Root/
1 | /* |
2 | * Real Time Clock interface for Linux |
3 | * |
4 | * Copyright (C) 1996 Paul Gortmaker |
5 | * |
6 | * This driver allows use of the real time clock (built into |
7 | * nearly all computers) from user space. It exports the /dev/rtc |
8 | * interface supporting various ioctl() and also the |
9 | * /proc/driver/rtc pseudo-file for status information. |
10 | * |
11 | * The ioctls can be used to set the interrupt behaviour and |
12 | * generation rate from the RTC via IRQ 8. Then the /dev/rtc |
13 | * interface can be used to make use of these timer interrupts, |
14 | * be they interval or alarm based. |
15 | * |
16 | * The /dev/rtc interface will block on reads until an interrupt |
17 | * has been received. If a RTC interrupt has already happened, |
18 | * it will output an unsigned long and then block. The output value |
19 | * contains the interrupt status in the low byte and the number of |
20 | * interrupts since the last read in the remaining high bytes. The |
21 | * /dev/rtc interface can also be used with the select(2) call. |
22 | * |
23 | * This program is free software; you can redistribute it and/or |
24 | * modify it under the terms of the GNU General Public License |
25 | * as published by the Free Software Foundation; either version |
26 | * 2 of the License, or (at your option) any later version. |
27 | * |
28 | * Based on other minimal char device drivers, like Alan's |
29 | * watchdog, Ted's random, etc. etc. |
30 | * |
31 | * 1.07 Paul Gortmaker. |
32 | * 1.08 Miquel van Smoorenburg: disallow certain things on the |
33 | * DEC Alpha as the CMOS clock is also used for other things. |
34 | * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. |
35 | * 1.09a Pete Zaitcev: Sun SPARC |
36 | * 1.09b Jeff Garzik: Modularize, init cleanup |
37 | * 1.09c Jeff Garzik: SMP cleanup |
38 | * 1.10 Paul Barton-Davis: add support for async I/O |
39 | * 1.10a Andrea Arcangeli: Alpha updates |
40 | * 1.10b Andrew Morton: SMP lock fix |
41 | * 1.10c Cesar Barros: SMP locking fixes and cleanup |
42 | * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit |
43 | * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness. |
44 | * 1.11 Takashi Iwai: Kernel access functions |
45 | * rtc_register/rtc_unregister/rtc_control |
46 | * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init |
47 | * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer |
48 | * CONFIG_HPET_EMULATE_RTC |
49 | * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly. |
50 | * 1.12ac Alan Cox: Allow read access to the day of week register |
51 | * 1.12b David John: Remove calls to the BKL. |
52 | */ |
53 | |
54 | #define RTC_VERSION "1.12b" |
55 | |
56 | /* |
57 | * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with |
58 | * interrupts disabled. Due to the index-port/data-port (0x70/0x71) |
59 | * design of the RTC, we don't want two different things trying to |
60 | * get to it at once. (e.g. the periodic 11 min sync from |
61 | * kernel/time/ntp.c vs. this driver.) |
62 | */ |
63 | |
64 | #include <linux/interrupt.h> |
65 | #include <linux/module.h> |
66 | #include <linux/kernel.h> |
67 | #include <linux/types.h> |
68 | #include <linux/miscdevice.h> |
69 | #include <linux/ioport.h> |
70 | #include <linux/fcntl.h> |
71 | #include <linux/mc146818rtc.h> |
72 | #include <linux/init.h> |
73 | #include <linux/poll.h> |
74 | #include <linux/proc_fs.h> |
75 | #include <linux/seq_file.h> |
76 | #include <linux/spinlock.h> |
77 | #include <linux/sched.h> |
78 | #include <linux/sysctl.h> |
79 | #include <linux/wait.h> |
80 | #include <linux/bcd.h> |
81 | #include <linux/delay.h> |
82 | #include <linux/uaccess.h> |
83 | #include <linux/ratelimit.h> |
84 | |
85 | #include <asm/current.h> |
86 | |
87 | #ifdef CONFIG_X86 |
88 | #include <asm/hpet.h> |
89 | #endif |
90 | |
91 | #ifdef CONFIG_SPARC32 |
92 | #include <linux/of.h> |
93 | #include <linux/of_device.h> |
94 | #include <asm/io.h> |
95 | |
96 | static unsigned long rtc_port; |
97 | static int rtc_irq; |
98 | #endif |
99 | |
100 | #ifdef CONFIG_HPET_EMULATE_RTC |
101 | #undef RTC_IRQ |
102 | #endif |
103 | |
104 | #ifdef RTC_IRQ |
105 | static int rtc_has_irq = 1; |
106 | #endif |
107 | |
108 | #ifndef CONFIG_HPET_EMULATE_RTC |
109 | #define is_hpet_enabled() 0 |
110 | #define hpet_set_alarm_time(hrs, min, sec) 0 |
111 | #define hpet_set_periodic_freq(arg) 0 |
112 | #define hpet_mask_rtc_irq_bit(arg) 0 |
113 | #define hpet_set_rtc_irq_bit(arg) 0 |
114 | #define hpet_rtc_timer_init() do { } while (0) |
115 | #define hpet_rtc_dropped_irq() 0 |
116 | #define hpet_register_irq_handler(h) ({ 0; }) |
117 | #define hpet_unregister_irq_handler(h) ({ 0; }) |
118 | #ifdef RTC_IRQ |
119 | static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) |
120 | { |
121 | return 0; |
122 | } |
123 | #endif |
124 | #endif |
125 | |
126 | /* |
127 | * We sponge a minor off of the misc major. No need slurping |
128 | * up another valuable major dev number for this. If you add |
129 | * an ioctl, make sure you don't conflict with SPARC's RTC |
130 | * ioctls. |
131 | */ |
132 | |
133 | static struct fasync_struct *rtc_async_queue; |
134 | |
135 | static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); |
136 | |
137 | #ifdef RTC_IRQ |
138 | static void rtc_dropped_irq(unsigned long data); |
139 | |
140 | static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0); |
141 | #endif |
142 | |
143 | static ssize_t rtc_read(struct file *file, char __user *buf, |
144 | size_t count, loff_t *ppos); |
145 | |
