Root/drivers/char/rtc.c

1/*
2 * Real Time Clock interface for Linux
3 *
4 * Copyright (C) 1996 Paul Gortmaker
5 *
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
10 *
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
15 *
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
30 *
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
51 * 1.12b David John: Remove calls to the BKL.
52 */
53
54#define RTC_VERSION "1.12b"
55
56/*
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from
61 * kernel/time/ntp.c vs. this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sched.h>
78#include <linux/sysctl.h>
79#include <linux/wait.h>
80#include <linux/bcd.h>
81#include <linux/delay.h>
82#include <linux/uaccess.h>
83#include <linux/ratelimit.h>
84
85#include <asm/current.h>
86
87#ifdef CONFIG_X86
88#include <asm/hpet.h>
89#endif
90
91#ifdef CONFIG_SPARC32
92#include <linux/of.h>
93#include <linux/of_device.h>
94#include <asm/io.h>
95
96static unsigned long rtc_port;
97static int rtc_irq;
98#endif
99
100#ifdef CONFIG_HPET_EMULATE_RTC
101#undef RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled() 0
110#define hpet_set_alarm_time(hrs, min, sec) 0
111#define hpet_set_periodic_freq(arg) 0
112#define hpet_mask_rtc_irq_bit(arg) 0
113#define hpet_set_rtc_irq_bit(arg) 0
114#define hpet_rtc_timer_init() do { } while (0)
115#define hpet_rtc_dropped_irq() 0
116#define hpet_register_irq_handler(h) ({ 0; })
117#define hpet_unregister_irq_handler(h) ({ 0; })
118#ifdef RTC_IRQ
119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120{
121    return 0;
122}
123#endif
124#endif
125
126/*
127 * We sponge a minor off of the misc major. No need slurping
128 * up another valuable major dev number for this. If you add
129 * an ioctl, make sure you don't conflict with SPARC's RTC
130 * ioctls.
131 */
132
133static struct fasync_struct *rtc_async_queue;
134
135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137#ifdef RTC_IRQ
138static void rtc_dropped_irq(unsigned long data);
139
140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141#endif
142
143static ssize_t rtc_read(struct file *file, char __user *buf,
144            size_t count, loff_t *ppos);
145
146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148
149#ifdef RTC_IRQ
150static unsigned int rtc_poll(struct file *file, poll_table *wait);
151#endif
152
153static void get_rtc_alm_time(struct rtc_time *alm_tm);
154#ifdef RTC_IRQ
155static void set_rtc_irq_bit_locked(unsigned char bit);
156static void mask_rtc_irq_bit_locked(unsigned char bit);
157
158static inline void set_rtc_irq_bit(unsigned char bit)
159{
160    spin_lock_irq(&rtc_lock);
161    set_rtc_irq_bit_locked(bit);
162    spin_unlock_irq(&rtc_lock);
163}
164
165static void mask_rtc_irq_bit(unsigned char bit)
166{
167    spin_lock_irq(&rtc_lock);
168    mask_rtc_irq_bit_locked(bit);
169    spin_unlock_irq(&rtc_lock);
170}
171#endif
172
173#ifdef CONFIG_PROC_FS
174static int rtc_proc_open(struct inode *inode, struct file *file);
175#endif
176
177/*
178 * Bits in rtc_status. (6 bits of room for future expansion)
179 */
180
181#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
182#define RTC_TIMER_ON 0x02 /* missed irq timer active */
183
184/*
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
187 * timer in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
190 */
191static unsigned long rtc_status; /* bitmapped status byte. */
192static unsigned long rtc_freq; /* Current periodic IRQ rate */
193static unsigned long rtc_irq_data; /* our output to the world */
194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195
196#ifdef RTC_IRQ
197/*
198 * rtc_task_lock nests inside rtc_lock.
199 */
200static DEFINE_SPINLOCK(rtc_task_lock);
201static rtc_task_t *rtc_callback;
202#endif
203
204/*
205 * If this driver ever becomes modularised, it will be really nice
206 * to make the epoch retain its value across module reload...
207 */
208
209static unsigned long epoch = 1900; /* year corresponding to 0x00 */
210
211static const unsigned char days_in_mo[] =
212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213
214/*
215 * Returns true if a clock update is in progress
216 */
217static inline unsigned char rtc_is_updating(void)
218{
219    unsigned long flags;
220    unsigned char uip;
221
222    spin_lock_irqsave(&rtc_lock, flags);
223    uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224    spin_unlock_irqrestore(&rtc_lock, flags);
225    return uip;
226}
227
228#ifdef RTC_IRQ
229/*
230 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231 * but there is possibility of conflicting with the set_rtc_mmss()
232 * call (the rtc irq and the timer irq can easily run at the same
233 * time in two different CPUs). So we need to serialize
234 * accesses to the chip with the rtc_lock spinlock that each
235 * architecture should implement in the timer code.
236 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
237 */
238
239static irqreturn_t rtc_interrupt(int irq, void *dev_id)
240{
241    /*
242     * Can be an alarm interrupt, update complete interrupt,
243     * or a periodic interrupt. We store the status in the
244     * low byte and the number of interrupts received since
245     * the last read in the remainder of rtc_irq_data.
