Root/drivers/char/hpet.c

1/*
2 * Intel & MS High Precision Event Timer Implementation.
3 *
4 * Copyright (C) 2003 Intel Corporation
5 * Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/miscdevice.h>
19#include <linux/major.h>
20#include <linux/ioport.h>
21#include <linux/fcntl.h>
22#include <linux/init.h>
23#include <linux/poll.h>
24#include <linux/mm.h>
25#include <linux/proc_fs.h>
26#include <linux/spinlock.h>
27#include <linux/sysctl.h>
28#include <linux/wait.h>
29#include <linux/bcd.h>
30#include <linux/seq_file.h>
31#include <linux/bitops.h>
32#include <linux/compat.h>
33#include <linux/clocksource.h>
34#include <linux/uaccess.h>
35#include <linux/slab.h>
36#include <linux/io.h>
37
38#include <asm/current.h>
39#include <asm/irq.h>
40#include <asm/div64.h>
41
42#include <linux/acpi.h>
43#include <acpi/acpi_bus.h>
44#include <linux/hpet.h>
45
46/*
47 * The High Precision Event Timer driver.
48 * This driver is closely modelled after the rtc.c driver.
49 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50 */
51#define HPET_USER_FREQ (64)
52#define HPET_DRIFT (500)
53
54#define HPET_RANGE_SIZE 1024 /* from HPET spec */
55
56
57/* WARNING -- don't get confused. These macros are never used
58 * to write the (single) counter, and rarely to read it.
59 * They're badly named; to fix, someday.
60 */
61#if BITS_PER_LONG == 64
62#define write_counter(V, MC) writeq(V, MC)
63#define read_counter(MC) readq(MC)
64#else
65#define write_counter(V, MC) writel(V, MC)
66#define read_counter(MC) readl(MC)
67#endif
68
69static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
71
72/* This clocksource driver currently only works on ia64 */
73#ifdef CONFIG_IA64
74static void __iomem *hpet_mctr;
75
76static cycle_t read_hpet(struct clocksource *cs)
77{
78    return (cycle_t)read_counter((void __iomem *)hpet_mctr);
79}
80
81static struct clocksource clocksource_hpet = {
82    .name = "hpet",
83    .rating = 250,
84    .read = read_hpet,
85    .mask = CLOCKSOURCE_MASK(64),
86    .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87};
88static struct clocksource *hpet_clocksource;
89#endif
90
91/* A lock for concurrent access by app and isr hpet activity. */
92static DEFINE_SPINLOCK(hpet_lock);
93
94#define HPET_DEV_NAME (7)
95
96struct hpet_dev {
97    struct hpets *hd_hpets;
98    struct hpet __iomem *hd_hpet;
99    struct hpet_timer __iomem *hd_timer;
100    unsigned long hd_ireqfreq;
101    unsigned long hd_irqdata;
102    wait_queue_head_t hd_waitqueue;
103    struct fasync_struct *hd_async_queue;
104    unsigned int hd_flags;
105    unsigned int hd_irq;
106    unsigned int hd_hdwirq;
107    char hd_name[HPET_DEV_NAME];
108};
109
110struct hpets {
111    struct hpets *hp_next;
112    struct hpet __iomem *hp_hpet;
113    unsigned long hp_hpet_phys;
114    struct clocksource *hp_clocksource;
115    unsigned long long hp_tick_freq;
116    unsigned long hp_delta;
117    unsigned int hp_ntimer;
118    unsigned int hp_which;
119    struct hpet_dev hp_dev[1];
120};
121
122static struct hpets *hpets;
123
124#define HPET_OPEN 0x0001
125#define HPET_IE 0x0002 /* interrupt enabled */
126#define HPET_PERIODIC 0x0004
127#define HPET_SHARED_IRQ 0x0008
128
129
130#ifndef readq
131static inline unsigned long long readq(void __iomem *addr)
132{
133    return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
134}
135#endif
136
137#ifndef writeq
138static inline void writeq(unsigned long long v, void __iomem *addr)
139{
140    writel(v & 0xffffffff, addr);
141    writel(v >> 32, addr + 4);
142}
143#endif
144
145static irqreturn_t hpet_interrupt(int irq, void *data)
146{
147    struct hpet_dev *devp;
148    unsigned long isr;
149
150    devp = data;
151    isr = 1 << (devp - devp->hd_hpets->hp_dev);
152
153    if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154        !(isr & readl(&devp->hd_hpet->hpet_isr)))
155        return IRQ_NONE;
156
157    spin_lock(&hpet_lock);
158    devp->hd_irqdata++;
159
160    /*
161     * For non-periodic timers, increment the accumulator.