146 | static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
147 | static void rtc_get_rtc_time(struct rtc_time *rtc_tm); |
148 | |
149 | #ifdef RTC_IRQ |
150 | static unsigned int rtc_poll(struct file *file, poll_table *wait); |
151 | #endif |
152 | |
153 | static void get_rtc_alm_time(struct rtc_time *alm_tm); |
154 | #ifdef RTC_IRQ |
155 | static void set_rtc_irq_bit_locked(unsigned char bit); |
156 | static void mask_rtc_irq_bit_locked(unsigned char bit); |
157 | |
158 | static inline void set_rtc_irq_bit(unsigned char bit) |
159 | { |
160 | spin_lock_irq(&rtc_lock); |
161 | set_rtc_irq_bit_locked(bit); |
162 | spin_unlock_irq(&rtc_lock); |
163 | } |
164 | |
165 | static void mask_rtc_irq_bit(unsigned char bit) |
166 | { |
167 | spin_lock_irq(&rtc_lock); |
168 | mask_rtc_irq_bit_locked(bit); |
169 | spin_unlock_irq(&rtc_lock); |
170 | } |
171 | #endif |
172 | |
173 | #ifdef CONFIG_PROC_FS |
174 | static int rtc_proc_open(struct inode *inode, struct file *file); |
175 | #endif |
176 | |
177 | /* |
178 | * Bits in rtc_status. (6 bits of room for future expansion) |
179 | */ |
180 | |
181 | #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ |
182 | #define RTC_TIMER_ON 0x02 /* missed irq timer active */ |
183 | |
184 | /* |
185 | * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is |
186 | * protected by the spin lock rtc_lock. However, ioctl can still disable the |
187 | * timer in rtc_status and then with del_timer after the interrupt has read |
188 | * rtc_status but before mod_timer is called, which would then reenable the |
189 | * timer (but you would need to have an awful timing before you'd trip on it) |
190 | */ |
191 | static unsigned long rtc_status; /* bitmapped status byte. */ |
192 | static unsigned long rtc_freq; /* Current periodic IRQ rate */ |
193 | static unsigned long rtc_irq_data; /* our output to the world */ |
194 | static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ |
195 | |
196 | #ifdef RTC_IRQ |
197 | /* |
198 | * rtc_task_lock nests inside rtc_lock. |
199 | */ |
200 | static DEFINE_SPINLOCK(rtc_task_lock); |
201 | static rtc_task_t *rtc_callback; |
202 | #endif |
203 | |
204 | /* |
205 | * If this driver ever becomes modularised, it will be really nice |
206 | * to make the epoch retain its value across module reload... |
207 | */ |
208 | |
209 | static unsigned long epoch = 1900; /* year corresponding to 0x00 */ |
210 | |
211 | static const unsigned char days_in_mo[] = |
212 | {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
213 | |
214 | /* |
215 | * Returns true if a clock update is in progress |
216 | */ |
217 | static inline unsigned char rtc_is_updating(void) |
218 | { |
219 | unsigned long flags; |
220 | unsigned char uip; |
221 | |
222 | spin_lock_irqsave(&rtc_lock, flags); |
223 | uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); |
224 | spin_unlock_irqrestore(&rtc_lock, flags); |
225 | return uip; |
226 | } |
227 | |
228 | #ifdef RTC_IRQ |
229 | /* |
230 | * A very tiny interrupt handler. It runs with IRQF_DISABLED set, |
231 | * but there is possibility of conflicting with the set_rtc_mmss() |
232 | * call (the rtc irq and the timer irq can easily run at the same |
233 | * time in two different CPUs). So we need to serialize |
234 | * accesses to the chip with the rtc_lock spinlock that each |
235 | * architecture should implement in the timer code. |
236 | * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) |
237 | */ |
238 | |
239 | static irqreturn_t rtc_interrupt(int irq, void *dev_id) |
240 | { |
241 | /* |
242 | * Can be an alarm interrupt, update complete interrupt, |
243 | * or a periodic interrupt. We store the status in the |
244 | * low byte and the number of interrupts received since |
245 | * the last read in the remainder of rtc_irq_data. |
246 | */ |
247 | |
248 | spin_lock(&rtc_lock); |
249 | rtc_irq_data += 0x100; |
250 | rtc_irq_data &= ~0xff; |
251 | if (is_hpet_enabled()) { |
252 | /* |
253 | * In this case it is HPET RTC interrupt handler |
254 | * calling us, with the interrupt information |
255 | * passed as arg1, instead of irq. |
256 | */ |
257 | rtc_irq_data |= (unsigned long)irq & 0xF0; |
258 | } else { |
259 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); |
260 | } |
261 | |
262 | if (rtc_status & RTC_TIMER_ON) |
263 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); |
264 | |
265 | spin_unlock(&rtc_lock); |
266 | |
267 | /* Now do the rest of the actions */ |
268 | spin_lock(&rtc_task_lock); |
269 | if (rtc_callback) |
270 | rtc_callback->func(rtc_callback->private_data); |
271 | spin_unlock(&rtc_task_lock); |
272 | wake_up_interruptible(&rtc_wait); |
273 | |
274 | kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); |
275 | |
276 | return IRQ_HANDLED; |
277 | } |
278 | #endif |
279 | |
280 | /* |
281 | * sysctl-tuning infrastructure. |
282 | */ |
283 | static ctl_table rtc_table[] = { |
284 | { |
285 | .procname = "max-user-freq", |
286 | .data = &rtc_max_user_freq, |
287 | .maxlen = sizeof(int), |
288 | .mode = 0644, |
289 | .proc_handler = proc_dointvec, |
290 | }, |
291 | { } |
292 | }; |
293 | |
294 | static ctl_table rtc_root[] = { |
295 | { |
296 | .procname = "rtc", |
297 | .mode = 0555, |
298 | .child = rtc_table, |
299 | }, |
300 | { } |
301 | }; |
302 | |
303 | static ctl_table dev_root[] = { |
304 | { |
305 | .procname = "dev", |
306 | .mode = 0555, |
307 | .child = rtc_root, |
308 | }, |
309 | { } |
310 | }; |
311 | |
312 | static struct ctl_table_header *sysctl_header; |
313 | |
314 | static int __init init_sysctl(void) |
