Root/drivers/char/hw_random/n2-drv.c

1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/init.h>
11#include <linux/slab.h>
12#include <linux/workqueue.h>
13#include <linux/preempt.h>
14#include <linux/hw_random.h>
15
16#include <linux/of.h>
17#include <linux/of_device.h>
18
19#include <asm/hypervisor.h>
20
21#include "n2rng.h"
22
23#define DRV_MODULE_NAME "n2rng"
24#define PFX DRV_MODULE_NAME ": "
25#define DRV_MODULE_VERSION "0.2"
26#define DRV_MODULE_RELDATE "July 27, 2011"
27
28static char version[] =
29    DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30
31MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32MODULE_DESCRIPTION("Niagara2 RNG driver");
33MODULE_LICENSE("GPL");
34MODULE_VERSION(DRV_MODULE_VERSION);
35
36/* The Niagara2 RNG provides a 64-bit read-only random number
37 * register, plus a control register. Access to the RNG is
38 * virtualized through the hypervisor so that both guests and control
39 * nodes can access the device.
40 *
41 * The entropy source consists of raw entropy sources, each
42 * constructed from a voltage controlled oscillator whose phase is
43 * jittered by thermal noise sources.
44 *
45 * The oscillator in each of the three raw entropy sources run at
46 * different frequencies. Normally, all three generator outputs are
47 * gathered, xored together, and fed into a CRC circuit, the output of
48 * which is the 64-bit read-only register.
49 *
50 * Some time is necessary for all the necessary entropy to build up
51 * such that a full 64-bits of entropy are available in the register.
52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53 * an interlock which blocks register reads until sufficient entropy
54 * is available.
55 *
56 * A control register is provided for adjusting various aspects of RNG
57 * operation, and to enable diagnostic modes. Each of the three raw
58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
59 * provided are fields for controlling the minimum time in cycles
60 * between read accesses to the register (RNG_CTL_WAIT, this controls
61 * the interlock described in the previous paragraph).
62 *
63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64 * all three entropy sources enabled, and the interlock time set
65 * appropriately.
66 *
67 * The CRC polynomial used by the chip is:
68 *
69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 *
73 * The RNG_CTL_VCO value of each noise cell must be programmed
74 * separately. This is why 4 control register values must be provided
75 * to the hypervisor. During a write, the hypervisor writes them all,
76 * one at a time, to the actual RNG_CTL register. The first three
77 * values are used to setup the desired RNG_CTL_VCO for each entropy
78 * source, for example:
79 *
80 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 *
84 * And then the fourth value sets the final chip state and enables
85 * desired.
86 */
87
88static int n2rng_hv_err_trans(unsigned long hv_err)
89{
90    switch (hv_err) {
91    case HV_EOK:
92        return 0;
93    case HV_EWOULDBLOCK:
94        return -EAGAIN;
95    case HV_ENOACCESS:
96        return -EPERM;
97    case HV_EIO:
98        return -EIO;
99    case HV_EBUSY:
100        return -EBUSY;
101    case HV_EBADALIGN:
102    case HV_ENORADDR:
103        return -EFAULT;
104    default:
105        return -EINVAL;
106    }
107}
108
109static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110                           unsigned long unit)
111{
112    unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113    int block = 0, busy = 0;
114
115    while (1) {
116        hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117                           &ticks,
118                           &watchdog_delta,
119                           &watchdog_status);
120        if (hv_err == HV_EOK)
121            break;
122
123        if (hv_err == HV_EBUSY) {
124            if (++busy >= N2RNG_BUSY_LIMIT)
125                break;
126
127            udelay(1);
128        } else if (hv_err == HV_EWOULDBLOCK) {
129            if (++block >= N2RNG_BLOCK_LIMIT)
130                break;
131
132            __delay(ticks);
133        } else
134            break;
135    }
136
137    return hv_err;
138}
139
140/* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
143 *
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
146 */
147static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148{
149    unsigned long ra = __pa(&np->scratch_control[0]);
150
