Root/drivers/clk/clk.c

1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22
23static DEFINE_SPINLOCK(enable_lock);
24static DEFINE_MUTEX(prepare_lock);
25
26static HLIST_HEAD(clk_root_list);
27static HLIST_HEAD(clk_orphan_list);
28static LIST_HEAD(clk_notifier_list);
29
30/*** debugfs support ***/
31
32#ifdef CONFIG_COMMON_CLK_DEBUG
33#include <linux/debugfs.h>
34
35static struct dentry *rootdir;
36static struct dentry *orphandir;
37static int inited = 0;
38
39static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
40{
41    if (!c)
42        return;
43
44    seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
45           level * 3 + 1, "",
46           30 - level * 3, c->name,
47           c->enable_count, c->prepare_count, c->rate);
48    seq_printf(s, "\n");
49}
50
51static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
52                     int level)
53{
54    struct clk *child;
55
56    if (!c)
57        return;
58
59    clk_summary_show_one(s, c, level);
60
61    hlist_for_each_entry(child, &c->children, child_node)
62        clk_summary_show_subtree(s, child, level + 1);
63}
64
65static int clk_summary_show(struct seq_file *s, void *data)
66{
67    struct clk *c;
68
69    seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
70    seq_printf(s, "---------------------------------------------------------------------\n");
71
72    mutex_lock(&prepare_lock);
73
74    hlist_for_each_entry(c, &clk_root_list, child_node)
75        clk_summary_show_subtree(s, c, 0);
76
77    hlist_for_each_entry(c, &clk_orphan_list, child_node)
78        clk_summary_show_subtree(s, c, 0);
79
80    mutex_unlock(&prepare_lock);
81
82    return 0;
83}
84
85
86static int clk_summary_open(struct inode *inode, struct file *file)
87{
88    return single_open(file, clk_summary_show, inode->i_private);
89}
90
91static const struct file_operations clk_summary_fops = {
92    .open = clk_summary_open,
93    .read = seq_read,
94    .llseek = seq_lseek,
95    .release = single_release,
96};
97
98static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
99{
100    if (!c)
101        return;
102
103    seq_printf(s, "\"%s\": { ", c->name);
104    seq_printf(s, "\"enable_count\": %d,", c->enable_count);
105    seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
106    seq_printf(s, "\"rate\": %lu", c->rate);
107}
108
109static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
110{
111    struct clk *child;
112
113    if (!c)
114        return;
115
116    clk_dump_one(s, c, level);
117
118    hlist_for_each_entry(child, &c->children, child_node) {
119        seq_printf(s, ",");
120        clk_dump_subtree(s, child, level + 1);
121    }
122
123    seq_printf(s, "}");
124}
125
126static int clk_dump(struct seq_file *s, void *data)
127{
128    struct clk *c;
129    bool first_node = true;
130
131    seq_printf(s, "{");
132
133    mutex_lock(&prepare_lock);
134
135    hlist_for_each_entry(c, &clk_root_list, child_node) {
136        if (!first_node)
137            seq_printf(s, ",");
138        first_node = false;
139        clk_dump_subtree(s, c, 0);
140    }
141
142    hlist_for_each_entry(c, &clk_orphan_list, child_node) {
143        seq_printf(s, ",");
144        clk_dump_subtree(s, c, 0);
145    }
146
147    mutex_unlock(&prepare_lock);
148
149    seq_printf(s, "}");
150    return 0;
151}
152
153
154static int clk_dump_open(struct inode *inode, struct file *file)
155{
156    return single_open(file, clk_dump, inode->i_private);
157}
158
159static const struct file_operations clk_dump_fops = {
160    .open = clk_dump_open,
161    .read = seq_read,
162    .llseek = seq_lseek,
163    .release = single_release,
164};
165
166/* caller must hold prepare_lock */
167static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
168{
169    struct dentry *d;
170    int ret = -ENOMEM;
171
172    if (!clk || !pdentry) {
173        ret = -EINVAL;
174        goto out;
175    }
176
177    d = debugfs_create_dir(clk->name, pdentry);
178    if (!d)
179        goto out;
180
181    clk->dentry = d;
182
183    d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
184            (u32 *)&clk->rate);
185    if (!d)
186        goto err_out;
187
188    d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
189            (u32 *)&clk->flags);
190    if (!d)
191        goto err_out;
192
193    d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
194            (u32 *)&clk->prepare_count);
195    if (!d)
196        goto err_out;
197
198    d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
199            (u32 *)&clk->enable_count);
200    if (!d)
201        goto err_out;
202
203    d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
204            (u32 *)&clk->notifier_count);
205    if (!d)
206        goto err_out;
207
208    ret = 0;
209    goto out;
210
211err_out:
212    debugfs_remove(clk->dentry);
213out:
214    return ret;
215}
216
217/* caller must hold prepare_lock */
218static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
219{
220    struct clk *child;
221    int ret = -EINVAL;;
222
223    if (!clk || !pdentry)
224        goto out;
225
226    ret = clk_debug_create_one(clk, pdentry);
227
228    if (ret)
229        goto out;
230
231    hlist_for_each_entry(child, &clk->children, child_node)
232        clk_debug_create_subtree(child, clk->dentry);
233
234    ret = 0;
235out:
236    return ret;
237}
238
239/**
240 * clk_debug_register - add a clk node to the debugfs clk tree
241 * @clk: the clk being added to the debugfs clk tree
242 *
243 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
244 * initialized. Otherwise it bails out early since the debugfs clk tree
245 * will be created lazily by clk_debug_init as part of a late_initcall.
246 *
247 * Caller must hold prepare_lock. Only clk_init calls this function (so
248 * far) so this is taken care.
249 */
250static int clk_debug_register(struct clk *clk)
251{
252    struct clk *parent;
253    struct dentry *pdentry;
254    int ret = 0;
255
256    if (!inited)
257        goto out;
258
259    parent = clk->parent;
260
261    /*
262     * Check to see if a clk is a root clk. Also check that it is
263     * safe to add this clk to debugfs
264     */
265    if (!parent)
266        if (clk->flags & CLK_IS_ROOT)
267            pdentry = rootdir;
268        else
269            pdentry = orphandir;
270    else
271        if (parent->dentry)
272            pdentry = parent->dentry;
273        else
274            goto out;
275
276    ret = clk_debug_create_subtree(clk, pdentry);
277
278out:
279    return ret;
280}
281
282/**
283 * clk_debug_init - lazily create the debugfs clk tree visualization
284 *
285 * clks are often initialized very early during boot before memory can
286 * be dynamically allocated and well before debugfs is setup.
287 * clk_debug_init walks the clk tree hierarchy while holding
288 * prepare_lock and creates the topology as part of a late_initcall,
289 * thus insuring that clks initialized very early will still be
290 * represented in the debugfs clk tree. This function should only be
291 * called once at boot-time, and all other clks added dynamically will
292 * be done so with clk_debug_register.