315 | { |
316 | sysctl_header = register_sysctl_table(dev_root); |
317 | return 0; |
318 | } |
319 | |
320 | static void __exit cleanup_sysctl(void) |
321 | { |
322 | unregister_sysctl_table(sysctl_header); |
323 | } |
324 | |
325 | /* |
326 | * Now all the various file operations that we export. |
327 | */ |
328 | |
329 | static ssize_t rtc_read(struct file *file, char __user *buf, |
330 | size_t count, loff_t *ppos) |
331 | { |
332 | #ifndef RTC_IRQ |
333 | return -EIO; |
334 | #else |
335 | DECLARE_WAITQUEUE(wait, current); |
336 | unsigned long data; |
337 | ssize_t retval; |
338 | |
339 | if (rtc_has_irq == 0) |
340 | return -EIO; |
341 | |
342 | /* |
343 | * Historically this function used to assume that sizeof(unsigned long) |
344 | * is the same in userspace and kernelspace. This lead to problems |
345 | * for configurations with multiple ABIs such a the MIPS o32 and 64 |
346 | * ABIs supported on the same kernel. So now we support read of both |
347 | * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the |
348 | * userspace ABI. |
349 | */ |
350 | if (count != sizeof(unsigned int) && count != sizeof(unsigned long)) |
351 | return -EINVAL; |
352 | |
353 | add_wait_queue(&rtc_wait, &wait); |
354 | |
355 | do { |
356 | /* First make it right. Then make it fast. Putting this whole |
357 | * block within the parentheses of a while would be too |
358 | * confusing. And no, xchg() is not the answer. */ |
359 | |
360 | __set_current_state(TASK_INTERRUPTIBLE); |
361 | |
362 | spin_lock_irq(&rtc_lock); |
363 | data = rtc_irq_data; |
364 | rtc_irq_data = 0; |
365 | spin_unlock_irq(&rtc_lock); |
366 | |
367 | if (data != 0) |
368 | break; |
369 | |
370 | if (file->f_flags & O_NONBLOCK) { |
371 | retval = -EAGAIN; |
372 | goto out; |
373 | } |
374 | if (signal_pending(current)) { |
375 | retval = -ERESTARTSYS; |
376 | goto out; |
377 | } |
378 | schedule(); |
379 | } while (1); |
380 | |
381 | if (count == sizeof(unsigned int)) { |
382 | retval = put_user(data, |
383 | (unsigned int __user *)buf) ?: sizeof(int); |
384 | } else { |
385 | retval = put_user(data, |
386 | (unsigned long __user *)buf) ?: sizeof(long); |
387 | } |
388 | if (!retval) |
389 | retval = count; |
390 | out: |
391 | __set_current_state(TASK_RUNNING); |
392 | remove_wait_queue(&rtc_wait, &wait); |
393 | |
394 | return retval; |
395 | #endif |
396 | } |
397 | |
398 | static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) |
399 | { |
400 | struct rtc_time wtime; |
401 | |
402 | #ifdef RTC_IRQ |
403 | if (rtc_has_irq == 0) { |
404 | switch (cmd) { |
405 | case RTC_AIE_OFF: |
406 | case RTC_AIE_ON: |
407 | case RTC_PIE_OFF: |
408 | case RTC_PIE_ON: |
409 | case RTC_UIE_OFF: |
410 | case RTC_UIE_ON: |
411 | case RTC_IRQP_READ: |
412 | case RTC_IRQP_SET: |
413 | return -EINVAL; |
414 | } |
415 | } |
416 | #endif |
417 | |
418 | switch (cmd) { |
419 | #ifdef RTC_IRQ |
420 | case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ |
421 | { |
422 | mask_rtc_irq_bit(RTC_AIE); |
423 | return 0; |
424 | } |
425 | case RTC_AIE_ON: /* Allow alarm interrupts. */ |
426 | { |
427 | set_rtc_irq_bit(RTC_AIE); |
428 | return 0; |
429 | } |
430 | case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ |
431 | { |
432 | /* can be called from isr via rtc_control() */ |
433 | unsigned long flags; |
434 | |
435 | spin_lock_irqsave(&rtc_lock, flags); |
436 | mask_rtc_irq_bit_locked(RTC_PIE); |
437 | if (rtc_status & RTC_TIMER_ON) { |
438 | rtc_status &= ~RTC_TIMER_ON; |
439 | del_timer(&rtc_irq_timer); |
440 | } |
441 | spin_unlock_irqrestore(&rtc_lock, flags); |
442 | |
443 | return 0; |
444 | } |
445 | case RTC_PIE_ON: /* Allow periodic ints */ |
446 | { |
447 | /* can be called from isr via rtc_control() */ |
448 | unsigned long flags; |
449 | |
450 | /* |
451 | * We don't really want Joe User enabling more |
452 | * than 64Hz of interrupts on a multi-user machine. |
453 | */ |
454 | if (!kernel && (rtc_freq > rtc_max_user_freq) && |
455 | (!capable(CAP_SYS_RESOURCE))) |
456 | return -EACCES; |
457 | |
458 | spin_lock_irqsave(&rtc_lock, flags); |
459 | if (!(rtc_status & RTC_TIMER_ON)) { |
460 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + |
461 | 2*HZ/100); |
462 | rtc_status |= RTC_TIMER_ON; |
463 | } |
464 | set_rtc_irq_bit_locked(RTC_PIE); |
465 | spin_unlock_irqrestore(&rtc_lock, flags); |
466 | |
467 | return 0; |
468 | } |
469 | case RTC_UIE_OFF: /* Mask ints from RTC updates. */ |
470 | { |
471 | mask_rtc_irq_bit(RTC_UIE); |
472 | return 0; |
473 | } |
474 | case RTC_UIE_ON: /* Allow ints for RTC updates. */ |
475 | { |
476 | set_rtc_irq_bit(RTC_UIE); |
477 | return 0; |
478 | } |
479 | #endif |
480 | case RTC_ALM_READ: /* Read the present alarm time */ |
481 | { |
482 | /* |
483 | * This returns a struct rtc_time. Reading >= 0xc0 |
484 | * means "don't care" or "match all". Only the tm_hour, |
485 | * tm_min, and tm_sec values are filled in. |
486 | */ |
487 | memset(&wtime, 0, sizeof(struct rtc_time)); |
488 | get_rtc_alm_time(&wtime); |
489 | break; |
490 | } |
491 | case RTC_ALM_SET: /* Store a time into the alarm */ |
492 | { |
493 | /* |
494 | * This expects a struct rtc_time. Writing 0xff means |
495 | * "don't care" or "match all". Only the tm_hour, |
496 | * tm_min and tm_sec are used. |
497 | */ |
498 | unsigned char hrs, min, sec; |
499 | struct rtc_time alm_tm; |
500 | |
501 | if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg, |
502 | sizeof(struct rtc_time))) |
503 | return -EFAULT; |
504 | |
505 | hrs = alm_tm.tm_hour; |
