Root/
1 | /* |
2 | * intel_powerclamp.c - package c-state idle injection |
3 | * |
4 | * Copyright (c) 2012, Intel Corporation. |
5 | * |
6 | * Authors: |
7 | * Arjan van de Ven <arjan@linux.intel.com> |
8 | * Jacob Pan <jacob.jun.pan@linux.intel.com> |
9 | * |
10 | * This program is free software; you can redistribute it and/or modify it |
11 | * under the terms and conditions of the GNU General Public License, |
12 | * version 2, as published by the Free Software Foundation. |
13 | * |
14 | * This program is distributed in the hope it will be useful, but WITHOUT |
15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
16 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
17 | * more details. |
18 | * |
19 | * You should have received a copy of the GNU General Public License along with |
20 | * this program; if not, write to the Free Software Foundation, Inc., |
21 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
22 | * |
23 | * |
24 | * TODO: |
25 | * 1. better handle wakeup from external interrupts, currently a fixed |
26 | * compensation is added to clamping duration when excessive amount |
27 | * of wakeups are observed during idle time. the reason is that in |
28 | * case of external interrupts without need for ack, clamping down |
29 | * cpu in non-irq context does not reduce irq. for majority of the |
30 | * cases, clamping down cpu does help reduce irq as well, we should |
31 | * be able to differenciate the two cases and give a quantitative |
32 | * solution for the irqs that we can control. perhaps based on |
33 | * get_cpu_iowait_time_us() |
34 | * |
35 | * 2. synchronization with other hw blocks |
36 | * |
37 | * |
38 | */ |
39 | |
40 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
41 | |
42 | #include <linux/module.h> |
43 | #include <linux/kernel.h> |
44 | #include <linux/delay.h> |
45 | #include <linux/kthread.h> |
46 | #include <linux/freezer.h> |
47 | #include <linux/cpu.h> |
48 | #include <linux/thermal.h> |
49 | #include <linux/slab.h> |
50 | #include <linux/tick.h> |
51 | #include <linux/debugfs.h> |
52 | #include <linux/seq_file.h> |
53 | #include <linux/sched/rt.h> |
54 | |
55 | #include <asm/nmi.h> |
56 | #include <asm/msr.h> |
57 | #include <asm/mwait.h> |
58 | #include <asm/cpu_device_id.h> |
59 | #include <asm/idle.h> |
60 | #include <asm/hardirq.h> |
61 | |
62 | #define MAX_TARGET_RATIO (50U) |
63 | /* For each undisturbed clamping period (no extra wake ups during idle time), |
64 | * we increment the confidence counter for the given target ratio. |
65 | * CONFIDENCE_OK defines the level where runtime calibration results are |
66 | * valid. |
67 | */ |
68 | #define CONFIDENCE_OK (3) |
69 | /* Default idle injection duration, driver adjust sleep time to meet target |
70 | * idle ratio. Similar to frequency modulation. |
71 | */ |
72 | #define DEFAULT_DURATION_JIFFIES (6) |
73 | |
74 | static unsigned int target_mwait; |
75 | static struct dentry *debug_dir; |
76 | |
77 | /* user selected target */ |
78 | static unsigned int set_target_ratio; |
79 | static unsigned int current_ratio; |
80 | static bool should_skip; |
81 | static bool reduce_irq; |
82 | static atomic_t idle_wakeup_counter; |
83 | static unsigned int control_cpu; /* The cpu assigned to collect stat and update |
84 | * control parameters. default to BSP but BSP |
85 | * can be offlined. |
86 | */ |
87 | static bool clamping; |
88 | |
89 | |
90 | static struct task_struct * __percpu *powerclamp_thread; |
91 | static struct thermal_cooling_device *cooling_dev; |
92 | static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu |
93 | * clamping thread |
94 | */ |
95 | |
96 | static unsigned int duration; |
97 | static unsigned int pkg_cstate_ratio_cur; |