151    return n2rng_generic_read_control_v2(ra, unit);
152}
153
154static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155                     unsigned long state,
156                     unsigned long control_ra,
157                     unsigned long watchdog_timeout,
158                     unsigned long *ticks)
159{
160    unsigned long hv_err;
161
162    if (np->hvapi_major == 1) {
163        hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164                        watchdog_timeout, ticks);
165    } else {
166        hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167                        watchdog_timeout, unit);
168        if (hv_err == HV_EOK)
169            hv_err = n2rng_control_settle_v2(np, unit);
170        *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171    }
172
173    return hv_err;
174}
175
176static int n2rng_generic_read_data(unsigned long data_ra)
177{
178    unsigned long ticks, hv_err;
179    int block = 0, hcheck = 0;
180
181    while (1) {
182        hv_err = sun4v_rng_data_read(data_ra, &ticks);
183        if (hv_err == HV_EOK)
184            return 0;
185
186        if (hv_err == HV_EWOULDBLOCK) {
187            if (++block >= N2RNG_BLOCK_LIMIT)
188                return -EWOULDBLOCK;
189            __delay(ticks);
190        } else if (hv_err == HV_ENOACCESS) {
191            return -EPERM;
192        } else if (hv_err == HV_EIO) {
193            if (++hcheck >= N2RNG_HCHECK_LIMIT)
194                return -EIO;
195            udelay(10000);
196        } else
197            return -ENODEV;
198    }
199}
200
201static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202                          unsigned long unit,
203                          unsigned long data_ra,
204                          unsigned long data_len,
205                          unsigned long *ticks)
206{
207    unsigned long hv_err;
208
209    if (np->hvapi_major == 1) {
210        hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211    } else {
212        hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213                             unit, ticks);
214        if (!*ticks)
215            *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216    }
217    return hv_err;
218}
219
220static int n2rng_generic_read_diag_data(struct n2rng *np,
221                    unsigned long unit,
222                    unsigned long data_ra,
223                    unsigned long data_len)
224{
225    unsigned long ticks, hv_err;
226    int block = 0;
227
228    while (1) {
229        hv_err = n2rng_read_diag_data_one(np, unit,
230                          data_ra, data_len,
231                          &ticks);
232        if (hv_err == HV_EOK)
233            return 0;
234
235        if (hv_err == HV_EWOULDBLOCK) {
236            if (++block >= N2RNG_BLOCK_LIMIT)
237                return -EWOULDBLOCK;
238            __delay(ticks);
239        } else if (hv_err == HV_ENOACCESS) {
240            return -EPERM;
241        } else if (hv_err == HV_EIO) {
242            return -EIO;
243        } else
244            return -ENODEV;
245    }
246}
247
248
249static int n2rng_generic_write_control(struct n2rng *np,
250                       unsigned long control_ra,
251                       unsigned long unit,
252                       unsigned long state)
253{
254    unsigned long hv_err, ticks;
255    int block = 0, busy = 0;
256
257    while (1) {
258        hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259                         np->wd_timeo, &ticks);
260        if (hv_err == HV_EOK)
261            return 0;
262
263        if (hv_err == HV_EWOULDBLOCK) {
264            if (++block >= N2RNG_BLOCK_LIMIT)
265                return -EWOULDBLOCK;
266            __delay(ticks);
267        } else if (hv_err == HV_EBUSY) {
268            if (++busy >= N2RNG_BUSY_LIMIT)
269                return -EBUSY;
270            udelay(1);
271        } else
272            return -ENODEV;
273    }
274}
275
276/* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
278 */
279static int n2rng_try_read_ctl(struct n2rng *np)
280{
281    unsigned long hv_err;
282    unsigned long x;
283
284    if (np->hvapi_major == 1) {
285        hv_err = sun4v_rng_get_diag_ctl();
286    } else {
287        /* We purposefully give invalid arguments, HV_NOACCESS
288         * is higher priority than the errors we'd get from
289         * these other cases, and that's the error we are
290         * truly interested in.