506 | min = alm_tm.tm_min; |
507 | sec = alm_tm.tm_sec; |
508 | |
509 | spin_lock_irq(&rtc_lock); |
510 | if (hpet_set_alarm_time(hrs, min, sec)) { |
511 | /* |
512 | * Fallthru and set alarm time in CMOS too, |
513 | * so that we will get proper value in RTC_ALM_READ |
514 | */ |
515 | } |
516 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || |
517 | RTC_ALWAYS_BCD) { |
518 | if (sec < 60) |
519 | sec = bin2bcd(sec); |
520 | else |
521 | sec = 0xff; |
522 | |
523 | if (min < 60) |
524 | min = bin2bcd(min); |
525 | else |
526 | min = 0xff; |
527 | |
528 | if (hrs < 24) |
529 | hrs = bin2bcd(hrs); |
530 | else |
531 | hrs = 0xff; |
532 | } |
533 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); |
534 | CMOS_WRITE(min, RTC_MINUTES_ALARM); |
535 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); |
536 | spin_unlock_irq(&rtc_lock); |
537 | |
538 | return 0; |
539 | } |
540 | case RTC_RD_TIME: /* Read the time/date from RTC */ |
541 | { |
542 | memset(&wtime, 0, sizeof(struct rtc_time)); |
543 | rtc_get_rtc_time(&wtime); |
544 | break; |
545 | } |
546 | case RTC_SET_TIME: /* Set the RTC */ |
547 | { |
548 | struct rtc_time rtc_tm; |
549 | unsigned char mon, day, hrs, min, sec, leap_yr; |
550 | unsigned char save_control, save_freq_select; |
551 | unsigned int yrs; |
552 | #ifdef CONFIG_MACH_DECSTATION |
553 | unsigned int real_yrs; |
554 | #endif |
555 | |
556 | if (!capable(CAP_SYS_TIME)) |
557 | return -EACCES; |
558 | |
559 | if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, |
560 | sizeof(struct rtc_time))) |
561 | return -EFAULT; |
562 | |
563 | yrs = rtc_tm.tm_year + 1900; |
564 | mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ |
565 | day = rtc_tm.tm_mday; |
566 | hrs = rtc_tm.tm_hour; |
567 | min = rtc_tm.tm_min; |
568 | sec = rtc_tm.tm_sec; |
569 | |
570 | if (yrs < 1970) |
571 | return -EINVAL; |
572 | |
573 | leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); |
574 | |
575 | if ((mon > 12) || (day == 0)) |
576 | return -EINVAL; |
577 | |
578 | if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) |
579 | return -EINVAL; |
580 | |
581 | if ((hrs >= 24) || (min >= 60) || (sec >= 60)) |
582 | return -EINVAL; |
583 | |
584 | yrs -= epoch; |
585 | if (yrs > 255) /* They are unsigned */ |
586 | return -EINVAL; |
587 | |
588 | spin_lock_irq(&rtc_lock); |
589 | #ifdef CONFIG_MACH_DECSTATION |
590 | real_yrs = yrs; |
591 | yrs = 72; |
592 | |
593 | /* |
594 | * We want to keep the year set to 73 until March |
595 | * for non-leap years, so that Feb, 29th is handled |
596 | * correctly. |
597 | */ |
598 | if (!leap_yr && mon < 3) { |
599 | real_yrs--; |
600 | yrs = 73; |
601 | } |
602 | #endif |
603 | /* These limits and adjustments are independent of |
604 | * whether the chip is in binary mode or not. |
605 | */ |
606 | if (yrs > 169) { |
607 | spin_unlock_irq(&rtc_lock); |
608 | return -EINVAL; |
609 | } |
610 | if (yrs >= 100) |
611 | yrs -= 100; |
612 | |
613 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) |
614 | || RTC_ALWAYS_BCD) { |
615 | sec = bin2bcd(sec); |
616 | min = bin2bcd(min); |
617 | hrs = bin2bcd(hrs); |
618 | day = bin2bcd(day); |
619 | mon = bin2bcd(mon); |
620 | yrs = bin2bcd(yrs); |
621 | } |
622 | |
623 | save_control = CMOS_READ(RTC_CONTROL); |
624 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); |
625 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); |
626 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); |
627 | |
628 | #ifdef CONFIG_MACH_DECSTATION |
629 | CMOS_WRITE(real_yrs, RTC_DEC_YEAR); |
630 | #endif |
631 | CMOS_WRITE(yrs, RTC_YEAR); |
632 | CMOS_WRITE(mon, RTC_MONTH); |
633 | CMOS_WRITE(day, RTC_DAY_OF_MONTH); |
634 | CMOS_WRITE(hrs, RTC_HOURS); |
635 | CMOS_WRITE(min, RTC_MINUTES); |
636 | CMOS_WRITE(sec, RTC_SECONDS); |
637 | |
638 | CMOS_WRITE(save_control, RTC_CONTROL); |
639 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); |
640 | |
641 | spin_unlock_irq(&rtc_lock); |
642 | return 0; |
643 | } |
644 | #ifdef RTC_IRQ |
645 | case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ |
646 | { |
647 | return put_user(rtc_freq, (unsigned long __user *)arg); |
648 | } |
649 | case RTC_IRQP_SET: /* Set periodic IRQ rate. */ |
650 | { |
651 | int tmp = 0; |
652 | unsigned char val; |
653 | /* can be called from isr via rtc_control() */ |
654 | unsigned long flags; |
655 | |
656 | /* |
657 | * The max we can do is 8192Hz. |
658 | */ |
659 | if ((arg < 2) || (arg > 8192)) |
660 | return -EINVAL; |
661 | /* |
662 | * We don't really want Joe User generating more |
663 | * than 64Hz of interrupts on a multi-user machine. |
664 | */ |
665 | if (!kernel && (arg > rtc_max_user_freq) && |
666 | !capable(CAP_SYS_RESOURCE)) |
667 | return -EACCES; |
668 | |
669 | while (arg > (1<<tmp)) |
670 | tmp++; |
671 | |
672 | /* |
673 | * Check that the input was really a power of 2. |
674 | */ |
675 | if (arg != (1<<tmp)) |
676 | return -EINVAL; |
677 | |
678 | rtc_freq = arg; |
679 | |
680 | spin_lock_irqsave(&rtc_lock, flags); |
681 | if (hpet_set_periodic_freq(arg)) { |
682 | spin_unlock_irqrestore(&rtc_lock, flags); |
683 | return 0; |
684 | } |
685 | |
686 | val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0; |
687 | val |= (16 - tmp); |
688 | CMOS_WRITE(val, RTC_FREQ_SELECT); |
689 | spin_unlock_irqrestore(&rtc_lock, flags); |
690 | return 0; |
691 | } |
692 | #endif |
693 | case RTC_EPOCH_READ: /* Read the epoch. */ |
694 | { |
695 | return put_user(epoch, (unsigned long __user *)arg); |
696 | } |
697 | case RTC_EPOCH_SET: /* Set the epoch. */ |
