Root/kernel/audit_tree.c

1#include "audit.h"
2#include <linux/inotify.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6
7struct audit_tree;
8struct audit_chunk;
9
10struct audit_tree {
11    atomic_t count;
12    int goner;
13    struct audit_chunk *root;
14    struct list_head chunks;
15    struct list_head rules;
16    struct list_head list;
17    struct list_head same_root;
18    struct rcu_head head;
19    char pathname[];
20};
21
22struct audit_chunk {
23    struct list_head hash;
24    struct inotify_watch watch;
25    struct list_head trees; /* with root here */
26    int dead;
27    int count;
28    atomic_long_t refs;
29    struct rcu_head head;
30    struct node {
31        struct list_head list;
32        struct audit_tree *owner;
33        unsigned index; /* index; upper bit indicates 'will prune' */
34    } owners[];
35};
36
37static LIST_HEAD(tree_list);
38static LIST_HEAD(prune_list);
39
40/*
41 * One struct chunk is attached to each inode of interest.
42 * We replace struct chunk on tagging/untagging.
43 * Rules have pointer to struct audit_tree.
44 * Rules have struct list_head rlist forming a list of rules over
45 * the same tree.
46 * References to struct chunk are collected at audit_inode{,_child}()
47 * time and used in AUDIT_TREE rule matching.
48 * These references are dropped at the same time we are calling
49 * audit_free_names(), etc.
50 *
51 * Cyclic lists galore:
52 * tree.chunks anchors chunk.owners[].list hash_lock
53 * tree.rules anchors rule.rlist audit_filter_mutex
54 * chunk.trees anchors tree.same_root hash_lock
55 * chunk.hash is a hash with middle bits of watch.inode as
56 * a hash function. RCU, hash_lock
57 *
58 * tree is refcounted; one reference for "some rules on rules_list refer to
59 * it", one for each chunk with pointer to it.
60 *
61 * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
62 * of watch contributes 1 to .refs).
63 *
64 * node.index allows to get from node.list to containing chunk.
65 * MSB of that sucker is stolen to mark taggings that we might have to
66 * revert - several operations have very unpleasant cleanup logics and
67 * that makes a difference. Some.
68 */
69
70static struct inotify_handle *rtree_ih;
71
72static struct audit_tree *alloc_tree(const char *s)
73{
74    struct audit_tree *tree;
75
76    tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
77    if (tree) {
78        atomic_set(&tree->count, 1);
79        tree->goner = 0;
80        INIT_LIST_HEAD(&tree->chunks);
81        INIT_LIST_HEAD(&tree->rules);
82        INIT_LIST_HEAD(&tree->list);
83        INIT_LIST_HEAD(&tree->same_root);
84        tree->root = NULL;
85        strcpy(tree->pathname, s);
86    }
87    return tree;
88}
89
90static inline void get_tree(struct audit_tree *tree)
91{
92    atomic_inc(&tree->count);
93}
94
95static void __put_tree(struct rcu_head *rcu)
96{
97    struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
98    kfree(tree);
99}
100
101static inline void put_tree(struct audit_tree *tree)
102{
103    if (atomic_dec_and_test(&tree->count))
104        call_rcu(&tree->head, __put_tree);
105}
106
107/* to avoid bringing the entire thing in audit.h */
108const char *audit_tree_path(struct audit_tree *tree)
109{
110    return tree->pathname;
111}
112
113static struct audit_chunk *alloc_chunk(int count)
114{
115    struct audit_chunk *chunk;
116    size_t size;
117    int i;
118
119    size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
120    chunk = kzalloc(size, GFP_KERNEL);
121    if (!chunk)
122        return NULL;
123
124    INIT_LIST_HEAD(&chunk->hash);
125    INIT_LIST_HEAD(&chunk->trees);
126    chunk->count = count;
127    atomic_long_set(&chunk->refs, 1);
128    for (i = 0; i < count; i++) {
129        INIT_LIST_HEAD(&chunk->owners[i].list);
130        chunk->owners[i].index = i;
131    }
132    inotify_init_watch(&chunk->watch);
133    return chunk;
134}
135
136static void free_chunk(struct audit_chunk *chunk)
137{
138    int i;
139
140    for (i = 0; i < chunk->count; i++) {
141        if (chunk->owners[i].owner)