246     */
247
248    spin_lock(&rtc_lock);
249    rtc_irq_data += 0x100;
250    rtc_irq_data &= ~0xff;
251    if (is_hpet_enabled()) {
252        /*
253         * In this case it is HPET RTC interrupt handler
254         * calling us, with the interrupt information
255         * passed as arg1, instead of irq.
256         */
257        rtc_irq_data |= (unsigned long)irq & 0xF0;
258    } else {
259        rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
260    }
261
262    if (rtc_status & RTC_TIMER_ON)
263        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264
265    spin_unlock(&rtc_lock);
266
267    /* Now do the rest of the actions */
268    spin_lock(&rtc_task_lock);
269    if (rtc_callback)
270        rtc_callback->func(rtc_callback->private_data);
271    spin_unlock(&rtc_task_lock);
272    wake_up_interruptible(&rtc_wait);
273
274    kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
275
276    return IRQ_HANDLED;
277}
278#endif
279
280/*
281 * sysctl-tuning infrastructure.
282 */
283static ctl_table rtc_table[] = {
284    {
285        .procname = "max-user-freq",
286        .data = &rtc_max_user_freq,
287        .maxlen = sizeof(int),
288        .mode = 0644,
289        .proc_handler = proc_dointvec,
290    },
291    { }
292};
293
294static ctl_table rtc_root[] = {
295    {
296        .procname = "rtc",
297        .mode = 0555,
298        .child = rtc_table,
299    },
300    { }
301};
302
303static ctl_table dev_root[] = {
304    {
305        .procname = "dev",
306        .mode = 0555,
307        .child = rtc_root,
308    },
309    { }
310};
311
312static struct ctl_table_header *sysctl_header;
313
314static int __init init_sysctl(void)
315{
316    sysctl_header = register_sysctl_table(dev_root);
317    return 0;
318}
319
320static void __exit cleanup_sysctl(void)
321{
322    unregister_sysctl_table(sysctl_header);
323}
324
325/*
326 * Now all the various file operations that we export.
327 */
328
329static ssize_t rtc_read(struct file *file, char __user *buf,
330            size_t count, loff_t *ppos)
331{
332#ifndef RTC_IRQ
333    return -EIO;
334#else
335    DECLARE_WAITQUEUE(wait, current);
336    unsigned long data;
337    ssize_t retval;
338
339    if (rtc_has_irq == 0)
340        return -EIO;
341
342    /*
343     * Historically this function used to assume that sizeof(unsigned long)
344     * is the same in userspace and kernelspace. This lead to problems
345     * for configurations with multiple ABIs such a the MIPS o32 and 64
346     * ABIs supported on the same kernel. So now we support read of both
347     * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348     * userspace ABI.
349     */
350    if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
351        return -EINVAL;
352
353    add_wait_queue(&rtc_wait, &wait);
354
355    do {
356        /* First make it right. Then make it fast. Putting this whole
357         * block within the parentheses of a while would be too
358         * confusing. And no, xchg() is not the answer. */
359
360        __set_current_state(TASK_INTERRUPTIBLE);
361
362        spin_lock_irq(&rtc_lock);
363        data = rtc_irq_data;
364        rtc_irq_data = 0;
365        spin_unlock_irq(&rtc_lock);
366
367        if (data != 0)
368            break;
369
370        if (file->f_flags & O_NONBLOCK) {
371            retval = -EAGAIN;
372            goto out;
373        }
374        if (signal_pending(current)) {
375            retval = -ERESTARTSYS;
376            goto out;
377        }
378        schedule();
379    } while (1);
380
381    if (count == sizeof(unsigned int)) {
382        retval = put_user(data,
383                  (unsigned int __user *)buf) ?: sizeof(int);
384    } else {
385        retval = put_user(data,
386                  (unsigned long __user *)buf) ?: sizeof(long);
387    }
388    if (!retval)
389        retval = count;
390 out:
391    __set_current_state(TASK_RUNNING);
392    remove_wait_queue(&rtc_wait, &wait);
393
394    return retval;
395#endif
396}
397
398static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
399{
400    struct rtc_time wtime;
401
402#ifdef RTC_IRQ
403    if (rtc_has_irq == 0) {
404        switch (cmd) {
405        case RTC_AIE_OFF:
406        case RTC_AIE_ON:
407        case RTC_PIE_OFF:
408        case RTC_PIE_ON:
409        case RTC_UIE_OFF:
410        case RTC_UIE_ON:
411        case RTC_IRQP_READ:
412        case RTC_IRQP_SET:
413            return -EINVAL;
414        }
415    }
416#endif
417
418    switch (cmd) {
419#ifdef RTC_IRQ
420    case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
421    {
422        mask_rtc_irq_bit(RTC_AIE);
423        return 0;
424    }
425    case RTC_AIE_ON: /* Allow alarm interrupts. */
426    {
427        set_rtc_irq_bit(RTC_AIE);
428        return 0;
429    }
430    case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
431    {
432        /* can be called from isr via rtc_control() */
433        unsigned long flags;
434
435        spin_lock_irqsave(&rtc_lock, flags);
436        mask_rtc_irq_bit_locked(RTC_PIE);
437        if (rtc_status & RTC_TIMER_ON) {
438            rtc_status &= ~RTC_TIMER_ON;
439            del_timer(&rtc_irq_timer);
440        }
441        spin_unlock_irqrestore(&rtc_lock, flags);
442
443        return 0;
444    }
445    case RTC_PIE_ON: /* Allow periodic ints */
446    {
447        /* can be called from isr via rtc_control() */
448        unsigned long flags;
449
450        /*
451         * We don't really want Joe User enabling more
452         * than 64Hz of interrupts on a multi-user machine.