698 | { |
699 | /* |
700 | * There were no RTC clocks before 1900. |
701 | */ |
702 | if (arg < 1900) |
703 | return -EINVAL; |
704 | |
705 | if (!capable(CAP_SYS_TIME)) |
706 | return -EACCES; |
707 | |
708 | epoch = arg; |
709 | return 0; |
710 | } |
711 | default: |
712 | return -ENOTTY; |
713 | } |
714 | return copy_to_user((void __user *)arg, |
715 | &wtime, sizeof wtime) ? -EFAULT : 0; |
716 | } |
717 | |
718 | static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
719 | { |
720 | long ret; |
721 | ret = rtc_do_ioctl(cmd, arg, 0); |
722 | return ret; |
723 | } |
724 | |
725 | /* |
726 | * We enforce only one user at a time here with the open/close. |
727 | * Also clear the previous interrupt data on an open, and clean |
728 | * up things on a close. |
729 | */ |
730 | static int rtc_open(struct inode *inode, struct file *file) |
731 | { |
732 | spin_lock_irq(&rtc_lock); |
733 | |
734 | if (rtc_status & RTC_IS_OPEN) |
735 | goto out_busy; |
736 | |
737 | rtc_status |= RTC_IS_OPEN; |
738 | |
739 | rtc_irq_data = 0; |
740 | spin_unlock_irq(&rtc_lock); |
741 | return 0; |
742 | |
743 | out_busy: |
744 | spin_unlock_irq(&rtc_lock); |
745 | return -EBUSY; |
746 | } |
747 | |
748 | static int rtc_fasync(int fd, struct file *filp, int on) |
749 | { |
750 | return fasync_helper(fd, filp, on, &rtc_async_queue); |
751 | } |
752 | |
753 | static int rtc_release(struct inode *inode, struct file *file) |
754 | { |
755 | #ifdef RTC_IRQ |
756 | unsigned char tmp; |
757 | |
758 | if (rtc_has_irq == 0) |
759 | goto no_irq; |
760 | |
761 | /* |
762 | * Turn off all interrupts once the device is no longer |
763 | * in use, and clear the data. |
764 | */ |
765 | |
766 | spin_lock_irq(&rtc_lock); |
767 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { |
768 | tmp = CMOS_READ(RTC_CONTROL); |
769 | tmp &= ~RTC_PIE; |
770 | tmp &= ~RTC_AIE; |
771 | tmp &= ~RTC_UIE; |
772 | CMOS_WRITE(tmp, RTC_CONTROL); |
773 | CMOS_READ(RTC_INTR_FLAGS); |
774 | } |
775 | if (rtc_status & RTC_TIMER_ON) { |
776 | rtc_status &= ~RTC_TIMER_ON; |
777 | del_timer(&rtc_irq_timer); |
778 | } |
779 | spin_unlock_irq(&rtc_lock); |
780 | |
781 | no_irq: |
782 | #endif |
783 | |
784 | spin_lock_irq(&rtc_lock); |
785 | rtc_irq_data = 0; |
786 | rtc_status &= ~RTC_IS_OPEN; |
787 | spin_unlock_irq(&rtc_lock); |
788 | |
789 | return 0; |
790 | } |
791 | |
792 | #ifdef RTC_IRQ |
793 | static unsigned int rtc_poll(struct file *file, poll_table *wait) |
794 | { |
795 | unsigned long l; |
796 | |
797 | if (rtc_has_irq == 0) |
798 | return 0; |
799 | |
800 | poll_wait(file, &rtc_wait, wait); |
801 | |
802 | spin_lock_irq(&rtc_lock); |
803 | l = rtc_irq_data; |
804 | spin_unlock_irq(&rtc_lock); |
805 | |
806 | if (l != 0) |
807 | return POLLIN | POLLRDNORM; |
808 | return 0; |
809 | } |
810 | #endif |
811 | |
812 | int rtc_register(rtc_task_t *task) |
813 | { |
814 | #ifndef RTC_IRQ |
815 | return -EIO; |
816 | #else |
817 | if (task == NULL || task->func == NULL) |
818 | return -EINVAL; |
819 | spin_lock_irq(&rtc_lock); |
820 | if (rtc_status & RTC_IS_OPEN) { |
821 | spin_unlock_irq(&rtc_lock); |
822 | return -EBUSY; |
823 | } |
824 | spin_lock(&rtc_task_lock); |
825 | if (rtc_callback) { |
826 | spin_unlock(&rtc_task_lock); |
827 | spin_unlock_irq(&rtc_lock); |
828 | return -EBUSY; |
829 | } |
830 | rtc_status |= RTC_IS_OPEN; |
831 | rtc_callback = task; |
832 | spin_unlock(&rtc_task_lock); |
833 | spin_unlock_irq(&rtc_lock); |
834 | return 0; |
835 | #endif |
836 | } |
837 | EXPORT_SYMBOL(rtc_register); |
838 | |
839 | int rtc_unregister(rtc_task_t *task) |
840 | { |
841 | #ifndef RTC_IRQ |
842 | return -EIO; |
843 | #else |
844 | unsigned char tmp; |
845 | |
846 | spin_lock_irq(&rtc_lock); |
847 | spin_lock(&rtc_task_lock); |
848 | if (rtc_callback != task) { |
849 | spin_unlock(&rtc_task_lock); |
850 | spin_unlock_irq(&rtc_lock); |
851 | return -ENXIO; |
852 | } |
853 | rtc_callback = NULL; |
854 | |
855 | /* disable controls */ |
856 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { |
857 | tmp = CMOS_READ(RTC_CONTROL); |
858 | tmp &= ~RTC_PIE; |
859 | tmp &= ~RTC_AIE; |
860 | tmp &= ~RTC_UIE; |
861 | CMOS_WRITE(tmp, RTC_CONTROL); |
862 | CMOS_READ(RTC_INTR_FLAGS); |
863 | } |
864 | if (rtc_status & RTC_TIMER_ON) { |
865 | rtc_status &= ~RTC_TIMER_ON; |
866 | del_timer(&rtc_irq_timer); |
867 | } |
868 | rtc_status &= ~RTC_IS_OPEN; |
869 | spin_unlock(&rtc_task_lock); |
870 | spin_unlock_irq(&rtc_lock); |
871 | return 0; |
872 | #endif |
873 | } |
874 | EXPORT_SYMBOL(rtc_unregister); |
875 | |
876 | int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) |
877 | { |
878 | #ifndef RTC_IRQ |
879 | return -EIO; |
880 | #else |
881 | unsigned long flags; |
882 | if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET) |
883 | return -EINVAL; |
884 | spin_lock_irqsave(&rtc_task_lock, flags); |
885 | if (rtc_callback != task) { |
886 | spin_unlock_irqrestore(&rtc_task_lock, flags); |
887 | return -ENXIO; |
888 | } |
889 | spin_unlock_irqrestore(&rtc_task_lock, flags); |
890 | return rtc_do_ioctl(cmd, arg, 1); |
891 | #endif |
892 | } |
893 | EXPORT_SYMBOL(rtc_control); |
894 | |
895 | /* |
896 | * The various file operations we support. |
897 | */ |
898 | |
899 | static const struct file_operations rtc_fops = { |
900 | .owner = THIS_MODULE, |
901 | .llseek = no_llseek, |
902 | .read = rtc_read, |
903 | #ifdef RTC_IRQ |
904 | .poll = rtc_poll, |
905 | #endif |
906 | .unlocked_ioctl = rtc_ioctl, |
907 | .open = rtc_open, |
908 | .release = rtc_release, |
909 | .fasync = rtc_fasync, |
