Root/
1 | /* n2-drv.c: Niagara-2 RNG driver. |
2 | * |
3 | * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net> |
4 | */ |
5 | |
6 | #include <linux/kernel.h> |
7 | #include <linux/module.h> |
8 | #include <linux/types.h> |
9 | #include <linux/delay.h> |
10 | #include <linux/init.h> |
11 | #include <linux/slab.h> |
12 | #include <linux/workqueue.h> |
13 | #include <linux/preempt.h> |
14 | #include <linux/hw_random.h> |
15 | |
16 | #include <linux/of.h> |
17 | #include <linux/of_device.h> |
18 | |
19 | #include <asm/hypervisor.h> |
20 | |
21 | #include "n2rng.h" |
22 | |
23 | #define DRV_MODULE_NAME "n2rng" |
24 | #define PFX DRV_MODULE_NAME ": " |
25 | #define DRV_MODULE_VERSION "0.2" |
26 | #define DRV_MODULE_RELDATE "July 27, 2011" |
27 | |
28 | static char version[] = |
29 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
30 | |
31 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); |
32 | MODULE_DESCRIPTION("Niagara2 RNG driver"); |
33 | MODULE_LICENSE("GPL"); |
34 | MODULE_VERSION(DRV_MODULE_VERSION); |
35 | |
36 | /* The Niagara2 RNG provides a 64-bit read-only random number |
37 | * register, plus a control register. Access to the RNG is |
38 | * virtualized through the hypervisor so that both guests and control |
39 | * nodes can access the device. |
40 | * |
41 | * The entropy source consists of raw entropy sources, each |
42 | * constructed from a voltage controlled oscillator whose phase is |
43 | * jittered by thermal noise sources. |
44 | * |
45 | * The oscillator in each of the three raw entropy sources run at |
46 | * different frequencies. Normally, all three generator outputs are |
47 | * gathered, xored together, and fed into a CRC circuit, the output of |
48 | * which is the 64-bit read-only register. |
49 | * |
50 | * Some time is necessary for all the necessary entropy to build up |
51 | * such that a full 64-bits of entropy are available in the register. |
52 | * In normal operating mode (RNG_CTL_LFSR is set), the chip implements |
53 | * an interlock which blocks register reads until sufficient entropy |
54 | * is available. |
55 | * |
56 | * A control register is provided for adjusting various aspects of RNG |
57 | * operation, and to enable diagnostic modes. Each of the three raw |
58 | * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also |
59 | * provided are fields for controlling the minimum time in cycles |
60 | * between read accesses to the register (RNG_CTL_WAIT, this controls |
61 | * the interlock described in the previous paragraph). |
62 | * |
63 | * The standard setting is to have the mode bit (RNG_CTL_LFSR) set, |
64 | * all three entropy sources enabled, and the interlock time set |
65 | * appropriately. |
66 | * |
67 | * The CRC polynomial used by the chip is: |
68 | * |
69 | * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + |
70 | * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + |
71 | * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1 |
72 | * |
73 | * The RNG_CTL_VCO value of each noise cell must be programmed |
74 | * separately. This is why 4 control register values must be provided |
75 | * to the hypervisor. During a write, the hypervisor writes them all, |
76 | * one at a time, to the actual RNG_CTL register. The first three |
77 | * values are used to setup the desired RNG_CTL_VCO for each entropy |