162     * This has the effect of treating non-periodic like periodic.
163     */
164    if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165        unsigned long m, t, mc, base, k;
166        struct hpet __iomem *hpet = devp->hd_hpet;
167        struct hpets *hpetp = devp->hd_hpets;
168
169        t = devp->hd_ireqfreq;
170        m = read_counter(&devp->hd_timer->hpet_compare);
171        mc = read_counter(&hpet->hpet_mc);
172        /* The time for the next interrupt would logically be t + m,
173         * however, if we are very unlucky and the interrupt is delayed
174         * for longer than t then we will completely miss the next
175         * interrupt if we set t + m and an application will hang.
176         * Therefore we need to make a more complex computation assuming
177         * that there exists a k for which the following is true:
178         * k * t + base < mc + delta
179         * (k + 1) * t + base > mc + delta
180         * where t is the interval in hpet ticks for the given freq,
181         * base is the theoretical start value 0 < base < t,
182         * mc is the main counter value at the time of the interrupt,
183         * delta is the time it takes to write the a value to the
184         * comparator.
185         * k may then be computed as (mc - base + delta) / t .
186         */
187        base = mc % t;
188        k = (mc - base + hpetp->hp_delta) / t;
189        write_counter(t * (k + 1) + base,
190                  &devp->hd_timer->hpet_compare);
191    }
192
193    if (devp->hd_flags & HPET_SHARED_IRQ)
194        writel(isr, &devp->hd_hpet->hpet_isr);
195    spin_unlock(&hpet_lock);
196
197    wake_up_interruptible(&devp->hd_waitqueue);
198
199    kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
200
201    return IRQ_HANDLED;
202}
203
204static void hpet_timer_set_irq(struct hpet_dev *devp)
205{
206    unsigned long v;
207    int irq, gsi;
208    struct hpet_timer __iomem *timer;
209
210    spin_lock_irq(&hpet_lock);
211    if (devp->hd_hdwirq) {
212        spin_unlock_irq(&hpet_lock);
213        return;
214    }
215
216    timer = devp->hd_timer;
217
218    /* we prefer level triggered mode */
219    v = readl(&timer->hpet_config);
220    if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221        v |= Tn_INT_TYPE_CNF_MASK;
222        writel(v, &timer->hpet_config);
223    }
224    spin_unlock_irq(&hpet_lock);
225
226    v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227                 Tn_INT_ROUTE_CAP_SHIFT;
228
229    /*
230     * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231     * legacy device. In IO APIC mode, we skip all the legacy IRQS.