453         */
454        if (!kernel && (rtc_freq > rtc_max_user_freq) &&
455                        (!capable(CAP_SYS_RESOURCE)))
456            return -EACCES;
457
458        spin_lock_irqsave(&rtc_lock, flags);
459        if (!(rtc_status & RTC_TIMER_ON)) {
460            mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
461                    2*HZ/100);
462            rtc_status |= RTC_TIMER_ON;
463        }
464        set_rtc_irq_bit_locked(RTC_PIE);
465        spin_unlock_irqrestore(&rtc_lock, flags);
466
467        return 0;
468    }
469    case RTC_UIE_OFF: /* Mask ints from RTC updates. */
470    {
471        mask_rtc_irq_bit(RTC_UIE);
472        return 0;
473    }
474    case RTC_UIE_ON: /* Allow ints for RTC updates. */
475    {
476        set_rtc_irq_bit(RTC_UIE);
477        return 0;
478    }
479#endif
480    case RTC_ALM_READ: /* Read the present alarm time */
481    {
482        /*
483         * This returns a struct rtc_time. Reading >= 0xc0
484         * means "don't care" or "match all". Only the tm_hour,
485         * tm_min, and tm_sec values are filled in.
486         */
487        memset(&wtime, 0, sizeof(struct rtc_time));
488        get_rtc_alm_time(&wtime);
489        break;
490    }
491    case RTC_ALM_SET: /* Store a time into the alarm */
492    {
493        /*
494         * This expects a struct rtc_time. Writing 0xff means
495         * "don't care" or "match all". Only the tm_hour,
496         * tm_min and tm_sec are used.
497         */
498        unsigned char hrs, min, sec;
499        struct rtc_time alm_tm;
500
501        if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
502                   sizeof(struct rtc_time)))
503            return -EFAULT;
504
505        hrs = alm_tm.tm_hour;
506        min = alm_tm.tm_min;
507        sec = alm_tm.tm_sec;
508
509        spin_lock_irq(&rtc_lock);
510        if (hpet_set_alarm_time(hrs, min, sec)) {
511            /*
512             * Fallthru and set alarm time in CMOS too,
513             * so that we will get proper value in RTC_ALM_READ
514             */
515        }
516        if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
517                            RTC_ALWAYS_BCD) {
518            if (sec < 60)
519                sec = bin2bcd(sec);
520            else
521                sec = 0xff;
522
523            if (min < 60)
524                min = bin2bcd(min);
525            else
526                min = 0xff;
527
528            if (hrs < 24)
529                hrs = bin2bcd(hrs);
530            else
531                hrs = 0xff;
532        }
533        CMOS_WRITE(hrs, RTC_HOURS_ALARM);
534        CMOS_WRITE(min, RTC_MINUTES_ALARM);
535        CMOS_WRITE(sec, RTC_SECONDS_ALARM);
536        spin_unlock_irq(&rtc_lock);
537
538        return 0;
539    }
540    case RTC_RD_TIME: /* Read the time/date from RTC */
541    {
542        memset(&wtime, 0, sizeof(struct rtc_time));
543        rtc_get_rtc_time(&wtime);
544        break;
545    }
546    case RTC_SET_TIME: /* Set the RTC */
547    {
548        struct rtc_time rtc_tm;
549        unsigned char mon, day, hrs, min, sec, leap_yr;
550        unsigned char save_control, save_freq_select;
551        unsigned int yrs;
552#ifdef CONFIG_MACH_DECSTATION
553        unsigned int real_yrs;
554#endif
555
556        if (!capable(CAP_SYS_TIME))
557            return -EACCES;
558
559        if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
560                   sizeof(struct rtc_time)))
561            return -EFAULT;
562
563        yrs = rtc_tm.tm_year + 1900;
564        mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
565        day = rtc_tm.tm_mday;
566        hrs = rtc_tm.tm_hour;
567        min = rtc_tm.tm_min;
568        sec = rtc_tm.tm_sec;
569
570        if (yrs < 1970)
571            return -EINVAL;
572
573        leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
574
575        if ((mon > 12) || (day == 0))
576            return -EINVAL;
577
578        if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
579            return -EINVAL;
580
581        if ((hrs >= 24) || (min >= 60) || (sec >= 60))
582            return -EINVAL;
583
584        yrs -= epoch;
585        if (yrs > 255) /* They are unsigned */
586            return -EINVAL;
587
588        spin_lock_irq(&rtc_lock);
589#ifdef CONFIG_MACH_DECSTATION
590        real_yrs = yrs;
591        yrs = 72;
592
593        /*
594         * We want to keep the year set to 73 until March
595         * for non-leap years, so that Feb, 29th is handled
596         * correctly.
