************************************************** |
3604 | * Basic setup of slabs |
3605 | *******************************************************************/ |
3606 | |
3607 | /* |
3608 | * Used for early kmem_cache structures that were allocated using |
3609 | * the page allocator. Allocate them properly then fix up the pointers |
3610 | * that may be pointing to the wrong kmem_cache structure. |
3611 | */ |
3612 | |
3613 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
3614 | { |
3615 | int node; |
3616 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
3617 | |
3618 | memcpy(s, static_cache, kmem_cache->object_size); |
3619 | |
3620 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3621 | struct kmem_cache_node *n = get_node(s, node); |
3622 | struct page *p; |
3623 | |
3624 | if (n) { |
3625 | list_for_each_entry(p, &n->partial, lru) |
3626 | p->slab_cache = s; |
3627 | |
3628 | #ifdef CONFIG_SLUB_DEBUG |
3629 | list_for_each_entry(p, &n->full, lru) |
3630 | p->slab_cache = s; |
3631 | #endif |
3632 | } |
3633 | } |
3634 | list_add(&s->list, &slab_caches); |
3635 | return s; |
3636 | } |
3637 | |
3638 | void __init kmem_cache_init(void) |
3639 | { |
3640 | static __initdata struct kmem_cache boot_kmem_cache, |
3641 | boot_kmem_cache_node; |
3642 | int i; |
3643 | int caches = 2; |
3644 | |
3645 | if (debug_guardpage_minorder()) |
3646 | slub_max_order = 0; |
3647 | |
3648 | kmem_cache_node = &boot_kmem_cache_node; |
3649 | kmem_cache = &boot_kmem_cache; |
3650 | |
3651 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
3652 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); |
3653 | |
3654 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
3655 | |
3656 | /* Able to allocate the per node structures */ |
3657 | slab_state = PARTIAL; |
3658 | |
3659 | create_boot_cache(kmem_cache, "kmem_cache", |
3660 | offsetof(struct kmem_cache, node) + |
3661 | nr_node_ids * sizeof(struct kmem_cache_node *), |
3662 | SLAB_HWCACHE_ALIGN); |
3663 | |
3664 | kmem_cache = bootstrap(&boot_kmem_cache); |
3665 | |
3666 | /* |
3667 | * Allocate kmem_cache_node properly from the kmem_cache slab. |
3668 | * kmem_cache_node is separately allocated so no need to |
3669 | * update any list pointers. |
3670 | */ |
3671 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
3672 | |
3673 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ |
3674 | |
3675 | /* |
3676 | * Patch up the size_index table if we have strange large alignment |
3677 | * requirements for the kmalloc array. This is only the case for |
3678 | * MIPS it seems. The standard arches will not generate any code here. |
3679 | * |
3680 | * Largest permitted alignment is 256 bytes due to the way we |
3681 | * handle the index determination for the smaller caches. |
3682 | * |
3683 | * Make sure that nothing crazy happens if someone starts tinkering |
3684 | * around with ARCH_KMALLOC_MINALIGN |
3685 | */ |
3686 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
3687 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); |
3688 | |
3689 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
3690 | int elem = size_index_elem(i); |
3691 | if (elem >= ARRAY_SIZE(size_index)) |
3692 | break; |
3693 | size_index[elem] = KMALLOC_SHIFT_LOW; |
3694 | } |
3695 | |
3696 | if (KMALLOC_MIN_SIZE == 64) { |
3697 | /* |
3698 | * The 96 byte size cache is not used if the alignment |
3699 | * is 64 byte. |
3700 | */ |
3701 | for (i = 64 + 8; i <= 96; i += 8) |
3702 | size_index[size_index_elem(i)] = 7; |
3703 | } else if (KMALLOC_MIN_SIZE == 128) { |
3704 | /* |
3705 | * The 192 byte sized cache is not used if the alignment |
3706 | * is 128 byte. Redirect kmalloc to use the 256 byte cache |
3707 | * instead. |
3708 | */ |
3709 | for (i = 128 + 8; i <= 192; i += 8) |
3710 | size_index[size_index_elem(i)] = 8; |
3711 | } |
3712 | |
3713 | /* Caches that are not of the two-to-the-power-of size */ |
3714 | if (KMALLOC_MIN_SIZE <= 32) { |
3715 | kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); |
3716 | caches++; |
3717 | } |
3718 | |
3719 | if (KMALLOC_MIN_SIZE <= 64) { |
3720 | kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); |
3721 | caches++; |
3722 | } |
3723 | |
3724 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
3725 | kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); |
3726 | caches++; |
3727 | } |
3728 | |
3729 | slab_state = UP; |
3730 | |
3731 | /* Provide the correct kmalloc names now that the caches are up */ |
3732 | if (KMALLOC_MIN_SIZE <= 32) { |
3733 | kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); |
3734 | BUG_ON(!kmalloc_caches[1]->name); |
3735 | } |
3736 | |
3737 | if (KMALLOC_MIN_SIZE <= 64) { |
3738 | kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); |
3739 | BUG_ON(!kmalloc_caches[2]->name); |
3740 | } |
3741 | |
3742 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
3743 | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); |
3744 | |
3745 | BUG_ON(!s); |
3746 | kmalloc_caches[i]->name = s; |
3747 | } |
3748 | |
3749 | #ifdef CONFIG_SMP |
3750 | register_cpu_notifier(&slab_notifier); |
3751 | #endif |
3752 | |
3753 | #ifdef CONFIG_ZONE_DMA |
3754 | for (i = 0; i < SLUB_PAGE_SHIFT; i++) { |
3755 | struct kmem_cache *s = kmalloc_caches[i]; |
3756 | |
3757 | if (s && s->size) { |
3758 | char *name = kasprintf(GFP_NOWAIT, |
3759 | "dma-kmalloc-%d", s->object_size); |
3760 | |
3761 | BUG_ON(!name); |
3762 | kmalloc_dma_caches[i] = create_kmalloc_cache(name, |
3763 | s->object_size, SLAB_CACHE_DMA); |
3764 | } |
3765 | } |
3766 | #endif |
3767 | printk(KERN_INFO |
3768 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," |
3769 | " CPUs=%d, Nodes=%d\n", |
3770 | caches, cache_line_size(), |
3771 | slub_min_order, slub_max_order, slub_min_objects, |
3772 | nr_cpu_ids, nr_node_ids); |
3773 | } |
3774 | |
3775 | void __init kmem_cache_init_late(void) |
3776 | { |
3777 | } |
3778 | |
3779 | /* |
3780 | * Find a mergeable slab cache |
3781 | */ |
3782 | static int slab_unmergeable(struct kmem_cache *s) |
3783 | { |
3784 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) |
3785 | return 1; |
3786 | |
3787 | if (s->ctor) |
3788 | return 1; |
3789 | |
3790 | /* |
3791 | * We may have set a slab to be unmergeable during bootstrap. |
3792 | */ |
3793 | if (s->refcount < 0) |
3794 | return 1; |
3795 | |
3796 | return 0; |
3797 | } |
3798 | |
3799 | static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, |
3800 | size_t align, unsigned long flags, const char *name, |
3801 | void (*ctor)(void *)) |
3802 | { |
3803 | struct kmem_cache *s; |
3804 | |
3805 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) |
3806 | return NULL; |
3807 | |
3808 | if (ctor) |
3809 | return NULL; |
3810 | |
3811 | size = ALIGN(size, sizeof(void *)); |
3812 | align = calculate_alignment(flags, align, size); |
3813 | size = ALIGN(size, align); |