98 | static unsigned int window_size; |
99 | |
100 | static int duration_set(const char *arg, const struct kernel_param *kp) |
101 | { |
102 | int ret = 0; |
103 | unsigned long new_duration; |
104 | |
105 | ret = kstrtoul(arg, 10, &new_duration); |
106 | if (ret) |
107 | goto exit; |
108 | if (new_duration > 25 || new_duration < 6) { |
109 | pr_err("Out of recommended range %lu, between 6-25ms\n", |
110 | new_duration); |
111 | ret = -EINVAL; |
112 | } |
113 | |
114 | duration = clamp(new_duration, 6ul, 25ul); |
115 | smp_mb(); |
116 | |
117 | exit: |
118 | |
119 | return ret; |
120 | } |
121 | |
122 | static struct kernel_param_ops duration_ops = { |
123 | .set = duration_set, |
124 | .get = param_get_int, |
125 | }; |
126 | |
127 | |
128 | module_param_cb(duration, &duration_ops, &duration, 0644); |
129 | MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); |
130 | |
131 | struct powerclamp_calibration_data { |
132 | unsigned long confidence; /* used for calibration, basically a counter |
133 | * gets incremented each time a clamping |
134 | * period is completed without extra wakeups |
135 | * once that counter is reached given level, |
136 | * compensation is deemed usable. |
137 | */ |
138 | unsigned long steady_comp; /* steady state compensation used when |
139 | * no extra wakeups occurred. |
140 | */ |
141 | unsigned long dynamic_comp; /* compensate excessive wakeup from idle |
142 | * mostly from external interrupts. |
143 | */ |
144 | }; |
145 | |
146 | static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; |
147 | |
148 | static int window_size_set(const char *arg, const struct kernel_param *kp) |
149 | { |
150 | int ret = 0; |
151 | unsigned long new_window_size; |
152 | |
153 | ret = kstrtoul(arg, 10, &new_window_size); |
154 | if (ret) |
155 | goto exit_win; |
156 | if (new_window_size > 10 || new_window_size < 2) { |
157 | pr_err("Out of recommended window size %lu, between 2-10\n", |
158 | new_window_size); |
159 | ret = -EINVAL; |
160 | } |
161 | |
162 | window_size = clamp(new_window_size, 2ul, 10ul); |
163 | smp_mb(); |
164 | |
165 | exit_win: |
166 | |
167 | return ret; |
168 | } |
169 | |
170 | static struct kernel_param_ops window_size_ops = { |
171 | .set = window_size_set, |
172 | .get = param_get_int, |
173 | }; |
174 | |
175 | module_param_cb(window_size, &window_size_ops, &window_size, 0644); |
176 | MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" |
177 | "\tpowerclamp controls idle ratio within this window. larger\n" |
178 | "\twindow size results in slower response time but more smooth\n" |
179 | "\tclamping results. default to 2."); |
180 | |
181 | static void find_target_mwait(void) |
182 | { |
183 | unsigned int eax, ebx, ecx, edx; |
184 | unsigned int highest_cstate = 0; |
185 | unsigned int highest_subcstate = 0; |
186 | int i; |
187 | |
188 | if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) |
189 | return; |
190 | |
191 | cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); |
192 | |
193 | if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || |
194 | !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) |
195 | return; |
196 | |
197 | edx >>= MWAIT_SUBSTATE_SIZE; |
198 | for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
199 | if (edx & MWAIT_SUBSTATE_MASK) { |
200 | highest_cstate = i; |
201 | highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
202 | } |
203 | } |
204 | target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
205 | (highest_subcstate - 1); |
206 | |
207 | } |
208 | |
209 | static u64 pkg_state_counter(void) |
210 | { |
211 | u64 val; |
212 | u64 count = 0; |
213 | |
214 | static bool skip_c2; |
215 | static bool skip_c3; |