142            put_tree(chunk->owners[i].owner);
143    }
144    kfree(chunk);
145}
146
147void audit_put_chunk(struct audit_chunk *chunk)
148{
149    if (atomic_long_dec_and_test(&chunk->refs))
150        free_chunk(chunk);
151}
152
153static void __put_chunk(struct rcu_head *rcu)
154{
155    struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
156    audit_put_chunk(chunk);
157}
158
159enum {HASH_SIZE = 128};
160static struct list_head chunk_hash_heads[HASH_SIZE];
161static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
162
163static inline struct list_head *chunk_hash(const struct inode *inode)
164{
165    unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
166    return chunk_hash_heads + n % HASH_SIZE;
167}
168
169/* hash_lock is held by caller */
170static void insert_hash(struct audit_chunk *chunk)
171{
172    struct list_head *list = chunk_hash(chunk->watch.inode);
173    list_add_rcu(&chunk->hash, list);
174}
175
176/* called under rcu_read_lock */
177struct audit_chunk *audit_tree_lookup(const struct inode *inode)
178{
179    struct list_head *list = chunk_hash(inode);
180    struct audit_chunk *p;
181
182    list_for_each_entry_rcu(p, list, hash) {
183        if (p->watch.inode == inode) {
184            atomic_long_inc(&p->refs);
185            return p;
186        }
187    }
188    return NULL;
189}
190
191int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
192{
193    int n;
194    for (n = 0; n < chunk->count; n++)
195        if (chunk->owners[n].owner == tree)
196            return 1;
197    return 0;
198}
199
200/* tagging and untagging inodes with trees */
201
202static struct audit_chunk *find_chunk(struct node *p)
203{
204    int index = p->index & ~(1U<<31);
205    p -= index;
206    return container_of(p, struct audit_chunk, owners[0]);
207}
208
209static void untag_chunk(struct node *p)
210{
211    struct audit_chunk *chunk = find_chunk(p);
212    struct audit_chunk *new;
213    struct audit_tree *owner;
214    int size = chunk->count - 1;
215    int i, j;
216
217    if (!pin_inotify_watch(&chunk->watch)) {
218        /*
219         * Filesystem is shutting down; all watches are getting
220         * evicted, just take it off the node list for this
221         * tree and let the eviction logics take care of the
222         * rest.
223         */
224        owner = p->owner;
225        if (owner->root == chunk) {
226            list_del_init(&owner->same_root);
227            owner->root = NULL;
228        }
229        list_del_init(&p->list);
230        p->owner = NULL;
231        put_tree(owner);
232        return;
233    }
234
235    spin_unlock(&hash_lock);
236
237    /*
238     * pin_inotify_watch() succeeded, so the watch won't go away
239     * from under us.
240     */
241    mutex_lock(&chunk->watch.inode->inotify_mutex);
242    if (chunk->dead) {
243        mutex_unlock(&chunk->watch.inode->inotify_mutex);
244        goto out;
245    }
246
247    owner = p->owner;
248
249    if (!size) {
250        chunk->dead = 1;
251        spin_lock(&hash_lock);
252        list_del_init(&chunk->trees);
253        if (owner->root == chunk)
254            owner->root = NULL;
255        list_del_init(&p->list);
256        list_del_rcu(&chunk->hash);
257        spin_unlock(&hash_lock);
258        inotify_evict_watch(&chunk->watch);
259        mutex_unlock(&chunk->watch.inode->inotify_mutex);
260        put_inotify_watch(&chunk->watch);
261        goto out;
262    }
263
264    new = alloc_chunk(size);
265    if (!new)
266        goto Fallback;
267    if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
268        free_chunk(new);
269        goto Fallback;
270    }
271
272    chunk->dead = 1;
273    spin_lock(&hash_lock);
274    list_replace_init(&chunk->trees, &new->trees);
275    if (owner->root == chunk) {
276        list_del_init(&owner->same_root);
277        owner->root = NULL;
278    }
279
280    for (i = j = 0; j <= size; i++, j++) {
281        struct audit_tree *s;
282        if (&chunk->owners[j] == p) {
283            list_del_init(&p->list);
284            i--;