3814 | flags = kmem_cache_flags(size, flags, name, NULL); |
3815 | |
3816 | list_for_each_entry(s, &slab_caches, list) { |
3817 | if (slab_unmergeable(s)) |
3818 | continue; |
3819 | |
3820 | if (size > s->size) |
3821 | continue; |
3822 | |
3823 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
3824 | continue; |
3825 | /* |
3826 | * Check if alignment is compatible. |
3827 | * Courtesy of Adrian Drzewiecki |
3828 | */ |
3829 | if ((s->size & ~(align - 1)) != s->size) |
3830 | continue; |
3831 | |
3832 | if (s->size - size >= sizeof(void *)) |
3833 | continue; |
3834 | |
3835 | if (!cache_match_memcg(s, memcg)) |
3836 | continue; |
3837 | |
3838 | return s; |
3839 | } |
3840 | return NULL; |
3841 | } |
3842 | |
3843 | struct kmem_cache * |
3844 | __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, |
3845 | size_t align, unsigned long flags, void (*ctor)(void *)) |
3846 | { |
3847 | struct kmem_cache *s; |
3848 | |
3849 | s = find_mergeable(memcg, size, align, flags, name, ctor); |
3850 | if (s) { |
3851 | s->refcount++; |
3852 | /* |
3853 | * Adjust the object sizes so that we clear |
3854 | * the complete object on kzalloc. |
3855 | */ |
3856 | s->object_size = max(s->object_size, (int)size); |
3857 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
3858 | |
3859 | if (sysfs_slab_alias(s, name)) { |
3860 | s->refcount--; |
3861 | s = NULL; |
3862 | } |
3863 | } |
3864 | |
3865 | return s; |
3866 | } |
3867 | |
3868 | int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) |
3869 | { |
3870 | int err; |
3871 | |
3872 | err = kmem_cache_open(s, flags); |
3873 | if (err) |
3874 | return err; |
3875 | |
3876 | /* Mutex is not taken during early boot */ |
3877 | if (slab_state <= UP) |
3878 | return 0; |
3879 | |
3880 | memcg_propagate_slab_attrs(s); |
3881 | mutex_unlock(&slab_mutex); |
3882 | err = sysfs_slab_add(s); |
3883 | mutex_lock(&slab_mutex); |
3884 | |
3885 | if (err) |
3886 | kmem_cache_close(s); |
3887 | |
3888 | return err; |
3889 | } |
3890 | |
3891 | #ifdef CONFIG_SMP |
3892 | /* |
3893 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3894 | * necessary. |
3895 | */ |
3896 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, |
3897 | unsigned long action, void *hcpu) |
3898 | { |
3899 | long cpu = (long)hcpu; |
3900 | struct kmem_cache *s; |
3901 | unsigned long flags; |
3902 | |
3903 | switch (action) { |
3904 | case CPU_UP_CANCELED: |
3905 | case CPU_UP_CANCELED_FROZEN: |
3906 | case CPU_DEAD: |
3907 | case CPU_DEAD_FROZEN: |
3908 | mutex_lock(&slab_mutex); |
3909 | list_for_each_entry(s, &slab_caches, list) { |
3910 | local_irq_save(flags); |
3911 | __flush_cpu_slab(s, cpu); |
3912 | local_irq_restore(flags); |
3913 | } |
3914 | mutex_unlock(&slab_mutex); |
3915 | break; |
3916 | default: |
3917 | break; |
3918 | } |
3919 | return NOTIFY_OK; |
3920 | } |
3921 | |
3922 | static struct notifier_block __cpuinitdata slab_notifier = { |
3923 | .notifier_call = slab_cpuup_callback |
3924 | }; |
3925 | |
3926 | #endif |
3927 | |
3928 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
3929 | { |
3930 | struct kmem_cache *s; |
3931 | void *ret; |
3932 | |
3933 | if (unlikely(size > SLUB_MAX_SIZE)) |
3934 | return kmalloc_large(size, gfpflags); |
3935 | |
3936 | s = get_slab(size, gfpflags); |
3937 | |
3938 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3939 | return s; |
3940 | |
3941 | ret = slab_alloc(s, gfpflags, caller); |
3942 | |
3943 | /* Honor the call site pointer we received. */ |
3944 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
3945 | |
3946 | return ret; |
3947 | } |
3948 | |
3949 | #ifdef CONFIG_NUMA |
3950 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
3951 | int node, unsigned long caller) |
3952 | { |
3953 | struct kmem_cache *s; |
3954 | void *ret; |
3955 | |
3956 | if (unlikely(size > SLUB_MAX_SIZE)) { |
3957 | ret = kmalloc_large_node(size, gfpflags, node); |
3958 | |
3959 | trace_kmalloc_node(caller, ret, |
3960 | size, PAGE_SIZE << get_order(size), |
3961 | gfpflags, node); |
3962 | |
3963 | return ret; |
3964 | } |
3965 | |
3966 | s = get_slab(size, gfpflags); |
3967 | |
3968 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3969 | return s; |
3970 | |
3971 | ret = slab_alloc_node(s, gfpflags, node, caller); |
3972 | |
3973 | /* Honor the call site pointer we received. */ |
3974 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
3975 | |
3976 | return ret; |
3977 | } |
3978 | #endif |
3979 | |
3980 | #ifdef CONFIG_SYSFS |
3981 | static int count_inuse(struct page *page) |
3982 | { |
3983 | return page->inuse; |
3984 | } |
3985 | |
3986 | static int count_total(struct page *page) |
3987 | { |
3988 | return page->objects; |
3989 | } |
3990 | #endif |
3991 | |
3992 | #ifdef CONFIG_SLUB_DEBUG |
3993 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3994 | unsigned long *map) |
3995 | { |
3996 | void *p; |
3997 | void *addr = page_address(page); |
3998 | |
3999 | if (!check_slab(s, page) || |
4000 | !on_freelist(s, page, NULL)) |
4001 | return 0; |
4002 | |
4003 | /* Now we know that a valid freelist exists */ |
4004 | bitmap_zero(map, page->objects); |
4005 | |
4006 | get_map(s, page, map); |
4007 | for_each_object(p, s, addr, page->objects) { |
4008 | if (test_bit(slab_index(p, s, addr), map)) |
4009 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) |
4010 | return 0; |
4011 | } |
4012 | |
4013 | for_each_object(p, s, addr, page->objects) |
4014 | if (!test_bit(slab_index(p, s, addr), map)) |
4015 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
4016 | return 0; |
4017 | return 1; |
4018 | } |
4019 | |
4020 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
4021 | unsigned long *map) |
4022 | { |
4023 | slab_lock(page); |
4024 | validate_slab(s, page, map); |
4025 | slab_unlock(page); |
4026 | } |
4027 | |
4028 | static int validate_slab_node(struct kmem_cache *s, |
4029 | struct kmem_cache_node *n, unsigned long *map) |
4030 | { |
4031 | unsigned long count = 0; |
4032 | struct page *page; |
4033 | unsigned long flags; |
4034 | |
4035 | spin_lock_irqsave(&n->list_lock, flags); |
4036 | |
4037 | list_for_each_entry(page, &n->partial, lru) { |
4038 | validate_slab_slab(s, page, map); |
4039 | count++; |
4040 | } |
4041 | if (count != n->nr_partial) |
4042 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " |
4043 | "counter=%ld\n", s->name, count, n->nr_partial); |
4044 | |
4045 | if (!(s->flags & SLAB_STORE_USER)) |
4046 | goto out; |
4047 | |
4048 | list_for_each_entry(page, &n->full, lru) { |
4049 | validate_slab_slab(s, page, map); |
4050 | count++; |
4051 | } |
4052 | if (count != atomic_long_read(&n->nr_slabs)) |
4053 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " |
4054 | "counter=%ld\n", s->name, count, |
4055 | atomic_long_read(&n->nr_slabs)); |
4056 | |
4057 | out: |
4058 | spin_unlock_irqrestore(&n->list_lock, flags); |
4059 | return count; |
4060 | } |
4061 | |