232     */
233    if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234        v &= ~0xf3df;
235    else
236        v &= ~0xffff;
237
238    for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239        if (irq >= nr_irqs) {
240            irq = HPET_MAX_IRQ;
241            break;
242        }
243
244        gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
245                    ACPI_ACTIVE_LOW);
246        if (gsi > 0)
247            break;
248
249        /* FIXME: Setup interrupt source table */
250    }
251
252    if (irq < HPET_MAX_IRQ) {
253        spin_lock_irq(&hpet_lock);
254        v = readl(&timer->hpet_config);
255        v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256        writel(v, &timer->hpet_config);
257        devp->hd_hdwirq = gsi;
258        spin_unlock_irq(&hpet_lock);
259    }
260    return;
261}
262
263static int hpet_open(struct inode *inode, struct file *file)
264{
265    struct hpet_dev *devp;
266    struct hpets *hpetp;
267    int i;
268
269    if (file->f_mode & FMODE_WRITE)
270        return -EINVAL;
271
272    mutex_lock(&hpet_mutex);
273    spin_lock_irq(&hpet_lock);
274
275    for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276        for (i = 0; i < hpetp->hp_ntimer; i++)
277            if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278                continue;
279            else {
280                devp = &hpetp->hp_dev[i];
281                break;
282            }
283
284    if (!devp) {
285        spin_unlock_irq(&hpet_lock);
286        mutex_unlock(&hpet_mutex);
287        return -EBUSY;
288    }
289
290    file->private_data = devp;
291    devp->hd_irqdata = 0;
292    devp->hd_flags |= HPET_OPEN;
293    spin_unlock_irq(&hpet_lock);
294    mutex_unlock(&hpet_mutex);
295
296    hpet_timer_set_irq(devp);
297
298    return 0;
299}
300
301static ssize_t
302hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
303{
304    DECLARE_WAITQUEUE(wait, current);
305    unsigned long data;
306    ssize_t retval;
307    struct hpet_dev *devp;
308
309    devp = file->private_data;
310    if (!devp->hd_ireqfreq)
311        return -EIO;
312
313    if (count < sizeof(unsigned long))
314        return -EINVAL;
315
316    add_wait_queue(&devp->hd_waitqueue, &wait);
317
318    for ( ; ; ) {
319        set_current_state(TASK_INTERRUPTIBLE);
320
321        spin_lock_irq(&hpet_lock);
322        data = devp->hd_irqdata;
323        devp->hd_irqdata = 0;
324        spin_unlock_irq(&hpet_lock);
325
326        if (data)
327            break;
328        else if (file->f_flags & O_NONBLOCK) {
329            retval = -EAGAIN;
330            goto out;
331        } else if (signal_pending(current)) {
332            retval = -ERESTARTSYS;
333            goto out;
334        }
335        schedule();
336    }
337
338    retval = put_user(data, (unsigned long __user *)buf);
339    if (!retval)
340        retval = sizeof(unsigned long);
341out:
342    __set_current_state(TASK_RUNNING);
343    remove_wait_queue(&devp->hd_waitqueue, &wait);
344
345    return retval;
346}
347
348static unsigned int hpet_poll(struct file *file, poll_table * wait)
349{
350    unsigned long v;
351    struct hpet_dev *devp;
352
353    devp = file->private_data;
354
355    if (!devp->hd_ireqfreq)
356        return 0;
357
358    poll_wait(file, &devp->hd_waitqueue, wait);
359
360    spin_lock_irq(&hpet_lock);
361    v = devp->hd_irqdata;
362    spin_unlock_irq(&hpet_lock);
363
364    if (v != 0)
365        return POLLIN | POLLRDNORM;
366
367    return 0;
368}
369
370static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
371{
372#ifdef CONFIG_HPET_MMAP
373    struct hpet_dev *devp;
374    unsigned long addr;
375
376    devp = file->private_data;
377    addr = devp->hd_hpets->hp_hpet_phys;
378
379    if (addr & (PAGE_SIZE - 1))
380        return -ENOSYS;
381
382    vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383    return vm_iomap_memory(vma, addr, PAGE_SIZE);
384#else
385    return -ENOSYS;
386#endif
387}
388
389static int hpet_fasync(int fd, struct file *file, int on)
390{
391    struct hpet_dev *devp;
392
393    devp = file->private_data;
394
395    if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
396        return 0;