291         */
292        hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293        switch (hv_err) {
294        case HV_EWOULDBLOCK:
295        case HV_ENOACCESS:
296            break;
297        default:
298            hv_err = HV_EOK;
299            break;
300        }
301    }
302
303    return n2rng_hv_err_trans(hv_err);
304}
305
306#define CONTROL_DEFAULT_BASE \
307    ((2 << RNG_CTL_ASEL_SHIFT) | \
308     (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
309     RNG_CTL_LFSR)
310
311#define CONTROL_DEFAULT_0 \
312    (CONTROL_DEFAULT_BASE | \
313     (1 << RNG_CTL_VCO_SHIFT) | \
314     RNG_CTL_ES1)
315#define CONTROL_DEFAULT_1 \
316    (CONTROL_DEFAULT_BASE | \
317     (2 << RNG_CTL_VCO_SHIFT) | \
318     RNG_CTL_ES2)
319#define CONTROL_DEFAULT_2 \
320    (CONTROL_DEFAULT_BASE | \
321     (3 << RNG_CTL_VCO_SHIFT) | \
322     RNG_CTL_ES3)
323#define CONTROL_DEFAULT_3 \
324    (CONTROL_DEFAULT_BASE | \
325     RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326
327static void n2rng_control_swstate_init(struct n2rng *np)
328{
329    int i;
330
331    np->flags |= N2RNG_FLAG_CONTROL;
332
333    np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334    np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335    np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336
337    for (i = 0; i < np->num_units; i++) {
338        struct n2rng_unit *up = &np->units[i];
339
340        up->control[0] = CONTROL_DEFAULT_0;
341        up->control[1] = CONTROL_DEFAULT_1;
342        up->control[2] = CONTROL_DEFAULT_2;
343        up->control[3] = CONTROL_DEFAULT_3;
344    }
345
346    np->hv_state = HV_RNG_STATE_UNCONFIGURED;
347}
348
349static int n2rng_grab_diag_control(struct n2rng *np)
350{
351    int i, busy_count, err = -ENODEV;
352
353    busy_count = 0;
354    for (i = 0; i < 100; i++) {
355        err = n2rng_try_read_ctl(np);
356        if (err != -EAGAIN)
357            break;
358
359        if (++busy_count > 100) {
360            dev_err(&np->op->dev,
361                "Grab diag control timeout.\n");
362            return -ENODEV;
363        }
364
365        udelay(1);
366    }
367
368    return err;
369}
370
371static int n2rng_init_control(struct n2rng *np)
372{
373    int err = n2rng_grab_diag_control(np);
374
375    /* Not in the control domain, that's OK we are only a consumer
376     * of the RNG data, we don't setup and program it.
377     */
378    if (err == -EPERM)
379        return 0;
380    if (err)
381        return err;
382
383    n2rng_control_swstate_init(np);
384
385    return 0;
386}
387
388static int n2rng_data_read(struct hwrng *rng, u32 *data)
389{
390    struct n2rng *np = (struct n2rng *) rng->priv;
391    unsigned long ra = __pa(&np->test_data);
392    int len;
393
394    if (!(np->flags & N2RNG_FLAG_READY)) {
395        len = 0;
396    } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397        np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398        *data = np->buffer;
399        len = 4;
400    } else {
401        int err = n2rng_generic_read_data(ra);
402        if (!err) {
403            np->buffer = np->test_data >> 32;
404            *data = np->test_data & 0xffffffff;
405            len = 4;
406        } else {
407            dev_err(&np->op->dev, "RNG error, restesting\n");
408            np->flags &= ~N2RNG_FLAG_READY;
409            if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410                schedule_delayed_work(&np->work, 0);
411            len = 0;
412        }
413    }
414
415    return len;
416}
417
418/* On a guest node, just make sure we can read random data properly.
419 * If a control node reboots or reloads it's n2rng driver, this won't
420 * work during that time. So we have to keep probing until the device
421 * becomes usable.