293 */
294static int __init clk_debug_init(void)
295{
296    struct clk *clk;
297    struct dentry *d;
298
299    rootdir = debugfs_create_dir("clk", NULL);
300
301    if (!rootdir)
302        return -ENOMEM;
303
304    d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
305                &clk_summary_fops);
306    if (!d)
307        return -ENOMEM;
308
309    d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
310                &clk_dump_fops);
311    if (!d)
312        return -ENOMEM;
313
314    orphandir = debugfs_create_dir("orphans", rootdir);
315
316    if (!orphandir)
317        return -ENOMEM;
318
319    mutex_lock(&prepare_lock);
320
321    hlist_for_each_entry(clk, &clk_root_list, child_node)
322        clk_debug_create_subtree(clk, rootdir);
323
324    hlist_for_each_entry(clk, &clk_orphan_list, child_node)
325        clk_debug_create_subtree(clk, orphandir);
326
327    inited = 1;
328
329    mutex_unlock(&prepare_lock);
330
331    return 0;
332}
333late_initcall(clk_debug_init);
334#else
335static inline int clk_debug_register(struct clk *clk) { return 0; }
336#endif
337
338/* caller must hold prepare_lock */
339static void clk_disable_unused_subtree(struct clk *clk)
340{
341    struct clk *child;
342    unsigned long flags;
343
344    if (!clk)
345        goto out;
346
347    hlist_for_each_entry(child, &clk->children, child_node)
348        clk_disable_unused_subtree(child);
349
350    spin_lock_irqsave(&enable_lock, flags);
351
352    if (clk->enable_count)
353        goto unlock_out;
354
355    if (clk->flags & CLK_IGNORE_UNUSED)
356        goto unlock_out;
357
358    /*
359     * some gate clocks have special needs during the disable-unused
360     * sequence. call .disable_unused if available, otherwise fall
361     * back to .disable
362     */
363    if (__clk_is_enabled(clk)) {
364        if (clk->ops->disable_unused)
365            clk->ops->disable_unused(clk->hw);
366        else if (clk->ops->disable)
367            clk->ops->disable(clk->hw);
368    }
369
370unlock_out:
371    spin_unlock_irqrestore(&enable_lock, flags);
372
373out:
374    return;
375}
376
377static int clk_disable_unused(void)
378{
379    struct clk *clk;
380
381    mutex_lock(&prepare_lock);
382
383    hlist_for_each_entry(clk, &clk_root_list, child_node)
384        clk_disable_unused_subtree(clk);
385
386    hlist_for_each_entry(clk, &clk_orphan_list, child_node)
387        clk_disable_unused_subtree(clk);
388
389    mutex_unlock(&prepare_lock);
390
391    return 0;
392}
393late_initcall(clk_disable_unused);
394
395/*** helper functions ***/
396
397const char *__clk_get_name(struct clk *clk)
398{
399    return !clk ? NULL : clk->name;
400}
401EXPORT_SYMBOL_GPL(__clk_get_name);
402
403struct clk_hw *__clk_get_hw(struct clk *clk)
404{
405    return !clk ? NULL : clk->hw;
406}
407
408u8 __clk_get_num_parents(struct clk *clk)
409{
410    return !clk ? 0 : clk->num_parents;
411}
412
413struct clk *__clk_get_parent(struct clk *clk)
414{
415    return !clk ? NULL : clk->parent;
416}
417
418unsigned int __clk_get_enable_count(struct clk *clk)
419{
420    return !clk ? 0 : clk->enable_count;
421}
422
423unsigned int __clk_get_prepare_count(struct clk *clk)
424{
425    return !clk ? 0 : clk->prepare_count;
426}
427
428unsigned long __clk_get_rate(struct clk *clk)
429{
430    unsigned long ret;
431
432    if (!clk) {
433        ret = 0;
434        goto out;
435    }
436
437    ret = clk->rate;
438
439    if (clk->flags & CLK_IS_ROOT)
440        goto out;
441
442    if (!clk->parent)
443        ret = 0;
444
445out:
446    return ret;
447}
448
449unsigned long __clk_get_flags(struct clk *clk)
450{
451    return !clk ? 0 : clk->flags;
452}
453
454bool __clk_is_enabled(struct clk *clk)
455{
456    int ret;
457
458    if (!clk)
459        return false;
460
461    /*
462     * .is_enabled is only mandatory for clocks that gate
463     * fall back to software usage counter if .is_enabled is missing
464     */
465    if (!clk->ops->is_enabled) {
466        ret = clk->enable_count ? 1 : 0;
467        goto out;
468    }
469
470    ret = clk->ops->is_enabled(clk->hw);
471out:
472    return !!ret;
473}
474
475static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
476{
477    struct clk *child;
478    struct clk *ret;
479
480    if (!strcmp(clk->name, name))
481        return clk;
482
483    hlist_for_each_entry(child, &clk->children, child_node) {
484        ret = __clk_lookup_subtree(name, child);
485        if (ret)
486            return ret;
487    }
488
489    return NULL;
490}
491
492struct clk *__clk_lookup(const char *name)
493{
494    struct clk *root_clk;
495    struct clk *ret;
496
497    if (!name)
498        return NULL;
499
500    /* search the 'proper' clk tree first */
501    hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
502        ret = __clk_lookup_subtree(name, root_clk);
503        if (ret)
504            return ret;
505    }
506
507    /* if not found, then search the orphan tree */
508    hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
509        ret = __clk_lookup_subtree(name, root_clk);
510        if (ret)
511            return ret;
512    }
513
514    return NULL;
515}
516
517/*** clk api ***/
518
519void __clk_unprepare(struct clk *clk)
520{
521    if (!clk)
522        return;
523
524    if (WARN_ON(clk->prepare_count == 0))
525        return;
526
527    if (--clk->prepare_count > 0)
528        return;
529
530    WARN_ON(clk->enable_count > 0);
531
532    if (clk->ops->unprepare)
533        clk->ops->unprepare(clk->hw);
534
535    __clk_unprepare(clk->parent);
536}
537
538/**
539 * clk_unprepare - undo preparation of a clock source
540 * @clk: the clk being unprepare
541 *
542 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
543 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
544 * if the operation may sleep. One example is a clk which is accessed over
545 * I2c. In the complex case a clk gate operation may require a fast and a slow
546 * part. It is this reason that clk_unprepare and clk_disable are not mutually
547 * exclusive. In fact clk_disable must be called before clk_unprepare.
548 */
549void clk_unprepare(struct clk *clk)
550{
551    mutex_lock(&prepare_lock);
552    __clk_unprepare(clk);
553    mutex_unlock(&prepare_lock);
554}
555EXPORT_SYMBOL_GPL(clk_unprepare);
556
557int __clk_prepare(struct clk *clk)
558{
559    int ret = 0;
560
561    if (!clk)
562        return 0;
563
564    if (clk->prepare_count == 0) {
565        ret = __clk_prepare(clk->parent);
566        if (ret)
567            return ret;
568
569        if (clk->ops->prepare) {
570            ret = clk->ops->prepare(clk->hw);
571            if (ret) {
572                __clk_unprepare(clk->parent);
573                return ret;
574            }
575        }
576    }
577
578    clk->prepare_count++;
579
580    return 0;
581}
582
583/**
584 * clk_prepare - prepare a clock source
585 * @clk: the clk being prepared
586 *
587 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
588 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
589 * operation may sleep. One example is a clk which is accessed over I2c. In
590 * the complex case a clk ungate operation may require a fast and a slow part.