910 | }; |
911 | |
912 | static struct miscdevice rtc_dev = { |
913 | .minor = RTC_MINOR, |
914 | .name = "rtc", |
915 | .fops = &rtc_fops, |
916 | }; |
917 | |
918 | #ifdef CONFIG_PROC_FS |
919 | static const struct file_operations rtc_proc_fops = { |
920 | .owner = THIS_MODULE, |
921 | .open = rtc_proc_open, |
922 | .read = seq_read, |
923 | .llseek = seq_lseek, |
924 | .release = single_release, |
925 | }; |
926 | #endif |
927 | |
928 | static resource_size_t rtc_size; |
929 | |
930 | static struct resource * __init rtc_request_region(resource_size_t size) |
931 | { |
932 | struct resource *r; |
933 | |
934 | if (RTC_IOMAPPED) |
935 | r = request_region(RTC_PORT(0), size, "rtc"); |
936 | else |
937 | r = request_mem_region(RTC_PORT(0), size, "rtc"); |
938 | |
939 | if (r) |
940 | rtc_size = size; |
941 | |
942 | return r; |
943 | } |
944 | |
945 | static void rtc_release_region(void) |
946 | { |
947 | if (RTC_IOMAPPED) |
948 | release_region(RTC_PORT(0), rtc_size); |
949 | else |
950 | release_mem_region(RTC_PORT(0), rtc_size); |
951 | } |
952 | |
953 | static int __init rtc_init(void) |
954 | { |
955 | #ifdef CONFIG_PROC_FS |
956 | struct proc_dir_entry *ent; |
957 | #endif |
958 | #if defined(__alpha__) || defined(__mips__) |
959 | unsigned int year, ctrl; |
960 | char *guess = NULL; |
961 | #endif |
962 | #ifdef CONFIG_SPARC32 |
963 | struct device_node *ebus_dp; |
964 | struct platform_device *op; |
965 | #else |
966 | void *r; |
967 | #ifdef RTC_IRQ |
968 | irq_handler_t rtc_int_handler_ptr; |
969 | #endif |
970 | #endif |
971 | |
972 | #ifdef CONFIG_SPARC32 |
973 | for_each_node_by_name(ebus_dp, "ebus") { |
974 | struct device_node *dp; |
975 | for (dp = ebus_dp; dp; dp = dp->sibling) { |
976 | if (!strcmp(dp->name, "rtc")) { |
977 | op = of_find_device_by_node(dp); |
978 | if (op) { |
979 | rtc_port = op->resource[0].start; |
980 | rtc_irq = op->irqs[0]; |
981 | goto found; |
982 | } |
983 | } |
984 | } |
985 | } |
986 | rtc_has_irq = 0; |
987 | printk(KERN_ERR "rtc_init: no PC rtc found\n"); |
988 | return -EIO; |
989 | |
990 | found: |
991 | if (!rtc_irq) { |
992 | rtc_has_irq = 0; |
993 | goto no_irq; |
994 | } |
995 | |
996 | /* |
997 | * XXX Interrupt pin #7 in Espresso is shared between RTC and |
998 | * PCI Slot 2 INTA# (and some INTx# in Slot 1). |
999 | */ |
1000 | if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", |
1001 | (void *)&rtc_port)) { |
1002 | rtc_has_irq = 0; |
1003 | printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); |
1004 | return -EIO; |
1005 | } |
1006 | no_irq: |
1007 | #else |
1008 | r = rtc_request_region(RTC_IO_EXTENT); |
1009 | |
1010 | /* |
1011 | * If we've already requested a smaller range (for example, because |
1012 | * PNPBIOS or ACPI told us how the device is configured), the request |
1013 | * above might fail because it's too big. |
1014 | * |
1015 | * If so, request just the range we actually use. |
1016 | */ |
1017 | if (!r) |
1018 | r = rtc_request_region(RTC_IO_EXTENT_USED); |
1019 | if (!r) { |
1020 | #ifdef RTC_IRQ |
1021 | rtc_has_irq = 0; |
1022 | #endif |
1023 | printk(KERN_ERR "rtc: I/O resource %lx is not free.\n", |
1024 | (long)(RTC_PORT(0))); |
1025 | return -EIO; |
1026 | } |
1027 | |
1028 | #ifdef RTC_IRQ |
1029 | if (is_hpet_enabled()) { |
1030 | int err; |
1031 | |
1032 | rtc_int_handler_ptr = hpet_rtc_interrupt; |
1033 | err = hpet_register_irq_handler(rtc_interrupt); |
1034 | if (err != 0) { |
1035 | printk(KERN_WARNING "hpet_register_irq_handler failed " |
1036 | "in rtc_init()."); |
1037 | return err; |
1038 | } |
1039 | } else { |
1040 | rtc_int_handler_ptr = rtc_interrupt; |
1041 | } |
1042 | |
1043 | if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, |
1044 | "rtc", NULL)) { |
1045 | /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ |
1046 | rtc_has_irq = 0; |
1047 | printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); |
1048 | rtc_release_region(); |
1049 | |
1050 | return -EIO; |
1051 | } |
1052 | hpet_rtc_timer_init(); |
1053 | |
1054 | #endif |
1055 | |
1056 | #endif /* CONFIG_SPARC32 vs. others */ |
1057 | |
1058 | if (misc_register(&rtc_dev)) { |
1059 | #ifdef RTC_IRQ |
1060 | free_irq(RTC_IRQ, NULL); |
1061 | hpet_unregister_irq_handler(rtc_interrupt); |
1062 | rtc_has_irq = 0; |
1063 | #endif |
1064 | rtc_release_region(); |
1065 | return -ENODEV; |
1066 | } |
1067 | |
1068 | #ifdef CONFIG_PROC_FS |
1069 | ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops); |
1070 | if (!ent) |
1071 | printk(KERN_WARNING "rtc: Failed to register with procfs.\n"); |
1072 | #endif |
1073 | |
1074 | #if defined(__alpha__) || defined(__mips__) |
1075 | rtc_freq = HZ; |
1076 | |
1077 | /* Each operating system on an Alpha uses its own epoch. |
1078 | Let's try to guess which one we are using now. */ |
1079 | |
1080 | if (rtc_is_updating() != 0) |
1081 | msleep(20); |
1082 | |
1083 | spin_lock_irq(&rtc_lock); |
1084 | year = CMOS_READ(RTC_YEAR); |
1085 | ctrl = CMOS_READ(RTC_CONTROL); |
1086 | spin_unlock_irq(&rtc_lock); |
1087 | |
1088 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
1089 | year = bcd2bin(year); /* This should never happen... */ |
1090 | |
1091 | if (year < 20) { |
1092 | epoch = 2000; |
1093 | guess = "SRM (post-2000)"; |
1094 | } else if (year >= 20 && year < 48) { |
1095 | epoch = 1980; |
1096 | guess = "ARC console"; |
1097 | } else if (year >= 48 && year < 72) { |
1098 | epoch = 1952; |
1099 | guess = "Digital UNIX"; |
1100 | #if defined(__mips__) |
1101 | } else if (year >= 72 && year < 74) { |
1102 | epoch = 2000; |