4062 | static long validate_slab_cache(struct kmem_cache *s) |
4063 | { |
4064 | int node; |
4065 | unsigned long count = 0; |
4066 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4067 | sizeof(unsigned long), GFP_KERNEL); |
4068 | |
4069 | if (!map) |
4070 | return -ENOMEM; |
4071 | |
4072 | flush_all(s); |
4073 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4074 | struct kmem_cache_node *n = get_node(s, node); |
4075 | |
4076 | count += validate_slab_node(s, n, map); |
4077 | } |
4078 | kfree(map); |
4079 | return count; |
4080 | } |
4081 | /* |
4082 | * Generate lists of code addresses where slabcache objects are allocated |
4083 | * and freed. |
4084 | */ |
4085 | |
4086 | struct location { |
4087 | unsigned long count; |
4088 | unsigned long addr; |
4089 | long long sum_time; |
4090 | long min_time; |
4091 | long max_time; |
4092 | long min_pid; |
4093 | long max_pid; |
4094 | DECLARE_BITMAP(cpus, NR_CPUS); |
4095 | nodemask_t nodes; |
4096 | }; |
4097 | |
4098 | struct loc_track { |
4099 | unsigned long max; |
4100 | unsigned long count; |
4101 | struct location *loc; |
4102 | }; |
4103 | |
4104 | static void free_loc_track(struct loc_track *t) |
4105 | { |
4106 | if (t->max) |
4107 | free_pages((unsigned long)t->loc, |
4108 | get_order(sizeof(struct location) * t->max)); |
4109 | } |
4110 | |
4111 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
4112 | { |
4113 | struct location *l; |
4114 | int order; |
4115 | |
4116 | order = get_order(sizeof(struct location) * max); |
4117 | |
4118 | l = (void *)__get_free_pages(flags, order); |
4119 | if (!l) |
4120 | return 0; |
4121 | |
4122 | if (t->count) { |
4123 | memcpy(l, t->loc, sizeof(struct location) * t->count); |
4124 | free_loc_track(t); |
4125 | } |
4126 | t->max = max; |
4127 | t->loc = l; |
4128 | return 1; |
4129 | } |
4130 | |
4131 | static int add_location(struct loc_track *t, struct kmem_cache *s, |
4132 | const struct track *track) |
4133 | { |
4134 | long start, end, pos; |
4135 | struct location *l; |
4136 | unsigned long caddr; |
4137 | unsigned long age = jiffies - track->when; |
4138 | |
4139 | start = -1; |
4140 | end = t->count; |
4141 | |
4142 | for ( ; ; ) { |
4143 | pos = start + (end - start + 1) / 2; |
4144 | |
4145 | /* |
4146 | * There is nothing at "end". If we end up there |
4147 | * we need to add something to before end. |
4148 | */ |
4149 | if (pos == end) |
4150 | break; |
4151 | |
4152 | caddr = t->loc[pos].addr; |
4153 | if (track->addr == caddr) { |
4154 | |
4155 | l = &t->loc[pos]; |
4156 | l->count++; |
4157 | if (track->when) { |
4158 | l->sum_time += age; |
4159 | if (age < l->min_time) |
4160 | l->min_time = age; |
4161 | if (age > l->max_time) |
4162 | l->max_time = age; |
4163 | |
4164 | if (track->pid < l->min_pid) |
4165 | l->min_pid = track->pid; |
4166 | if (track->pid > l->max_pid) |
4167 | l->max_pid = track->pid; |
4168 | |
4169 | cpumask_set_cpu(track->cpu, |
4170 | to_cpumask(l->cpus)); |
4171 | } |
4172 | node_set(page_to_nid(virt_to_page(track)), l->nodes); |
4173 | return 1; |
4174 | } |
4175 | |
4176 | if (track->addr < caddr) |
4177 | end = pos; |
4178 | else |
4179 | start = pos; |
4180 | } |
4181 | |
4182 | /* |
4183 | * Not found. Insert new tracking element. |
4184 | */ |
4185 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
4186 | return 0; |
4187 | |
4188 | l = t->loc + pos; |
4189 | if (pos < t->count) |
4190 | memmove(l + 1, l, |
4191 | (t->count - pos) * sizeof(struct location)); |
4192 | t->count++; |
4193 | l->count = 1; |
4194 | l->addr = track->addr; |
4195 | l->sum_time = age; |
4196 | l->min_time = age; |
4197 | l->max_time = age; |
4198 | l->min_pid = track->pid; |
4199 | l->max_pid = track->pid; |
4200 | cpumask_clear(to_cpumask(l->cpus)); |
4201 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); |
4202 | nodes_clear(l->nodes); |
4203 | node_set(page_to_nid(virt_to_page(track)), l->nodes); |
4204 | return 1; |
4205 | } |
4206 | |
4207 | static void process_slab(struct loc_track *t, struct kmem_cache *s, |
4208 | struct page *page, enum track_item alloc, |
4209 | unsigned long *map) |
4210 | { |
4211 | void *addr = page_address(page); |
4212 | void *p; |
4213 | |
4214 | bitmap_zero(map, page->objects); |
4215 | get_map(s, page, map); |
4216 | |
4217 | for_each_object(p, s, addr, page->objects) |
4218 | if (!test_bit(slab_index(p, s, addr), map)) |
4219 | add_location(t, s, get_track(s, p, alloc)); |
4220 | } |
4221 | |
4222 | static int list_locations(struct kmem_cache *s, char *buf, |
4223 | enum track_item alloc) |
4224 | { |
4225 | int len = 0; |
4226 | unsigned long i; |
4227 | struct loc_track t = { 0, 0, NULL }; |
4228 | int node; |
4229 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4230 | sizeof(unsigned long), GFP_KERNEL); |
4231 | |
4232 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4233 | GFP_TEMPORARY)) { |
4234 | kfree(map); |
4235 | return sprintf(buf, "Out of memory\n"); |
4236 | } |
4237 | /* Push back cpu slabs */ |
4238 | flush_all(s); |
4239 | |
4240 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4241 | struct kmem_cache_node *n = get_node(s, node); |
4242 | unsigned long flags; |
4243 | struct page *page; |
4244 | |
4245 | if (!atomic_long_read(&n->nr_slabs)) |
4246 | continue; |
4247 | |
4248 | spin_lock_irqsave(&n->list_lock, flags); |
4249 | list_for_each_entry(page, &n->partial, lru) |
4250 | process_slab(&t, s, page, alloc, map); |
4251 | list_for_each_entry(page, &n->full, lru) |
4252 | process_slab(&t, s, page, alloc, map); |
4253 | spin_unlock_irqrestore(&n->list_lock, flags); |
4254 | } |
4255 | |
4256 | for (i = 0; i < t.count; i++) { |
4257 | struct location *l = &t.loc[i]; |
4258 | |
4259 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
4260 | break; |
4261 | len += sprintf(buf + len, "%7ld ", l->count); |
4262 | |
4263 | if (l->addr) |
4264 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
4265 | else |
4266 | len += sprintf(buf + len, "<not-available>"); |
4267 | |
4268 | if (l->sum_time != l->min_time) { |
4269 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
4270 | l->min_time, |
4271 | (long)div_u64(l->sum_time, l->count), |
4272 | l->max_time); |
4273 | } else |
4274 | len += sprintf(buf + len, " age=%ld", |
4275 | l->min_time); |
4276 | |
4277 | if (l->min_pid != l->max_pid) |
4278 | len += sprintf(buf + len, " pid=%ld-%ld", |
4279 | l->min_pid, l->max_pid); |
4280 | else |
4281 | len += sprintf(buf + len, " pid=%ld", |
4282 | l->min_pid); |
4283 | |
4284 | if (num_online_cpus() > 1 && |
4285 | !cpumask_empty(to_cpumask(l->cpus)) && |
4286 | len < PAGE_SIZE - 60) { |
4287 | len += sprintf(buf + len, " cpus="); |
4288 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, |
4289 | to_cpumask(l->cpus)); |
4290 | } |
4291 | |
4292 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
4293 | len < PAGE_SIZE - 60) { |
4294 | len += sprintf(buf + len, " nodes="); |