216 | static bool skip_c6; |
217 | static bool skip_c7; |
218 | |
219 | if (!skip_c2) { |
220 | if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val)) |
221 | count += val; |
222 | else |
223 | skip_c2 = true; |
224 | } |
225 | |
226 | if (!skip_c3) { |
227 | if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val)) |
228 | count += val; |
229 | else |
230 | skip_c3 = true; |
231 | } |
232 | |
233 | if (!skip_c6) { |
234 | if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val)) |
235 | count += val; |
236 | else |
237 | skip_c6 = true; |
238 | } |
239 | |
240 | if (!skip_c7) { |
241 | if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val)) |
242 | count += val; |
243 | else |
244 | skip_c7 = true; |
245 | } |
246 | |
247 | return count; |
248 | } |
249 | |
250 | static void noop_timer(unsigned long foo) |
251 | { |
252 | /* empty... just the fact that we get the interrupt wakes us up */ |
253 | } |
254 | |
255 | static unsigned int get_compensation(int ratio) |
256 | { |
257 | unsigned int comp = 0; |
258 | |
259 | /* we only use compensation if all adjacent ones are good */ |
260 | if (ratio == 1 && |
261 | cal_data[ratio].confidence >= CONFIDENCE_OK && |
262 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK && |
263 | cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { |
264 | comp = (cal_data[ratio].steady_comp + |
265 | cal_data[ratio + 1].steady_comp + |
266 | cal_data[ratio + 2].steady_comp) / 3; |
267 | } else if (ratio == MAX_TARGET_RATIO - 1 && |
268 | cal_data[ratio].confidence >= CONFIDENCE_OK && |
269 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
270 | cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { |
271 | comp = (cal_data[ratio].steady_comp + |
272 | cal_data[ratio - 1].steady_comp + |
273 | cal_data[ratio - 2].steady_comp) / 3; |
274 | } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && |
275 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
276 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { |
277 | comp = (cal_data[ratio].steady_comp + |
278 | cal_data[ratio - 1].steady_comp + |
279 | cal_data[ratio + 1].steady_comp) / 3; |
280 | } |
281 | |
282 | /* REVISIT: simple penalty of double idle injection */ |
283 | if (reduce_irq) |
284 | comp = ratio; |
285 | /* do not exceed limit */ |
286 | if (comp + ratio >= MAX_TARGET_RATIO) |
287 | comp = MAX_TARGET_RATIO - ratio - 1; |
288 | |
289 | return comp; |
290 | } |
291 | |
292 | static void adjust_compensation(int target_ratio, unsigned int win) |
293 | { |
294 | int delta; |
295 | struct powerclamp_calibration_data *d = &cal_data[target_ratio]; |
296 | |
297 | /* |
298 | * adjust compensations if confidence level has not been reached or |
299 | * there are too many wakeups during the last idle injection period, we |
300 | * cannot trust the data for compensation. |
301 | */ |
302 | if (d->confidence >= CONFIDENCE_OK || |
303 | atomic_read(&idle_wakeup_counter) > |
304 | win * num_online_cpus()) |
305 | return; |
306 | |
307 | delta = set_target_ratio - current_ratio; |
308 | /* filter out bad data */ |
309 | if (delta >= 0 && delta <= (1+target_ratio/10)) { |
310 | if (d->steady_comp) |
311 | d->steady_comp = |
312 | roundup(delta+d->steady_comp, 2)/2; |
313 | else |
314 | d->steady_comp = delta; |
315 | d->confidence++; |
316 | } |
317 | } |
318 | |
319 | static bool powerclamp_adjust_controls(unsigned int target_ratio, |
320 | unsigned int guard, unsigned int win) |
321 | { |
322 | static u64 msr_last, tsc_last; |
323 | u64 msr_now, tsc_now; |
324 | u64 val64; |
325 | |
326 | /* check result for the last window */ |
327 | msr_now = pkg_state_counter(); |
328 | rdtscll(tsc_now); |
329 | |
330 | /* calculate pkg cstate vs tsc ratio */ |