78 | * source, for example: |
79 | * |
80 | * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1 |
81 | * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2 |
82 | * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3 |
83 | * |
84 | * And then the fourth value sets the final chip state and enables |
85 | * desired. |
86 | */ |
87 | |
88 | static int n2rng_hv_err_trans(unsigned long hv_err) |
89 | { |
90 | switch (hv_err) { |
91 | case HV_EOK: |
92 | return 0; |
93 | case HV_EWOULDBLOCK: |
94 | return -EAGAIN; |
95 | case HV_ENOACCESS: |
96 | return -EPERM; |
97 | case HV_EIO: |
98 | return -EIO; |
99 | case HV_EBUSY: |
100 | return -EBUSY; |
101 | case HV_EBADALIGN: |
102 | case HV_ENORADDR: |
103 | return -EFAULT; |
104 | default: |
105 | return -EINVAL; |
106 | } |
107 | } |
108 | |
109 | static unsigned long n2rng_generic_read_control_v2(unsigned long ra, |
110 | unsigned long unit) |
111 | { |
112 | unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status; |
113 | int block = 0, busy = 0; |
114 | |
115 | while (1) { |
116 | hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state, |
117 | &ticks, |
118 | &watchdog_delta, |
119 | &watchdog_status); |
120 | if (hv_err == HV_EOK) |
121 | break; |
122 | |
123 | if (hv_err == HV_EBUSY) { |
124 | if (++busy >= N2RNG_BUSY_LIMIT) |
125 | break; |
126 | |
127 | udelay(1); |
128 | } else if (hv_err == HV_EWOULDBLOCK) { |
129 | if (++block >= N2RNG_BLOCK_LIMIT) |
130 | break; |
131 | |
132 | __delay(ticks); |
133 | } else |
134 | break; |
135 | } |
136 | |
137 | return hv_err; |
138 | } |
139 | |
140 | /* In multi-socket situations, the hypervisor might need to |
141 | * queue up the RNG control register write if it's for a unit |
142 | * that is on a cpu socket other than the one we are executing on. |
143 | * |
144 | * We poll here waiting for a successful read of that control |
145 | * register to make sure the write has been actually performed. |
146 | */ |
147 | static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit) |
148 | { |
149 | unsigned long ra = __pa(&np->scratch_control[0]); |
150 | |
151 | return n2rng_generic_read_control_v2(ra, unit); |
152 | } |
153 | |
154 | static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit, |
155 | unsigned long state, |
156 | unsigned long control_ra, |
157 | unsigned long watchdog_timeout, |
158 | unsigned long *ticks) |
159 | { |
160 | unsigned long hv_err; |
161 | |
162 | if (np->hvapi_major == 1) { |
163 | hv_err = sun4v_rng_ctl_write_v1(control_ra, state, |
164 | watchdog_timeout, ticks); |
165 | } else { |
166 | hv_err = sun4v_rng_ctl_write_v2(control_ra, state, |
167 | watchdog_timeout, unit); |
168 | if (hv_err == HV_EOK) |
169 | hv_err = n2rng_control_settle_v2(np, unit); |
170 | *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; |
171 | } |
172 | |
173 | return hv_err; |
174 | } |
175 | |
176 | static int n2rng_generic_read_data(unsigned long data_ra) |
177 | { |
178 | unsigned long ticks, hv_err; |
179 | int block = 0, hcheck = 0; |
180 | |
181 | while (1) { |
182 | hv_err = sun4v_rng_data_read(data_ra, &ticks); |
183 | if (hv_err == HV_EOK) |
184 | return 0; |
185 | |
186 | if (hv_err == HV_EWOULDBLOCK) { |
187 | if (++block >= N2RNG_BLOCK_LIMIT) |
188 | return -EWOULDBLOCK; |
189 | __delay(ticks); |
190 | } else if (hv_err == HV_ENOACCESS) { |