397    else
398        return -EIO;
399}
400
401static int hpet_release(struct inode *inode, struct file *file)
402{
403    struct hpet_dev *devp;
404    struct hpet_timer __iomem *timer;
405    int irq = 0;
406
407    devp = file->private_data;
408    timer = devp->hd_timer;
409
410    spin_lock_irq(&hpet_lock);
411
412    writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
413           &timer->hpet_config);
414
415    irq = devp->hd_irq;
416    devp->hd_irq = 0;
417
418    devp->hd_ireqfreq = 0;
419
420    if (devp->hd_flags & HPET_PERIODIC
421        && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
422        unsigned long v;
423
424        v = readq(&timer->hpet_config);
425        v ^= Tn_TYPE_CNF_MASK;
426        writeq(v, &timer->hpet_config);
427    }
428
429    devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
430    spin_unlock_irq(&hpet_lock);
431
432    if (irq)
433        free_irq(irq, devp);
434
435    file->private_data = NULL;
436    return 0;
437}
438
439static int hpet_ioctl_ieon(struct hpet_dev *devp)
440{
441    struct hpet_timer __iomem *timer;
442    struct hpet __iomem *hpet;
443    struct hpets *hpetp;
444    int irq;
445    unsigned long g, v, t, m;
446    unsigned long flags, isr;
447
448    timer = devp->hd_timer;
449    hpet = devp->hd_hpet;
450    hpetp = devp->hd_hpets;
451
452    if (!devp->hd_ireqfreq)
453        return -EIO;
454
455    spin_lock_irq(&hpet_lock);
456
457    if (devp->hd_flags & HPET_IE) {
458        spin_unlock_irq(&hpet_lock);
459        return -EBUSY;
460    }
461
462    devp->hd_flags |= HPET_IE;
463
464    if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
465        devp->hd_flags |= HPET_SHARED_IRQ;
466    spin_unlock_irq(&hpet_lock);
467
468    irq = devp->hd_hdwirq;
469
470    if (irq) {
471        unsigned long irq_flags;
472
473        if (devp->hd_flags & HPET_SHARED_IRQ) {
474            /*
475             * To prevent the interrupt handler from seeing an
476             * unwanted interrupt status bit, program the timer
477             * so that it will not fire in the near future ...
478             */
479            writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
480                   &timer->hpet_config);
481            write_counter(read_counter(&hpet->hpet_mc),
482                      &timer->hpet_compare);
483            /* ... and clear any left-over status. */
484            isr = 1 << (devp - devp->hd_hpets->hp_dev);
485            writel(isr, &hpet->hpet_isr);
486        }
487
488        sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
489        irq_flags = devp->hd_flags & HPET_SHARED_IRQ
490                        ? IRQF_SHARED : IRQF_DISABLED;
491        if (request_irq(irq, hpet_interrupt, irq_flags,
492                devp->hd_name, (void *)devp)) {
493            printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
494            irq = 0;
495        }
496    }
497
498    if (irq == 0) {
499        spin_lock_irq(&hpet_lock);
500        devp->hd_flags ^= HPET_IE;
501        spin_unlock_irq(&hpet_lock);
502        return -EIO;
503    }
504
505    devp->hd_irq = irq;
506    t = devp->hd_ireqfreq;
507    v = readq(&timer->hpet_config);
508
509    /* 64-bit comparators are not yet supported through the ioctls,
510     * so force this into 32-bit mode if it supports both modes
511     */
512    g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
513
514    if (devp->hd_flags & HPET_PERIODIC) {
515        g |= Tn_TYPE_CNF_MASK;
516        v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
517        writeq(v, &timer->hpet_config);
518        local_irq_save(flags);
519
520        /*
521         * NOTE: First we modify the hidden accumulator
522         * register supported by periodic-capable comparators.
523         * We never want to modify the (single) counter; that
524         * would affect all the comparators. The value written
525         * is the counter value when the first interrupt is due.
526         */
527        m = read_counter(&hpet->hpet_mc);
528        write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
529        /*
530         * Then we modify the comparator, indicating the period
531         * for subsequent interrupt.
