Root/kernel/auditsc.c

1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <asm/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/mount.h>
53#include <linux/socket.h>
54#include <linux/mqueue.h>
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
58#include <linux/netlink.h>
59#include <linux/compiler.h>
60#include <asm/unistd.h>
61#include <linux/security.h>
62#include <linux/list.h>
63#include <linux/tty.h>
64#include <linux/binfmts.h>
65#include <linux/highmem.h>
66#include <linux/syscalls.h>
67#include <linux/inotify.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90    kernel_cap_t permitted;
91    kernel_cap_t inheritable;
92    union {
93        unsigned int fE; /* effective bit of a file capability */
94        kernel_cap_t effective; /* effective set of a process */
95    };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104    const char *name;
105    int name_len; /* number of name's characters to log */
106    unsigned name_put; /* call __putname() for this name */
107    unsigned long ino;
108    dev_t dev;
109    umode_t mode;
110    uid_t uid;
111    gid_t gid;
112    dev_t rdev;
113    u32 osid;
114    struct audit_cap_data fcap;
115    unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119    struct audit_aux_data *next;
120    int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129    struct audit_aux_data d;
130    int argc;
131    int envc;
132    struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136    struct audit_aux_data d;
137    pid_t target_pid[AUDIT_AUX_PIDS];
138    uid_t target_auid[AUDIT_AUX_PIDS];
139    uid_t target_uid[AUDIT_AUX_PIDS];
140    unsigned int target_sessionid[AUDIT_AUX_PIDS];
141    u32 target_sid[AUDIT_AUX_PIDS];
142    char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143    int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147    struct audit_aux_data d;
148    struct audit_cap_data fcap;
149    unsigned int fcap_ver;
150    struct audit_cap_data old_pcap;
151    struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155    struct audit_aux_data d;
156    pid_t pid;
157    struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161    struct audit_tree_refs *next;
162    struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167    int dummy; /* must be the first element */
168    int in_syscall; /* 1 if task is in a syscall */
169    enum audit_state state, current_state;
170    unsigned int serial; /* serial number for record */
171    int major; /* syscall number */
172    struct timespec ctime; /* time of syscall entry */
173    unsigned long argv[4]; /* syscall arguments */
174    long return_code;/* syscall return code */
175    u64 prio;
176    int return_valid; /* return code is valid */
177    int name_count;
178    struct audit_names names[AUDIT_NAMES];
179    char * filterkey; /* key for rule that triggered record */
180    struct path pwd;
181    struct audit_context *previous; /* For nested syscalls */
182    struct audit_aux_data *aux;
183    struct audit_aux_data *aux_pids;
184    struct sockaddr_storage *sockaddr;
185    size_t sockaddr_len;
186                /* Save things to print about task_struct */
187    pid_t pid, ppid;
188    uid_t uid, euid, suid, fsuid;
189    gid_t gid, egid, sgid, fsgid;
190    unsigned long personality;
191    int arch;
192
193    pid_t target_pid;
194    uid_t target_auid;
195    uid_t target_uid;
196    unsigned int target_sessionid;
197    u32 target_sid;
198    char target_comm[TASK_COMM_LEN];
199
200    struct audit_tree_refs *trees, *first_trees;
201    struct list_head killed_trees;
202    int tree_count;
203
204    int type;
205    union {
206        struct {
207            int nargs;
208            long args[6];
209        } socketcall;
210        struct {
211            uid_t uid;
212            gid_t gid;
213            mode_t mode;
214            u32 osid;
215            int has_perm;
216            uid_t perm_uid;
217            gid_t perm_gid;
218            mode_t perm_mode;
219            unsigned long qbytes;
220        } ipc;
221        struct {
222            mqd_t mqdes;
223            struct mq_attr mqstat;
224        } mq_getsetattr;
225        struct {
226            mqd_t mqdes;
227            int sigev_signo;
228        } mq_notify;
229        struct {
230            mqd_t mqdes;
231            size_t msg_len;
232            unsigned int msg_prio;
233            struct timespec abs_timeout;
234        } mq_sendrecv;
235        struct {
236            int oflag;
237            mode_t mode;
238            struct mq_attr attr;
239        } mq_open;
240        struct {
241            pid_t pid;
242            struct audit_cap_data cap;
243        } capset;
244    };
245    int fds[2];
246
247#if AUDIT_DEBUG
248    int put_count;
249    int ino_count;
250#endif
251};
252
253#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
254static inline int open_arg(int flags, int mask)
255{
256    int n = ACC_MODE(flags);
257    if (flags & (O_TRUNC | O_CREAT))
258        n |= AUDIT_PERM_WRITE;
259    return n & mask;
260}
261
262static int audit_match_perm(struct audit_context *ctx, int mask)
263{
264    unsigned n;
265    if (unlikely(!ctx))
266        return 0;
267    n = ctx->major;
268
269    switch (audit_classify_syscall(ctx->arch, n)) {
270    case 0: /* native */
271        if ((mask & AUDIT_PERM_WRITE) &&
272             audit_match_class(AUDIT_CLASS_WRITE, n))
273            return 1;
274        if ((mask & AUDIT_PERM_READ) &&
275             audit_match_class(AUDIT_CLASS_READ, n))
276            return 1;