191 | return -EPERM; |
192 | } else if (hv_err == HV_EIO) { |
193 | if (++hcheck >= N2RNG_HCHECK_LIMIT) |
194 | return -EIO; |
195 | udelay(10000); |
196 | } else |
197 | return -ENODEV; |
198 | } |
199 | } |
200 | |
201 | static unsigned long n2rng_read_diag_data_one(struct n2rng *np, |
202 | unsigned long unit, |
203 | unsigned long data_ra, |
204 | unsigned long data_len, |
205 | unsigned long *ticks) |
206 | { |
207 | unsigned long hv_err; |
208 | |
209 | if (np->hvapi_major == 1) { |
210 | hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks); |
211 | } else { |
212 | hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len, |
213 | unit, ticks); |
214 | if (!*ticks) |
215 | *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; |
216 | } |
217 | return hv_err; |
218 | } |
219 | |
220 | static int n2rng_generic_read_diag_data(struct n2rng *np, |
221 | unsigned long unit, |
222 | unsigned long data_ra, |
223 | unsigned long data_len) |
224 | { |
225 | unsigned long ticks, hv_err; |
226 | int block = 0; |
227 | |
228 | while (1) { |
229 | hv_err = n2rng_read_diag_data_one(np, unit, |
230 | data_ra, data_len, |
231 | &ticks); |
232 | if (hv_err == HV_EOK) |
233 | return 0; |
234 | |
235 | if (hv_err == HV_EWOULDBLOCK) { |
236 | if (++block >= N2RNG_BLOCK_LIMIT) |
237 | return -EWOULDBLOCK; |
238 | __delay(ticks); |
239 | } else if (hv_err == HV_ENOACCESS) { |
240 | return -EPERM; |
241 | } else if (hv_err == HV_EIO) { |
242 | return -EIO; |
243 | } else |
244 | return -ENODEV; |
245 | } |
246 | } |
247 | |
248 | |
249 | static int n2rng_generic_write_control(struct n2rng *np, |
250 | unsigned long control_ra, |
251 | unsigned long unit, |
252 | unsigned long state) |
253 | { |
254 | unsigned long hv_err, ticks; |
255 | int block = 0, busy = 0; |
256 | |
257 | while (1) { |
258 | hv_err = n2rng_write_ctl_one(np, unit, state, control_ra, |
259 | np->wd_timeo, &ticks); |
260 | if (hv_err == HV_EOK) |
261 | return 0; |
262 | |
263 | if (hv_err == HV_EWOULDBLOCK) { |
264 | if (++block >= N2RNG_BLOCK_LIMIT) |
265 | return -EWOULDBLOCK; |
266 | __delay(ticks); |
267 | } else if (hv_err == HV_EBUSY) { |
268 | if (++busy >= N2RNG_BUSY_LIMIT) |
269 | return -EBUSY; |
270 | udelay(1); |
271 | } else |
272 | return -ENODEV; |
273 | } |
274 | } |
275 | |
276 | /* Just try to see if we can successfully access the control register |
277 | * of the RNG on the domain on which we are currently executing. |
278 | */ |
279 | static int n2rng_try_read_ctl(struct n2rng *np) |
280 | { |
281 | unsigned long hv_err; |
282 | unsigned long x; |
283 | |
284 | if (np->hvapi_major == 1) { |
285 | hv_err = sun4v_rng_get_diag_ctl(); |
286 | } else { |
287 | /* We purposefully give invalid arguments, HV_NOACCESS |
288 | * is higher priority than the errors we'd get from |
289 | * these other cases, and that's the error we are |
290 | * truly interested in. |
291 | */ |
292 | hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x); |
293 | switch (hv_err) { |
294 | case HV_EWOULDBLOCK: |
295 | case HV_ENOACCESS: |
296 | break; |
297 | default: |
298 | hv_err = HV_EOK; |
299 | break; |
300 | } |
301 | } |
302 | |
303 | return n2rng_hv_err_trans(hv_err); |
304 | } |
305 | |
306 | #define CONTROL_DEFAULT_BASE \ |
307 | ((2 << RNG_CTL_ASEL_SHIFT) | \ |
308 | (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \ |
309 | RNG_CTL_LFSR) |
310 | |
311 | #define CONTROL_DEFAULT_0 \ |
312 | (CONTROL_DEFAULT_BASE | \ |
313 | (1 << RNG_CTL_VCO_SHIFT) | \ |
314 | RNG_CTL_ES1) |
315 | #define CONTROL_DEFAULT_1 \ |
316 | (CONTROL_DEFAULT_BASE | \ |
317 | (2 << RNG_CTL_VCO_SHIFT) | \ |
318 | RNG_CTL_ES2) |
319 | #define CONTROL_DEFAULT_2 \ |
320 | (CONTROL_DEFAULT_BASE | \ |
321 | (3 << RNG_CTL_VCO_SHIFT) | \ |
322 | RNG_CTL_ES3) |
323 | #define CONTROL_DEFAULT_3 \ |
324 | (CONTROL_DEFAULT_BASE | \ |
325 | RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3) |
326 | |
327 | static void n2rng_control_swstate_init(struct n2rng *np) |
328 | { |
329 | int i; |
330 | |
331 | np->flags |= N2RNG_FLAG_CONTROL; |
332 | |
333 | np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT; |
334 | np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT; |
335 | np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT; |
336 | |
337 | for (i = 0; i < np->num_units; i++) { |
338 | struct n2rng_unit *up = &np->units[i]; |
339 | |
340 | up->control[0] = CONTROL_DEFAULT_0; |
341 | up->control[1] = CONTROL_DEFAULT_1; |
342 | up->control[2] = CONTROL_DEFAULT_2; |
343 | up->control[3] = CONTROL_DEFAULT_3; |
344 | } |
345 | |
346 | np->hv_state = HV_RNG_STATE_UNCONFIGURED; |
347 | } |
348 | |
349 | static int n2rng_grab_diag_control(struct n2rng *np) |
350 | { |
351 | int i, busy_count, err = -ENODEV; |
352 | |
353 | busy_count = 0; |
354 | for (i = 0; i < 100; i++) { |
355 | err = n2rng_try_read_ctl(np); |
356 | if (err != -EAGAIN) |
357 | break; |
358 | |
359 | if (++busy_count > 100) { |
360 | dev_err(&np->op->dev, |
361 | "Grab diag control timeout.\n"); |
362 | return -ENODEV; |
363 | } |
364 | |
365 | udelay(1); |
366 | } |
367 | |
368 | return err; |
369 | } |
370 | |
371 | static int n2rng_init_control(struct n2rng *np) |
372 | { |
373 | int err = n2rng_grab_diag_control(np); |
374 | |
375 | /* Not in the control domain, that's OK we are only a consumer |
376 | * of the RNG data, we don't setup and program it. |
377 | */ |
378 | if (err == -EPERM) |
379 | return 0; |
380 | if (err) |
381 | return err; |
382 | |
383 | n2rng_control_swstate_init(np); |
384 | |
385 | return 0; |
386 | } |
387 | |
388 | static int n2rng_data_read(struct hwrng *rng, u32 *data) |
389 | { |
390 | struct n2rng *np = (struct n2rng *) rng->priv; |
391 | unsigned long ra = __pa(&np->test_data); |
392 | int len; |
393 | |
394 | if (!(np->flags & N2RNG_FLAG_READY)) { |
395 | len = 0; |
396 | } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) { |
397 | np->flags &= ~N2RNG_FLAG_BUFFER_VALID; |
398 | *data = np->buffer; |
399 | len = 4; |
400 | } else { |
401 | int err = n2rng_generic_read_data(ra); |
402 | if (!err) { |
403 | np->buffer = np->test_data >> 32; |
404 | *data = np->test_data & 0xffffffff; |
405 | len = 4; |
406 | } else { |
407 | dev_err(&np->op->dev, "RNG error, restesting\n"); |
408 | np->flags &= ~N2RNG_FLAG_READY; |
409 | if (!(np->flags & N2RNG_FLAG_SHUTDOWN)) |
410 | schedule_delayed_work(&np->work, 0); |
411 | len = 0; |
412 | } |
413 | } |
414 | |
415 | return len; |
416 | } |
417 | |
418 | /* On a guest node, just make sure we can read random data properly. |
419 | * If a control node reboots or reloads it's n2rng driver, this won't |
420 | * work during that time. So we have to keep probing until the device |
421 | * becomes usable. |