331 | if (!msr_last || !tsc_last) |
332 | current_ratio = 1; |
333 | else if (tsc_now-tsc_last) { |
334 | val64 = 100*(msr_now-msr_last); |
335 | do_div(val64, (tsc_now-tsc_last)); |
336 | current_ratio = val64; |
337 | } |
338 | |
339 | /* update record */ |
340 | msr_last = msr_now; |
341 | tsc_last = tsc_now; |
342 | |
343 | adjust_compensation(target_ratio, win); |
344 | /* |
345 | * too many external interrupts, set flag such |
346 | * that we can take measure later. |
347 | */ |
348 | reduce_irq = atomic_read(&idle_wakeup_counter) >= |
349 | 2 * win * num_online_cpus(); |
350 | |
351 | atomic_set(&idle_wakeup_counter, 0); |
352 | /* if we are above target+guard, skip */ |
353 | return set_target_ratio + guard <= current_ratio; |
354 | } |
355 | |
356 | static int clamp_thread(void *arg) |
357 | { |
358 | int cpunr = (unsigned long)arg; |
359 | DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0); |
360 | static const struct sched_param param = { |
361 | .sched_priority = MAX_USER_RT_PRIO/2, |
362 | }; |
363 | unsigned int count = 0; |
364 | unsigned int target_ratio; |
365 | |
366 | set_bit(cpunr, cpu_clamping_mask); |
367 | set_freezable(); |
368 | init_timer_on_stack(&wakeup_timer); |
369 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
370 | |
371 | while (true == clamping && !kthread_should_stop() && |
372 | cpu_online(cpunr)) { |
373 | int sleeptime; |
374 | unsigned long target_jiffies; |
375 | unsigned int guard; |
376 | unsigned int compensation = 0; |
377 | int interval; /* jiffies to sleep for each attempt */ |
378 | unsigned int duration_jiffies = msecs_to_jiffies(duration); |
379 | unsigned int window_size_now; |
380 | |
381 | try_to_freeze(); |
382 | /* |
383 | * make sure user selected ratio does not take effect until |
384 | * the next round. adjust target_ratio if user has changed |
385 | * target such that we can converge quickly. |
386 | */ |
387 | target_ratio = set_target_ratio; |
388 | guard = 1 + target_ratio/20; |
389 | window_size_now = window_size; |
390 | count++; |
391 | |
392 | /* |
393 | * systems may have different ability to enter package level |
394 | * c-states, thus we need to compensate the injected idle ratio |
395 | * to achieve the actual target reported by the HW. |
396 | */ |
397 | compensation = get_compensation(target_ratio); |
398 | interval = duration_jiffies*100/(target_ratio+compensation); |
399 | |
400 | /* align idle time */ |
401 | target_jiffies = roundup(jiffies, interval); |
402 | sleeptime = target_jiffies - jiffies; |
403 | if (sleeptime <= 0) |
404 | sleeptime = 1; |
405 | schedule_timeout_interruptible(sleeptime); |
406 | /* |
407 | * only elected controlling cpu can collect stats and update |
408 | * control parameters. |
409 | */ |
410 | if (cpunr == control_cpu && !(count%window_size_now)) { |
411 | should_skip = |
412 | powerclamp_adjust_controls(target_ratio, |
413 | guard, window_size_now); |
414 | smp_mb(); |
415 | } |
416 | |
417 | if (should_skip) |
418 | continue; |
419 | |
420 | target_jiffies = jiffies + duration_jiffies; |
421 | mod_timer(&wakeup_timer, target_jiffies); |
422 | if (unlikely(local_softirq_pending())) |
423 | continue; |
424 | /* |
425 | * stop tick sched during idle time, interrupts are still |
426 | * allowed. thus jiffies are updated properly. |
427 | */ |
428 | preempt_disable(); |
429 | tick_nohz_idle_enter(); |
430 | /* mwait until target jiffies is reached */ |
431 | while (time_before(jiffies, target_jiffies)) { |
432 | unsigned long ecx = 1; |
433 | unsigned long eax = target_mwait; |
434 | |
435 | /* |
436 | * REVISIT: may call enter_idle() to notify drivers who |
437 | * can save power during cpu idle. same for exit_idle() |