597         */
598        if (!leap_yr && mon < 3) {
599            real_yrs--;
600            yrs = 73;
601        }
602#endif
603        /* These limits and adjustments are independent of
604         * whether the chip is in binary mode or not.
605         */
606        if (yrs > 169) {
607            spin_unlock_irq(&rtc_lock);
608            return -EINVAL;
609        }
610        if (yrs >= 100)
611            yrs -= 100;
612
613        if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
614            || RTC_ALWAYS_BCD) {
615            sec = bin2bcd(sec);
616            min = bin2bcd(min);
617            hrs = bin2bcd(hrs);
618            day = bin2bcd(day);
619            mon = bin2bcd(mon);
620            yrs = bin2bcd(yrs);
621        }
622
623        save_control = CMOS_READ(RTC_CONTROL);
624        CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
625        save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
626        CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
627
628#ifdef CONFIG_MACH_DECSTATION
629        CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
630#endif
631        CMOS_WRITE(yrs, RTC_YEAR);
632        CMOS_WRITE(mon, RTC_MONTH);
633        CMOS_WRITE(day, RTC_DAY_OF_MONTH);
634        CMOS_WRITE(hrs, RTC_HOURS);
635        CMOS_WRITE(min, RTC_MINUTES);
636        CMOS_WRITE(sec, RTC_SECONDS);
637
638        CMOS_WRITE(save_control, RTC_CONTROL);
639        CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
640
641        spin_unlock_irq(&rtc_lock);
642        return 0;
643    }
644#ifdef RTC_IRQ
645    case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
646    {
647        return put_user(rtc_freq, (unsigned long __user *)arg);
648    }
649    case RTC_IRQP_SET: /* Set periodic IRQ rate. */
650    {
651        int tmp = 0;
652        unsigned char val;
653        /* can be called from isr via rtc_control() */
654        unsigned long flags;
655
656        /*
657         * The max we can do is 8192Hz.
658         */
659        if ((arg < 2) || (arg > 8192))
660            return -EINVAL;
661        /*
662         * We don't really want Joe User generating more
663         * than 64Hz of interrupts on a multi-user machine.
664         */
665        if (!kernel && (arg > rtc_max_user_freq) &&
666                    !capable(CAP_SYS_RESOURCE))
667            return -EACCES;
668
669        while (arg > (1<<tmp))
670            tmp++;
671
672        /*
673         * Check that the input was really a power of 2.
674         */
675        if (arg != (1<<tmp))
676            return -EINVAL;
677
678        rtc_freq = arg;
679
680        spin_lock_irqsave(&rtc_lock, flags);
681        if (hpet_set_periodic_freq(arg)) {
682            spin_unlock_irqrestore(&rtc_lock, flags);
683            return 0;
684        }
685
686        val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
687        val |= (16 - tmp);
688        CMOS_WRITE(val, RTC_FREQ_SELECT);
689        spin_unlock_irqrestore(&rtc_lock, flags);
690        return 0;
691    }
692#endif
693    case RTC_EPOCH_READ: /* Read the epoch. */
694    {
695        return put_user(epoch, (unsigned long __user *)arg);
696    }
697    case RTC_EPOCH_SET: /* Set the epoch. */
698    {
699        /*
700         * There were no RTC clocks before 1900.
701         */
702        if (arg < 1900)
703            return -EINVAL;
704
705        if (!capable(CAP_SYS_TIME))
706            return -EACCES;
707
708        epoch = arg;
709        return 0;
710    }
711    default:
712        return -ENOTTY;
713    }
714    return copy_to_user((void __user *)arg,
715                &wtime, sizeof wtime) ? -EFAULT : 0;
716}
717
718static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
719{
720    long ret;
721    ret = rtc_do_ioctl(cmd, arg, 0);
722    return ret;
723}
724
725/*
726 * We enforce only one user at a time here with the open/close.
727 * Also clear the previous interrupt data on an open, and clean
728 * up things on a close.
729 */
730static int rtc_open(struct inode *inode, struct file *file)
731{
732    spin_lock_irq(&rtc_lock);
733
734    if (rtc_status & RTC_IS_OPEN)
735        goto out_busy;
736
737    rtc_status |= RTC_IS_OPEN;
738
739    rtc_irq_data = 0;
740    spin_unlock_irq(&rtc_lock);
741    return 0;
742
743out_busy:
744    spin_unlock_irq(&rtc_lock);
745    return -EBUSY;
746}
747
748static int rtc_fasync(int fd, struct file *filp, int on)
749{
750    return fasync_helper(fd, filp, on, &rtc_async_queue);
751}
752
753static int rtc_release(struct inode *inode, struct file *file)
754{
755#ifdef RTC_IRQ
756    unsigned char tmp;
757
758    if (rtc_has_irq == 0)
759        goto no_irq;
760
761    /*
762     * Turn off all interrupts once the device is no longer
763     * in use, and clear the data.