4295 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, |
4296 | l->nodes); |
4297 | } |
4298 | |
4299 | len += sprintf(buf + len, "\n"); |
4300 | } |
4301 | |
4302 | free_loc_track(&t); |
4303 | kfree(map); |
4304 | if (!t.count) |
4305 | len += sprintf(buf, "No data\n"); |
4306 | return len; |
4307 | } |
4308 | #endif |
4309 | |
4310 | #ifdef SLUB_RESILIENCY_TEST |
4311 | static void resiliency_test(void) |
4312 | { |
4313 | u8 *p; |
4314 | |
4315 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); |
4316 | |
4317 | printk(KERN_ERR "SLUB resiliency testing\n"); |
4318 | printk(KERN_ERR "-----------------------\n"); |
4319 | printk(KERN_ERR "A. Corruption after allocation\n"); |
4320 | |
4321 | p = kzalloc(16, GFP_KERNEL); |
4322 | p[16] = 0x12; |
4323 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" |
4324 | " 0x12->0x%p\n\n", p + 16); |
4325 | |
4326 | validate_slab_cache(kmalloc_caches[4]); |
4327 | |
4328 | /* Hmmm... The next two are dangerous */ |
4329 | p = kzalloc(32, GFP_KERNEL); |
4330 | p[32 + sizeof(void *)] = 0x34; |
4331 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" |
4332 | " 0x34 -> -0x%p\n", p); |
4333 | printk(KERN_ERR |
4334 | "If allocated object is overwritten then not detectable\n\n"); |
4335 | |
4336 | validate_slab_cache(kmalloc_caches[5]); |
4337 | p = kzalloc(64, GFP_KERNEL); |
4338 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); |
4339 | *p = 0x56; |
4340 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
4341 | p); |
4342 | printk(KERN_ERR |
4343 | "If allocated object is overwritten then not detectable\n\n"); |
4344 | validate_slab_cache(kmalloc_caches[6]); |
4345 | |
4346 | printk(KERN_ERR "\nB. Corruption after free\n"); |
4347 | p = kzalloc(128, GFP_KERNEL); |
4348 | kfree(p); |
4349 | *p = 0x78; |
4350 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
4351 | validate_slab_cache(kmalloc_caches[7]); |
4352 | |
4353 | p = kzalloc(256, GFP_KERNEL); |
4354 | kfree(p); |
4355 | p[50] = 0x9a; |
4356 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", |
4357 | p); |
4358 | validate_slab_cache(kmalloc_caches[8]); |
4359 | |
4360 | p = kzalloc(512, GFP_KERNEL); |
4361 | kfree(p); |
4362 | p[512] = 0xab; |
4363 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
4364 | validate_slab_cache(kmalloc_caches[9]); |
4365 | } |
4366 | #else |
4367 | #ifdef CONFIG_SYSFS |
4368 | static void resiliency_test(void) {}; |
4369 | #endif |
4370 | #endif |
4371 | |
4372 | #ifdef CONFIG_SYSFS |
4373 | enum slab_stat_type { |
4374 | SL_ALL, /* All slabs */ |
4375 | SL_PARTIAL, /* Only partially allocated slabs */ |
4376 | SL_CPU, /* Only slabs used for cpu caches */ |
4377 | SL_OBJECTS, /* Determine allocated objects not slabs */ |
4378 | SL_TOTAL /* Determine object capacity not slabs */ |
4379 | }; |
4380 | |
4381 | #define SO_ALL (1 << SL_ALL) |
4382 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4383 | #define SO_CPU (1 << SL_CPU) |
4384 | #define SO_OBJECTS (1 << SL_OBJECTS) |
4385 | #define SO_TOTAL (1 << SL_TOTAL) |
4386 | |
4387 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4388 | char *buf, unsigned long flags) |
4389 | { |
4390 | unsigned long total = 0; |
4391 | int node; |
4392 | int x; |
4393 | unsigned long *nodes; |
4394 | unsigned long *per_cpu; |
4395 | |
4396 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); |
4397 | if (!nodes) |
4398 | return -ENOMEM; |
4399 | per_cpu = nodes + nr_node_ids; |
4400 | |
4401 | if (flags & SO_CPU) { |
4402 | int cpu; |
4403 | |
4404 | for_each_possible_cpu(cpu) { |
4405 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
4406 | int node; |
4407 | struct page *page; |
4408 | |
4409 | page = ACCESS_ONCE(c->page); |
4410 | if (!page) |
4411 | continue; |
4412 | |
4413 | node = page_to_nid(page); |
4414 | if (flags & SO_TOTAL) |
4415 | x = page->objects; |
4416 | else if (flags & SO_OBJECTS) |
4417 | x = page->inuse; |
4418 | else |
4419 | x = 1; |
4420 | |
4421 | total += x; |
4422 | nodes[node] += x; |
4423 | |
4424 | page = ACCESS_ONCE(c->partial); |
4425 | if (page) { |
4426 | x = page->pobjects; |
4427 | total += x; |
4428 | nodes[node] += x; |
4429 | } |
4430 | |
4431 | per_cpu[node]++; |
4432 | } |
4433 | } |
4434 | |
4435 | lock_memory_hotplug(); |
4436 | #ifdef CONFIG_SLUB_DEBUG |
4437 | if (flags & SO_ALL) { |
4438 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4439 | struct kmem_cache_node *n = get_node(s, node); |
4440 | |
4441 | if (flags & SO_TOTAL) |
4442 | x = atomic_long_read(&n->total_objects); |
4443 | else if (flags & SO_OBJECTS) |
4444 | x = atomic_long_read(&n->total_objects) - |
4445 | count_partial(n, count_free); |
4446 | |
4447 | else |
4448 | x = atomic_long_read(&n->nr_slabs); |
4449 | total += x; |
4450 | nodes[node] += x; |
4451 | } |
4452 | |
4453 | } else |
4454 | #endif |
4455 | if (flags & SO_PARTIAL) { |
4456 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4457 | struct kmem_cache_node *n = get_node(s, node); |
4458 | |
4459 | if (flags & SO_TOTAL) |
4460 | x = count_partial(n, count_total); |
4461 | else if (flags & SO_OBJECTS) |
4462 | x = count_partial(n, count_inuse); |
4463 | else |
4464 | x = n->nr_partial; |
4465 | total += x; |
4466 | nodes[node] += x; |
4467 | } |
4468 | } |
4469 | x = sprintf(buf, "%lu", total); |
4470 | #ifdef CONFIG_NUMA |
4471 | for_each_node_state(node, N_NORMAL_MEMORY) |
4472 | if (nodes[node]) |
4473 | x += sprintf(buf + x, " N%d=%lu", |
4474 | node, nodes[node]); |
4475 | #endif |
4476 | unlock_memory_hotplug(); |
4477 | kfree(nodes); |
4478 | return x + sprintf(buf + x, "\n"); |
4479 | } |
4480 | |
4481 | #ifdef CONFIG_SLUB_DEBUG |
4482 | static int any_slab_objects(struct kmem_cache *s) |
4483 | { |
4484 | int node; |
4485 | |
4486 | for_each_online_node(node) { |
4487 | struct kmem_cache_node *n = get_node(s, node); |
4488 | |
4489 | if (!n) |
4490 | continue; |
4491 | |
4492 | if (atomic_long_read(&n->total_objects)) |
4493 | return 1; |
4494 | } |
4495 | return 0; |
4496 | } |
4497 | #endif |
4498 | |
4499 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
4500 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
4501 | |
4502 | struct slab_attribute { |
4503 | struct attribute attr; |
4504 | ssize_t (*show)(struct kmem_cache *s, char *buf); |
4505 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); |
4506 | }; |
4507 | |
4508 | #define SLAB_ATTR_RO(_name) \ |
4509 | static struct slab_attribute _name##_attr = \ |
4510 | __ATTR(_name, 0400, _name##_show, NULL) |
4511 | |
4512 | #define SLAB_ATTR(_name) \ |
4513 | static struct slab_attribute _name##_attr = \ |
4514 | __ATTR(_name, 0600, _name##_show, _name##_store) |
4515 | |
4516 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4517 | { |
4518 | return sprintf(buf, "%d\n", s->size); |
4519 | } |
4520 | SLAB_ATTR_RO(slab_size); |
4521 | |
4522 | static ssize_t align_show(struct kmem_cache *s, char *buf) |