438 | */ |
439 | local_touch_nmi(); |
440 | stop_critical_timings(); |
441 | __monitor((void *)¤t_thread_info()->flags, 0, 0); |
442 | cpu_relax(); /* allow HT sibling to run */ |
443 | __mwait(eax, ecx); |
444 | start_critical_timings(); |
445 | atomic_inc(&idle_wakeup_counter); |
446 | } |
447 | tick_nohz_idle_exit(); |
448 | preempt_enable_no_resched(); |
449 | } |
450 | del_timer_sync(&wakeup_timer); |
451 | clear_bit(cpunr, cpu_clamping_mask); |
452 | |
453 | return 0; |
454 | } |
455 | |
456 | /* |
457 | * 1 HZ polling while clamping is active, useful for userspace |
458 | * to monitor actual idle ratio. |
459 | */ |
460 | static void poll_pkg_cstate(struct work_struct *dummy); |
461 | static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); |
462 | static void poll_pkg_cstate(struct work_struct *dummy) |
463 | { |
464 | static u64 msr_last; |
465 | static u64 tsc_last; |
466 | static unsigned long jiffies_last; |
467 | |
468 | u64 msr_now; |
469 | unsigned long jiffies_now; |
470 | u64 tsc_now; |
471 | u64 val64; |
472 | |
473 | msr_now = pkg_state_counter(); |
474 | rdtscll(tsc_now); |
475 | jiffies_now = jiffies; |
476 | |
477 | /* calculate pkg cstate vs tsc ratio */ |
478 | if (!msr_last || !tsc_last) |
479 | pkg_cstate_ratio_cur = 1; |
480 | else { |
481 | if (tsc_now - tsc_last) { |
482 | val64 = 100 * (msr_now - msr_last); |
483 | do_div(val64, (tsc_now - tsc_last)); |
484 | pkg_cstate_ratio_cur = val64; |
485 | } |
486 | } |
487 | |
488 | /* update record */ |
489 | msr_last = msr_now; |
490 | jiffies_last = jiffies_now; |
491 | tsc_last = tsc_now; |
492 | |
493 | if (true == clamping) |
494 | schedule_delayed_work(&poll_pkg_cstate_work, HZ); |
495 | } |
496 | |
497 | static int start_power_clamp(void) |
498 | { |
499 | unsigned long cpu; |
500 | struct task_struct *thread; |
501 | |
502 | /* check if pkg cstate counter is completely 0, abort in this case */ |
503 | if (!pkg_state_counter()) { |
504 | pr_err("pkg cstate counter not functional, abort\n"); |
505 | return -EINVAL; |
506 | } |
507 | |
508 | set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); |
509 | /* prevent cpu hotplug */ |
510 | get_online_cpus(); |
511 | |
512 | /* prefer BSP */ |
513 | control_cpu = 0; |
514 | if (!cpu_online(control_cpu)) |
515 | control_cpu = smp_processor_id(); |
516 | |
517 | clamping = true; |
518 | schedule_delayed_work(&poll_pkg_cstate_work, 0); |
519 | |
520 | /* start one thread per online cpu */ |
521 | for_each_online_cpu(cpu) { |
522 | struct task_struct **p = |
523 | per_cpu_ptr(powerclamp_thread, cpu); |
524 | |
525 | thread = kthread_create_on_node(clamp_thread, |
526 | (void *) cpu, |
527 | cpu_to_node(cpu), |
528 | "kidle_inject/%ld", cpu); |
529 | /* bind to cpu here */ |
530 | if (likely(!IS_ERR(thread))) { |
531 | kthread_bind(thread, cpu); |
532 | wake_up_process(thread); |
533 | *p = thread; |
534 | } |
535 | |
536 | } |
537 | put_online_cpus(); |
538 | |
539 | return 0; |
540 | } |
541 | |
542 | static void end_power_clamp(void) |
543 | { |
544 | int i; |
545 | struct task_struct *thread; |
546 | |
547 | clamping = false; |
548 | /* |
549 | * make clamping visible to other cpus and give per cpu clamping threads |
550 | * sometime to exit, or gets killed later. |
551 | */ |
552 | smp_mb(); |
553 | msleep(20); |
554 | if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { |
555 | for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { |
556 | pr_debug("clamping thread for cpu %d alive, kill\n", i); |
557 | thread = *per_cpu_ptr(powerclamp_thread, i); |
558 | kthread_stop(thread); |
559 | } |
560 | } |
561 | } |
562 | |
563 | static int powerclamp_cpu_callback(struct notifier_block *nfb, |
564 | unsigned long action, void *hcpu) |