422 */
423static int n2rng_guest_check(struct n2rng *np)
424{
425    unsigned long ra = __pa(&np->test_data);
426
427    return n2rng_generic_read_data(ra);
428}
429
430static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431                   u64 *pre_control, u64 pre_state,
432                   u64 *buffer, unsigned long buf_len,
433                   u64 *post_control, u64 post_state)
434{
435    unsigned long post_ctl_ra = __pa(post_control);
436    unsigned long pre_ctl_ra = __pa(pre_control);
437    unsigned long buffer_ra = __pa(buffer);
438    int err;
439
440    err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441    if (err)
442        return err;
443
444    err = n2rng_generic_read_diag_data(np, unit,
445                       buffer_ra, buf_len);
446
447    (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448                       post_state);
449
450    return err;
451}
452
453static u64 advance_polynomial(u64 poly, u64 val, int count)
454{
455    int i;
456
457    for (i = 0; i < count; i++) {
458        int highbit_set = ((s64)val < 0);
459
460        val <<= 1;
461        if (highbit_set)
462            val ^= poly;
463    }
464
465    return val;
466}
467
468static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469{
470    int i, count = 0;
471
472    /* Purposefully skip over the first word. */
473    for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474        if (np->test_buffer[i] == val)
475            count++;
476    }
477    return count;
478}
479
480static void n2rng_dump_test_buffer(struct n2rng *np)
481{
482    int i;
483
484    for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485        dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486            i, np->test_buffer[i]);
487}
488
489static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490{
491    u64 val = SELFTEST_VAL;
492    int err, matches, limit;
493
494    matches = 0;
495    for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496        matches += n2rng_test_buffer_find(np, val);
497        if (matches >= SELFTEST_MATCH_GOAL)
498            break;
499        val = advance_polynomial(SELFTEST_POLY, val, 1);
500    }
501
502    err = 0;
503    if (limit >= SELFTEST_LOOPS_MAX) {
504        err = -ENODEV;
505        dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506        n2rng_dump_test_buffer(np);
507    } else
508        dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509
510    return err;
511}
512
513static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514{
515    int err;
516
517    np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518    np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519    np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520    np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521                   RNG_CTL_LFSR |
522                   ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
523
524
525    err = n2rng_entropy_diag_read(np, unit, np->test_control,
526                      HV_RNG_STATE_HEALTHCHECK,
527                      np->test_buffer,
528                      sizeof(np->test_buffer),
529                      &np->units[unit].control[0],
530                      np->hv_state);
531    if (err)
532        return err;
533
534    return n2rng_check_selftest_buffer(np, unit);
535}
536
537static int n2rng_control_check(struct n2rng *np)
538{
539    int i;
540
541    for (i = 0; i < np->num_units; i++) {
542        int err = n2rng_control_selftest(np, i);
543        if (err)
544            return err;
545    }
546    return 0;
547}
548
549/* The sanity checks passed, install the final configuration into the
550 * chip, it's ready to use.
551 */
552static int n2rng_control_configure_units(struct n2rng *np)
553{
554    int unit, err;
555
556    err = 0;
557    for (unit = 0; unit < np->num_units; unit++) {
558        struct n2rng_unit *up = &np->units[unit];
559        unsigned long ctl_ra = __pa(&up->control[0]);
560        int esrc;
561        u64 base;
562
563        base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564            (2 << RNG_CTL_ASEL_SHIFT) |
565            RNG_CTL_LFSR);
566
567        /* XXX This isn't the best. We should fetch a bunch
568         * XXX of words using each entropy source combined XXX
569         * with each VCO setting, and see which combinations
570         * XXX give the best random data.
571         */
572        for (esrc = 0; esrc < 3; esrc++)
573            up->control[esrc] = base |
574                (esrc << RNG_CTL_VCO_SHIFT) |
575                (RNG_CTL_ES1 << esrc);
576
577        up->control[3] = base |
578            (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579
580        err = n2rng_generic_write_control(np, ctl_ra, unit,
581                          HV_RNG_STATE_CONFIGURED);
582        if (err)
583            break;
584    }
585
586    return err;
587}
588
589static void n2rng_work(struct work_struct *work)
590{