277        if ((mask & AUDIT_PERM_ATTR) &&
278             audit_match_class(AUDIT_CLASS_CHATTR, n))
279            return 1;
280        return 0;
281    case 1: /* 32bit on biarch */
282        if ((mask & AUDIT_PERM_WRITE) &&
283             audit_match_class(AUDIT_CLASS_WRITE_32, n))
284            return 1;
285        if ((mask & AUDIT_PERM_READ) &&
286             audit_match_class(AUDIT_CLASS_READ_32, n))
287            return 1;
288        if ((mask & AUDIT_PERM_ATTR) &&
289             audit_match_class(AUDIT_CLASS_CHATTR_32, n))
290            return 1;
291        return 0;
292    case 2: /* open */
293        return mask & ACC_MODE(ctx->argv[1]);
294    case 3: /* openat */
295        return mask & ACC_MODE(ctx->argv[2]);
296    case 4: /* socketcall */
297        return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
298    case 5: /* execve */
299        return mask & AUDIT_PERM_EXEC;
300    default:
301        return 0;
302    }
303}
304
305static int audit_match_filetype(struct audit_context *ctx, int which)
306{
307    unsigned index = which & ~S_IFMT;
308    mode_t mode = which & S_IFMT;
309
310    if (unlikely(!ctx))
311        return 0;
312
313    if (index >= ctx->name_count)
314        return 0;
315    if (ctx->names[index].ino == -1)
316        return 0;
317    if ((ctx->names[index].mode ^ mode) & S_IFMT)
318        return 0;
319    return 1;
320}
321
322/*
323 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
324 * ->first_trees points to its beginning, ->trees - to the current end of data.
325 * ->tree_count is the number of free entries in array pointed to by ->trees.
326 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
327 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
328 * it's going to remain 1-element for almost any setup) until we free context itself.
329 * References in it _are_ dropped - at the same time we free/drop aux stuff.
330 */
331
332#ifdef CONFIG_AUDIT_TREE
333static void audit_set_auditable(struct audit_context *ctx)
334{
335    if (!ctx->prio) {
336        ctx->prio = 1;
337        ctx->current_state = AUDIT_RECORD_CONTEXT;
338    }
339}
340
341static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342{
343    struct audit_tree_refs *p = ctx->trees;
344    int left = ctx->tree_count;
345    if (likely(left)) {
346        p->c[--left] = chunk;
347        ctx->tree_count = left;
348        return 1;
349    }
350    if (!p)
351        return 0;
352    p = p->next;
353    if (p) {
354        p->c[30] = chunk;
355        ctx->trees = p;
356        ctx->tree_count = 30;
357        return 1;
358    }
359    return 0;
360}
361
362static int grow_tree_refs(struct audit_context *ctx)
363{
364    struct audit_tree_refs *p = ctx->trees;
365    ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366    if (!ctx->trees) {
367        ctx->trees = p;
368        return 0;
369    }
370    if (p)
371        p->next = ctx->trees;
372    else
373        ctx->first_trees = ctx->trees;
374    ctx->tree_count = 31;
375    return 1;
376}
377#endif
378
379static void unroll_tree_refs(struct audit_context *ctx,
380              struct audit_tree_refs *p, int count)
381{
382#ifdef CONFIG_AUDIT_TREE
383    struct audit_tree_refs *q;
384    int n;
385    if (!p) {
386        /* we started with empty chain */
387        p = ctx->first_trees;
388        count = 31;
389        /* if the very first allocation has failed, nothing to do */
390        if (!p)
391            return;
392    }
393    n = count;
394    for (q = p; q != ctx->trees; q = q->next, n = 31) {
395        while (n--) {
396            audit_put_chunk(q->c[n]);
397            q->c[n] = NULL;
398        }
399    }
400    while (n-- > ctx->tree_count) {
401        audit_put_chunk(q->c[n]);
402        q->c[n] = NULL;
403    }
404    ctx->trees = p;
405    ctx->tree_count = count;
406#endif
407}
408
409static void free_tree_refs(struct audit_context *ctx)
410{
411    struct audit_tree_refs *p, *q;
412    for (p = ctx->first_trees; p; p = q) {
413        q = p->next;
414        kfree(p);
415    }
416}
417
418static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419{
420#ifdef CONFIG_AUDIT_TREE
421    struct audit_tree_refs *p;
422    int n;
423    if (!tree)
424        return 0;
425    /* full ones */
426    for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427        for (n = 0; n < 31; n++)
428            if (audit_tree_match(p->c[n], tree))
429                return 1;
430    }
431    /* partial */
432    if (p) {
433        for (n = ctx->tree_count; n < 31; n++)
434            if (audit_tree_match(p->c[n], tree))
435                return 1;
436    }
437#endif
438    return 0;
439}
440
441/* Determine if any context name data matches a rule's watch data */
442/* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444static int audit_filter_rules(struct task_struct *tsk,
445                  struct audit_krule *rule,
446                  struct audit_context *ctx,
447                  struct audit_names *name,
448                  enum audit_state *state)
449{
450    const struct cred *cred = get_task_cred(tsk);
451    int i, j, need_sid = 1;
452    u32 sid;
453
454    for (i = 0; i < rule->field_count; i++) {
455        struct audit_field *f = &rule->fields[i];
456        int result = 0;
457
458        switch (f->type) {
459        case AUDIT_PID:
460            result = audit_comparator(tsk->pid, f->op, f->val);
461            break;
462        case AUDIT_PPID:
463            if (ctx) {
464                if (!ctx->ppid)