764     */
765
766    spin_lock_irq(&rtc_lock);
767    if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
768        tmp = CMOS_READ(RTC_CONTROL);
769        tmp &= ~RTC_PIE;
770        tmp &= ~RTC_AIE;
771        tmp &= ~RTC_UIE;
772        CMOS_WRITE(tmp, RTC_CONTROL);
773        CMOS_READ(RTC_INTR_FLAGS);
774    }
775    if (rtc_status & RTC_TIMER_ON) {
776        rtc_status &= ~RTC_TIMER_ON;
777        del_timer(&rtc_irq_timer);
778    }
779    spin_unlock_irq(&rtc_lock);
780
781no_irq:
782#endif
783
784    spin_lock_irq(&rtc_lock);
785    rtc_irq_data = 0;
786    rtc_status &= ~RTC_IS_OPEN;
787    spin_unlock_irq(&rtc_lock);
788
789    return 0;
790}
791
792#ifdef RTC_IRQ
793static unsigned int rtc_poll(struct file *file, poll_table *wait)
794{
795    unsigned long l;
796
797    if (rtc_has_irq == 0)
798        return 0;
799
800    poll_wait(file, &rtc_wait, wait);
801
802    spin_lock_irq(&rtc_lock);
803    l = rtc_irq_data;
804    spin_unlock_irq(&rtc_lock);
805
806    if (l != 0)
807        return POLLIN | POLLRDNORM;
808    return 0;
809}
810#endif
811
812int rtc_register(rtc_task_t *task)
813{
814#ifndef RTC_IRQ
815    return -EIO;
816#else
817    if (task == NULL || task->func == NULL)
818        return -EINVAL;
819    spin_lock_irq(&rtc_lock);
820    if (rtc_status & RTC_IS_OPEN) {
821        spin_unlock_irq(&rtc_lock);
822        return -EBUSY;
823    }
824    spin_lock(&rtc_task_lock);
825    if (rtc_callback) {
826        spin_unlock(&rtc_task_lock);
827        spin_unlock_irq(&rtc_lock);
828        return -EBUSY;
829    }
830    rtc_status |= RTC_IS_OPEN;
831    rtc_callback = task;
832    spin_unlock(&rtc_task_lock);
833    spin_unlock_irq(&rtc_lock);
834    return 0;
835#endif
836}
837EXPORT_SYMBOL(rtc_register);
838
839int rtc_unregister(rtc_task_t *task)
840{
841#ifndef RTC_IRQ
842    return -EIO;
843#else
844    unsigned char tmp;
845
846    spin_lock_irq(&rtc_lock);
847    spin_lock(&rtc_task_lock);
848    if (rtc_callback != task) {
849        spin_unlock(&rtc_task_lock);
850        spin_unlock_irq(&rtc_lock);
851        return -ENXIO;
852    }
853    rtc_callback = NULL;
854
855    /* disable controls */
856    if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
857        tmp = CMOS_READ(RTC_CONTROL);
858        tmp &= ~RTC_PIE;
859        tmp &= ~RTC_AIE;
860        tmp &= ~RTC_UIE;
861        CMOS_WRITE(tmp, RTC_CONTROL);
862        CMOS_READ(RTC_INTR_FLAGS);
863    }
864    if (rtc_status & RTC_TIMER_ON) {
865        rtc_status &= ~RTC_TIMER_ON;
866        del_timer(&rtc_irq_timer);
867    }
868    rtc_status &= ~RTC_IS_OPEN;
869    spin_unlock(&rtc_task_lock);
870    spin_unlock_irq(&rtc_lock);
871    return 0;
872#endif
873}
874EXPORT_SYMBOL(rtc_unregister);
875
876int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
877{
878#ifndef RTC_IRQ
879    return -EIO;
880#else
881    unsigned long flags;
882    if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
883        return -EINVAL;
884    spin_lock_irqsave(&rtc_task_lock, flags);
885    if (rtc_callback != task) {
886        spin_unlock_irqrestore(&rtc_task_lock, flags);
887        return -ENXIO;
888    }
889    spin_unlock_irqrestore(&rtc_task_lock, flags);
890    return rtc_do_ioctl(cmd, arg, 1);
891#endif
892}
893EXPORT_SYMBOL(rtc_control);
894
895/*
896 * The various file operations we support.