285            continue;
286        }
287        s = chunk->owners[j].owner;
288        new->owners[i].owner = s;
289        new->owners[i].index = chunk->owners[j].index - j + i;
290        if (!s) /* result of earlier fallback */
291            continue;
292        get_tree(s);
293        list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
294    }
295
296    list_replace_rcu(&chunk->hash, &new->hash);
297    list_for_each_entry(owner, &new->trees, same_root)
298        owner->root = new;
299    spin_unlock(&hash_lock);
300    inotify_evict_watch(&chunk->watch);
301    mutex_unlock(&chunk->watch.inode->inotify_mutex);
302    put_inotify_watch(&chunk->watch);
303    goto out;
304
305Fallback:
306    // do the best we can
307    spin_lock(&hash_lock);
308    if (owner->root == chunk) {
309        list_del_init(&owner->same_root);
310        owner->root = NULL;
311    }
312    list_del_init(&p->list);
313    p->owner = NULL;
314    put_tree(owner);
315    spin_unlock(&hash_lock);
316    mutex_unlock(&chunk->watch.inode->inotify_mutex);
317out:
318    unpin_inotify_watch(&chunk->watch);
319    spin_lock(&hash_lock);
320}
321
322static int create_chunk(struct inode *inode, struct audit_tree *tree)
323{
324    struct audit_chunk *chunk = alloc_chunk(1);
325    if (!chunk)
326        return -ENOMEM;
327
328    if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
329        free_chunk(chunk);
330        return -ENOSPC;
331    }
332
333    mutex_lock(&inode->inotify_mutex);
334    spin_lock(&hash_lock);
335    if (tree->goner) {
336        spin_unlock(&hash_lock);
337        chunk->dead = 1;
338        inotify_evict_watch(&chunk->watch);
339        mutex_unlock(&inode->inotify_mutex);
340        put_inotify_watch(&chunk->watch);
341        return 0;
342    }
343    chunk->owners[0].index = (1U << 31);
344    chunk->owners[0].owner = tree;
345    get_tree(tree);
346    list_add(&chunk->owners[0].list, &tree->chunks);
347    if (!tree->root) {
348        tree->root = chunk;
349        list_add(&tree->same_root, &chunk->trees);
350    }
351    insert_hash(chunk);
352    spin_unlock(&hash_lock);
353    mutex_unlock(&inode->inotify_mutex);
354    return 0;
355}
356
357/* the first tagged inode becomes root of tree */
358static int tag_chunk(struct inode *inode, struct audit_tree *tree)
359{
360    struct inotify_watch *watch;
361    struct audit_tree *owner;
362    struct audit_chunk *chunk, *old;
363    struct node *p;
364    int n;
365
366    if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
367        return create_chunk(inode, tree);
368
369    old = container_of(watch, struct audit_chunk, watch);
370
371    /* are we already there? */
372    spin_lock(&hash_lock);
373    for (n = 0; n < old->count; n++) {
374        if (old->owners[n].owner == tree) {
375            spin_unlock(&hash_lock);
376            put_inotify_watch(&old->watch);
377            return 0;
378        }
379    }
380    spin_unlock(&hash_lock);
381
382    chunk = alloc_chunk(old->count + 1);
383    if (!chunk) {
384        put_inotify_watch(&old->watch);
385        return -ENOMEM;
386    }
387
388    mutex_lock(&inode->inotify_mutex);
389    if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
390        mutex_unlock(&inode->inotify_mutex);
391        put_inotify_watch(&old->watch);
392        free_chunk(chunk);
393        return -ENOSPC;
394    }
395    spin_lock(&hash_lock);
396    if (tree->goner) {
397        spin_unlock(&hash_lock);
398        chunk->dead = 1;
399        inotify_evict_watch(&chunk->watch);
400        mutex_unlock(&inode->inotify_mutex);
401        put_inotify_watch(&old->watch);
402        put_inotify_watch(&chunk->watch);
403        return 0;
404    }
405    list_replace_init(&old->trees, &chunk->trees);
406    for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
407        struct audit_tree *s = old->owners[n].owner;
408        p->owner = s;
409        p->index = old->owners[n].index;
410        if (!s) /* result of fallback in untag */
411            continue;
412        get_tree(s);