465                    ctx->ppid = sys_getppid();
466                result = audit_comparator(ctx->ppid, f->op, f->val);
467            }
468            break;
469        case AUDIT_UID:
470            result = audit_comparator(cred->uid, f->op, f->val);
471            break;
472        case AUDIT_EUID:
473            result = audit_comparator(cred->euid, f->op, f->val);
474            break;
475        case AUDIT_SUID:
476            result = audit_comparator(cred->suid, f->op, f->val);
477            break;
478        case AUDIT_FSUID:
479            result = audit_comparator(cred->fsuid, f->op, f->val);
480            break;
481        case AUDIT_GID:
482            result = audit_comparator(cred->gid, f->op, f->val);
483            break;
484        case AUDIT_EGID:
485            result = audit_comparator(cred->egid, f->op, f->val);
486            break;
487        case AUDIT_SGID:
488            result = audit_comparator(cred->sgid, f->op, f->val);
489            break;
490        case AUDIT_FSGID:
491            result = audit_comparator(cred->fsgid, f->op, f->val);
492            break;
493        case AUDIT_PERS:
494            result = audit_comparator(tsk->personality, f->op, f->val);
495            break;
496        case AUDIT_ARCH:
497            if (ctx)
498                result = audit_comparator(ctx->arch, f->op, f->val);
499            break;
500
501        case AUDIT_EXIT:
502            if (ctx && ctx->return_valid)
503                result = audit_comparator(ctx->return_code, f->op, f->val);
504            break;
505        case AUDIT_SUCCESS:
506            if (ctx && ctx->return_valid) {
507                if (f->val)
508                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
509                else
510                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
511            }
512            break;
513        case AUDIT_DEVMAJOR:
514            if (name)
515                result = audit_comparator(MAJOR(name->dev),
516                              f->op, f->val);
517            else if (ctx) {
518                for (j = 0; j < ctx->name_count; j++) {
519                    if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
520                        ++result;
521                        break;
522                    }
523                }
524            }
525            break;
526        case AUDIT_DEVMINOR:
527            if (name)
528                result = audit_comparator(MINOR(name->dev),
529                              f->op, f->val);
530            else if (ctx) {
531                for (j = 0; j < ctx->name_count; j++) {
532                    if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
533                        ++result;
534                        break;
535                    }
536                }
537            }
538            break;
539        case AUDIT_INODE:
540            if (name)
541                result = (name->ino == f->val);
542            else if (ctx) {
543                for (j = 0; j < ctx->name_count; j++) {
544                    if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
545                        ++result;
546                        break;
547                    }
548                }
549            }
550            break;
551        case AUDIT_WATCH:
552            if (name && audit_watch_inode(rule->watch) != (unsigned long)-1)
553                result = (name->dev == audit_watch_dev(rule->watch) &&
554                      name->ino == audit_watch_inode(rule->watch));
555            break;
556        case AUDIT_DIR:
557            if (ctx)
558                result = match_tree_refs(ctx, rule->tree);
559            break;
560        case AUDIT_LOGINUID:
561            result = 0;
562            if (ctx)
563                result = audit_comparator(tsk->loginuid, f->op, f->val);
564            break;
565        case AUDIT_SUBJ_USER:
566        case AUDIT_SUBJ_ROLE:
567        case AUDIT_SUBJ_TYPE:
568        case AUDIT_SUBJ_SEN:
569        case AUDIT_SUBJ_CLR:
570            /* NOTE: this may return negative values indicating
571               a temporary error. We simply treat this as a
572               match for now to avoid losing information that
573               may be wanted. An error message will also be
574               logged upon error */
575            if (f->lsm_rule) {
576                if (need_sid) {
577                    security_task_getsecid(tsk, &sid);
578                    need_sid = 0;
579                }
580                result = security_audit_rule_match(sid, f->type,
581                                                  f->op,
582                                                  f->lsm_rule,
583                                                  ctx);
584            }
585            break;
586        case AUDIT_OBJ_USER:
587        case AUDIT_OBJ_ROLE:
588        case AUDIT_OBJ_TYPE:
589        case AUDIT_OBJ_LEV_LOW:
590        case AUDIT_OBJ_LEV_HIGH:
591            /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
592               also applies here */
593            if (f->lsm_rule) {
594                /* Find files that match */
595                if (name) {
596                    result = security_audit_rule_match(
597                               name->osid, f->type, f->op,
598                               f->lsm_rule, ctx);
599                } else if (ctx) {
600                    for (j = 0; j < ctx->name_count; j++) {
601                        if (security_audit_rule_match(
602                              ctx->names[j].osid,