532         */
533        write_counter(t, &timer->hpet_compare);
534    } else {
535        local_irq_save(flags);
536        m = read_counter(&hpet->hpet_mc);
537        write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
538    }
539
540    if (devp->hd_flags & HPET_SHARED_IRQ) {
541        isr = 1 << (devp - devp->hd_hpets->hp_dev);
542        writel(isr, &hpet->hpet_isr);
543    }
544    writeq(g, &timer->hpet_config);
545    local_irq_restore(flags);
546
547    return 0;
548}
549
550/* converts Hz to number of timer ticks */
551static inline unsigned long hpet_time_div(struct hpets *hpets,
552                      unsigned long dis)
553{
554    unsigned long long m;
555
556    m = hpets->hp_tick_freq + (dis >> 1);
557    do_div(m, dis);
558    return (unsigned long)m;
559}
560
561static int
562hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
563          struct hpet_info *info)
564{
565    struct hpet_timer __iomem *timer;
566    struct hpet __iomem *hpet;
567    struct hpets *hpetp;
568    int err;
569    unsigned long v;
570
571    switch (cmd) {
572    case HPET_IE_OFF:
573    case HPET_INFO:
574    case HPET_EPI:
575    case HPET_DPI:
576    case HPET_IRQFREQ:
577        timer = devp->hd_timer;
578        hpet = devp->hd_hpet;
579        hpetp = devp->hd_hpets;
580        break;
581    case HPET_IE_ON:
582        return hpet_ioctl_ieon(devp);
583    default:
584        return -EINVAL;
585    }
586
587    err = 0;
588
589    switch (cmd) {
590    case HPET_IE_OFF:
591        if ((devp->hd_flags & HPET_IE) == 0)
592            break;
593        v = readq(&timer->hpet_config);
594        v &= ~Tn_INT_ENB_CNF_MASK;
595        writeq(v, &timer->hpet_config);
596        if (devp->hd_irq) {
597            free_irq(devp->hd_irq, devp);
598            devp->hd_irq = 0;
599        }
600        devp->hd_flags ^= HPET_IE;
601        break;
602    case HPET_INFO:
603        {
604            memset(info, 0, sizeof(*info));
605            if (devp->hd_ireqfreq)
606                info->hi_ireqfreq =
607                    hpet_time_div(hpetp, devp->hd_ireqfreq);
608            info->hi_flags =
609                readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
610            info->hi_hpet = hpetp->hp_which;
611            info->hi_timer = devp - hpetp->hp_dev;
612            break;
613        }
614    case HPET_EPI:
615        v = readq(&timer->hpet_config);
616        if ((v & Tn_PER_INT_CAP_MASK) == 0) {
617            err = -ENXIO;
618            break;
619        }
620        devp->hd_flags |= HPET_PERIODIC;
621        break;
622    case HPET_DPI:
623        v = readq(&timer->hpet_config);
624        if ((v & Tn_PER_INT_CAP_MASK) == 0) {
625            err = -ENXIO;
626            break;
627        }
628        if (devp->hd_flags & HPET_PERIODIC &&
629            readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
630            v = readq(&timer->hpet_config);
631            v ^= Tn_TYPE_CNF_MASK;
632            writeq(v, &timer->hpet_config);
633        }
634        devp->hd_flags &= ~HPET_PERIODIC;
635        break;
636    case HPET_IRQFREQ:
637        if ((arg > hpet_max_freq) &&
638            !capable(CAP_SYS_RESOURCE)) {
639            err = -EACCES;
640            break;
641        }
642
643        if (!arg) {
644            err = -EINVAL;
645            break;
646        }
647
648        devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
649    }
650
651    return err;
652}
653
654static long
655hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656{
657    struct hpet_info info;
658    int err;
659
660    mutex_lock(&hpet_mutex);
661    err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
662    mutex_unlock(&hpet_mutex);
663
664    if ((cmd == HPET_INFO) && !err &&