591 * It is this reason that clk_prepare and clk_enable are not mutually
592 * exclusive. In fact clk_prepare must be called before clk_enable.
593 * Returns 0 on success, -EERROR otherwise.
594 */
595int clk_prepare(struct clk *clk)
596{
597    int ret;
598
599    mutex_lock(&prepare_lock);
600    ret = __clk_prepare(clk);
601    mutex_unlock(&prepare_lock);
602
603    return ret;
604}
605EXPORT_SYMBOL_GPL(clk_prepare);
606
607static void __clk_disable(struct clk *clk)
608{
609    if (!clk)
610        return;
611
612    if (WARN_ON(IS_ERR(clk)))
613        return;
614
615    if (WARN_ON(clk->enable_count == 0))
616        return;
617
618    if (--clk->enable_count > 0)
619        return;
620
621    if (clk->ops->disable)
622        clk->ops->disable(clk->hw);
623
624    __clk_disable(clk->parent);
625}
626
627/**
628 * clk_disable - gate a clock
629 * @clk: the clk being gated
630 *
631 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
632 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
633 * clk if the operation is fast and will never sleep. One example is a
634 * SoC-internal clk which is controlled via simple register writes. In the
635 * complex case a clk gate operation may require a fast and a slow part. It is
636 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
637 * In fact clk_disable must be called before clk_unprepare.
638 */
639void clk_disable(struct clk *clk)
640{
641    unsigned long flags;
642
643    spin_lock_irqsave(&enable_lock, flags);
644    __clk_disable(clk);
645    spin_unlock_irqrestore(&enable_lock, flags);
646}
647EXPORT_SYMBOL_GPL(clk_disable);
648
649static int __clk_enable(struct clk *clk)
650{
651    int ret = 0;
652
653    if (!clk)
654        return 0;
655
656    if (WARN_ON(clk->prepare_count == 0))
657        return -ESHUTDOWN;
658
659    if (clk->enable_count == 0) {
660        ret = __clk_enable(clk->parent);
661
662        if (ret)
663            return ret;
664
665        if (clk->ops->enable) {
666            ret = clk->ops->enable(clk->hw);
667            if (ret) {
668                __clk_disable(clk->parent);
669                return ret;
670            }
671        }
672    }
673
674    clk->enable_count++;
675    return 0;
676}
677
678/**
679 * clk_enable - ungate a clock
680 * @clk: the clk being ungated
681 *
682 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
683 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
684 * if the operation will never sleep. One example is a SoC-internal clk which
685 * is controlled via simple register writes. In the complex case a clk ungate
686 * operation may require a fast and a slow part. It is this reason that
687 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
688 * must be called before clk_enable. Returns 0 on success, -EERROR
689 * otherwise.
690 */
691int clk_enable(struct clk *clk)
692{
693    unsigned long flags;
694    int ret;
695
696    spin_lock_irqsave(&enable_lock, flags);
697    ret = __clk_enable(clk);
698    spin_unlock_irqrestore(&enable_lock, flags);
699
700    return ret;
701}
702EXPORT_SYMBOL_GPL(clk_enable);
703
704/**
705 * __clk_round_rate - round the given rate for a clk
706 * @clk: round the rate of this clock
707 *
708 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
709 */
710unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
711{
712    unsigned long parent_rate = 0;
713
714    if (!clk)
715        return 0;
716
717    if (!clk->ops->round_rate) {
718        if (clk->flags & CLK_SET_RATE_PARENT)
719            return __clk_round_rate(clk->parent, rate);
720        else
721            return clk->rate;
722    }
723
724    if (clk->parent)
725        parent_rate = clk->parent->rate;
726
727    return clk->ops->round_rate(clk->hw, rate, &parent_rate);
728}
729
730/**
731 * clk_round_rate - round the given rate for a clk
732 * @clk: the clk for which we are rounding a rate
733 * @rate: the rate which is to be rounded
734 *
735 * Takes in a rate as input and rounds it to a rate that the clk can actually
736 * use which is then returned. If clk doesn't support round_rate operation
737 * then the parent rate is returned.
738 */
739long clk_round_rate(struct clk *clk, unsigned long rate)
740{
741    unsigned long ret;
742
743    mutex_lock(&prepare_lock);
744    ret = __clk_round_rate(clk, rate);
745    mutex_unlock(&prepare_lock);
746
747    return ret;
748}
749EXPORT_SYMBOL_GPL(clk_round_rate);
750
751/**
752 * __clk_notify - call clk notifier chain
753 * @clk: struct clk * that is changing rate
754 * @msg: clk notifier type (see include/linux/clk.h)
755 * @old_rate: old clk rate
756 * @new_rate: new clk rate
757 *
758 * Triggers a notifier call chain on the clk rate-change notification
759 * for 'clk'. Passes a pointer to the struct clk and the previous
760 * and current rates to the notifier callback. Intended to be called by
761 * internal clock code only. Returns NOTIFY_DONE from the last driver
762 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
763 * a driver returns that.
764 */
765static int __clk_notify(struct clk *clk, unsigned long msg,
766        unsigned long old_rate, unsigned long new_rate)
767{
768    struct clk_notifier *cn;
769    struct clk_notifier_data cnd;
770    int ret = NOTIFY_DONE;
771
772    cnd.clk = clk;
773    cnd.old_rate = old_rate;
774    cnd.new_rate = new_rate;
775
776    list_for_each_entry(cn, &clk_notifier_list, node) {
777        if (cn->clk == clk) {
778            ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
779                    &cnd);
780            break;
781        }
782    }
783
784    return ret;
785}
786
787/**
788 * __clk_recalc_rates
789 * @clk: first clk in the subtree
790 * @msg: notification type (see include/linux/clk.h)
791 *
792 * Walks the subtree of clks starting with clk and recalculates rates as it
793 * goes. Note that if a clk does not implement the .recalc_rate callback then
794 * it is assumed that the clock will take on the rate of it's parent.
795 *
796 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
797 * if necessary.
798 *
799 * Caller must hold prepare_lock.