603                              f->type, f->op,
604                              f->lsm_rule, ctx)) {
605                            ++result;
606                            break;
607                        }
608                    }
609                }
610                /* Find ipc objects that match */
611                if (!ctx || ctx->type != AUDIT_IPC)
612                    break;
613                if (security_audit_rule_match(ctx->ipc.osid,
614                                  f->type, f->op,
615                                  f->lsm_rule, ctx))
616                    ++result;
617            }
618            break;
619        case AUDIT_ARG0:
620        case AUDIT_ARG1:
621        case AUDIT_ARG2:
622        case AUDIT_ARG3:
623            if (ctx)
624                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
625            break;
626        case AUDIT_FILTERKEY:
627            /* ignore this field for filtering */
628            result = 1;
629            break;
630        case AUDIT_PERM:
631            result = audit_match_perm(ctx, f->val);
632            break;
633        case AUDIT_FILETYPE:
634            result = audit_match_filetype(ctx, f->val);
635            break;
636        }
637
638        if (!result) {
639            put_cred(cred);
640            return 0;
641        }
642    }
643
644    if (ctx) {
645        if (rule->prio <= ctx->prio)
646            return 0;
647        if (rule->filterkey) {
648            kfree(ctx->filterkey);
649            ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
650        }
651        ctx->prio = rule->prio;
652    }
653    switch (rule->action) {
654    case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
655    case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
656    }
657    put_cred(cred);
658    return 1;
659}
660
661/* At process creation time, we can determine if system-call auditing is
662 * completely disabled for this task. Since we only have the task
663 * structure at this point, we can only check uid and gid.
664 */
665static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
666{
667    struct audit_entry *e;
668    enum audit_state state;
669
670    rcu_read_lock();
671    list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
672        if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
673            if (state == AUDIT_RECORD_CONTEXT)
674                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
675            rcu_read_unlock();
676            return state;
677        }
678    }
679    rcu_read_unlock();
680    return AUDIT_BUILD_CONTEXT;
681}
682
683/* At syscall entry and exit time, this filter is called if the
684 * audit_state is not low enough that auditing cannot take place, but is
685 * also not high enough that we already know we have to write an audit
686 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
687 */
688static enum audit_state audit_filter_syscall(struct task_struct *tsk,
689                         struct audit_context *ctx,
690                         struct list_head *list)
691{
692    struct audit_entry *e;
693    enum audit_state state;
694
695    if (audit_pid && tsk->tgid == audit_pid)
696        return AUDIT_DISABLED;
697
698    rcu_read_lock();
699    if (!list_empty(list)) {
700        int word = AUDIT_WORD(ctx->major);
701        int bit = AUDIT_BIT(ctx->major);
702
703        list_for_each_entry_rcu(e, list, list) {
704            if ((e->rule.mask[word] & bit) == bit &&
705                audit_filter_rules(tsk, &e->rule, ctx, NULL,
706                           &state)) {
707                rcu_read_unlock();
708                ctx->current_state = state;
709                return state;
710            }
711        }
712    }
713    rcu_read_unlock();
714    return AUDIT_BUILD_CONTEXT;
715}
716
717/* At syscall exit time, this filter is called if any audit_names[] have been
718 * collected during syscall processing. We only check rules in sublists at hash
719 * buckets applicable to the inode numbers in audit_names[].
720 * Regarding audit_state, same rules apply as for audit_filter_syscall().
721 */
722void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
723{
724    int i;
725    struct audit_entry *e;
726    enum audit_state state;
727
728    if (audit_pid && tsk->tgid == audit_pid)
729        return;
730
731    rcu_read_lock();
732    for (i = 0; i < ctx->name_count; i++) {
733        int word = AUDIT_WORD(ctx->major);
734        int bit = AUDIT_BIT(ctx->major);
735        struct audit_names *n = &ctx->names[i];
736        int h = audit_hash_ino((u32)n->ino);
737        struct list_head *list = &audit_inode_hash[h];
738
739        if (list_empty(list))
740            continue;
741
742        list_for_each_entry_rcu(e, list, list) {
743            if ((e->rule.mask[word] & bit) == bit &&
744                audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
745                rcu_read_unlock();
746                ctx->current_state = state;
747                return;
748            }
749        }
750    }
751    rcu_read_unlock();
752}
753
754static inline struct audit_context *audit_get_context(struct task_struct *tsk,
755                              int return_valid,
756                              long return_code)
757{
758    struct audit_context *context = tsk->audit_context;
759
760    if (likely(!context))
761        return NULL;
762    context->return_valid = return_valid;
763
764    /*
765     * we need to fix up the return code in the audit logs if the actual