4523 | { |
4524 | return sprintf(buf, "%d\n", s->align); |
4525 | } |
4526 | SLAB_ATTR_RO(align); |
4527 | |
4528 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) |
4529 | { |
4530 | return sprintf(buf, "%d\n", s->object_size); |
4531 | } |
4532 | SLAB_ATTR_RO(object_size); |
4533 | |
4534 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) |
4535 | { |
4536 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
4537 | } |
4538 | SLAB_ATTR_RO(objs_per_slab); |
4539 | |
4540 | static ssize_t order_store(struct kmem_cache *s, |
4541 | const char *buf, size_t length) |
4542 | { |
4543 | unsigned long order; |
4544 | int err; |
4545 | |
4546 | err = strict_strtoul(buf, 10, &order); |
4547 | if (err) |
4548 | return err; |
4549 | |
4550 | if (order > slub_max_order || order < slub_min_order) |
4551 | return -EINVAL; |
4552 | |
4553 | calculate_sizes(s, order); |
4554 | return length; |
4555 | } |
4556 | |
4557 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4558 | { |
4559 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
4560 | } |
4561 | SLAB_ATTR(order); |
4562 | |
4563 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4564 | { |
4565 | return sprintf(buf, "%lu\n", s->min_partial); |
4566 | } |
4567 | |
4568 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, |
4569 | size_t length) |
4570 | { |
4571 | unsigned long min; |
4572 | int err; |
4573 | |
4574 | err = strict_strtoul(buf, 10, &min); |
4575 | if (err) |
4576 | return err; |
4577 | |
4578 | set_min_partial(s, min); |
4579 | return length; |
4580 | } |
4581 | SLAB_ATTR(min_partial); |
4582 | |
4583 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4584 | { |
4585 | return sprintf(buf, "%u\n", s->cpu_partial); |
4586 | } |
4587 | |
4588 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, |
4589 | size_t length) |
4590 | { |
4591 | unsigned long objects; |
4592 | int err; |
4593 | |
4594 | err = strict_strtoul(buf, 10, &objects); |
4595 | if (err) |
4596 | return err; |
4597 | if (objects && kmem_cache_debug(s)) |
4598 | return -EINVAL; |
4599 | |
4600 | s->cpu_partial = objects; |
4601 | flush_all(s); |
4602 | return length; |
4603 | } |
4604 | SLAB_ATTR(cpu_partial); |
4605 | |
4606 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4607 | { |
4608 | if (!s->ctor) |
4609 | return 0; |
4610 | return sprintf(buf, "%pS\n", s->ctor); |
4611 | } |
4612 | SLAB_ATTR_RO(ctor); |
4613 | |
4614 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4615 | { |
4616 | return sprintf(buf, "%d\n", s->refcount - 1); |
4617 | } |
4618 | SLAB_ATTR_RO(aliases); |
4619 | |
4620 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4621 | { |
4622 | return show_slab_objects(s, buf, SO_PARTIAL); |
4623 | } |
4624 | SLAB_ATTR_RO(partial); |
4625 | |
4626 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) |
4627 | { |
4628 | return show_slab_objects(s, buf, SO_CPU); |
4629 | } |
4630 | SLAB_ATTR_RO(cpu_slabs); |
4631 | |
4632 | static ssize_t objects_show(struct kmem_cache *s, char *buf) |
4633 | { |
4634 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
4635 | } |
4636 | SLAB_ATTR_RO(objects); |
4637 | |
4638 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
4639 | { |
4640 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); |
4641 | } |
4642 | SLAB_ATTR_RO(objects_partial); |
4643 | |
4644 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
4645 | { |
4646 | int objects = 0; |
4647 | int pages = 0; |
4648 | int cpu; |
4649 | int len; |
4650 | |
4651 | for_each_online_cpu(cpu) { |
4652 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; |
4653 | |
4654 | if (page) { |
4655 | pages += page->pages; |
4656 | objects += page->pobjects; |
4657 | } |
4658 | } |
4659 | |
4660 | len = sprintf(buf, "%d(%d)", objects, pages); |
4661 | |
4662 | #ifdef CONFIG_SMP |
4663 | for_each_online_cpu(cpu) { |
4664 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; |
4665 | |
4666 | if (page && len < PAGE_SIZE - 20) |
4667 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, |
4668 | page->pobjects, page->pages); |
4669 | } |
4670 | #endif |
4671 | return len + sprintf(buf + len, "\n"); |
4672 | } |
4673 | SLAB_ATTR_RO(slabs_cpu_partial); |
4674 | |
4675 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4676 | { |
4677 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
4678 | } |
4679 | |
4680 | static ssize_t reclaim_account_store(struct kmem_cache *s, |
4681 | const char *buf, size_t length) |
4682 | { |
4683 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; |
4684 | if (buf[0] == '1') |
4685 | s->flags |= SLAB_RECLAIM_ACCOUNT; |
4686 | return length; |
4687 | } |
4688 | SLAB_ATTR(reclaim_account); |
4689 | |
4690 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) |
4691 | { |
4692 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
4693 | } |
4694 | SLAB_ATTR_RO(hwcache_align); |
4695 | |
4696 | #ifdef CONFIG_ZONE_DMA |
4697 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) |
4698 | { |
4699 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
4700 | } |
4701 | SLAB_ATTR_RO(cache_dma); |
4702 | #endif |
4703 | |
4704 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
4705 | { |
4706 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); |
4707 | } |
4708 | SLAB_ATTR_RO(destroy_by_rcu); |
4709 | |
4710 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
4711 | { |
4712 | return sprintf(buf, "%d\n", s->reserved); |
4713 | } |
4714 | SLAB_ATTR_RO(reserved); |
4715 | |
4716 | #ifdef CONFIG_SLUB_DEBUG |
4717 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
4718 | { |
4719 | return show_slab_objects(s, buf, SO_ALL); |
4720 | } |
4721 | SLAB_ATTR_RO(slabs); |
4722 | |
4723 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
4724 | { |
4725 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); |
4726 | } |
4727 | SLAB_ATTR_RO(total_objects); |
4728 | |
4729 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
4730 | { |
4731 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); |
4732 | } |
4733 | |
4734 | static ssize_t sanity_checks_store(struct kmem_cache *s, |
4735 | const char *buf, size_t length) |
4736 | { |
4737 | s->flags &= ~SLAB_DEBUG_FREE; |
4738 | if (buf[0] == '1') { |
4739 | s->flags &= ~__CMPXCHG_DOUBLE; |
4740 | s->flags |= SLAB_DEBUG_FREE; |
4741 | } |
4742 | return length; |
4743 | } |
4744 | SLAB_ATTR(sanity_checks); |
4745 | |
4746 | static ssize_t trace_show(struct kmem_cache *s, char *buf) |
4747 | { |
4748 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
4749 | } |
4750 | |
4751 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, |
4752 | size_t length) |
4753 | { |
4754 | s->flags &= ~SLAB_TRACE; |
4755 | if (buf[0] == '1') { |
4756 | s->flags &= ~__CMPXCHG_DOUBLE; |
4757 | s->flags |= SLAB_TRACE; |
4758 | } |
4759 | return length; |
4760 | } |
4761 | SLAB_ATTR(trace); |
4762 | |
4763 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