1103 | guess = "Digital DECstation"; |
1104 | #else |
1105 | } else if (year >= 70) { |
1106 | epoch = 1900; |
1107 | guess = "Standard PC (1900)"; |
1108 | #endif |
1109 | } |
1110 | if (guess) |
1111 | printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", |
1112 | guess, epoch); |
1113 | #endif |
1114 | #ifdef RTC_IRQ |
1115 | if (rtc_has_irq == 0) |
1116 | goto no_irq2; |
1117 | |
1118 | spin_lock_irq(&rtc_lock); |
1119 | rtc_freq = 1024; |
1120 | if (!hpet_set_periodic_freq(rtc_freq)) { |
1121 | /* |
1122 | * Initialize periodic frequency to CMOS reset default, |
1123 | * which is 1024Hz |
1124 | */ |
1125 | CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), |
1126 | RTC_FREQ_SELECT); |
1127 | } |
1128 | spin_unlock_irq(&rtc_lock); |
1129 | no_irq2: |
1130 | #endif |
1131 | |
1132 | (void) init_sysctl(); |
1133 | |
1134 | printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n"); |
1135 | |
1136 | return 0; |
1137 | } |
1138 | |
1139 | static void __exit rtc_exit(void) |
1140 | { |
1141 | cleanup_sysctl(); |
1142 | remove_proc_entry("driver/rtc", NULL); |
1143 | misc_deregister(&rtc_dev); |
1144 | |
1145 | #ifdef CONFIG_SPARC32 |
1146 | if (rtc_has_irq) |
1147 | free_irq(rtc_irq, &rtc_port); |
1148 | #else |
1149 | rtc_release_region(); |
1150 | #ifdef RTC_IRQ |
1151 | if (rtc_has_irq) { |
1152 | free_irq(RTC_IRQ, NULL); |
1153 | hpet_unregister_irq_handler(hpet_rtc_interrupt); |
1154 | } |
1155 | #endif |
1156 | #endif /* CONFIG_SPARC32 */ |
1157 | } |
1158 | |
1159 | module_init(rtc_init); |
1160 | module_exit(rtc_exit); |
1161 | |
1162 | #ifdef RTC_IRQ |
1163 | /* |
1164 | * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. |
1165 | * (usually during an IDE disk interrupt, with IRQ unmasking off) |
1166 | * Since the interrupt handler doesn't get called, the IRQ status |
1167 | * byte doesn't get read, and the RTC stops generating interrupts. |
1168 | * A timer is set, and will call this function if/when that happens. |
1169 | * To get it out of this stalled state, we just read the status. |
1170 | * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. |
1171 | * (You *really* shouldn't be trying to use a non-realtime system |
1172 | * for something that requires a steady > 1KHz signal anyways.) |
1173 | */ |
1174 | |
1175 | static void rtc_dropped_irq(unsigned long data) |
1176 | { |
1177 | unsigned long freq; |
1178 | |
1179 | spin_lock_irq(&rtc_lock); |
1180 | |
1181 | if (hpet_rtc_dropped_irq()) { |
1182 | spin_unlock_irq(&rtc_lock); |
1183 | return; |
1184 | } |
1185 | |
1186 | /* Just in case someone disabled the timer from behind our back... */ |
1187 | if (rtc_status & RTC_TIMER_ON) |
1188 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); |
1189 | |
1190 | rtc_irq_data += ((rtc_freq/HZ)<<8); |
1191 | rtc_irq_data &= ~0xff; |
1192 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ |
1193 | |
1194 | freq = rtc_freq; |
1195 | |
1196 | spin_unlock_irq(&rtc_lock); |
1197 | |
1198 | printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", |
1199 | freq); |
1200 | |
1201 | /* Now we have new data */ |
1202 | wake_up_interruptible(&rtc_wait); |
1203 | |
1204 | kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); |
1205 | } |
1206 | #endif |
1207 | |
1208 | #ifdef CONFIG_PROC_FS |
1209 | /* |
1210 | * Info exported via "/proc/driver/rtc". |
1211 | */ |
1212 | |
1213 | static int rtc_proc_show(struct seq_file *seq, void *v) |
1214 | { |
1215 | #define YN(bit) ((ctrl & bit) ? "yes" : "no") |
1216 | #define NY(bit) ((ctrl & bit) ? "no" : "yes") |
1217 | struct rtc_time tm; |
1218 | unsigned char batt, ctrl; |
1219 | unsigned long freq; |
1220 | |
1221 | spin_lock_irq(&rtc_lock); |
1222 | batt = CMOS_READ(RTC_VALID) & RTC_VRT; |
1223 | ctrl = CMOS_READ(RTC_CONTROL); |
1224 | freq = rtc_freq; |
1225 | spin_unlock_irq(&rtc_lock); |
1226 | |
1227 | |
1228 | rtc_get_rtc_time(&tm); |
1229 | |
1230 | /* |
1231 | * There is no way to tell if the luser has the RTC set for local |
1232 | * time or for Universal Standard Time (GMT). Probably local though. |
1233 | */ |
1234 | seq_printf(seq, |
1235 | "rtc_time\t: %02d:%02d:%02d\n" |
1236 | "rtc_date\t: %04d-%02d-%02d\n" |
1237 | "rtc_epoch\t: %04lu\n", |
1238 | tm.tm_hour, tm.tm_min, tm.tm_sec, |
1239 | tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); |
1240 | |
1241 | get_rtc_alm_time(&tm); |
1242 | |
1243 | /* |
1244 | * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will |
1245 | * match any value for that particular field. Values that are |
1246 | * greater than a valid time, but less than 0xc0 shouldn't appear. |
1247 | */ |
1248 | seq_puts(seq, "alarm\t\t: "); |
1249 | if (tm.tm_hour <= 24) |
1250 | seq_printf(seq, "%02d:", tm.tm_hour); |
1251 | else |
1252 | seq_puts(seq, "**:"); |
1253 | |
1254 | if (tm.tm_min <= 59) |
1255 | seq_printf(seq, "%02d:", tm.tm_min); |
1256 | else |
1257 | seq_puts(seq, "**:"); |
1258 | |
1259 | if (tm.tm_sec <= 59) |
1260 | seq_printf(seq, "%02d\n", tm.tm_sec); |
1261 | else |
1262 | seq_puts(seq, "**\n"); |
1263 | |
1264 | seq_printf(seq, |
1265 | "DST_enable\t: %s\n" |
1266 | "BCD\t\t: %s\n" |
1267 | "24hr\t\t: %s\n" |
1268 | "square_wave\t: %s\n" |
1269 | "alarm_IRQ\t: %s\n" |
1270 | "update_IRQ\t: %s\n" |
1271 | "periodic_IRQ\t: %s\n" |
1272 | "periodic_freq\t: %ld\n" |
1273 | "batt_status\t: %s\n", |
1274 | YN(RTC_DST_EN), |
1275 | NY(RTC_DM_BINARY), |
1276 | YN(RTC_24H), |
1277 | YN(RTC_SQWE), |
1278 | YN(RTC_AIE), |
1279 | YN(RTC_UIE), |
1280 | YN(RTC_PIE), |
1281 | freq, |
1282 | batt ? "okay" : "dead"); |