766     * return codes are later going to be fixed up by the arch specific
767     * signal handlers
768     *
769     * This is actually a test for:
770     * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
771     * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
772     *
773     * but is faster than a bunch of ||
774     */
775    if (unlikely(return_code <= -ERESTARTSYS) &&
776        (return_code >= -ERESTART_RESTARTBLOCK) &&
777        (return_code != -ENOIOCTLCMD))
778        context->return_code = -EINTR;
779    else
780        context->return_code = return_code;
781
782    if (context->in_syscall && !context->dummy) {
783        audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
784        audit_filter_inodes(tsk, context);
785    }
786
787    tsk->audit_context = NULL;
788    return context;
789}
790
791static inline void audit_free_names(struct audit_context *context)
792{
793    int i;
794
795#if AUDIT_DEBUG == 2
796    if (context->put_count + context->ino_count != context->name_count) {
797        printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
798               " name_count=%d put_count=%d"
799               " ino_count=%d [NOT freeing]\n",
800               __FILE__, __LINE__,
801               context->serial, context->major, context->in_syscall,
802               context->name_count, context->put_count,
803               context->ino_count);
804        for (i = 0; i < context->name_count; i++) {
805            printk(KERN_ERR "names[%d] = %p = %s\n", i,
806                   context->names[i].name,
807                   context->names[i].name ?: "(null)");
808        }
809        dump_stack();
810        return;
811    }
812#endif
813#if AUDIT_DEBUG
814    context->put_count = 0;
815    context->ino_count = 0;
816#endif
817
818    for (i = 0; i < context->name_count; i++) {
819        if (context->names[i].name && context->names[i].name_put)
820            __putname(context->names[i].name);
821    }
822    context->name_count = 0;
823    path_put(&context->pwd);
824    context->pwd.dentry = NULL;
825    context->pwd.mnt = NULL;
826}
827
828static inline void audit_free_aux(struct audit_context *context)
829{
830    struct audit_aux_data *aux;
831
832    while ((aux = context->aux)) {
833        context->aux = aux->next;
834        kfree(aux);
835    }
836    while ((aux = context->aux_pids)) {
837        context->aux_pids = aux->next;
838        kfree(aux);
839    }
840}
841
842static inline void audit_zero_context(struct audit_context *context,
843                      enum audit_state state)
844{
845    memset(context, 0, sizeof(*context));
846    context->state = state;
847    context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
848}
849
850static inline struct audit_context *audit_alloc_context(enum audit_state state)
851{
852    struct audit_context *context;
853
854    if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
855        return NULL;
856    audit_zero_context(context, state);
857    INIT_LIST_HEAD(&context->killed_trees);
858    return context;
859}
860
861/**
862 * audit_alloc - allocate an audit context block for a task
863 * @tsk: task
864 *
865 * Filter on the task information and allocate a per-task audit context
866 * if necessary. Doing so turns on system call auditing for the
867 * specified task. This is called from copy_process, so no lock is
868 * needed.
869 */
870int audit_alloc(struct task_struct *tsk)
871{
872    struct audit_context *context;
873    enum audit_state state;
874    char *key = NULL;
875
876    if (likely(!audit_ever_enabled))
877        return 0; /* Return if not auditing. */
878
879    state = audit_filter_task(tsk, &key);
880    if (likely(state == AUDIT_DISABLED))
881        return 0;
882
883    if (!(context = audit_alloc_context(state))) {
884        kfree(key);
885        audit_log_lost("out of memory in audit_alloc");
886        return -ENOMEM;
887    }
888    context->filterkey = key;
889
890    tsk->audit_context = context;
891    set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
892    return 0;
893}
894
895static inline void audit_free_context(struct audit_context *context)
896{
897    struct audit_context *previous;
898    int count = 0;
899
900    do {
901        previous = context->previous;
902        if (previous || (count && count < 10)) {
903            ++count;
904            printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
905                   " freeing multiple contexts (%d)\n",
906                   context->serial, context->major,
907                   context->name_count, count);
908        }
909        audit_free_names(context);
910        unroll_tree_refs(context, NULL, 0);
911        free_tree_refs(context);
912        audit_free_aux(context);
913        kfree(context->filterkey);
914        kfree(context->sockaddr);
915        kfree(context);
916        context = previous;
917    } while (context);
918    if (count >= 10)
919        printk(KERN_ERR "audit: freed %d contexts\n", count);
920}
921
922void audit_log_task_context(struct audit_buffer *ab)
923{
924    char *ctx = NULL;
925    unsigned len;
926    int error;
927    u32 sid;
928
929    security_task_getsecid(current, &sid);
930    if (!sid)
931        return;
932
933    error = security_secid_to_secctx(sid, &ctx, &len);
934    if (error) {
935        if (error != -EINVAL)
936            goto error_path;
937        return;
938    }
939
940    audit_log_format(ab, " subj=%s", ctx);
941    security_release_secctx(ctx, len);
942    return;
943
944error_path:
945    audit_panic("error in audit_log_task_context");
946    return;
947}
948
949EXPORT_SYMBOL(audit_log_task_context);
950
951static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
952{
953    char name[sizeof(tsk->comm)];
954    struct mm_struct *mm = tsk->mm;
955    struct vm_area_struct *vma;
956
957    /* tsk == current */
958
959    get_task_comm(name, tsk);
960    audit_log_format(ab, " comm=");
961    audit_log_untrustedstring(ab, name);
962
963    if (mm) {
964        down_read(&mm->mmap_sem);
965        vma = mm->mmap;
966        while (vma) {
967            if ((vma->vm_flags & VM_EXECUTABLE) &&
968                vma->vm_file) {
969                audit_log_d_path(ab, "exe=",
970                         &vma->vm_file->f_path);
971                break;
972            }
973            vma = vma->vm_next;
974        }
975        up_read(&mm->mmap_sem);
976    }
977    audit_log_task_context(ab);
978}
979
980static int audit_log_pid_context(struct audit_context *context, pid_t pid,
981                 uid_t auid, uid_t uid, unsigned int sessionid,
982                 u32 sid, char *comm)
983{
984    struct audit_buffer *ab;
985    char *ctx = NULL;
986    u32 len;
987    int rc = 0;
988
989    ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
990    if (!ab)
991        return rc;
992
993    audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
994             uid, sessionid);
995    if (security_secid_to_secctx(sid, &ctx, &len)) {
996        audit_log_format(ab, " obj=(none)");
997        rc = 1;
998    } else {
999        audit_log_format(ab, " obj=%s", ctx);
1000        security_release_secctx(ctx, len);
1001    }
1002    audit_log_format(ab, " ocomm=");
1003    audit_log_untrustedstring(ab, comm);
1004    audit_log_end(ab);
1005
1006    return rc;
1007}
1008
1009/*
1010 * to_send and len_sent accounting are very loose estimates. We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundry)
1013 *
1014 * why snprintf? an int is up to 12 digits long. if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message. In one 7500 byte message we can log up to
1017 * about 1000 min size arguments. That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 */
1020static int audit_log_single_execve_arg(struct audit_context *context,
1021                    struct audit_buffer **ab,
1022                    int arg_num,
1023                    size_t *len_sent,
1024                    const char __user *p,
1025                    char *buf)
1026{
1027    char arg_num_len_buf[12];
1028    const char __user *tmp_p = p;
1029    /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030    size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031    size_t len, len_left, to_send;
1032    size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033    unsigned int i, has_cntl = 0, too_long = 0;
1034    int ret;
1035
1036    /* strnlen_user includes the null we don't want to send */
1037    len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038
1039    /*
1040     * We just created this mm, if we can't find the strings
1041     * we just copied into it something is _very_ wrong. Similar
1042     * for strings that are too long, we should not have created
1043     * any.
1044     */
1045    if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046        WARN_ON(1);
1047        send_sig(SIGKILL, current, 0);
1048        return -1;
1049    }
1050
1051    /* walk the whole argument looking for non-ascii chars */
1052    do {
1053        if (len_left > MAX_EXECVE_AUDIT_LEN)
1054            to_send = MAX_EXECVE_AUDIT_LEN;
1055        else
1056            to_send = len_left;
1057        ret = copy_from_user(buf, tmp_p, to_send);
1058        /*
1059         * There is no reason for this copy to be short. We just
1060         * copied them here, and the mm hasn't been exposed to user-
1061         * space yet.
1062         */
1063        if (ret) {
1064            WARN_ON(1);
1065            send_sig(SIGKILL, current, 0);
1066            return -1;
1067        }
1068        buf[to_send] = '\0';
1069        has_cntl = audit_string_contains_control(buf, to_send);
1070        if (has_cntl) {
1071            /*
1072             * hex messages get logged as 2 bytes, so we can only
1073             * send half as much in each message
1074             */
1075            max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076            break;
1077        }
1078        len_left -= to_send;
1079        tmp_p += to_send;
1080    } while (len_left > 0);
1081
1082    len_left = len;
1083
1084    if (len > max_execve_audit_len)
1085        too_long = 1;
1086
1087    /* rewalk the argument actually logging the message */
1088    for (i = 0; len_left > 0; i++) {
1089        int room_left;
1090
1091        if (len_left > max_execve_audit_len)
1092            to_send = max_execve_audit_len;
1093        else
1094            to_send = len_left;
1095
1096        /* do we have space left to send this argument in this ab? */
1097        room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098        if (has_cntl)
1099            room_left -= (to_send * 2);
1100        else
1101            room_left -= to_send;
1102        if (room_left < 0) {
1103            *len_sent = 0;
1104            audit_log_end(*ab);
1105            *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106            if (!*ab)
1107                return 0;
1108        }
1109
1110        /*
1111         * first record needs to say how long the original string was
1112         * so we can be sure nothing was lost.