897 */
898
899static const struct file_operations rtc_fops = {
900    .owner = THIS_MODULE,
901    .llseek = no_llseek,
902    .read = rtc_read,
903#ifdef RTC_IRQ
904    .poll = rtc_poll,
905#endif
906    .unlocked_ioctl = rtc_ioctl,
907    .open = rtc_open,
908    .release = rtc_release,
909    .fasync = rtc_fasync,
910};
911
912static struct miscdevice rtc_dev = {
913    .minor = RTC_MINOR,
914    .name = "rtc",
915    .fops = &rtc_fops,
916};
917
918#ifdef CONFIG_PROC_FS
919static const struct file_operations rtc_proc_fops = {
920    .owner = THIS_MODULE,
921    .open = rtc_proc_open,
922    .read = seq_read,
923    .llseek = seq_lseek,
924    .release = single_release,
925};
926#endif
927
928static resource_size_t rtc_size;
929
930static struct resource * __init rtc_request_region(resource_size_t size)
931{
932    struct resource *r;
933
934    if (RTC_IOMAPPED)
935        r = request_region(RTC_PORT(0), size, "rtc");
936    else
937        r = request_mem_region(RTC_PORT(0), size, "rtc");
938
939    if (r)
940        rtc_size = size;
941
942    return r;
943}
944
945static void rtc_release_region(void)
946{
947    if (RTC_IOMAPPED)
948        release_region(RTC_PORT(0), rtc_size);
949    else
950        release_mem_region(RTC_PORT(0), rtc_size);
951}
952
953static int __init rtc_init(void)
954{
955#ifdef CONFIG_PROC_FS
956    struct proc_dir_entry *ent;
957#endif
958#if defined(__alpha__) || defined(__mips__)
959    unsigned int year, ctrl;
960    char *guess = NULL;
961#endif
962#ifdef CONFIG_SPARC32
963    struct device_node *ebus_dp;
964    struct platform_device *op;
965#else
966    void *r;
967#ifdef RTC_IRQ
968    irq_handler_t rtc_int_handler_ptr;
969#endif
970#endif
971
972#ifdef CONFIG_SPARC32
973    for_each_node_by_name(ebus_dp, "ebus") {
974        struct device_node *dp;
975        for (dp = ebus_dp; dp; dp = dp->sibling) {
976            if (!strcmp(dp->name, "rtc")) {
977                op = of_find_device_by_node(dp);
978                if (op) {
979                    rtc_port = op->resource[0].start;
980                    rtc_irq = op->irqs[0];
981                    goto found;
982                }
983            }
984        }
985    }
986    rtc_has_irq = 0;
987    printk(KERN_ERR "rtc_init: no PC rtc found\n");
988    return -EIO;
989
990found:
991    if (!rtc_irq) {
992        rtc_has_irq = 0;
993        goto no_irq;
994    }
995
996    /*
997     * XXX Interrupt pin #7 in Espresso is shared between RTC and
998     * PCI Slot 2 INTA# (and some INTx# in Slot 1).
999     */
1000    if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001            (void *)&rtc_port)) {
1002        rtc_has_irq = 0;
1003        printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004        return -EIO;
1005    }
1006no_irq:
1007#else
1008    r = rtc_request_region(RTC_IO_EXTENT);
1009
1010    /*
1011     * If we've already requested a smaller range (for example, because
1012     * PNPBIOS or ACPI told us how the device is configured), the request
1013     * above might fail because it's too big.
1014     *
1015     * If so, request just the range we actually use.
1016     */
1017    if (!r)
1018        r = rtc_request_region(RTC_IO_EXTENT_USED);
1019    if (!r) {
1020#ifdef RTC_IRQ
1021        rtc_has_irq = 0;
1022#endif
1023        printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024               (long)(RTC_PORT(0)));
1025        return -EIO;
1026    }
1027
1028#ifdef RTC_IRQ
1029    if (is_hpet_enabled()) {
1030        int err;
1031
1032        rtc_int_handler_ptr = hpet_rtc_interrupt;
1033        err = hpet_register_irq_handler(rtc_interrupt);
1034        if (err != 0) {
1035            printk(KERN_WARNING "hpet_register_irq_handler failed "
1036                    "in rtc_init().");
1037            return err;
1038        }
1039    } else {
1040        rtc_int_handler_ptr = rtc_interrupt;
1041    }
1042
1043    if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1044            "rtc", NULL)) {
1045        /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1046        rtc_has_irq = 0;
1047        printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1048        rtc_release_region();
1049
1050        return -EIO;
1051    }
1052    hpet_rtc_timer_init();
1053
1054#endif
1055
1056#endif /* CONFIG_SPARC32 vs. others */
1057
1058    if (misc_register(&rtc_dev)) {
1059#ifdef RTC_IRQ
1060        free_irq(RTC_IRQ, NULL);
1061        hpet_unregister_irq_handler(rtc_interrupt);
1062        rtc_has_irq = 0;
1063#endif
1064        rtc_release_region();
1065        return -ENODEV;
1066    }
1067
1068#ifdef CONFIG_PROC_FS
1069    ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1070    if (!ent)
1071        printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1072#endif
1073
1074#if defined(__alpha__) || defined(__mips__)
1075    rtc_freq = HZ;
1076
1077    /* Each operating system on an Alpha uses its own epoch.