800 */
801static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
802{
803    unsigned long old_rate;
804    unsigned long parent_rate = 0;
805    struct clk *child;
806
807    old_rate = clk->rate;
808
809    if (clk->parent)
810        parent_rate = clk->parent->rate;
811
812    if (clk->ops->recalc_rate)
813        clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
814    else
815        clk->rate = parent_rate;
816
817    /*
818     * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
819     * & ABORT_RATE_CHANGE notifiers
820     */
821    if (clk->notifier_count && msg)
822        __clk_notify(clk, msg, old_rate, clk->rate);
823
824    hlist_for_each_entry(child, &clk->children, child_node)
825        __clk_recalc_rates(child, msg);
826}
827
828/**
829 * clk_get_rate - return the rate of clk
830 * @clk: the clk whose rate is being returned
831 *
832 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
833 * is set, which means a recalc_rate will be issued.
834 * If clk is NULL then returns 0.
835 */
836unsigned long clk_get_rate(struct clk *clk)
837{
838    unsigned long rate;
839
840    mutex_lock(&prepare_lock);
841
842    if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
843        __clk_recalc_rates(clk, 0);
844
845    rate = __clk_get_rate(clk);
846    mutex_unlock(&prepare_lock);
847
848    return rate;
849}
850EXPORT_SYMBOL_GPL(clk_get_rate);
851
852/**
853 * __clk_speculate_rates
854 * @clk: first clk in the subtree
855 * @parent_rate: the "future" rate of clk's parent
856 *
857 * Walks the subtree of clks starting with clk, speculating rates as it
858 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
859 *
860 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
861 * pre-rate change notifications and returns early if no clks in the
862 * subtree have subscribed to the notifications. Note that if a clk does not
863 * implement the .recalc_rate callback then it is assumed that the clock will
864 * take on the rate of it's parent.
865 *
866 * Caller must hold prepare_lock.
867 */
868static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
869{
870    struct clk *child;
871    unsigned long new_rate;
872    int ret = NOTIFY_DONE;
873
874    if (clk->ops->recalc_rate)
875        new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
876    else
877        new_rate = parent_rate;
878
879    /* abort the rate change if a driver returns NOTIFY_BAD */
880    if (clk->notifier_count)
881        ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
882
883    if (ret == NOTIFY_BAD)
884        goto out;
885
886    hlist_for_each_entry(child, &clk->children, child_node) {
887        ret = __clk_speculate_rates(child, new_rate);
888        if (ret == NOTIFY_BAD)
889            break;
890    }
891
892out:
893    return ret;
894}
895
896static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
897{
898    struct clk *child;
899
900    clk->new_rate = new_rate;
901
902    hlist_for_each_entry(child, &clk->children, child_node) {
903        if (child->ops->recalc_rate)
904            child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
905        else
906            child->new_rate = new_rate;
907        clk_calc_subtree(child, child->new_rate);
908    }
909}
910
911/*
912 * calculate the new rates returning the topmost clock that has to be
913 * changed.
914 */
915static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
916{
917    struct clk *top = clk;
918    unsigned long best_parent_rate = 0;
919    unsigned long new_rate;
920
921    /* sanity */
922    if (IS_ERR_OR_NULL(clk))
923        return NULL;
924
925    /* save parent rate, if it exists */
926    if (clk->parent)
927        best_parent_rate = clk->parent->rate;
928
929    /* never propagate up to the parent */
930    if (!(clk->flags & CLK_SET_RATE_PARENT)) {
931        if (!clk->ops->round_rate) {
932            clk->new_rate = clk->rate;
933            return NULL;
934        }
935        new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
936        goto out;
937    }
938
939    /* need clk->parent from here on out */
940    if (!clk->parent) {
941        pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
942        return NULL;
943    }
944
945    if (!clk->ops->round_rate) {
946        top = clk_calc_new_rates(clk->parent, rate);
947        new_rate = clk->parent->new_rate;
948
949        goto out;
950    }
951
952    new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
953
954    if (best_parent_rate != clk->parent->rate) {
955        top = clk_calc_new_rates(clk->parent, best_parent_rate);
956
957        goto out;
958    }
959
960out:
961    clk_calc_subtree(clk, new_rate);
962
963    return top;
964}
965
966/*
967 * Notify about rate changes in a subtree. Always walk down the whole tree
968 * so that in case of an error we can walk down the whole tree again and
969 * abort the change.
970 */
971static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
972{
973    struct clk *child, *fail_clk = NULL;
974    int ret = NOTIFY_DONE;
975
976    if (clk->rate == clk->new_rate)
977        return 0;
978
979    if (clk->notifier_count) {
980        ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
981        if (ret == NOTIFY_BAD)
982            fail_clk = clk;
983    }
984
985    hlist_for_each_entry(child, &clk->children, child_node) {
986        clk = clk_propagate_rate_change(child, event);
987        if (clk)
988            fail_clk = clk;
989    }
990
991    return fail_clk;
992}
993
994/*
995 * walk down a subtree and set the new rates notifying the rate
996 * change on the way
997 */
998static void clk_change_rate(struct clk *clk)
999{
1000    struct clk *child;
1001    unsigned long old_rate;
1002    unsigned long best_parent_rate = 0;
1003
1004    old_rate = clk->rate;
1005
1006    if (clk->parent)
1007        best_parent_rate = clk->parent->rate;
1008
1009    if (clk->ops->set_rate)
1010        clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1011
1012    if (clk->ops->recalc_rate)
1013        clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1014    else
1015        clk->rate = best_parent_rate;
1016
1017    if (clk->notifier_count && old_rate != clk->rate)
1018        __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1019
1020    hlist_for_each_entry(child, &clk->children, child_node)
1021        clk_change_rate(child);
1022}
1023
1024/**
1025 * clk_set_rate - specify a new rate for clk
1026 * @clk: the clk whose rate is being changed
1027 * @rate: the new rate for clk
1028 *
1029 * In the simplest case clk_set_rate will only adjust the rate of clk.
1030 *
1031 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1032 * propagate up to clk's parent; whether or not this happens depends on the
1033 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1034 * after calling .round_rate then upstream parent propagation is ignored. If
1035 * *parent_rate comes back with a new rate for clk's parent then we propagate
1036 * up to clk's parent and set it's rate. Upward propagation will continue
1037 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1038 * .round_rate stops requesting changes to clk's parent_rate.
1039 *
1040 * Rate changes are accomplished via tree traversal that also recalculates the
1041 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1042 *
1043 * Returns 0 on success, -EERROR otherwise.
1044 */
1045int clk_set_rate(struct clk *clk, unsigned long rate)
1046{
1047    struct clk *top, *fail_clk;
1048    int ret = 0;
1049
1050    /* prevent racing with updates to the clock topology */
1051    mutex_lock(&prepare_lock);
1052
1053    /* bail early if nothing to do */
1054    if (rate == clk->rate)
1055        goto out;
1056
1057    if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1058        ret = -EBUSY;
1059        goto out;
1060    }
1061
1062    /* calculate new rates and get the topmost changed clock */
1063    top = clk_calc_new_rates(clk, rate);
1064    if (!top) {
1065        ret = -EINVAL;
1066        goto out;
1067    }
1068
1069    /* notify that we are about to change rates */
1070    fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1071    if (fail_clk) {
1072        pr_warn("%s: failed to set %s rate\n", __func__,
1073                fail_clk->name);
1074        clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1075        ret = -EBUSY;
1076        goto out;
1077    }
1078
1079    /* change the rates */
1080    clk_change_rate(top);
1081
1082out:
1083    mutex_unlock(&prepare_lock);
1084
1085    return ret;
1086}
1087EXPORT_SYMBOL_GPL(clk_set_rate);
1088
1089/**
1090 * clk_get_parent - return the parent of a clk
1091 * @clk: the clk whose parent gets returned
1092 *
1093 * Simply returns clk->parent. Returns NULL if clk is NULL.