1113         */
1114        if ((i == 0) && (too_long))
1115            audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116                     has_cntl ? 2*len : len);
1117
1118        /*
1119         * normally arguments are small enough to fit and we already
1120         * filled buf above when we checked for control characters
1121         * so don't bother with another copy_from_user
1122         */
1123        if (len >= max_execve_audit_len)
1124            ret = copy_from_user(buf, p, to_send);
1125        else
1126            ret = 0;
1127        if (ret) {
1128            WARN_ON(1);
1129            send_sig(SIGKILL, current, 0);
1130            return -1;
1131        }
1132        buf[to_send] = '\0';
1133
1134        /* actually log it */
1135        audit_log_format(*ab, " a%d", arg_num);
1136        if (too_long)
1137            audit_log_format(*ab, "[%d]", i);
1138        audit_log_format(*ab, "=");
1139        if (has_cntl)
1140            audit_log_n_hex(*ab, buf, to_send);
1141        else
1142            audit_log_string(*ab, buf);
1143
1144        p += to_send;
1145        len_left -= to_send;
1146        *len_sent += arg_num_len;
1147        if (has_cntl)
1148            *len_sent += to_send * 2;
1149        else
1150            *len_sent += to_send;
1151    }
1152    /* include the null we didn't log */
1153    return len + 1;
1154}
1155
1156static void audit_log_execve_info(struct audit_context *context,
1157                  struct audit_buffer **ab,
1158                  struct audit_aux_data_execve *axi)
1159{
1160    int i;
1161    size_t len, len_sent = 0;
1162    const char __user *p;
1163    char *buf;
1164
1165    if (axi->mm != current->mm)
1166        return; /* execve failed, no additional info */
1167
1168    p = (const char __user *)axi->mm->arg_start;
1169
1170    audit_log_format(*ab, "argc=%d", axi->argc);
1171
1172    /*
1173     * we need some kernel buffer to hold the userspace args. Just
1174     * allocate one big one rather than allocating one of the right size
1175     * for every single argument inside audit_log_single_execve_arg()
1176     * should be <8k allocation so should be pretty safe.
1177     */
1178    buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179    if (!buf) {
1180        audit_panic("out of memory for argv string\n");
1181        return;
1182    }
1183
1184    for (i = 0; i < axi->argc; i++) {
1185        len = audit_log_single_execve_arg(context, ab, i,
1186                          &len_sent, p, buf);
1187        if (len <= 0)
1188            break;
1189        p += len;
1190    }
1191    kfree(buf);
1192}
1193
1194static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1195{
1196    int i;
1197
1198    audit_log_format(ab, " %s=", prefix);
1199    CAP_FOR_EACH_U32(i) {
1200        audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1201    }
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206    kernel_cap_t *perm = &name->fcap.permitted;
1207    kernel_cap_t *inh = &name->fcap.inheritable;
1208    int log = 0;
1209
1210    if (!cap_isclear(*perm)) {
1211        audit_log_cap(ab, "cap_fp", perm);
1212        log = 1;
1213    }
1214    if (!cap_isclear(*inh)) {
1215        audit_log_cap(ab, "cap_fi", inh);
1216        log = 1;
1217    }
1218
1219    if (log)
1220        audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1221}
1222
1223static void show_special(struct audit_context *context, int *call_panic)
1224{
1225    struct audit_buffer *ab;
1226    int i;
1227
1228    ab = audit_log_start(context, GFP_KERNEL, context->type);
1229    if (!ab)
1230        return;
1231
1232    switch (context->type) {
1233    case AUDIT_SOCKETCALL: {
1234        int nargs = context->socketcall.nargs;
1235        audit_log_format(ab, "nargs=%d", nargs);
1236        for (i = 0; i < nargs; i++)
1237            audit_log_format(ab, " a%d=%lx", i,
1238                context->socketcall.args[i]);
1239        break; }
1240    case AUDIT_IPC: {
1241        u32 osid = context->ipc.osid;
1242
1243        audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1244             context->ipc.uid, context->ipc.gid, context->ipc.mode);
1245        if (osid) {
1246            char *ctx = NULL;
1247            u32 len;
1248            if (security_secid_to_secctx(osid, &ctx, &len)) {
1249                audit_log_format(ab, " osid=%u", osid);
1250                *call_panic = 1;
1251            } else {
1252                audit_log_format(ab, " obj=%s", ctx);
1253                security_release_secctx(ctx, len);
1254            }
1255        }
1256        if (context->ipc.has_perm) {
1257            audit_log_end(ab);
1258            ab = audit_log_start(context, GFP_KERNEL,
1259                         AUDIT_IPC_SET_PERM);
1260            audit_log_format(ab,
1261                "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1262                context->ipc.qbytes,
1263                context->ipc.perm_uid,
1264                context->ipc.perm_gid,
1265                context->ipc.perm_mode);
1266            if (!ab)
1267                return;
1268        }
1269        break; }
1270    case AUDIT_MQ_OPEN: {
1271        audit_log_format(ab,
1272            "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1273            "mq_msgsize=%ld mq_curmsgs=%ld",
1274            context->mq_open.oflag, context->mq_open.mode,
1275            context->mq_open.attr.mq_flags,
1276            context->mq_open.attr.mq_maxmsg,
1277            context->mq_open.attr.mq_msgsize,
1278            context->mq_open.attr.mq_curmsgs);
1279        break; }
1280    case AUDIT_MQ_SENDRECV: {
1281        audit_log_format(ab,
1282            "mqdes=%d msg_len=%zd msg_prio=%u "
1283            "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1284            context->mq_sendrecv.mqdes,
1285            context->mq_sendrecv.msg_len,
1286            context->mq_sendrecv.msg_prio,
1287            context->mq_sendrecv.abs_timeout.tv_sec,
1288            context->mq_sendrecv.abs_timeout.tv_nsec);
1289        break; }
1290    case AUDIT_MQ_NOTIFY: {