413        list_replace_init(&old->owners[n].list, &p->list);
414    }
415    p->index = (chunk->count - 1) | (1U<<31);
416    p->owner = tree;
417    get_tree(tree);
418    list_add(&p->list, &tree->chunks);
419    list_replace_rcu(&old->hash, &chunk->hash);
420    list_for_each_entry(owner, &chunk->trees, same_root)
421        owner->root = chunk;
422    old->dead = 1;
423    if (!tree->root) {
424        tree->root = chunk;
425        list_add(&tree->same_root, &chunk->trees);
426    }
427    spin_unlock(&hash_lock);
428    inotify_evict_watch(&old->watch);
429    mutex_unlock(&inode->inotify_mutex);
430    put_inotify_watch(&old->watch); /* pair to inotify_find_watch */
431    put_inotify_watch(&old->watch); /* and kill it */
432    return 0;
433}
434
435static void kill_rules(struct audit_tree *tree)
436{
437    struct audit_krule *rule, *next;
438    struct audit_entry *entry;
439    struct audit_buffer *ab;
440
441    list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
442        entry = container_of(rule, struct audit_entry, rule);
443
444        list_del_init(&rule->rlist);
445        if (rule->tree) {
446            /* not a half-baked one */
447            ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
448            audit_log_format(ab, "op=");
449            audit_log_string(ab, "remove rule");
450            audit_log_format(ab, " dir=");
451            audit_log_untrustedstring(ab, rule->tree->pathname);
452            audit_log_key(ab, rule->filterkey);
453            audit_log_format(ab, " list=%d res=1", rule->listnr);
454            audit_log_end(ab);
455            rule->tree = NULL;
456            list_del_rcu(&entry->list);
457            list_del(&entry->rule.list);
458            call_rcu(&entry->rcu, audit_free_rule_rcu);
459        }
460    }
461}
462
463/*
464 * finish killing struct audit_tree
465 */
466static void prune_one(struct audit_tree *victim)
467{
468    spin_lock(&hash_lock);
469    while (!list_empty(&victim->chunks)) {
470        struct node *p;
471
472        p = list_entry(victim->chunks.next, struct node, list);
473
474        untag_chunk(p);
475    }
476    spin_unlock(&hash_lock);
477    put_tree(victim);
478}
479
480/* trim the uncommitted chunks from tree */
481
482static void trim_marked(struct audit_tree *tree)
483{
484    struct list_head *p, *q;
485    spin_lock(&hash_lock);
486    if (tree->goner) {
487        spin_unlock(&hash_lock);
488        return;
489    }
490    /* reorder */
491    for (p = tree->chunks.next; p != &tree->chunks; p = q) {
492        struct node *node = list_entry(p, struct node, list);
493        q = p->next;
494        if (node->index & (1U<<31)) {
495            list_del_init(p);
496            list_add(p, &tree->chunks);
497        }
498    }
499
500    while (!list_empty(&tree->chunks)) {
501        struct node *node;
502
503        node = list_entry(tree->chunks.next, struct node, list);
504
505        /* have we run out of marked? */
506        if (!(node->index & (1U<<31)))
507            break;
508
509        untag_chunk(node);
510    }
511    if (!tree->root && !tree->goner) {
512        tree->goner = 1;
513        spin_unlock(&hash_lock);
514        mutex_lock(&audit_filter_mutex);
515        kill_rules(tree);
516        list_del_init(&tree->list);
517        mutex_unlock(&audit_filter_mutex);
518        prune_one(tree);
519    } else {
520        spin_unlock(&hash_lock);
521    }
522}
523
524static void audit_schedule_prune(void);
525
526/* called with audit_filter_mutex */
527int audit_remove_tree_rule(struct audit_krule *rule)
528{
529    struct audit_tree *tree;
530    tree = rule->tree;
531    if (tree) {
532        spin_lock(&hash_lock);
533        list_del_init(&rule->rlist);
534        if (list_empty(&tree->rules) && !tree->goner) {
535            tree->root = NULL;
536            list_del_init(&tree->same_root);
537            tree->goner = 1;
538            list_move(&tree->list, &prune_list);
539            rule->tree = NULL;
540            spin_unlock(&hash_lock);
541            audit_schedule_prune();