1094 */
1095struct clk *clk_get_parent(struct clk *clk)
1096{
1097    struct clk *parent;
1098
1099    mutex_lock(&prepare_lock);
1100    parent = __clk_get_parent(clk);
1101    mutex_unlock(&prepare_lock);
1102
1103    return parent;
1104}
1105EXPORT_SYMBOL_GPL(clk_get_parent);
1106
1107/*
1108 * .get_parent is mandatory for clocks with multiple possible parents. It is
1109 * optional for single-parent clocks. Always call .get_parent if it is
1110 * available and WARN if it is missing for multi-parent clocks.
1111 *
1112 * For single-parent clocks without .get_parent, first check to see if the
1113 * .parents array exists, and if so use it to avoid an expensive tree
1114 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1115 */
1116static struct clk *__clk_init_parent(struct clk *clk)
1117{
1118    struct clk *ret = NULL;
1119    u8 index;
1120
1121    /* handle the trivial cases */
1122
1123    if (!clk->num_parents)
1124        goto out;
1125
1126    if (clk->num_parents == 1) {
1127        if (IS_ERR_OR_NULL(clk->parent))
1128            ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1129        ret = clk->parent;
1130        goto out;
1131    }
1132
1133    if (!clk->ops->get_parent) {
1134        WARN(!clk->ops->get_parent,
1135            "%s: multi-parent clocks must implement .get_parent\n",
1136            __func__);
1137        goto out;
1138    };
1139
1140    /*
1141     * Do our best to cache parent clocks in clk->parents. This prevents
1142     * unnecessary and expensive calls to __clk_lookup. We don't set
1143     * clk->parent here; that is done by the calling function
1144     */
1145
1146    index = clk->ops->get_parent(clk->hw);
1147
1148    if (!clk->parents)
1149        clk->parents =
1150            kzalloc((sizeof(struct clk*) * clk->num_parents),
1151                    GFP_KERNEL);
1152
1153    if (!clk->parents)
1154        ret = __clk_lookup(clk->parent_names[index]);
1155    else if (!clk->parents[index])
1156        ret = clk->parents[index] =
1157            __clk_lookup(clk->parent_names[index]);
1158    else
1159        ret = clk->parents[index];
1160
1161out:
1162    return ret;
1163}
1164
1165void __clk_reparent(struct clk *clk, struct clk *new_parent)
1166{
1167#ifdef CONFIG_COMMON_CLK_DEBUG
1168    struct dentry *d;
1169    struct dentry *new_parent_d;
1170#endif
1171
1172    if (!clk || !new_parent)
1173        return;
1174
1175    hlist_del(&clk->child_node);
1176
1177    if (new_parent)
1178        hlist_add_head(&clk->child_node, &new_parent->children);
1179    else
1180        hlist_add_head(&clk->child_node, &clk_orphan_list);
1181
1182#ifdef CONFIG_COMMON_CLK_DEBUG
1183    if (!inited)
1184        goto out;
1185
1186    if (new_parent)
1187        new_parent_d = new_parent->dentry;
1188    else
1189        new_parent_d = orphandir;
1190
1191    d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1192            new_parent_d, clk->name);
1193    if (d)
1194        clk->dentry = d;
1195    else
1196        pr_debug("%s: failed to rename debugfs entry for %s\n",
1197                __func__, clk->name);
1198out:
1199#endif
1200
1201    clk->parent = new_parent;
1202
1203    __clk_recalc_rates(clk, POST_RATE_CHANGE);
1204}
1205
1206static int __clk_set_parent(struct clk *clk, struct clk *parent)
1207{
1208    struct clk *old_parent;
1209    unsigned long flags;
1210    int ret = -EINVAL;
1211    u8 i;
1212
1213    old_parent = clk->parent;
1214
1215    if (!clk->parents)
1216        clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1217                                GFP_KERNEL);
1218
1219    /*
1220     * find index of new parent clock using cached parent ptrs,
1221     * or if not yet cached, use string name comparison and cache
1222     * them now to avoid future calls to __clk_lookup.
1223     */
1224    for (i = 0; i < clk->num_parents; i++) {
1225        if (clk->parents && clk->parents[i] == parent)
1226            break;
1227        else if (!strcmp(clk->parent_names[i], parent->name)) {
1228            if (clk->parents)
1229                clk->parents[i] = __clk_lookup(parent->name);
1230            break;
1231        }
1232    }
1233
1234    if (i == clk->num_parents) {
1235        pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1236                __func__, parent->name, clk->name);
1237        goto out;
1238    }
1239
1240    /* migrate prepare and enable */
1241    if (clk->prepare_count)
1242        __clk_prepare(parent);
1243
1244    /* FIXME replace with clk_is_enabled(clk) someday */
1245    spin_lock_irqsave(&enable_lock, flags);
1246    if (clk->enable_count)
1247        __clk_enable(parent);
1248    spin_unlock_irqrestore(&enable_lock, flags);
1249
1250    /* change clock input source */
1251    ret = clk->ops->set_parent(clk->hw, i);
1252
1253    /* clean up old prepare and enable */
1254    spin_lock_irqsave(&enable_lock, flags);
1255    if (clk->enable_count)
1256        __clk_disable(old_parent);
1257    spin_unlock_irqrestore(&enable_lock, flags);
1258
1259    if (clk->prepare_count)
1260        __clk_unprepare(old_parent);
1261
1262out:
1263    return ret;
1264}
1265
1266/**
1267 * clk_set_parent - switch the parent of a mux clk
1268 * @clk: the mux clk whose input we are switching
1269 * @parent: the new input to clk
1270 *
1271 * Re-parent clk to use parent as it's new input source. If clk has the
1272 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1273 * operation to succeed. After successfully changing clk's parent
1274 * clk_set_parent will update the clk topology, sysfs topology and
1275 * propagate rate recalculation via __clk_recalc_rates. Returns 0 on
1276 * success, -EERROR otherwise.