4764 | { |
4765 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
4766 | } |
4767 | |
4768 | static ssize_t red_zone_store(struct kmem_cache *s, |
4769 | const char *buf, size_t length) |
4770 | { |
4771 | if (any_slab_objects(s)) |
4772 | return -EBUSY; |
4773 | |
4774 | s->flags &= ~SLAB_RED_ZONE; |
4775 | if (buf[0] == '1') { |
4776 | s->flags &= ~__CMPXCHG_DOUBLE; |
4777 | s->flags |= SLAB_RED_ZONE; |
4778 | } |
4779 | calculate_sizes(s, -1); |
4780 | return length; |
4781 | } |
4782 | SLAB_ATTR(red_zone); |
4783 | |
4784 | static ssize_t poison_show(struct kmem_cache *s, char *buf) |
4785 | { |
4786 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
4787 | } |
4788 | |
4789 | static ssize_t poison_store(struct kmem_cache *s, |
4790 | const char *buf, size_t length) |
4791 | { |
4792 | if (any_slab_objects(s)) |
4793 | return -EBUSY; |
4794 | |
4795 | s->flags &= ~SLAB_POISON; |
4796 | if (buf[0] == '1') { |
4797 | s->flags &= ~__CMPXCHG_DOUBLE; |
4798 | s->flags |= SLAB_POISON; |
4799 | } |
4800 | calculate_sizes(s, -1); |
4801 | return length; |
4802 | } |
4803 | SLAB_ATTR(poison); |
4804 | |
4805 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) |
4806 | { |
4807 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
4808 | } |
4809 | |
4810 | static ssize_t store_user_store(struct kmem_cache *s, |
4811 | const char *buf, size_t length) |
4812 | { |
4813 | if (any_slab_objects(s)) |
4814 | return -EBUSY; |
4815 | |
4816 | s->flags &= ~SLAB_STORE_USER; |
4817 | if (buf[0] == '1') { |
4818 | s->flags &= ~__CMPXCHG_DOUBLE; |
4819 | s->flags |= SLAB_STORE_USER; |
4820 | } |
4821 | calculate_sizes(s, -1); |
4822 | return length; |
4823 | } |
4824 | SLAB_ATTR(store_user); |
4825 | |
4826 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4827 | { |
4828 | return 0; |
4829 | } |
4830 | |
4831 | static ssize_t validate_store(struct kmem_cache *s, |
4832 | const char *buf, size_t length) |
4833 | { |
4834 | int ret = -EINVAL; |
4835 | |
4836 | if (buf[0] == '1') { |
4837 | ret = validate_slab_cache(s); |
4838 | if (ret >= 0) |
4839 | ret = length; |
4840 | } |
4841 | return ret; |
4842 | } |
4843 | SLAB_ATTR(validate); |
4844 | |
4845 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
4846 | { |
4847 | if (!(s->flags & SLAB_STORE_USER)) |
4848 | return -ENOSYS; |
4849 | return list_locations(s, buf, TRACK_ALLOC); |
4850 | } |
4851 | SLAB_ATTR_RO(alloc_calls); |
4852 | |
4853 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) |
4854 | { |
4855 | if (!(s->flags & SLAB_STORE_USER)) |
4856 | return -ENOSYS; |
4857 | return list_locations(s, buf, TRACK_FREE); |
4858 | } |
4859 | SLAB_ATTR_RO(free_calls); |
4860 | #endif /* CONFIG_SLUB_DEBUG */ |
4861 | |
4862 | #ifdef CONFIG_FAILSLAB |
4863 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) |
4864 | { |
4865 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
4866 | } |
4867 | |
4868 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, |
4869 | size_t length) |
4870 | { |
4871 | s->flags &= ~SLAB_FAILSLAB; |
4872 | if (buf[0] == '1') |
4873 | s->flags |= SLAB_FAILSLAB; |
4874 | return length; |
4875 | } |
4876 | SLAB_ATTR(failslab); |
4877 | #endif |
4878 | |
4879 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4880 | { |
4881 | return 0; |
4882 | } |
4883 | |
4884 | static ssize_t shrink_store(struct kmem_cache *s, |
4885 | const char *buf, size_t length) |
4886 | { |
4887 | if (buf[0] == '1') { |
4888 | int rc = kmem_cache_shrink(s); |
4889 | |
4890 | if (rc) |
4891 | return rc; |
4892 | } else |
4893 | return -EINVAL; |
4894 | return length; |
4895 | } |
4896 | SLAB_ATTR(shrink); |
4897 | |
4898 | #ifdef CONFIG_NUMA |
4899 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
4900 | { |
4901 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
4902 | } |
4903 | |
4904 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
4905 | const char *buf, size_t length) |
4906 | { |
4907 | unsigned long ratio; |
4908 | int err; |
4909 | |
4910 | err = strict_strtoul(buf, 10, &ratio); |
4911 | if (err) |
4912 | return err; |
4913 | |
4914 | if (ratio <= 100) |
4915 | s->remote_node_defrag_ratio = ratio * 10; |
4916 | |
4917 | return length; |
4918 | } |
4919 | SLAB_ATTR(remote_node_defrag_ratio); |
4920 | #endif |
4921 | |
4922 | #ifdef CONFIG_SLUB_STATS |
4923 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4924 | { |
4925 | unsigned long sum = 0; |
4926 | int cpu; |
4927 | int len; |
4928 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); |
4929 | |
4930 | if (!data) |
4931 | return -ENOMEM; |
4932 | |
4933 | for_each_online_cpu(cpu) { |
4934 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
4935 | |
4936 | data[cpu] = x; |
4937 | sum += x; |
4938 | } |
4939 | |
4940 | len = sprintf(buf, "%lu", sum); |
4941 | |
4942 | #ifdef CONFIG_SMP |
4943 | for_each_online_cpu(cpu) { |
4944 | if (data[cpu] && len < PAGE_SIZE - 20) |
4945 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
4946 | } |
4947 | #endif |
4948 | kfree(data); |
4949 | return len + sprintf(buf + len, "\n"); |
4950 | } |
4951 | |
4952 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
4953 | { |
4954 | int cpu; |
4955 | |
4956 | for_each_online_cpu(cpu) |
4957 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
4958 | } |
4959 | |
4960 | #define STAT_ATTR(si, text) \ |
4961 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ |
4962 | { \ |
4963 | return show_stat(s, buf, si); \ |
4964 | } \ |
4965 | static ssize_t text##_store(struct kmem_cache *s, \ |
4966 | const char *buf, size_t length) \ |
4967 | { \ |
4968 | if (buf[0] != '0') \ |
4969 | return -EINVAL; \ |
4970 | clear_stat(s, si); \ |
4971 | return length; \ |
4972 | } \ |
4973 | SLAB_ATTR(text); \ |
4974 | |
4975 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); |
4976 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); |
4977 | STAT_ATTR(FREE_FASTPATH, free_fastpath); |
4978 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); |
4979 | STAT_ATTR(FREE_FROZEN, free_frozen); |
4980 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); |
4981 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); |
4982 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); |
4983 | STAT_ATTR(ALLOC_SLAB, alloc_slab); |
4984 | STAT_ATTR(ALLOC_REFILL, alloc_refill); |
4985 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
4986 | STAT_ATTR(FREE_SLAB, free_slab); |
4987 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); |
4988 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); |
4989 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); |
4990 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); |
4991 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); |
4992 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); |
4993 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
4994 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