1078       Let's try to guess which one we are using now. */
1079
1080    if (rtc_is_updating() != 0)
1081        msleep(20);
1082
1083    spin_lock_irq(&rtc_lock);
1084    year = CMOS_READ(RTC_YEAR);
1085    ctrl = CMOS_READ(RTC_CONTROL);
1086    spin_unlock_irq(&rtc_lock);
1087
1088    if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1089        year = bcd2bin(year); /* This should never happen... */
1090
1091    if (year < 20) {
1092        epoch = 2000;
1093        guess = "SRM (post-2000)";
1094    } else if (year >= 20 && year < 48) {
1095        epoch = 1980;
1096        guess = "ARC console";
1097    } else if (year >= 48 && year < 72) {
1098        epoch = 1952;
1099        guess = "Digital UNIX";
1100#if defined(__mips__)
1101    } else if (year >= 72 && year < 74) {
1102        epoch = 2000;
1103        guess = "Digital DECstation";
1104#else
1105    } else if (year >= 70) {
1106        epoch = 1900;
1107        guess = "Standard PC (1900)";
1108#endif
1109    }
1110    if (guess)
1111        printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1112            guess, epoch);
1113#endif
1114#ifdef RTC_IRQ
1115    if (rtc_has_irq == 0)
1116        goto no_irq2;
1117
1118    spin_lock_irq(&rtc_lock);
1119    rtc_freq = 1024;
1120    if (!hpet_set_periodic_freq(rtc_freq)) {
1121        /*
1122         * Initialize periodic frequency to CMOS reset default,
1123         * which is 1024Hz
1124         */
1125        CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1126               RTC_FREQ_SELECT);
1127    }
1128    spin_unlock_irq(&rtc_lock);
1129no_irq2:
1130#endif
1131
1132    (void) init_sysctl();
1133
1134    printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1135
1136    return 0;
1137}
1138
1139static void __exit rtc_exit(void)
1140{
1141    cleanup_sysctl();
1142    remove_proc_entry("driver/rtc", NULL);
1143    misc_deregister(&rtc_dev);
1144
1145#ifdef CONFIG_SPARC32
1146    if (rtc_has_irq)
1147        free_irq(rtc_irq, &rtc_port);
1148#else
1149    rtc_release_region();
1150#ifdef RTC_IRQ
1151    if (rtc_has_irq) {
1152        free_irq(RTC_IRQ, NULL);
1153        hpet_unregister_irq_handler(hpet_rtc_interrupt);
1154    }
1155#endif
1156#endif /* CONFIG_SPARC32 */
1157}
1158
1159module_init(rtc_init);
1160module_exit(rtc_exit);
1161
1162#ifdef RTC_IRQ
1163/*
1164 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1165 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1166 * Since the interrupt handler doesn't get called, the IRQ status
1167 * byte doesn't get read, and the RTC stops generating interrupts.
1168 * A timer is set, and will call this function if/when that happens.
1169 * To get it out of this stalled state, we just read the status.
1170 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1171 * (You *really* shouldn't be trying to use a non-realtime system
1172 * for something that requires a steady > 1KHz signal anyways.)
1173 */
1174
1175static void rtc_dropped_irq(unsigned long data)
1176{
1177    unsigned long freq;
1178
1179    spin_lock_irq(&rtc_lock);
1180
1181    if (hpet_rtc_dropped_irq()) {
1182        spin_unlock_irq(&rtc_lock);
1183        return;
1184    }
1185
1186    /* Just in case someone disabled the timer from behind our back... */
1187    if (rtc_status & RTC_TIMER_ON)
1188        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1189
1190    rtc_irq_data += ((rtc_freq/HZ)<<8);
1191    rtc_irq_data &= ~0xff;
1192    rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1193
1194    freq = rtc_freq;
1195
1196    spin_unlock_irq(&rtc_lock);
1197
1198    printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1199               freq);
1200
1201    /* Now we have new data */
1202    wake_up_interruptible(&rtc_wait);
1203
1204    kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1205}
1206#endif
1207
1208#ifdef CONFIG_PROC_FS
1209/*
1210 * Info exported via "/proc/driver/rtc".
1211 */
1212
1213static int rtc_proc_show(struct seq_file *seq, void *v)
1214{
1215#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1216#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1217    struct rtc_time tm;
1218    unsigned char batt, ctrl;
1219    unsigned long freq;
1220
1221    spin_lock_irq(&rtc_lock);
1222    batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1223    ctrl = CMOS_READ(RTC_CONTROL);
1224    freq = rtc_freq;
1225    spin_unlock_irq(&rtc_lock);
1226
1227
1228    rtc_get_rtc_time(&tm);
1229
1230    /*
1231     * There is no way to tell if the luser has the RTC set for local
1232     * time or for Universal Standard Time (GMT). Probably local though.
1233     */
1234    seq_printf(seq,
1235           "rtc_time\t: %02d:%02d:%02d\n"
1236           "rtc_date\t: %04d-%02d-%02d\n"
1237           "rtc_epoch\t: %04lu\n",
1238           tm.tm_hour, tm.tm_min, tm.tm_sec,
1239           tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1240
1241    get_rtc_alm_time(&tm);
1242
1243    /*
1244     * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1245     * match any value for that particular field. Values that are
1246     * greater than a valid time, but less than 0xc0 shouldn't appear.