1277 */
1278int clk_set_parent(struct clk *clk, struct clk *parent)
1279{
1280    int ret = 0;
1281
1282    if (!clk || !clk->ops)
1283        return -EINVAL;
1284
1285    if (!clk->ops->set_parent)
1286        return -ENOSYS;
1287
1288    /* prevent racing with updates to the clock topology */
1289    mutex_lock(&prepare_lock);
1290
1291    if (clk->parent == parent)
1292        goto out;
1293
1294    /* propagate PRE_RATE_CHANGE notifications */
1295    if (clk->notifier_count)
1296        ret = __clk_speculate_rates(clk, parent->rate);
1297
1298    /* abort if a driver objects */
1299    if (ret == NOTIFY_STOP)
1300        goto out;
1301
1302    /* only re-parent if the clock is not in use */
1303    if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1304        ret = -EBUSY;
1305    else
1306        ret = __clk_set_parent(clk, parent);
1307
1308    /* propagate ABORT_RATE_CHANGE if .set_parent failed */
1309    if (ret) {
1310        __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1311        goto out;
1312    }
1313
1314    /* propagate rate recalculation downstream */
1315    __clk_reparent(clk, parent);
1316
1317out:
1318    mutex_unlock(&prepare_lock);
1319
1320    return ret;
1321}
1322EXPORT_SYMBOL_GPL(clk_set_parent);
1323
1324/**
1325 * __clk_init - initialize the data structures in a struct clk
1326 * @dev: device initializing this clk, placeholder for now
1327 * @clk: clk being initialized
1328 *
1329 * Initializes the lists in struct clk, queries the hardware for the
1330 * parent and rate and sets them both.
1331 */
1332int __clk_init(struct device *dev, struct clk *clk)
1333{
1334    int i, ret = 0;
1335    struct clk *orphan;
1336    struct hlist_node *tmp2;
1337
1338    if (!clk)
1339        return -EINVAL;
1340
1341    mutex_lock(&prepare_lock);
1342
1343    /* check to see if a clock with this name is already registered */
1344    if (__clk_lookup(clk->name)) {
1345        pr_debug("%s: clk %s already initialized\n",
1346                __func__, clk->name);
1347        ret = -EEXIST;
1348        goto out;
1349    }
1350
1351    /* check that clk_ops are sane. See Documentation/clk.txt */
1352    if (clk->ops->set_rate &&
1353            !(clk->ops->round_rate && clk->ops->recalc_rate)) {
1354        pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1355                __func__, clk->name);
1356        ret = -EINVAL;
1357        goto out;
1358    }
1359
1360    if (clk->ops->set_parent && !clk->ops->get_parent) {
1361        pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1362                __func__, clk->name);
1363        ret = -EINVAL;
1364        goto out;
1365    }
1366
1367    /* throw a WARN if any entries in parent_names are NULL */
1368    for (i = 0; i < clk->num_parents; i++)
1369        WARN(!clk->parent_names[i],
1370                "%s: invalid NULL in %s's .parent_names\n",
1371                __func__, clk->name);
1372
1373    /*
1374     * Allocate an array of struct clk *'s to avoid unnecessary string
1375     * look-ups of clk's possible parents. This can fail for clocks passed
1376     * in to clk_init during early boot; thus any access to clk->parents[]
1377     * must always check for a NULL pointer and try to populate it if
1378     * necessary.
1379     *
1380     * If clk->parents is not NULL we skip this entire block. This allows
1381     * for clock drivers to statically initialize clk->parents.
1382     */
1383    if (clk->num_parents > 1 && !clk->parents) {
1384        clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1385                GFP_KERNEL);
1386        /*
1387         * __clk_lookup returns NULL for parents that have not been
1388         * clk_init'd; thus any access to clk->parents[] must check
1389         * for a NULL pointer. We can always perform lazy lookups for
1390         * missing parents later on.
1391         */
1392        if (clk->parents)
1393            for (i = 0; i < clk->num_parents; i++)
1394                clk->parents[i] =
1395                    __clk_lookup(clk->parent_names[i]);
1396    }
1397
1398    clk->parent = __clk_init_parent(clk);
1399
1400    /*
1401     * Populate clk->parent if parent has already been __clk_init'd. If
1402     * parent has not yet been __clk_init'd then place clk in the orphan
1403     * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1404     * clk list.
1405     *
1406     * Every time a new clk is clk_init'd then we walk the list of orphan
1407     * clocks and re-parent any that are children of the clock currently
1408     * being clk_init'd.
1409     */
1410    if (clk->parent)
1411        hlist_add_head(&clk->child_node,
1412                &clk->parent->children);
1413    else if (clk->flags & CLK_IS_ROOT)
1414        hlist_add_head(&clk->child_node, &clk_root_list);
1415    else
1416        hlist_add_head(&clk->child_node, &clk_orphan_list);
1417
1418    /*
1419     * Set clk's rate. The preferred method is to use .recalc_rate. For
1420     * simple clocks and lazy developers the default fallback is to use the
1421     * parent's rate. If a clock doesn't have a parent (or is orphaned)
1422     * then rate is set to zero.
1423     */
1424    if (clk->ops->recalc_rate)
1425        clk->rate = clk->ops->recalc_rate(clk->hw,
1426                __clk_get_rate(clk->parent));
1427    else if (clk->parent)
1428        clk->rate = clk->parent->rate;
1429    else
1430        clk->rate = 0;
1431
1432    /*
1433     * walk the list of orphan clocks and reparent any that are children of
1434     * this clock
1435     */
1436    hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1437        if (orphan->ops->get_parent) {
1438            i = orphan->ops->get_parent(orphan->hw);
1439            if (!strcmp(clk->name, orphan->parent_names[i]))
1440                __clk_reparent(orphan, clk);
1441            continue;
1442        }
1443
1444        for (i = 0; i < orphan->num_parents; i++)
1445            if (!strcmp(clk->name, orphan->parent_names[i])) {
1446                __clk_reparent(orphan, clk);
1447                break;
1448            }
1449     }
1450
1451    /*
1452     * optional platform-specific magic
1453     *
1454     * The .init callback is not used by any of the basic clock types, but
1455     * exists for weird hardware that must perform initialization magic.
1456     * Please consider other ways of solving initialization problems before
1457     * using this callback, as it's use is discouraged.
1458     */
1459    if (clk->ops->init)
1460        clk->ops->init(clk->hw);
1461
1462    clk_debug_register(clk);
1463
1464out:
1465    mutex_unlock(&prepare_lock);
1466
1467    return ret;
1468}
1469
1470/**
1471 * __clk_register - register a clock and return a cookie.
1472 *
1473 * Same as clk_register, except that the .clk field inside hw shall point to a
1474 * preallocated (generally statically allocated) struct clk. None of the fields
1475 * of the struct clk need to be initialized.
1476 *
1477 * The data pointed to by .init and .clk field shall NOT be marked as init
1478 * data.
1479 *
1480 * __clk_register is only exposed via clk-private.h and is intended for use with
1481 * very large numbers of clocks that need to be statically initialized. It is
1482 * a layering violation to include clk-private.h from any code which implements
1483 * a clock's .ops; as such any statically initialized clock data MUST be in a
1484 * separate C file from the logic that implements it's operations. Returns 0
1485 * on success, otherwise an error code.