565 | { |
566 | unsigned long cpu = (unsigned long)hcpu; |
567 | struct task_struct *thread; |
568 | struct task_struct **percpu_thread = |
569 | per_cpu_ptr(powerclamp_thread, cpu); |
570 | |
571 | if (false == clamping) |
572 | goto exit_ok; |
573 | |
574 | switch (action) { |
575 | case CPU_ONLINE: |
576 | thread = kthread_create_on_node(clamp_thread, |
577 | (void *) cpu, |
578 | cpu_to_node(cpu), |
579 | "kidle_inject/%lu", cpu); |
580 | if (likely(!IS_ERR(thread))) { |
581 | kthread_bind(thread, cpu); |
582 | wake_up_process(thread); |
583 | *percpu_thread = thread; |
584 | } |
585 | /* prefer BSP as controlling CPU */ |
586 | if (cpu == 0) { |
587 | control_cpu = 0; |
588 | smp_mb(); |
589 | } |
590 | break; |
591 | case CPU_DEAD: |
592 | if (test_bit(cpu, cpu_clamping_mask)) { |
593 | pr_err("cpu %lu dead but powerclamping thread is not\n", |
594 | cpu); |
595 | kthread_stop(*percpu_thread); |
596 | } |
597 | if (cpu == control_cpu) { |
598 | control_cpu = smp_processor_id(); |
599 | smp_mb(); |
600 | } |
601 | } |
602 | |
603 | exit_ok: |
604 | return NOTIFY_OK; |
605 | } |
606 | |
607 | static struct notifier_block powerclamp_cpu_notifier = { |
608 | .notifier_call = powerclamp_cpu_callback, |
609 | }; |
610 | |
611 | static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, |
612 | unsigned long *state) |
613 | { |
614 | *state = MAX_TARGET_RATIO; |
615 | |
616 | return 0; |
617 | } |
618 | |
619 | static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, |
620 | unsigned long *state) |
621 | { |
622 | if (true == clamping) |
623 | *state = pkg_cstate_ratio_cur; |
624 | else |
625 | /* to save power, do not poll idle ratio while not clamping */ |
626 | *state = -1; /* indicates invalid state */ |
627 | |
628 | return 0; |
629 | } |
630 | |
631 | static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, |
632 | unsigned long new_target_ratio) |
633 | { |
634 | int ret = 0; |
635 | |
636 | new_target_ratio = clamp(new_target_ratio, 0UL, |
637 | (unsigned long) (MAX_TARGET_RATIO-1)); |
638 | if (set_target_ratio == 0 && new_target_ratio > 0) { |
639 | pr_info("Start idle injection to reduce power\n"); |
640 | set_target_ratio = new_target_ratio; |
641 | ret = start_power_clamp(); |
642 | goto exit_set; |
643 | } else if (set_target_ratio > 0 && new_target_ratio == 0) { |
644 | pr_info("Stop forced idle injection\n"); |
645 | set_target_ratio = 0; |
646 | end_power_clamp(); |
647 | } else /* adjust currently running */ { |
648 | set_target_ratio = new_target_ratio; |
649 | /* make new set_target_ratio visible to other cpus */ |
650 | smp_mb(); |
651 | } |
652 | |
653 | exit_set: |
654 | return ret; |
655 | } |
656 | |
657 | /* bind to generic thermal layer as cooling device*/ |
658 | static struct thermal_cooling_device_ops powerclamp_cooling_ops = { |
659 | .get_max_state = powerclamp_get_max_state, |
660 | .get_cur_state = powerclamp_get_cur_state, |
661 | .set_cur_state = powerclamp_set_cur_state, |
662 | }; |
663 | |
664 | /* runs on Nehalem and later */ |
665 | static const struct x86_cpu_id intel_powerclamp_ids[] = { |
666 | { X86_VENDOR_INTEL, 6, 0x1a}, |
667 | { X86_VENDOR_INTEL, 6, 0x1c}, |
668 | { X86_VENDOR_INTEL, 6, 0x1e}, |
669 | { X86_VENDOR_INTEL, 6, 0x1f}, |
670 | { X86_VENDOR_INTEL, 6, 0x25}, |
671 | { X86_VENDOR_INTEL, 6, 0x26}, |
672 | { X86_VENDOR_INTEL, 6, 0x2a}, |
673 | { X86_VENDOR_INTEL, 6, 0x2c}, |
674 | { X86_VENDOR_INTEL, 6, 0x2d}, |
675 | { X86_VENDOR_INTEL, 6, 0x2e}, |
676 | { X86_VENDOR_INTEL, 6, 0x2f}, |
677 | { X86_VENDOR_INTEL, 6, 0x3a}, |
678 | {} |
679 | }; |
680 | MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); |
681 | |
682 | static int powerclamp_probe(void) |
683 | { |