542            return 1;
543        }
544        rule->tree = NULL;
545        spin_unlock(&hash_lock);
546        return 1;
547    }
548    return 0;
549}
550
551void audit_trim_trees(void)
552{
553    struct list_head cursor;
554
555    mutex_lock(&audit_filter_mutex);
556    list_add(&cursor, &tree_list);
557    while (cursor.next != &tree_list) {
558        struct audit_tree *tree;
559        struct path path;
560        struct vfsmount *root_mnt;
561        struct node *node;
562        struct list_head list;
563        int err;
564
565        tree = container_of(cursor.next, struct audit_tree, list);
566        get_tree(tree);
567        list_del(&cursor);
568        list_add(&cursor, &tree->list);
569        mutex_unlock(&audit_filter_mutex);
570
571        err = kern_path(tree->pathname, 0, &path);
572        if (err)
573            goto skip_it;
574
575        root_mnt = collect_mounts(&path);
576        path_put(&path);
577        if (!root_mnt)
578            goto skip_it;
579
580        list_add_tail(&list, &root_mnt->mnt_list);
581        spin_lock(&hash_lock);
582        list_for_each_entry(node, &tree->chunks, list) {
583            struct audit_chunk *chunk = find_chunk(node);
584            struct inode *inode = chunk->watch.inode;
585            struct vfsmount *mnt;
586            node->index |= 1U<<31;
587            list_for_each_entry(mnt, &list, mnt_list) {
588                if (mnt->mnt_root->d_inode == inode) {
589                    node->index &= ~(1U<<31);
590                    break;
591                }
592            }
593        }
594        spin_unlock(&hash_lock);
595        trim_marked(tree);
596        put_tree(tree);
597        list_del_init(&list);
598        drop_collected_mounts(root_mnt);
599skip_it:
600        mutex_lock(&audit_filter_mutex);
601    }
602    list_del(&cursor);
603    mutex_unlock(&audit_filter_mutex);
604}
605
606static int is_under(struct vfsmount *mnt, struct dentry *dentry,
607            struct path *path)
608{
609    if (mnt != path->mnt) {
610        for (;;) {
611            if (mnt->mnt_parent == mnt)
612                return 0;
613            if (mnt->mnt_parent == path->mnt)
614                    break;
615            mnt = mnt->mnt_parent;
616        }
617        dentry = mnt->mnt_mountpoint;
618    }
619    return is_subdir(dentry, path->dentry);
620}
621
622int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
623{
624
625    if (pathname[0] != '/' ||
626        rule->listnr != AUDIT_FILTER_EXIT ||
627        op != Audit_equal ||
628        rule->inode_f || rule->watch || rule->tree)
629        return -EINVAL;
630    rule->tree = alloc_tree(pathname);
631    if (!rule->tree)
632        return -ENOMEM;
633    return 0;
634}
635
636void audit_put_tree(struct audit_tree *tree)
637{
638    put_tree(tree);
639}
640
641/* called with audit_filter_mutex */
642int audit_add_tree_rule(struct audit_krule *rule)
643{
644    struct audit_tree *seed = rule->tree, *tree;
645    struct path path;
646    struct vfsmount *mnt, *p;
647    struct list_head list;
648    int err;
649
650    list_for_each_entry(tree, &tree_list, list) {
651        if (!strcmp(seed->pathname, tree->pathname)) {
652            put_tree(seed);
653            rule->tree = tree;
654            list_add(&rule->rlist, &tree->rules);
655            return 0;
656        }
657    }
658    tree = seed;
659    list_add(&tree->list, &tree_list);
660    list_add(&rule->rlist, &tree->rules);
661    /* do not set rule->tree yet */
662    mutex_unlock(&audit_filter_mutex);
663
664    err = kern_path(tree->pathname, 0, &path);
665    if (err)
666        goto Err;
667    mnt = collect_mounts(&path);
668    path_put(&path);
669    if (!mnt) {
670        err = -ENOMEM;
671        goto Err;
672    }
673    list_add_tail(&list, &mnt->mnt_list);
674
675    get_tree(tree);
676    list_for_each_entry(p, &list, mnt_list) {
677        err = tag_chunk(p->mnt_root->d_inode, tree);
678        if (err)
679            break;
680    }
681
682    list_del(&list);
683    drop_collected_mounts(mnt);