1486 */
1487struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1488{
1489    int ret;
1490    struct clk *clk;
1491
1492    clk = hw->clk;
1493    clk->name = hw->init->name;
1494    clk->ops = hw->init->ops;
1495    clk->hw = hw;
1496    clk->flags = hw->init->flags;
1497    clk->parent_names = hw->init->parent_names;
1498    clk->num_parents = hw->init->num_parents;
1499
1500    ret = __clk_init(dev, clk);
1501    if (ret)
1502        return ERR_PTR(ret);
1503
1504    return clk;
1505}
1506EXPORT_SYMBOL_GPL(__clk_register);
1507
1508static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1509{
1510    int i, ret;
1511
1512    clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1513    if (!clk->name) {
1514        pr_err("%s: could not allocate clk->name\n", __func__);
1515        ret = -ENOMEM;
1516        goto fail_name;
1517    }
1518    clk->ops = hw->init->ops;
1519    clk->hw = hw;
1520    clk->flags = hw->init->flags;
1521    clk->num_parents = hw->init->num_parents;
1522    hw->clk = clk;
1523
1524    /* allocate local copy in case parent_names is __initdata */
1525    clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1526            GFP_KERNEL);
1527
1528    if (!clk->parent_names) {
1529        pr_err("%s: could not allocate clk->parent_names\n", __func__);
1530        ret = -ENOMEM;
1531        goto fail_parent_names;
1532    }
1533
1534
1535    /* copy each string name in case parent_names is __initdata */
1536    for (i = 0; i < clk->num_parents; i++) {
1537        clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1538                        GFP_KERNEL);
1539        if (!clk->parent_names[i]) {
1540            pr_err("%s: could not copy parent_names\n", __func__);
1541            ret = -ENOMEM;
1542            goto fail_parent_names_copy;
1543        }
1544    }
1545
1546    ret = __clk_init(dev, clk);
1547    if (!ret)
1548        return 0;
1549
1550fail_parent_names_copy:
1551    while (--i >= 0)
1552        kfree(clk->parent_names[i]);
1553    kfree(clk->parent_names);
1554fail_parent_names:
1555    kfree(clk->name);
1556fail_name:
1557    return ret;
1558}
1559
1560/**
1561 * clk_register - allocate a new clock, register it and return an opaque cookie
1562 * @dev: device that is registering this clock
1563 * @hw: link to hardware-specific clock data
1564 *
1565 * clk_register is the primary interface for populating the clock tree with new
1566 * clock nodes. It returns a pointer to the newly allocated struct clk which
1567 * cannot be dereferenced by driver code but may be used in conjuction with the
1568 * rest of the clock API. In the event of an error clk_register will return an
1569 * error code; drivers must test for an error code after calling clk_register.
1570 */
1571struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1572{
1573    int ret;
1574    struct clk *clk;
1575
1576    clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1577    if (!clk) {
1578        pr_err("%s: could not allocate clk\n", __func__);
1579        ret = -ENOMEM;
1580        goto fail_out;
1581    }
1582
1583    ret = _clk_register(dev, hw, clk);
1584    if (!ret)
1585        return clk;
1586
1587    kfree(clk);
1588fail_out:
1589    return ERR_PTR(ret);
1590}
1591EXPORT_SYMBOL_GPL(clk_register);
1592
1593/**
1594 * clk_unregister - unregister a currently registered clock
1595 * @clk: clock to unregister
1596 *
1597 * Currently unimplemented.
1598 */
1599void clk_unregister(struct clk *clk) {}
1600EXPORT_SYMBOL_GPL(clk_unregister);
1601
1602static void devm_clk_release(struct device *dev, void *res)
1603{
1604    clk_unregister(res);
1605}
1606
1607/**
1608 * devm_clk_register - resource managed clk_register()
1609 * @dev: device that is registering this clock
1610 * @hw: link to hardware-specific clock data
1611 *
1612 * Managed clk_register(). Clocks returned from this function are
1613 * automatically clk_unregister()ed on driver detach. See clk_register() for
1614 * more information.
1615 */
1616struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1617{
1618    struct clk *clk;
1619    int ret;
1620
1621    clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1622    if (!clk)
1623        return ERR_PTR(-ENOMEM);
1624
1625    ret = _clk_register(dev, hw, clk);
1626    if (!ret) {
1627        devres_add(dev, clk);
1628    } else {
1629        devres_free(clk);
1630        clk = ERR_PTR(ret);
1631    }
1632
1633    return clk;
1634}
1635EXPORT_SYMBOL_GPL(devm_clk_register);
1636
1637static int devm_clk_match(struct device *dev, void *res, void *data)
1638{
1639    struct clk *c = res;
1640    if (WARN_ON(!c))
1641        return 0;
1642    return c == data;
1643}
1644
1645/**
1646 * devm_clk_unregister - resource managed clk_unregister()
1647 * @clk: clock to unregister
1648 *
1649 * Deallocate a clock allocated with devm_clk_register(). Normally
1650 * this function will not need to be called and the resource management
1651 * code will ensure that the resource is freed.
1652 */
1653void devm_clk_unregister(struct device *dev, struct clk *clk)
1654{
1655    WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1656}
1657EXPORT_SYMBOL_GPL(devm_clk_unregister);
1658
1659/*** clk rate change notifiers ***/
1660
1661/**
1662 * clk_notifier_register - add a clk rate change notifier
1663 * @clk: struct clk * to watch
1664 * @nb: struct notifier_block * with callback info
1665 *
1666 * Request notification when clk's rate changes. This uses an SRCU
1667 * notifier because we want it to block and notifier unregistrations are
1668 * uncommon. The callbacks associated with the notifier must not
1669 * re-enter into the clk framework by calling any top-level clk APIs;
1670 * this will cause a nested prepare_lock mutex.
1671 *
1672 * Pre-change notifier callbacks will be passed the current, pre-change
1673 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1674 * post-change rate of the clk is passed via struct
1675 * clk_notifier_data.new_rate.
1676 *
1677 * Post-change notifiers will pass the now-current, post-change rate of
1678 * the clk in both struct clk_notifier_data.old_rate and struct
1679 * clk_notifier_data.new_rate.
1680 *
1681 * Abort-change notifiers are effectively the opposite of pre-change
1682 * notifiers: the original pre-change clk rate is passed in via struct
1683 * clk_notifier_data.new_rate and the failed post-change rate is passed
1684 * in via struct clk_notifier_data.old_rate.
1685 *
1686 * clk_notifier_register() must be called from non-atomic context.
1687 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1688 * allocation failure; otherwise, passes along the return value of
1689 * srcu_notifier_chain_register().