422 | */ |
423 | static int n2rng_guest_check(struct n2rng *np) |
424 | { |
425 | unsigned long ra = __pa(&np->test_data); |
426 | |
427 | return n2rng_generic_read_data(ra); |
428 | } |
429 | |
430 | static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit, |
431 | u64 *pre_control, u64 pre_state, |
432 | u64 *buffer, unsigned long buf_len, |
433 | u64 *post_control, u64 post_state) |
434 | { |
435 | unsigned long post_ctl_ra = __pa(post_control); |
436 | unsigned long pre_ctl_ra = __pa(pre_control); |
437 | unsigned long buffer_ra = __pa(buffer); |
438 | int err; |
439 | |
440 | err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state); |
441 | if (err) |
442 | return err; |
443 | |
444 | err = n2rng_generic_read_diag_data(np, unit, |
445 | buffer_ra, buf_len); |
446 | |
447 | (void) n2rng_generic_write_control(np, post_ctl_ra, unit, |
448 | post_state); |
449 | |
450 | return err; |
451 | } |
452 | |
453 | static u64 advance_polynomial(u64 poly, u64 val, int count) |
454 | { |
455 | int i; |
456 | |
457 | for (i = 0; i < count; i++) { |
458 | int highbit_set = ((s64)val < 0); |
459 | |
460 | val <<= 1; |
461 | if (highbit_set) |
462 | val ^= poly; |
463 | } |
464 | |
465 | return val; |
466 | } |
467 | |
468 | static int n2rng_test_buffer_find(struct n2rng *np, u64 val) |
469 | { |
470 | int i, count = 0; |
471 | |
472 | /* Purposefully skip over the first word. */ |
473 | for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) { |
474 | if (np->test_buffer[i] == val) |
475 | count++; |
476 | } |
477 | return count; |
478 | } |
479 | |
480 | static void n2rng_dump_test_buffer(struct n2rng *np) |
481 | { |
482 | int i; |
483 | |
484 | for (i = 0; i < SELFTEST_BUFFER_WORDS; i++) |
485 | dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n", |
486 | i, np->test_buffer[i]); |
487 | } |
488 | |
489 | static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit) |
490 | { |
491 | u64 val = SELFTEST_VAL; |
492 | int err, matches, limit; |
493 | |
494 | matches = 0; |
495 | for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) { |
496 | matches += n2rng_test_buffer_find(np, val); |
497 | if (matches >= SELFTEST_MATCH_GOAL) |
498 | break; |
499 | val = advance_polynomial(SELFTEST_POLY, val, 1); |
500 | } |
501 | |
502 | err = 0; |
503 | if (limit >= SELFTEST_LOOPS_MAX) { |
504 | err = -ENODEV; |
505 | dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit); |
506 | n2rng_dump_test_buffer(np); |
507 | } else |
508 | dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit); |
509 | |
510 | return err; |
511 | } |
512 | |
513 | static int n2rng_control_selftest(struct n2rng *np, unsigned long unit) |
514 | { |
515 | int err; |
516 | |
517 | np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT); |
518 | np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT); |
519 | np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT); |
520 | np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) | |
521 | RNG_CTL_LFSR | |
522 | ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT)); |
523 | |
524 | |
525 | err = n2rng_entropy_diag_read(np, unit, np->test_control, |
526 | HV_RNG_STATE_HEALTHCHECK, |
527 | np->test_buffer, |
528 | sizeof(np->test_buffer), |
529 | &np->units[unit].control[0], |
530 | np->hv_state); |
531 | if (err) |
532 | return err; |
533 | |