684
685    if (!err) {
686        struct node *node;
687        spin_lock(&hash_lock);
688        list_for_each_entry(node, &tree->chunks, list)
689            node->index &= ~(1U<<31);
690        spin_unlock(&hash_lock);
691    } else {
692        trim_marked(tree);
693        goto Err;
694    }
695
696    mutex_lock(&audit_filter_mutex);
697    if (list_empty(&rule->rlist)) {
698        put_tree(tree);
699        return -ENOENT;
700    }
701    rule->tree = tree;
702    put_tree(tree);
703
704    return 0;
705Err:
706    mutex_lock(&audit_filter_mutex);
707    list_del_init(&tree->list);
708    list_del_init(&tree->rules);
709    put_tree(tree);
710    return err;
711}
712
713int audit_tag_tree(char *old, char *new)
714{
715    struct list_head cursor, barrier;
716    int failed = 0;
717    struct path path;
718    struct vfsmount *tagged;
719    struct list_head list;
720    struct vfsmount *mnt;
721    struct dentry *dentry;
722    int err;
723
724    err = kern_path(new, 0, &path);
725    if (err)
726        return err;
727    tagged = collect_mounts(&path);
728    path_put(&path);
729    if (!tagged)
730        return -ENOMEM;
731
732    err = kern_path(old, 0, &path);
733    if (err) {
734        drop_collected_mounts(tagged);
735        return err;
736    }
737    mnt = mntget(path.mnt);
738    dentry = dget(path.dentry);
739    path_put(&path);
740
741    list_add_tail(&list, &tagged->mnt_list);
742
743    mutex_lock(&audit_filter_mutex);
744    list_add(&barrier, &tree_list);
745    list_add(&cursor, &barrier);
746
747    while (cursor.next != &tree_list) {
748        struct audit_tree *tree;
749        struct vfsmount *p;
750
751        tree = container_of(cursor.next, struct audit_tree, list);
752        get_tree(tree);
753        list_del(&cursor);
754        list_add(&cursor, &tree->list);
755        mutex_unlock(&audit_filter_mutex);
756
757        err = kern_path(tree->pathname, 0, &path);
758        if (err) {
759            put_tree(tree);
760            mutex_lock(&audit_filter_mutex);
761            continue;
762        }
763
764        spin_lock(&vfsmount_lock);
765        if (!is_under(mnt, dentry, &path)) {
766            spin_unlock(&vfsmount_lock);
767            path_put(&path);
768            put_tree(tree);
769            mutex_lock(&audit_filter_mutex);
770            continue;
771        }
772        spin_unlock(&vfsmount_lock);
773        path_put(&path);
774
775        list_for_each_entry(p, &list, mnt_list) {
776            failed = tag_chunk(p->mnt_root->d_inode, tree);
777            if (failed)
778                break;
779        }
780
781        if (failed) {
782            put_tree(tree);
783            mutex_lock(&audit_filter_mutex);
784            break;
785        }
786
787        mutex_lock(&audit_filter_mutex);
788        spin_lock(&hash_lock);
789        if (!tree->goner) {
790            list_del(&tree->list);
791            list_add(&tree->list, &tree_list);
792        }
793        spin_unlock(&hash_lock);
794        put_tree(tree);
795    }
796
797    while (barrier.prev != &tree_list) {
798        struct audit_tree *tree;
799
800        tree = container_of(barrier.prev, struct audit_tree, list);
801        get_tree(tree);
802        list_del(&tree->list);
803        list_add(&tree->list, &barrier);
804        mutex_unlock(&audit_filter_mutex);
805
806        if (!failed) {
807            struct node *node;
808            spin_lock(&hash_lock);
809            list_for_each_entry(node, &tree->chunks, list)
810                node->index &= ~(1U<<31);
811            spin_unlock(&hash_lock);
812        } else {
813            trim_marked(tree);
814        }
815
816        put_tree(tree);
817        mutex_lock(&audit_filter_mutex);
818    }
819    list_del(&barrier);
820    list_del(&cursor);
821    list_del(&list);
822    mutex_unlock(&audit_filter_mutex);
823    dput(dentry);
824    mntput(mnt);
825    drop_collected_mounts(tagged);
826    return failed;
827}
828
829/*
830 * That gets run when evict_chunk() ends up needing to kill audit_tree.