665        (copy_to_user((void __user *)arg, &info, sizeof(info))))
666        err = -EFAULT;
667
668    return err;
669}
670
671#ifdef CONFIG_COMPAT
672struct compat_hpet_info {
673    compat_ulong_t hi_ireqfreq; /* Hz */
674    compat_ulong_t hi_flags; /* information */
675    unsigned short hi_hpet;
676    unsigned short hi_timer;
677};
678
679static long
680hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
681{
682    struct hpet_info info;
683    int err;
684
685    mutex_lock(&hpet_mutex);
686    err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
687    mutex_unlock(&hpet_mutex);
688
689    if ((cmd == HPET_INFO) && !err) {
690        struct compat_hpet_info __user *u = compat_ptr(arg);
691        if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
692            put_user(info.hi_flags, &u->hi_flags) ||
693            put_user(info.hi_hpet, &u->hi_hpet) ||
694            put_user(info.hi_timer, &u->hi_timer))
695            err = -EFAULT;
696    }
697
698    return err;
699}
700#endif
701
702static const struct file_operations hpet_fops = {
703    .owner = THIS_MODULE,
704    .llseek = no_llseek,
705    .read = hpet_read,
706    .poll = hpet_poll,
707    .unlocked_ioctl = hpet_ioctl,
708#ifdef CONFIG_COMPAT
709    .compat_ioctl = hpet_compat_ioctl,
710#endif
711    .open = hpet_open,
712    .release = hpet_release,
713    .fasync = hpet_fasync,
714    .mmap = hpet_mmap,
715};
716
717static int hpet_is_known(struct hpet_data *hdp)
718{
719    struct hpets *hpetp;
720
721    for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
722        if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
723            return 1;
724
725    return 0;
726}
727
728static ctl_table hpet_table[] = {
729    {
730     .procname = "max-user-freq",
731     .data = &hpet_max_freq,
732     .maxlen = sizeof(int),
733     .mode = 0644,
734     .proc_handler = proc_dointvec,
735     },
736    {}
737};
738
739static ctl_table hpet_root[] = {
740    {
741     .procname = "hpet",
742     .maxlen = 0,
743     .mode = 0555,
744     .child = hpet_table,
745     },
746    {}
747};
748
749static ctl_table dev_root[] = {
750    {
751     .procname = "dev",
752     .maxlen = 0,
753     .mode = 0555,
754     .child = hpet_root,
755     },
756    {}
757};
758
759static struct ctl_table_header *sysctl_header;
760
761/*
762 * Adjustment for when arming the timer with
763 * initial conditions. That is, main counter
764 * ticks expired before interrupts are enabled.
765 */
766#define TICK_CALIBRATE (1000UL)
767
768static unsigned long __hpet_calibrate(struct hpets *hpetp)
769{
770    struct hpet_timer __iomem *timer = NULL;
771    unsigned long t, m, count, i, flags, start;
772    struct hpet_dev *devp;
773    int j;
774    struct hpet __iomem *hpet;
775
776    for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
777        if ((devp->hd_flags & HPET_OPEN) == 0) {
778            timer = devp->hd_timer;
779            break;
780        }
781
782    if (!timer)
783        return 0;
784
785    hpet = hpetp->hp_hpet;
786    t = read_counter(&timer->hpet_compare);
787
788    i = 0;
789    count = hpet_time_div(hpetp, TICK_CALIBRATE);
790
791    local_irq_save(flags);
792
793    start = read_counter(&hpet->hpet_mc);
794
795    do {
796        m = read_counter(&hpet->hpet_mc);
797        write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
798    } while (i++, (m - start) < count);
799
800    local_irq_restore(flags);
801
802    return (m - start) / i;
803}
804
805static unsigned long hpet_calibrate(struct hpets *hpetp)
806{
807    unsigned long ret = ~0UL;
808    unsigned long tmp;
809
810    /*
811     * Try to calibrate until return value becomes stable small value.
812     * If SMI interruption occurs in calibration loop, the return value
813     * will be big. This avoids its impact.