534 | return n2rng_check_selftest_buffer(np, unit); |
535 | } |
536 | |
537 | static int n2rng_control_check(struct n2rng *np) |
538 | { |
539 | int i; |
540 | |
541 | for (i = 0; i < np->num_units; i++) { |
542 | int err = n2rng_control_selftest(np, i); |
543 | if (err) |
544 | return err; |
545 | } |
546 | return 0; |
547 | } |
548 | |
549 | /* The sanity checks passed, install the final configuration into the |
550 | * chip, it's ready to use. |
551 | */ |
552 | static int n2rng_control_configure_units(struct n2rng *np) |
553 | { |
554 | int unit, err; |
555 | |
556 | err = 0; |
557 | for (unit = 0; unit < np->num_units; unit++) { |
558 | struct n2rng_unit *up = &np->units[unit]; |
559 | unsigned long ctl_ra = __pa(&up->control[0]); |
560 | int esrc; |
561 | u64 base; |
562 | |
563 | base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) | |
564 | (2 << RNG_CTL_ASEL_SHIFT) | |
565 | RNG_CTL_LFSR); |
566 | |
567 | /* XXX This isn't the best. We should fetch a bunch |
568 | * XXX of words using each entropy source combined XXX |
569 | * with each VCO setting, and see which combinations |
570 | * XXX give the best random data. |
571 | */ |
572 | for (esrc = 0; esrc < 3; esrc++) |
573 | up->control[esrc] = base | |
574 | (esrc << RNG_CTL_VCO_SHIFT) | |
575 | (RNG_CTL_ES1 << esrc); |
576 | |
577 | up->control[3] = base | |
578 | (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3); |
579 | |
580 | err = n2rng_generic_write_control(np, ctl_ra, unit, |
581 | HV_RNG_STATE_CONFIGURED); |
582 | if (err) |
583 | break; |
584 | } |
585 | |
586 | return err; |
587 | } |
588 | |
589 | static void n2rng_work(struct work_struct *work) |
590 | { |
591 | struct n2rng *np = container_of(work, struct n2rng, work.work); |
592 | int err = 0; |
593 | |
594 | if (!(np->flags & N2RNG_FLAG_CONTROL)) { |
595 | err = n2rng_guest_check(np); |
596 | } else { |
597 | preempt_disable(); |
598 | err = n2rng_control_check(np); |
599 | preempt_enable(); |
600 | |
601 | if (!err) |
602 | err = n2rng_control_configure_units(np); |
603 | } |
604 | |
605 | if (!err) { |
606 | np->flags |= N2RNG_FLAG_READY; |
607 | dev_info(&np->op->dev, "RNG ready\n"); |
608 | } |
609 | |
610 | if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN)) |
611 | schedule_delayed_work(&np->work, HZ * 2); |
612 | } |
613 | |
614 | static void n2rng_driver_version(void) |
615 | { |
616 | static int n2rng_version_printed; |
617 | |
618 | if (n2rng_version_printed++ == 0) |
619 | pr_info("%s", version); |
620 | } |
621 | |
622 | static const struct of_device_id n2rng_match[]; |
623 | static int n2rng_probe(struct platform_device *op) |
624 | { |
625 | const struct of_device_id *match; |
626 | int multi_capable; |
627 | int err = -ENOMEM; |
628 | struct n2rng *np; |
629 | |
630 | match = of_match_device(n2rng_match, &op->dev); |
631 | if (!match) |
632 | return -EINVAL; |
633 | multi_capable = (match->data != NULL); |
634 | |
635 | n2rng_driver_version(); |
636 | np = kzalloc(sizeof(*np), GFP_KERNEL); |
637 | if (!np) |
638 | goto out; |
639 | np->op = op; |
640 | |
641 | INIT_DELAYED_WORK(&np->work, n2rng_work); |
642 | |
643 | if (multi_capable) |
644 | np->flags |= N2RNG_FLAG_MULTI; |
645 | |
646 | err = -ENODEV; |
647 | np->hvapi_major = 2; |
648 | if (sun4v_hvapi_register(HV_GRP_RNG, |
649 | np->hvapi_major, |
650 | &np->hvapi_minor)) { |