831 * Runs from a separate thread.
832 */
833static int prune_tree_thread(void *unused)
834{
835    mutex_lock(&audit_cmd_mutex);
836    mutex_lock(&audit_filter_mutex);
837
838    while (!list_empty(&prune_list)) {
839        struct audit_tree *victim;
840
841        victim = list_entry(prune_list.next, struct audit_tree, list);
842        list_del_init(&victim->list);
843
844        mutex_unlock(&audit_filter_mutex);
845
846        prune_one(victim);
847
848        mutex_lock(&audit_filter_mutex);
849    }
850
851    mutex_unlock(&audit_filter_mutex);
852    mutex_unlock(&audit_cmd_mutex);
853    return 0;
854}
855
856static void audit_schedule_prune(void)
857{
858    kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
859}
860
861/*
862 * ... and that one is done if evict_chunk() decides to delay until the end
863 * of syscall. Runs synchronously.
864 */
865void audit_kill_trees(struct list_head *list)
866{
867    mutex_lock(&audit_cmd_mutex);
868    mutex_lock(&audit_filter_mutex);
869
870    while (!list_empty(list)) {
871        struct audit_tree *victim;
872
873        victim = list_entry(list->next, struct audit_tree, list);
874        kill_rules(victim);
875        list_del_init(&victim->list);
876
877        mutex_unlock(&audit_filter_mutex);
878
879        prune_one(victim);
880
881        mutex_lock(&audit_filter_mutex);
882    }
883
884    mutex_unlock(&audit_filter_mutex);
885    mutex_unlock(&audit_cmd_mutex);
886}
887
888/*
889 * Here comes the stuff asynchronous to auditctl operations
890 */
891
892/* inode->inotify_mutex is locked */
893static void evict_chunk(struct audit_chunk *chunk)
894{
895    struct audit_tree *owner;
896    struct list_head *postponed = audit_killed_trees();
897    int need_prune = 0;
898    int n;
899
900    if (chunk->dead)
901        return;
902
903    chunk->dead = 1;
904    mutex_lock(&audit_filter_mutex);
905    spin_lock(&hash_lock);
906    while (!list_empty(&chunk->trees)) {
907        owner = list_entry(chunk->trees.next,
908                   struct audit_tree, same_root);
909        owner->goner = 1;
910        owner->root = NULL;
911        list_del_init(&owner->same_root);
912        spin_unlock(&hash_lock);
913        if (!postponed) {
914            kill_rules(owner);
915            list_move(&owner->list, &prune_list);
916            need_prune = 1;
917        } else {
918            list_move(&owner->list, postponed);
919        }
920        spin_lock(&hash_lock);
921    }
922    list_del_rcu(&chunk->hash);
923    for (n = 0; n < chunk->count; n++)
924        list_del_init(&chunk->owners[n].list);
925    spin_unlock(&hash_lock);
926    if (need_prune)
927        audit_schedule_prune();
928    mutex_unlock(&audit_filter_mutex);
929}
930
931static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
932                         u32 cookie, const char *dname, struct inode *inode)
933{
934    struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
935
936    if (mask & IN_IGNORED) {
937        evict_chunk(chunk);
938        put_inotify_watch(watch);
939    }
940}
941
942static void destroy_watch(struct inotify_watch *watch)
943{
944    struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
945    call_rcu(&chunk->head, __put_chunk);
946}
947
948static const struct inotify_operations rtree_inotify_ops = {
949    .handle_event = handle_event,
950    .destroy_watch = destroy_watch,
951};
952
953static int __init audit_tree_init(void)
954{
955    int i;
956
957    rtree_ih = inotify_init(&rtree_inotify_ops);
958    if (IS_ERR(rtree_ih))
959        audit_panic("cannot initialize inotify handle for rectree watches");
960
961    for (i = 0; i < HASH_SIZE; i++)
962        INIT_LIST_HEAD(&chunk_hash_heads[i]);
963
964    return 0;
965}
966__initcall(audit_tree_init);
967

Archive Download this file



interactive