591    struct n2rng *np = container_of(work, struct n2rng, work.work);
592    int err = 0;
593
594    if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595        err = n2rng_guest_check(np);
596    } else {
597        preempt_disable();
598        err = n2rng_control_check(np);
599        preempt_enable();
600
601        if (!err)
602            err = n2rng_control_configure_units(np);
603    }
604
605    if (!err) {
606        np->flags |= N2RNG_FLAG_READY;
607        dev_info(&np->op->dev, "RNG ready\n");
608    }
609
610    if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611        schedule_delayed_work(&np->work, HZ * 2);
612}
613
614static void n2rng_driver_version(void)
615{
616    static int n2rng_version_printed;
617
618    if (n2rng_version_printed++ == 0)
619        pr_info("%s", version);
620}
621
622static const struct of_device_id n2rng_match[];
623static int n2rng_probe(struct platform_device *op)
624{
625    const struct of_device_id *match;
626    int multi_capable;
627    int err = -ENOMEM;
628    struct n2rng *np;
629
630    match = of_match_device(n2rng_match, &op->dev);
631    if (!match)
632        return -EINVAL;
633    multi_capable = (match->data != NULL);
634
635    n2rng_driver_version();
636    np = kzalloc(sizeof(*np), GFP_KERNEL);
637    if (!np)
638        goto out;
639    np->op = op;
640
641    INIT_DELAYED_WORK(&np->work, n2rng_work);
642
643    if (multi_capable)
644        np->flags |= N2RNG_FLAG_MULTI;
645
646    err = -ENODEV;
647    np->hvapi_major = 2;
648    if (sun4v_hvapi_register(HV_GRP_RNG,
649                 np->hvapi_major,
650                 &np->hvapi_minor)) {
651        np->hvapi_major = 1;
652        if (sun4v_hvapi_register(HV_GRP_RNG,
653                     np->hvapi_major,
654                     &np->hvapi_minor)) {
655            dev_err(&op->dev, "Cannot register suitable "
656                "HVAPI version.\n");
657            goto out_free;
658        }
659    }
660
661    if (np->flags & N2RNG_FLAG_MULTI) {
662        if (np->hvapi_major < 2) {
663            dev_err(&op->dev, "multi-unit-capable RNG requires "
664                "HVAPI major version 2 or later, got %lu\n",
665                np->hvapi_major);
666            goto out_hvapi_unregister;
667        }
668        np->num_units = of_getintprop_default(op->dev.of_node,
669                              "rng-#units", 0);
670        if (!np->num_units) {
671            dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672            goto out_hvapi_unregister;
673        }
674    } else
675        np->num_units = 1;
676
677    dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678         np->hvapi_major, np->hvapi_minor);
679
680    np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681                GFP_KERNEL);
682    err = -ENOMEM;
683    if (!np->units)
684        goto out_hvapi_unregister;
685
686    err = n2rng_init_control(np);
687    if (err)
688        goto out_free_units;
689
690    dev_info(&op->dev, "Found %s RNG, units: %d\n",
691         ((np->flags & N2RNG_FLAG_MULTI) ?
692          "multi-unit-capable" : "single-unit"),
693         np->num_units);
694
695    np->hwrng.name = "n2rng";
696    np->hwrng.data_read = n2rng_data_read;
697    np->hwrng.priv = (unsigned long) np;
698
699    err = hwrng_register(&np->hwrng);
700    if (err)
701        goto out_free_units;
702
703    dev_set_drvdata(&op->dev, np);
704
705    schedule_delayed_work(&np->work, 0);
706
707    return 0;
708
709out_free_units:
710    kfree(np->units);
711    np->units = NULL;
712
713out_hvapi_unregister:
714    sun4v_hvapi_unregister(HV_GRP_RNG);
715
716out_free:
717    kfree(np);
718out:
719    return err;
720}
721
722static int n2rng_remove(struct platform_device *op)
723{
724    struct n2rng *np = dev_get_drvdata(&op->dev);
725
726    np->flags |= N2RNG_FLAG_SHUTDOWN;
727
728    cancel_delayed_work_sync(&np->work);
729
730    hwrng_unregister(&np->hwrng);
731
732    sun4v_hvapi_unregister(HV_GRP_RNG);
733
734    kfree(np->units);
735    np->units = NULL;
736
737    kfree(np);
738
739    dev_set_drvdata(&op->dev, NULL);
740
741    return 0;
742}
743
744static const struct of_device_id n2rng_match[] = {
745    {
746        .name = "random-number-generator",
747        .compatible = "SUNW,n2-rng",
748    },
749    {
750        .name = "random-number-generator",
751        .compatible = "SUNW,vf-rng",
752        .data = (void *) 1,
753    },
754    {
755        .name = "random-number-generator",
756        .compatible = "SUNW,kt-rng",
757        .data = (void *) 1,
758    },
759    {},
760};
761MODULE_DEVICE_TABLE(of, n2rng_match);
762
763static struct platform_driver n2rng_driver = {
764    .driver = {
765        .name = "n2rng",
766        .owner = THIS_MODULE,
767        .of_match_table = n2rng_match,
768    },
769    .probe = n2rng_probe,
770    .remove = n2rng_remove,
771};
772
773module_platform_driver(n2rng_driver);
774

Archive Download this file



interactive