814     */
815    for ( ; ; ) {
816        tmp = __hpet_calibrate(hpetp);
817        if (ret <= tmp)
818            break;
819        ret = tmp;
820    }
821
822    return ret;
823}
824
825int hpet_alloc(struct hpet_data *hdp)
826{
827    u64 cap, mcfg;
828    struct hpet_dev *devp;
829    u32 i, ntimer;
830    struct hpets *hpetp;
831    size_t siz;
832    struct hpet __iomem *hpet;
833    static struct hpets *last;
834    unsigned long period;
835    unsigned long long temp;
836    u32 remainder;
837
838    /*
839     * hpet_alloc can be called by platform dependent code.
840     * If platform dependent code has allocated the hpet that
841     * ACPI has also reported, then we catch it here.
842     */
843    if (hpet_is_known(hdp)) {
844        printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
845            __func__);
846        return 0;
847    }
848
849    siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
850                      sizeof(struct hpet_dev));
851
852    hpetp = kzalloc(siz, GFP_KERNEL);
853
854    if (!hpetp)
855        return -ENOMEM;
856
857    hpetp->hp_which = hpet_nhpet++;
858    hpetp->hp_hpet = hdp->hd_address;
859    hpetp->hp_hpet_phys = hdp->hd_phys_address;
860
861    hpetp->hp_ntimer = hdp->hd_nirqs;
862
863    for (i = 0; i < hdp->hd_nirqs; i++)
864        hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
865
866    hpet = hpetp->hp_hpet;
867
868    cap = readq(&hpet->hpet_cap);
869
870    ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
871
872    if (hpetp->hp_ntimer != ntimer) {
873        printk(KERN_WARNING "hpet: number irqs doesn't agree"
874               " with number of timers\n");
875        kfree(hpetp);
876        return -ENODEV;
877    }
878
879    if (last)
880        last->hp_next = hpetp;
881    else
882        hpets = hpetp;
883
884    last = hpetp;
885
886    period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
887        HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
888    temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
889    temp += period >> 1; /* round */
890    do_div(temp, period);
891    hpetp->hp_tick_freq = temp; /* ticks per second */
892
893    printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
894        hpetp->hp_which, hdp->hd_phys_address,
895        hpetp->hp_ntimer > 1 ? "s" : "");
896    for (i = 0; i < hpetp->hp_ntimer; i++)
897        printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
898    printk(KERN_CONT "\n");
899
900    temp = hpetp->hp_tick_freq;
901    remainder = do_div(temp, 1000000);
902    printk(KERN_INFO
903        "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
904        hpetp->hp_which, hpetp->hp_ntimer,
905        cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
906        (unsigned) temp, remainder);
907
908    mcfg = readq(&hpet->hpet_config);
909    if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
910        write_counter(0L, &hpet->hpet_mc);
911        mcfg |= HPET_ENABLE_CNF_MASK;
912        writeq(mcfg, &hpet->hpet_config);
913    }
914
915    for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
916        struct hpet_timer __iomem *timer;
917
918        timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
919
920        devp->hd_hpets = hpetp;
921        devp->hd_hpet = hpet;
922        devp->hd_timer = timer;
923
924        /*
925         * If the timer was reserved by platform code,
926         * then make timer unavailable for opens.