4995 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
4996 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); |
4997 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
4998 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); |
4999 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
5000 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); |
5001 | #endif |
5002 | |
5003 | static struct attribute *slab_attrs[] = { |
5004 | &slab_size_attr.attr, |
5005 | &object_size_attr.attr, |
5006 | &objs_per_slab_attr.attr, |
5007 | &order_attr.attr, |
5008 | &min_partial_attr.attr, |
5009 | &cpu_partial_attr.attr, |
5010 | &objects_attr.attr, |
5011 | &objects_partial_attr.attr, |
5012 | &partial_attr.attr, |
5013 | &cpu_slabs_attr.attr, |
5014 | &ctor_attr.attr, |
5015 | &aliases_attr.attr, |
5016 | &align_attr.attr, |
5017 | &hwcache_align_attr.attr, |
5018 | &reclaim_account_attr.attr, |
5019 | &destroy_by_rcu_attr.attr, |
5020 | &shrink_attr.attr, |
5021 | &reserved_attr.attr, |
5022 | &slabs_cpu_partial_attr.attr, |
5023 | #ifdef CONFIG_SLUB_DEBUG |
5024 | &total_objects_attr.attr, |
5025 | &slabs_attr.attr, |
5026 | &sanity_checks_attr.attr, |
5027 | &trace_attr.attr, |
5028 | &red_zone_attr.attr, |
5029 | &poison_attr.attr, |
5030 | &store_user_attr.attr, |
5031 | &validate_attr.attr, |
5032 | &alloc_calls_attr.attr, |
5033 | &free_calls_attr.attr, |
5034 | #endif |
5035 | #ifdef CONFIG_ZONE_DMA |
5036 | &cache_dma_attr.attr, |
5037 | #endif |
5038 | #ifdef CONFIG_NUMA |
5039 | &remote_node_defrag_ratio_attr.attr, |
5040 | #endif |
5041 | #ifdef CONFIG_SLUB_STATS |
5042 | &alloc_fastpath_attr.attr, |
5043 | &alloc_slowpath_attr.attr, |
5044 | &free_fastpath_attr.attr, |
5045 | &free_slowpath_attr.attr, |
5046 | &free_frozen_attr.attr, |
5047 | &free_add_partial_attr.attr, |
5048 | &free_remove_partial_attr.attr, |
5049 | &alloc_from_partial_attr.attr, |
5050 | &alloc_slab_attr.attr, |
5051 | &alloc_refill_attr.attr, |
5052 | &alloc_node_mismatch_attr.attr, |
5053 | &free_slab_attr.attr, |
5054 | &cpuslab_flush_attr.attr, |
5055 | &deactivate_full_attr.attr, |
5056 | &deactivate_empty_attr.attr, |
5057 | &deactivate_to_head_attr.attr, |
5058 | &deactivate_to_tail_attr.attr, |
5059 | &deactivate_remote_frees_attr.attr, |
5060 | &deactivate_bypass_attr.attr, |
5061 | &order_fallback_attr.attr, |
5062 | &cmpxchg_double_fail_attr.attr, |
5063 | &cmpxchg_double_cpu_fail_attr.attr, |
5064 | &cpu_partial_alloc_attr.attr, |
5065 | &cpu_partial_free_attr.attr, |
5066 | &cpu_partial_node_attr.attr, |
5067 | &cpu_partial_drain_attr.attr, |
5068 | #endif |
5069 | #ifdef CONFIG_FAILSLAB |
5070 | &failslab_attr.attr, |
5071 | #endif |
5072 | |
5073 | NULL |
5074 | }; |
5075 | |
5076 | static struct attribute_group slab_attr_group = { |
5077 | .attrs = slab_attrs, |
5078 | }; |
5079 | |
5080 | static ssize_t slab_attr_show(struct kobject *kobj, |
5081 | struct attribute *attr, |
5082 | char *buf) |
5083 | { |
5084 | struct slab_attribute *attribute; |
5085 | struct kmem_cache *s; |
5086 | int err; |
5087 | |
5088 | attribute = to_slab_attr(attr); |
5089 | s = to_slab(kobj); |
5090 | |
5091 | if (!attribute->show) |
5092 | return -EIO; |
5093 | |
5094 | err = attribute->show(s, buf); |
5095 | |
5096 | return err; |
5097 | } |
5098 | |
5099 | static ssize_t slab_attr_store(struct kobject *kobj, |
5100 | struct attribute *attr, |
5101 | const char *buf, size_t len) |
5102 | { |
5103 | struct slab_attribute *attribute; |
5104 | struct kmem_cache *s; |
5105 | int err; |
5106 | |
5107 | attribute = to_slab_attr(attr); |
5108 | s = to_slab(kobj); |
5109 | |
5110 | if (!attribute->store) |
5111 | return -EIO; |
5112 | |
5113 | err = attribute->store(s, buf, len); |
5114 | #ifdef CONFIG_MEMCG_KMEM |
5115 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
5116 | int i; |
5117 | |
5118 | mutex_lock(&slab_mutex); |
5119 | if (s->max_attr_size < len) |
5120 | s->max_attr_size = len; |
5121 | |
5122 | /* |
5123 | * This is a best effort propagation, so this function's return |
5124 | * value will be determined by the parent cache only. This is |
5125 | * basically because not all attributes will have a well |
5126 | * defined semantics for rollbacks - most of the actions will |
5127 | * have permanent effects. |
5128 | * |
5129 | * Returning the error value of any of the children that fail |
5130 | * is not 100 % defined, in the sense that users seeing the |
5131 | * error code won't be able to know anything about the state of |
5132 | * the cache. |
5133 | * |
5134 | * Only returning the error code for the parent cache at least |
5135 | * has well defined semantics. The cache being written to |
5136 | * directly either failed or succeeded, in which case we loop |
5137 | * through the descendants with best-effort propagation. |
5138 | */ |
5139 | for_each_memcg_cache_index(i) { |
5140 | struct kmem_cache *c = cache_from_memcg(s, i); |
5141 | if (c) |
5142 | attribute->store(c, buf, len); |
5143 | } |
5144 | mutex_unlock(&slab_mutex); |
5145 | } |
5146 | #endif |
5147 | return err; |
5148 | } |
5149 | |
5150 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5151 | { |
5152 | #ifdef CONFIG_MEMCG_KMEM |
5153 | int i; |
5154 | char *buffer = NULL; |
5155 | |
5156 | if (!is_root_cache(s)) |
5157 | return; |
5158 | |
5159 | /* |
5160 | * This mean this cache had no attribute written. Therefore, no point |
5161 | * in copying default values around |
5162 | */ |
5163 | if (!s->max_attr_size) |
5164 | return; |
5165 | |
5166 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { |
5167 | char mbuf[64]; |
5168 | char *buf; |
5169 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); |
5170 | |
5171 | if (!attr || !attr->store || !attr->show) |
5172 | continue; |
5173 | |
5174 | /* |
5175 | * It is really bad that we have to allocate here, so we will |
5176 | * do it only as a fallback. If we actually allocate, though, |
5177 | * we can just use the allocated buffer until the end. |
5178 | * |
5179 | * Most of the slub attributes will tend to be very small in |
5180 | * size, but sysfs allows buffers up to a page, so they can |
5181 | * theoretically happen. |
5182 | */ |
5183 | if (buffer) |
5184 | buf = buffer; |
5185 | else if (s->max_attr_size < ARRAY_SIZE(mbuf)) |
5186 | buf = mbuf; |
5187 | else { |
5188 | buffer = (char *) get_zeroed_page(GFP_KERNEL); |
5189 | if (WARN_ON(!buffer)) |
5190 | continue; |
5191 | buf = buffer; |
5192 | } |
5193 | |
5194 | attr->show(s->memcg_params->root_cache, buf); |
5195 | attr->store(s, buf, strlen(buf)); |
5196 | } |
5197 | |
5198 | if (buffer) |
5199 | free_page((unsigned long)buffer); |
5200 | #endif |
5201 | } |
5202 | |
5203 | static const struct sysfs_ops slab_sysfs_ops = { |
5204 | .show = slab_attr_show, |
5205 | .store = slab_attr_store, |
5206 | }; |
5207 | |
5208 | static struct kobj_type slab_ktype = { |