1690 */
1691int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1692{
1693    struct clk_notifier *cn;
1694    int ret = -ENOMEM;
1695
1696    if (!clk || !nb)
1697        return -EINVAL;
1698
1699    mutex_lock(&prepare_lock);
1700
1701    /* search the list of notifiers for this clk */
1702    list_for_each_entry(cn, &clk_notifier_list, node)
1703        if (cn->clk == clk)
1704            break;
1705
1706    /* if clk wasn't in the notifier list, allocate new clk_notifier */
1707    if (cn->clk != clk) {
1708        cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1709        if (!cn)
1710            goto out;
1711
1712        cn->clk = clk;
1713        srcu_init_notifier_head(&cn->notifier_head);
1714
1715        list_add(&cn->node, &clk_notifier_list);
1716    }
1717
1718    ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1719
1720    clk->notifier_count++;
1721
1722out:
1723    mutex_unlock(&prepare_lock);
1724
1725    return ret;
1726}
1727EXPORT_SYMBOL_GPL(clk_notifier_register);
1728
1729/**
1730 * clk_notifier_unregister - remove a clk rate change notifier
1731 * @clk: struct clk *
1732 * @nb: struct notifier_block * with callback info
1733 *
1734 * Request no further notification for changes to 'clk' and frees memory
1735 * allocated in clk_notifier_register.
1736 *
1737 * Returns -EINVAL if called with null arguments; otherwise, passes
1738 * along the return value of srcu_notifier_chain_unregister().
1739 */
1740int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1741{
1742    struct clk_notifier *cn = NULL;
1743    int ret = -EINVAL;
1744
1745    if (!clk || !nb)
1746        return -EINVAL;
1747
1748    mutex_lock(&prepare_lock);
1749
1750    list_for_each_entry(cn, &clk_notifier_list, node)
1751        if (cn->clk == clk)
1752            break;
1753
1754    if (cn->clk == clk) {
1755        ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1756
1757        clk->notifier_count--;
1758
1759        /* XXX the notifier code should handle this better */
1760        if (!cn->notifier_head.head) {
1761            srcu_cleanup_notifier_head(&cn->notifier_head);
1762            kfree(cn);
1763        }
1764
1765    } else {
1766        ret = -ENOENT;
1767    }
1768
1769    mutex_unlock(&prepare_lock);
1770
1771    return ret;
1772}
1773EXPORT_SYMBOL_GPL(clk_notifier_unregister);
1774
1775#ifdef CONFIG_OF
1776/**
1777 * struct of_clk_provider - Clock provider registration structure
1778 * @link: Entry in global list of clock providers
1779 * @node: Pointer to device tree node of clock provider
1780 * @get: Get clock callback. Returns NULL or a struct clk for the
1781 * given clock specifier
1782 * @data: context pointer to be passed into @get callback
1783 */
1784struct of_clk_provider {
1785    struct list_head link;
1786
1787    struct device_node *node;
1788    struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
1789    void *data;
1790};
1791
1792extern struct of_device_id __clk_of_table[];
1793
1794static const struct of_device_id __clk_of_table_sentinel
1795    __used __section(__clk_of_table_end);
1796
1797static LIST_HEAD(of_clk_providers);
1798static DEFINE_MUTEX(of_clk_lock);
1799
1800struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
1801                     void *data)
1802{
1803    return data;
1804}
1805EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
1806
1807struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
1808{
1809    struct clk_onecell_data *clk_data = data;
1810    unsigned int idx = clkspec->args[0];
1811
1812    if (idx >= clk_data->clk_num) {
1813        pr_err("%s: invalid clock index %d\n", __func__, idx);
1814        return ERR_PTR(-EINVAL);
1815    }
1816
1817    return clk_data->clks[idx];
1818}
1819EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
1820
1821/**
1822 * of_clk_add_provider() - Register a clock provider for a node
1823 * @np: Device node pointer associated with clock provider
1824 * @clk_src_get: callback for decoding clock
1825 * @data: context pointer for @clk_src_get callback.
1826 */
1827int of_clk_add_provider(struct device_node *np,
1828            struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
1829                           void *data),
1830            void *data)
1831{
1832    struct of_clk_provider *cp;
1833
1834    cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
1835    if (!cp)
1836        return -ENOMEM;
1837
1838    cp->node = of_node_get(np);
1839    cp->data = data;
1840    cp->get = clk_src_get;
1841
1842    mutex_lock(&of_clk_lock);
1843    list_add(&cp->link, &of_clk_providers);
1844    mutex_unlock(&of_clk_lock);
1845    pr_debug("Added clock from %s\n", np->full_name);
1846
1847    return 0;
1848}
1849EXPORT_SYMBOL_GPL(of_clk_add_provider);
1850
1851/**
1852 * of_clk_del_provider() - Remove a previously registered clock provider
1853 * @np: Device node pointer associated with clock provider
1854 */
1855void of_clk_del_provider(struct device_node *np)
1856{
1857    struct of_clk_provider *cp;
1858
1859    mutex_lock(&of_clk_lock);
1860    list_for_each_entry(cp, &of_clk_providers, link) {
1861        if (cp->node == np) {
1862            list_del(&cp->link);
1863            of_node_put(cp->node);
1864            kfree(cp);
1865            break;
1866        }
1867    }
1868    mutex_unlock(&of_clk_lock);
1869}
1870EXPORT_SYMBOL_GPL(of_clk_del_provider);
1871
1872struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
1873{
1874    struct of_clk_provider *provider;
1875    struct clk *clk = ERR_PTR(-ENOENT);
1876
1877    /* Check if we have such a provider in our array */
1878    mutex_lock(&of_clk_lock);
1879    list_for_each_entry(provider, &of_clk_providers, link) {
1880        if (provider->node == clkspec->np)
1881            clk = provider->get(clkspec, provider->data);
1882        if (!IS_ERR(clk))
1883            break;
1884    }
1885    mutex_unlock(&of_clk_lock);
1886
1887    return clk;
1888}
1889
1890const char *of_clk_get_parent_name(struct device_node *np, int index)
1891{
1892    struct of_phandle_args clkspec;
1893    const char *clk_name;
1894    int rc;
1895
1896    if (index < 0)
1897        return NULL;
1898
1899    rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
1900                    &clkspec);
1901    if (rc)
1902        return NULL;
1903
1904    if (of_property_read_string_index(clkspec.np, "clock-output-names",
1905                      clkspec.args_count ? clkspec.args[0] : 0,
1906                      &clk_name) < 0)
1907        clk_name = clkspec.np->name;
1908
1909    of_node_put(clkspec.np);
1910    return clk_name;
1911}
1912EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
1913
1914/**
1915 * of_clk_init() - Scan and init clock providers from the DT
1916 * @matches: array of compatible values and init functions for providers.
1917 *
1918 * This function scans the device tree for matching clock providers and
1919 * calls their initialization functions
1920 */
1921void __init of_clk_init(const struct of_device_id *matches)
1922{
1923    struct device_node *np;
1924
1925    if (!matches)
1926        matches = __clk_of_table;
1927
1928    for_each_matching_node(np, matches) {
1929        const struct of_device_id *match = of_match_node(matches, np);
1930        of_clk_init_cb_t clk_init_cb = match->data;
1931        clk_init_cb(np);
1932    }
1933}
1934#endif
1935

Archive Download this file



interactive