927         */
928        if (hdp->hd_state & (1 << i)) {
929            devp->hd_flags = HPET_OPEN;
930            continue;
931        }
932
933        init_waitqueue_head(&devp->hd_waitqueue);
934    }
935
936    hpetp->hp_delta = hpet_calibrate(hpetp);
937
938/* This clocksource driver currently only works on ia64 */
939#ifdef CONFIG_IA64
940    if (!hpet_clocksource) {
941        hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
942        clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
943        clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
944        hpetp->hp_clocksource = &clocksource_hpet;
945        hpet_clocksource = &clocksource_hpet;
946    }
947#endif
948
949    return 0;
950}
951
952static acpi_status hpet_resources(struct acpi_resource *res, void *data)
953{
954    struct hpet_data *hdp;
955    acpi_status status;
956    struct acpi_resource_address64 addr;
957
958    hdp = data;
959
960    status = acpi_resource_to_address64(res, &addr);
961
962    if (ACPI_SUCCESS(status)) {
963        hdp->hd_phys_address = addr.minimum;
964        hdp->hd_address = ioremap(addr.minimum, addr.address_length);
965
966        if (hpet_is_known(hdp)) {
967            iounmap(hdp->hd_address);
968            return AE_ALREADY_EXISTS;
969        }
970    } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
971        struct acpi_resource_fixed_memory32 *fixmem32;
972
973        fixmem32 = &res->data.fixed_memory32;
974        if (!fixmem32)
975            return AE_NO_MEMORY;
976
977        hdp->hd_phys_address = fixmem32->address;
978        hdp->hd_address = ioremap(fixmem32->address,
979                        HPET_RANGE_SIZE);
980
981        if (hpet_is_known(hdp)) {
982            iounmap(hdp->hd_address);
983            return AE_ALREADY_EXISTS;
984        }
985    } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
986        struct acpi_resource_extended_irq *irqp;
987        int i, irq;
988
989        irqp = &res->data.extended_irq;
990
991        for (i = 0; i < irqp->interrupt_count; i++) {
992            if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
993                break;
994
995            irq = acpi_register_gsi(NULL, irqp->interrupts[i],
996                      irqp->triggering, irqp->polarity);
997            if (irq < 0)
998                return AE_ERROR;
999
1000            hdp->hd_irq[hdp->hd_nirqs] = irq;
1001            hdp->hd_nirqs++;
1002        }
1003    }
1004
1005    return AE_OK;
1006}
1007
1008static int hpet_acpi_add(struct acpi_device *device)
1009{
1010    acpi_status result;
1011    struct hpet_data data;
1012
1013    memset(&data, 0, sizeof(data));
1014
1015    result =
1016        acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1017                hpet_resources, &data);
1018
1019    if (ACPI_FAILURE(result))
1020        return -ENODEV;
1021
1022    if (!data.hd_address || !data.hd_nirqs) {
1023        if (data.hd_address)
1024            iounmap(data.hd_address);
1025        printk("%s: no address or irqs in _CRS\n", __func__);
1026        return -ENODEV;
1027    }
1028
1029    return hpet_alloc(&data);
1030}
1031
1032static int hpet_acpi_remove(struct acpi_device *device)
1033{
1034    /* XXX need to unregister clocksource, dealloc mem, etc */
1035    return -EINVAL;
1036}
1037
1038static const struct acpi_device_id hpet_device_ids[] = {
1039    {"PNP0103", 0},
1040    {"", 0},
1041};
1042MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1043
1044static struct acpi_driver hpet_acpi_driver = {
1045    .name = "hpet",
1046    .ids = hpet_device_ids,
1047    .ops = {
1048        .add = hpet_acpi_add,
1049        .remove = hpet_acpi_remove,
1050        },
1051};
1052
1053static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1054
1055static int __init hpet_init(void)
1056{
1057    int result;
1058
1059    result = misc_register(&hpet_misc);
1060    if (result < 0)
1061        return -ENODEV;
1062
1063    sysctl_header = register_sysctl_table(dev_root);
1064
1065    result = acpi_bus_register_driver(&hpet_acpi_driver);
1066    if (result < 0) {
1067        if (sysctl_header)
1068            unregister_sysctl_table(sysctl_header);
1069        misc_deregister(&hpet_misc);
1070        return result;
1071    }
1072
1073    return 0;
1074}
1075
1076static void __exit hpet_exit(void)
1077{
1078    acpi_bus_unregister_driver(&hpet_acpi_driver);
1079
1080    if (sysctl_header)
1081        unregister_sysctl_table(sysctl_header);
1082    misc_deregister(&hpet_misc);
1083
1084    return;
1085}
1086
1087module_init(hpet_init);
1088module_exit(hpet_exit);
1089MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1090MODULE_LICENSE("GPL");
1091

Archive Download this file



interactive