5209 | .sysfs_ops = &slab_sysfs_ops, |
5210 | }; |
5211 | |
5212 | static int uevent_filter(struct kset *kset, struct kobject *kobj) |
5213 | { |
5214 | struct kobj_type *ktype = get_ktype(kobj); |
5215 | |
5216 | if (ktype == &slab_ktype) |
5217 | return 1; |
5218 | return 0; |
5219 | } |
5220 | |
5221 | static const struct kset_uevent_ops slab_uevent_ops = { |
5222 | .filter = uevent_filter, |
5223 | }; |
5224 | |
5225 | static struct kset *slab_kset; |
5226 | |
5227 | #define ID_STR_LENGTH 64 |
5228 | |
5229 | /* Create a unique string id for a slab cache: |
5230 | * |
5231 | * Format :[flags-]size |
5232 | */ |
5233 | static char *create_unique_id(struct kmem_cache *s) |
5234 | { |
5235 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); |
5236 | char *p = name; |
5237 | |
5238 | BUG_ON(!name); |
5239 | |
5240 | *p++ = ':'; |
5241 | /* |
5242 | * First flags affecting slabcache operations. We will only |
5243 | * get here for aliasable slabs so we do not need to support |
5244 | * too many flags. The flags here must cover all flags that |
5245 | * are matched during merging to guarantee that the id is |
5246 | * unique. |
5247 | */ |
5248 | if (s->flags & SLAB_CACHE_DMA) |
5249 | *p++ = 'd'; |
5250 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
5251 | *p++ = 'a'; |
5252 | if (s->flags & SLAB_DEBUG_FREE) |
5253 | *p++ = 'F'; |
5254 | if (!(s->flags & SLAB_NOTRACK)) |
5255 | *p++ = 't'; |
5256 | if (p != name + 1) |
5257 | *p++ = '-'; |
5258 | p += sprintf(p, "%07d", s->size); |
5259 | |
5260 | #ifdef CONFIG_MEMCG_KMEM |
5261 | if (!is_root_cache(s)) |
5262 | p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg)); |
5263 | #endif |
5264 | |
5265 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5266 | return name; |
5267 | } |
5268 | |
5269 | static int sysfs_slab_add(struct kmem_cache *s) |
5270 | { |
5271 | int err; |
5272 | const char *name; |
5273 | int unmergeable = slab_unmergeable(s); |
5274 | |
5275 | if (unmergeable) { |
5276 | /* |
5277 | * Slabcache can never be merged so we can use the name proper. |
5278 | * This is typically the case for debug situations. In that |
5279 | * case we can catch duplicate names easily. |
5280 | */ |
5281 | sysfs_remove_link(&slab_kset->kobj, s->name); |
5282 | name = s->name; |
5283 | } else { |
5284 | /* |
5285 | * Create a unique name for the slab as a target |
5286 | * for the symlinks. |
5287 | */ |
5288 | name = create_unique_id(s); |
5289 | } |
5290 | |
5291 | s->kobj.kset = slab_kset; |
5292 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
5293 | if (err) { |
5294 | kobject_put(&s->kobj); |
5295 | return err; |
5296 | } |
5297 | |
5298 | err = sysfs_create_group(&s->kobj, &slab_attr_group); |
5299 | if (err) { |
5300 | kobject_del(&s->kobj); |
5301 | kobject_put(&s->kobj); |
5302 | return err; |
5303 | } |
5304 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5305 | if (!unmergeable) { |
5306 | /* Setup first alias */ |
5307 | sysfs_slab_alias(s, s->name); |
5308 | kfree(name); |
5309 | } |
5310 | return 0; |
5311 | } |
5312 | |
5313 | static void sysfs_slab_remove(struct kmem_cache *s) |
5314 | { |
5315 | if (slab_state < FULL) |
5316 | /* |
5317 | * Sysfs has not been setup yet so no need to remove the |
5318 | * cache from sysfs. |
5319 | */ |
5320 | return; |
5321 | |
5322 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
5323 | kobject_del(&s->kobj); |
5324 | kobject_put(&s->kobj); |
5325 | } |
5326 | |
5327 | /* |
5328 | * Need to buffer aliases during bootup until sysfs becomes |
5329 | * available lest we lose that information. |
5330 | */ |
5331 | struct saved_alias { |
5332 | struct kmem_cache *s; |
5333 | const char *name; |
5334 | struct saved_alias *next; |
5335 | }; |
5336 | |
5337 | static struct saved_alias *alias_list; |
5338 | |
5339 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) |
5340 | { |
5341 | struct saved_alias *al; |
5342 | |
5343 | if (slab_state == FULL) { |
5344 | /* |
5345 | * If we have a leftover link then remove it. |
5346 | */ |
5347 | sysfs_remove_link(&slab_kset->kobj, name); |
5348 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); |
5349 | } |
5350 | |
5351 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); |
5352 | if (!al) |
5353 | return -ENOMEM; |
5354 | |
5355 | al->s = s; |
5356 | al->name = name; |
5357 | al->next = alias_list; |
5358 | alias_list = al; |
5359 | return 0; |
5360 | } |
5361 | |
5362 | static int __init slab_sysfs_init(void) |
5363 | { |
5364 | struct kmem_cache *s; |
5365 | int err; |
5366 | |
5367 | mutex_lock(&slab_mutex); |
5368 | |
5369 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
5370 | if (!slab_kset) { |
5371 | mutex_unlock(&slab_mutex); |
5372 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
5373 | return -ENOSYS; |
5374 | } |
5375 | |
5376 | slab_state = FULL; |
5377 | |
5378 | list_for_each_entry(s, &slab_caches, list) { |
5379 | err = sysfs_slab_add(s); |
5380 | if (err) |
5381 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" |
5382 | " to sysfs\n", s->name); |
5383 | } |
5384 | |
5385 | while (alias_list) { |
5386 | struct saved_alias *al = alias_list; |
5387 | |
5388 | alias_list = alias_list->next; |
5389 | err = sysfs_slab_alias(al->s, al->name); |
5390 | if (err) |
5391 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" |
5392 | " %s to sysfs\n", al->name); |
5393 | kfree(al); |
5394 | } |
5395 | |
5396 | mutex_unlock(&slab_mutex); |
5397 | resiliency_test(); |
5398 | return 0; |
5399 | } |
5400 | |
5401 | __initcall(slab_sysfs_init); |
5402 | #endif /* CONFIG_SYSFS */ |
5403 | |
5404 | /* |
5405 | * The /proc/slabinfo ABI |
5406 | */ |
5407 | #ifdef CONFIG_SLABINFO |
5408 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
5409 | { |
5410 | unsigned long nr_partials = 0; |
5411 | unsigned long nr_slabs = 0; |
5412 | unsigned long nr_objs = 0; |
5413 | unsigned long nr_free = 0; |
5414 | int node; |
5415 | |
5416 | for_each_online_node(node) { |
5417 | struct kmem_cache_node *n = get_node(s, node); |
5418 | |
5419 | if (!n) |
5420 | continue; |
5421 | |
5422 | nr_partials += n->nr_partial; |
5423 | nr_slabs += atomic_long_read(&n->nr_slabs); |
5424 | nr_objs += atomic_long_read(&n->total_objects); |
5425 | nr_free += count_partial(n, count_free); |
5426 | } |
5427 | |
5428 | sinfo->active_objs = nr_objs - nr_free; |
5429 | sinfo->num_objs = nr_objs; |
5430 | sinfo->active_slabs = nr_slabs; |
5431 | sinfo->num_slabs = nr_slabs; |
5432 | sinfo->objects_per_slab = oo_objects(s->oo); |
5433 | sinfo->cache_order = oo_order(s->oo); |
5434 | } |
5435 | |
5436 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
5437 | { |
5438 | } |
5439 | |
5440 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5441 | size_t count, loff_t *ppos) |
5442 | { |
5443 | return -EIO; |
5444 | } |
5445 | #endif /* CONFIG_SLABINFO */ |
5446 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9