1283 | |
1284 | return 0; |
1285 | #undef YN |
1286 | #undef NY |
1287 | } |
1288 | |
1289 | static int rtc_proc_open(struct inode *inode, struct file *file) |
1290 | { |
1291 | return single_open(file, rtc_proc_show, NULL); |
1292 | } |
1293 | #endif |
1294 | |
1295 | static void rtc_get_rtc_time(struct rtc_time *rtc_tm) |
1296 | { |
1297 | unsigned long uip_watchdog = jiffies, flags; |
1298 | unsigned char ctrl; |
1299 | #ifdef CONFIG_MACH_DECSTATION |
1300 | unsigned int real_year; |
1301 | #endif |
1302 | |
1303 | /* |
1304 | * read RTC once any update in progress is done. The update |
1305 | * can take just over 2ms. We wait 20ms. There is no need to |
1306 | * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. |
1307 | * If you need to know *exactly* when a second has started, enable |
1308 | * periodic update complete interrupts, (via ioctl) and then |
1309 | * immediately read /dev/rtc which will block until you get the IRQ. |
1310 | * Once the read clears, read the RTC time (again via ioctl). Easy. |
1311 | */ |
1312 | |
1313 | while (rtc_is_updating() != 0 && |
1314 | time_before(jiffies, uip_watchdog + 2*HZ/100)) |
1315 | cpu_relax(); |
1316 | |
1317 | /* |
1318 | * Only the values that we read from the RTC are set. We leave |
1319 | * tm_wday, tm_yday and tm_isdst untouched. Note that while the |
1320 | * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is |
1321 | * only updated by the RTC when initially set to a non-zero value. |
1322 | */ |
1323 | spin_lock_irqsave(&rtc_lock, flags); |
1324 | rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); |
1325 | rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); |
1326 | rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); |
1327 | rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); |
1328 | rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); |
1329 | rtc_tm->tm_year = CMOS_READ(RTC_YEAR); |
1330 | /* Only set from 2.6.16 onwards */ |
1331 | rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK); |
1332 | |
1333 | #ifdef CONFIG_MACH_DECSTATION |
1334 | real_year = CMOS_READ(RTC_DEC_YEAR); |
1335 | #endif |
1336 | ctrl = CMOS_READ(RTC_CONTROL); |
1337 | spin_unlock_irqrestore(&rtc_lock, flags); |
1338 | |
1339 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
1340 | rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec); |
1341 | rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min); |
1342 | rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour); |
1343 | rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday); |
1344 | rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon); |
1345 | rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year); |
1346 | rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday); |
1347 | } |
1348 | |
1349 | #ifdef CONFIG_MACH_DECSTATION |
1350 | rtc_tm->tm_year += real_year - 72; |
1351 | #endif |
1352 | |
1353 | /* |
1354 | * Account for differences between how the RTC uses the values |
1355 | * and how they are defined in a struct rtc_time; |
1356 | */ |
1357 | rtc_tm->tm_year += epoch - 1900; |
1358 | if (rtc_tm->tm_year <= 69) |
1359 | rtc_tm->tm_year += 100; |
1360 | |
1361 | rtc_tm->tm_mon--; |
1362 | } |
1363 | |
1364 | static void get_rtc_alm_time(struct rtc_time *alm_tm) |
1365 | { |
1366 | unsigned char ctrl; |
1367 | |
1368 | /* |
1369 | * Only the values that we read from the RTC are set. That |
1370 | * means only tm_hour, tm_min, and tm_sec. |
1371 | */ |
1372 | spin_lock_irq(&rtc_lock); |
1373 | alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); |
1374 | alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); |
1375 | alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); |
1376 | ctrl = CMOS_READ(RTC_CONTROL); |
1377 | spin_unlock_irq(&rtc_lock); |
1378 | |
1379 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
1380 | alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec); |
1381 | alm_tm->tm_min = bcd2bin(alm_tm->tm_min); |
1382 | alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour); |
1383 | } |
1384 | } |
1385 | |
1386 | #ifdef RTC_IRQ |
1387 | /* |
1388 | * Used to disable/enable interrupts for any one of UIE, AIE, PIE. |
1389 | * Rumour has it that if you frob the interrupt enable/disable |
1390 | * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to |
1391 | * ensure you actually start getting interrupts. Probably for |
1392 | * compatibility with older/broken chipset RTC implementations. |
1393 | * We also clear out any old irq data after an ioctl() that |
1394 | * meddles with the interrupt enable/disable bits. |
1395 | */ |
1396 | |
1397 | static void mask_rtc_irq_bit_locked(unsigned char bit) |
1398 | { |
1399 | unsigned char val; |
1400 | |
1401 | if (hpet_mask_rtc_irq_bit(bit)) |
1402 | return; |
1403 | val = CMOS_READ(RTC_CONTROL); |
1404 | val &= ~bit; |
1405 | CMOS_WRITE(val, RTC_CONTROL); |
1406 | CMOS_READ(RTC_INTR_FLAGS); |
1407 | |
1408 | rtc_irq_data = 0; |
1409 | } |
1410 | |
1411 | static void set_rtc_irq_bit_locked(unsigned char bit) |
1412 | { |
1413 | unsigned char val; |
1414 | |
1415 | if (hpet_set_rtc_irq_bit(bit)) |
1416 | return; |
1417 | val = CMOS_READ(RTC_CONTROL); |
1418 | val |= bit; |
1419 | CMOS_WRITE(val, RTC_CONTROL); |
1420 | CMOS_READ(RTC_INTR_FLAGS); |
1421 | |
1422 | rtc_irq_data = 0; |
1423 | } |
1424 | #endif |
1425 | |
1426 | MODULE_AUTHOR("Paul Gortmaker"); |
1427 | MODULE_LICENSE("GPL"); |
1428 | MODULE_ALIAS_MISCDEV(RTC_MINOR); |
1429 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9