684 | if (!x86_match_cpu(intel_powerclamp_ids)) { |
685 | pr_err("Intel powerclamp does not run on family %d model %d\n", |
686 | boot_cpu_data.x86, boot_cpu_data.x86_model); |
687 | return -ENODEV; |
688 | } |
689 | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || |
690 | !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) || |
691 | !boot_cpu_has(X86_FEATURE_MWAIT) || |
692 | !boot_cpu_has(X86_FEATURE_ARAT)) |
693 | return -ENODEV; |
694 | |
695 | /* find the deepest mwait value */ |
696 | find_target_mwait(); |
697 | |
698 | return 0; |
699 | } |
700 | |
701 | static int powerclamp_debug_show(struct seq_file *m, void *unused) |
702 | { |
703 | int i = 0; |
704 | |
705 | seq_printf(m, "controlling cpu: %d\n", control_cpu); |
706 | seq_printf(m, "pct confidence steady dynamic (compensation)\n"); |
707 | for (i = 0; i < MAX_TARGET_RATIO; i++) { |
708 | seq_printf(m, "%d\t%lu\t%lu\t%lu\n", |
709 | i, |
710 | cal_data[i].confidence, |
711 | cal_data[i].steady_comp, |
712 | cal_data[i].dynamic_comp); |
713 | } |
714 | |
715 | return 0; |
716 | } |
717 | |
718 | static int powerclamp_debug_open(struct inode *inode, |
719 | struct file *file) |
720 | { |
721 | return single_open(file, powerclamp_debug_show, inode->i_private); |
722 | } |
723 | |
724 | static const struct file_operations powerclamp_debug_fops = { |
725 | .open = powerclamp_debug_open, |
726 | .read = seq_read, |
727 | .llseek = seq_lseek, |
728 | .release = single_release, |
729 | .owner = THIS_MODULE, |
730 | }; |
731 | |
732 | static inline void powerclamp_create_debug_files(void) |
733 | { |
734 | debug_dir = debugfs_create_dir("intel_powerclamp", NULL); |
735 | if (!debug_dir) |
736 | return; |
737 | |
738 | if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, |
739 | cal_data, &powerclamp_debug_fops)) |
740 | goto file_error; |
741 | |
742 | return; |
743 | |
744 | file_error: |
745 | debugfs_remove_recursive(debug_dir); |
746 | } |
747 | |
748 | static int powerclamp_init(void) |
749 | { |
750 | int retval; |
751 | int bitmap_size; |
752 | |
753 | bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); |
754 | cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); |
755 | if (!cpu_clamping_mask) |
756 | return -ENOMEM; |
757 | |
758 | /* probe cpu features and ids here */ |
759 | retval = powerclamp_probe(); |
760 | if (retval) |
761 | return retval; |
762 | /* set default limit, maybe adjusted during runtime based on feedback */ |
763 | window_size = 2; |
764 | register_hotcpu_notifier(&powerclamp_cpu_notifier); |
765 | powerclamp_thread = alloc_percpu(struct task_struct *); |
766 | cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, |
767 | &powerclamp_cooling_ops); |
768 | if (IS_ERR(cooling_dev)) |
769 | return -ENODEV; |
770 | |
771 | if (!duration) |
772 | duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); |
773 | powerclamp_create_debug_files(); |
774 | |
775 | return 0; |
776 | } |
777 | module_init(powerclamp_init); |
778 | |
779 | static void powerclamp_exit(void) |
780 | { |
781 | unregister_hotcpu_notifier(&powerclamp_cpu_notifier); |
782 | end_power_clamp(); |
783 | free_percpu(powerclamp_thread); |
784 | thermal_cooling_device_unregister(cooling_dev); |
785 | kfree(cpu_clamping_mask); |
786 | |
787 | cancel_delayed_work_sync(&poll_pkg_cstate_work); |
788 | debugfs_remove_recursive(debug_dir); |
789 | } |
790 | module_exit(powerclamp_exit); |
791 | |
792 | MODULE_LICENSE("GPL"); |
793 | MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); |
794 | MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>"); |
795 | MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs"); |
796 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9