1247     */
1248    seq_puts(seq, "alarm\t\t: ");
1249    if (tm.tm_hour <= 24)
1250        seq_printf(seq, "%02d:", tm.tm_hour);
1251    else
1252        seq_puts(seq, "**:");
1253
1254    if (tm.tm_min <= 59)
1255        seq_printf(seq, "%02d:", tm.tm_min);
1256    else
1257        seq_puts(seq, "**:");
1258
1259    if (tm.tm_sec <= 59)
1260        seq_printf(seq, "%02d\n", tm.tm_sec);
1261    else
1262        seq_puts(seq, "**\n");
1263
1264    seq_printf(seq,
1265           "DST_enable\t: %s\n"
1266           "BCD\t\t: %s\n"
1267           "24hr\t\t: %s\n"
1268           "square_wave\t: %s\n"
1269           "alarm_IRQ\t: %s\n"
1270           "update_IRQ\t: %s\n"
1271           "periodic_IRQ\t: %s\n"
1272           "periodic_freq\t: %ld\n"
1273           "batt_status\t: %s\n",
1274           YN(RTC_DST_EN),
1275           NY(RTC_DM_BINARY),
1276           YN(RTC_24H),
1277           YN(RTC_SQWE),
1278           YN(RTC_AIE),
1279           YN(RTC_UIE),
1280           YN(RTC_PIE),
1281           freq,
1282           batt ? "okay" : "dead");
1283
1284    return 0;
1285#undef YN
1286#undef NY
1287}
1288
1289static int rtc_proc_open(struct inode *inode, struct file *file)
1290{
1291    return single_open(file, rtc_proc_show, NULL);
1292}
1293#endif
1294
1295static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1296{
1297    unsigned long uip_watchdog = jiffies, flags;
1298    unsigned char ctrl;
1299#ifdef CONFIG_MACH_DECSTATION
1300    unsigned int real_year;
1301#endif
1302
1303    /*
1304     * read RTC once any update in progress is done. The update
1305     * can take just over 2ms. We wait 20ms. There is no need to
1306     * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1307     * If you need to know *exactly* when a second has started, enable
1308     * periodic update complete interrupts, (via ioctl) and then
1309     * immediately read /dev/rtc which will block until you get the IRQ.
1310     * Once the read clears, read the RTC time (again via ioctl). Easy.
1311     */
1312
1313    while (rtc_is_updating() != 0 &&
1314           time_before(jiffies, uip_watchdog + 2*HZ/100))
1315        cpu_relax();
1316
1317    /*
1318     * Only the values that we read from the RTC are set. We leave
1319     * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1320     * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1321     * only updated by the RTC when initially set to a non-zero value.
1322     */
1323    spin_lock_irqsave(&rtc_lock, flags);
1324    rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1325    rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1326    rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1327    rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1328    rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1329    rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1330    /* Only set from 2.6.16 onwards */
1331    rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1332
1333#ifdef CONFIG_MACH_DECSTATION
1334    real_year = CMOS_READ(RTC_DEC_YEAR);
1335#endif
1336    ctrl = CMOS_READ(RTC_CONTROL);
1337    spin_unlock_irqrestore(&rtc_lock, flags);
1338
1339    if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1340        rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1341        rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1342        rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1343        rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1344        rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1345        rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1346        rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1347    }
1348
1349#ifdef CONFIG_MACH_DECSTATION
1350    rtc_tm->tm_year += real_year - 72;
1351#endif
1352
1353    /*
1354     * Account for differences between how the RTC uses the values
1355     * and how they are defined in a struct rtc_time;
1356     */
1357    rtc_tm->tm_year += epoch - 1900;
1358    if (rtc_tm->tm_year <= 69)
1359        rtc_tm->tm_year += 100;
1360
1361    rtc_tm->tm_mon--;
1362}
1363
1364static void get_rtc_alm_time(struct rtc_time *alm_tm)
1365{
1366    unsigned char ctrl;
1367
1368    /*
1369     * Only the values that we read from the RTC are set. That
1370     * means only tm_hour, tm_min, and tm_sec.
1371     */
1372    spin_lock_irq(&rtc_lock);
1373    alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1374    alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1375    alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1376    ctrl = CMOS_READ(RTC_CONTROL);
1377    spin_unlock_irq(&rtc_lock);
1378
1379    if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1380        alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1381        alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1382        alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1383    }
1384}
1385
1386#ifdef RTC_IRQ
1387/*
1388 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1389 * Rumour has it that if you frob the interrupt enable/disable
1390 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1391 * ensure you actually start getting interrupts. Probably for
1392 * compatibility with older/broken chipset RTC implementations.
1393 * We also clear out any old irq data after an ioctl() that
1394 * meddles with the interrupt enable/disable bits.
1395 */
1396
1397static void mask_rtc_irq_bit_locked(unsigned char bit)
1398{
1399    unsigned char val;
1400
1401    if (hpet_mask_rtc_irq_bit(bit))
1402        return;
1403    val = CMOS_READ(RTC_CONTROL);
1404    val &= ~bit;
1405    CMOS_WRITE(val, RTC_CONTROL);
1406    CMOS_READ(RTC_INTR_FLAGS);
1407
1408    rtc_irq_data = 0;
1409}
1410
1411static void set_rtc_irq_bit_locked(unsigned char bit)
1412{
1413    unsigned char val;
1414
1415    if (hpet_set_rtc_irq_bit(bit))
1416        return;
1417    val = CMOS_READ(RTC_CONTROL);
1418    val |= bit;
1419    CMOS_WRITE(val, RTC_CONTROL);
1420    CMOS_READ(RTC_INTR_FLAGS);
1421
1422    rtc_irq_data = 0;
1423}
1424#endif
1425
1426MODULE_AUTHOR("Paul Gortmaker");
1427MODULE_LICENSE("GPL");
1428MODULE_ALIAS_MISCDEV(RTC_MINOR);
1429

Archive Download this file



interactive