651 | np->hvapi_major = 1; |
652 | if (sun4v_hvapi_register(HV_GRP_RNG, |
653 | np->hvapi_major, |
654 | &np->hvapi_minor)) { |
655 | dev_err(&op->dev, "Cannot register suitable " |
656 | "HVAPI version.\n"); |
657 | goto out_free; |
658 | } |
659 | } |
660 | |
661 | if (np->flags & N2RNG_FLAG_MULTI) { |
662 | if (np->hvapi_major < 2) { |
663 | dev_err(&op->dev, "multi-unit-capable RNG requires " |
664 | "HVAPI major version 2 or later, got %lu\n", |
665 | np->hvapi_major); |
666 | goto out_hvapi_unregister; |
667 | } |
668 | np->num_units = of_getintprop_default(op->dev.of_node, |
669 | "rng-#units", 0); |
670 | if (!np->num_units) { |
671 | dev_err(&op->dev, "VF RNG lacks rng-#units property\n"); |
672 | goto out_hvapi_unregister; |
673 | } |
674 | } else |
675 | np->num_units = 1; |
676 | |
677 | dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n", |
678 | np->hvapi_major, np->hvapi_minor); |
679 | |
680 | np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units, |
681 | GFP_KERNEL); |
682 | err = -ENOMEM; |
683 | if (!np->units) |
684 | goto out_hvapi_unregister; |
685 | |
686 | err = n2rng_init_control(np); |
687 | if (err) |
688 | goto out_free_units; |
689 | |
690 | dev_info(&op->dev, "Found %s RNG, units: %d\n", |
691 | ((np->flags & N2RNG_FLAG_MULTI) ? |
692 | "multi-unit-capable" : "single-unit"), |
693 | np->num_units); |
694 | |
695 | np->hwrng.name = "n2rng"; |
696 | np->hwrng.data_read = n2rng_data_read; |
697 | np->hwrng.priv = (unsigned long) np; |
698 | |
699 | err = hwrng_register(&np->hwrng); |
700 | if (err) |
701 | goto out_free_units; |
702 | |
703 | dev_set_drvdata(&op->dev, np); |
704 | |
705 | schedule_delayed_work(&np->work, 0); |
706 | |
707 | return 0; |
708 | |
709 | out_free_units: |
710 | kfree(np->units); |
711 | np->units = NULL; |
712 | |
713 | out_hvapi_unregister: |
714 | sun4v_hvapi_unregister(HV_GRP_RNG); |
715 | |
716 | out_free: |
717 | kfree(np); |
718 | out: |
719 | return err; |
720 | } |
721 | |
722 | static int n2rng_remove(struct platform_device *op) |
723 | { |
724 | struct n2rng *np = dev_get_drvdata(&op->dev); |
725 | |
726 | np->flags |= N2RNG_FLAG_SHUTDOWN; |
727 | |
728 | cancel_delayed_work_sync(&np->work); |
729 | |
730 | hwrng_unregister(&np->hwrng); |
731 | |
732 | sun4v_hvapi_unregister(HV_GRP_RNG); |
733 | |
734 | kfree(np->units); |
735 | np->units = NULL; |
736 | |
737 | kfree(np); |
738 | |
739 | dev_set_drvdata(&op->dev, NULL); |
740 | |
741 | return 0; |
742 | } |
743 | |
744 | static const struct of_device_id n2rng_match[] = { |
745 | { |
746 | .name = "random-number-generator", |
747 | .compatible = "SUNW,n2-rng", |
748 | }, |
749 | { |
750 | .name = "random-number-generator", |
751 | .compatible = "SUNW,vf-rng", |
752 | .data = (void *) 1, |
753 | }, |
754 | { |
755 | .name = "random-number-generator", |
756 | .compatible = "SUNW,kt-rng", |
757 | .data = (void *) 1, |
758 | }, |
759 | {}, |
760 | }; |
761 | MODULE_DEVICE_TABLE(of, n2rng_match); |
762 | |
763 | static struct platform_driver n2rng_driver = { |
764 | .driver = { |
765 | .name = "n2rng", |
766 | .owner = THIS_MODULE, |
767 | .of_match_table = n2rng_match, |
768 | }, |
769 | .probe = n2rng_probe, |
770 | .remove = n2rng_remove, |
771 | }; |
772 | |
773 | module_platform_driver(n2rng_driver); |
774 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9