1291        audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1292                context->mq_notify.mqdes,
1293                context->mq_notify.sigev_signo);
1294        break; }
1295    case AUDIT_MQ_GETSETATTR: {
1296        struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1297        audit_log_format(ab,
1298            "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1299            "mq_curmsgs=%ld ",
1300            context->mq_getsetattr.mqdes,
1301            attr->mq_flags, attr->mq_maxmsg,
1302            attr->mq_msgsize, attr->mq_curmsgs);
1303        break; }
1304    case AUDIT_CAPSET: {
1305        audit_log_format(ab, "pid=%d", context->capset.pid);
1306        audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1307        audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1308        audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1309        break; }
1310    }
1311    audit_log_end(ab);
1312}
1313
1314static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1315{
1316    const struct cred *cred;
1317    int i, call_panic = 0;
1318    struct audit_buffer *ab;
1319    struct audit_aux_data *aux;
1320    const char *tty;
1321
1322    /* tsk == current */
1323    context->pid = tsk->pid;
1324    if (!context->ppid)
1325        context->ppid = sys_getppid();
1326    cred = current_cred();
1327    context->uid = cred->uid;
1328    context->gid = cred->gid;
1329    context->euid = cred->euid;
1330    context->suid = cred->suid;
1331    context->fsuid = cred->fsuid;
1332    context->egid = cred->egid;
1333    context->sgid = cred->sgid;
1334    context->fsgid = cred->fsgid;
1335    context->personality = tsk->personality;
1336
1337    ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1338    if (!ab)
1339        return; /* audit_panic has been called */
1340    audit_log_format(ab, "arch=%x syscall=%d",
1341             context->arch, context->major);
1342    if (context->personality != PER_LINUX)
1343        audit_log_format(ab, " per=%lx", context->personality);
1344    if (context->return_valid)
1345        audit_log_format(ab, " success=%s exit=%ld",
1346                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1347                 context->return_code);
1348
1349    spin_lock_irq(&tsk->sighand->siglock);
1350    if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1351        tty = tsk->signal->tty->name;
1352    else
1353        tty = "(none)";
1354    spin_unlock_irq(&tsk->sighand->siglock);
1355
1356    audit_log_format(ab,
1357          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1358          " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1359          " euid=%u suid=%u fsuid=%u"
1360          " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1361          context->argv[0],
1362          context->argv[1],
1363          context->argv[2],
1364          context->argv[3],
1365          context->name_count,
1366          context->ppid,
1367          context->pid,
1368          tsk->loginuid,
1369          context->uid,
1370          context->gid,
1371          context->euid, context->suid, context->fsuid,
1372          context->egid, context->sgid, context->fsgid, tty,
1373          tsk->sessionid);
1374
1375
1376    audit_log_task_info(ab, tsk);
1377    audit_log_key(ab, context->filterkey);
1378    audit_log_end(ab);
1379
1380    for (aux = context->aux; aux; aux = aux->next) {
1381
1382        ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383        if (!ab)
1384            continue; /* audit_panic has been called */
1385
1386        switch (aux->type) {
1387
1388        case AUDIT_EXECVE: {
1389            struct audit_aux_data_execve *axi = (void *)aux;
1390            audit_log_execve_info(context, &ab, axi);
1391            break; }
1392
1393        case AUDIT_BPRM_FCAPS: {
1394            struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1395            audit_log_format(ab, "fver=%x", axs->fcap_ver);
1396            audit_log_cap(ab, "fp", &axs->fcap.permitted);
1397            audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1398            audit_log_format(ab, " fe=%d", axs->fcap.fE);
1399            audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1400            audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1401            audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1402            audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1403            audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1404            audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1405            break; }
1406
1407        }
1408        audit_log_end(ab);
1409    }
1410
1411    if (context->type)
1412        show_special(context, &call_panic);
1413
1414    if (context->fds[0] >= 0) {
1415        ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1416        if (ab) {
1417            audit_log_format(ab, "fd0=%d fd1=%d",
1418                    context->fds[0], context->fds[1]);
1419            audit_log_end(ab);
1420        }
1421    }
1422
1423    if (context->sockaddr_len) {
1424        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1425        if (ab) {
1426            audit_log_format(ab, "saddr=");
1427            audit_log_n_hex(ab, (void *)context->sockaddr,
1428                    context->sockaddr_len);
1429            audit_log_end(ab);
1430        }
1431    }
1432
1433    for (aux = context->aux_pids; aux; aux = aux->next) {
1434        struct audit_aux_data_pids *axs = (void *)aux;
1435
1436        for (i = 0; i < axs->pid_count; i++)
1437            if (audit_log_pid_context(context, axs->target_pid[i],
1438                          axs->target_auid[i],
1439                          axs->target_uid[i],
1440                          axs->target_sessionid[i],
1441                          axs->target_sid[i],
1442                          axs->target_comm[i]))
1443                call_panic = 1;
1444    }
1445
1446    if (context->target_pid &&
1447        audit_log_pid_context(context, context->target_pid,
1448                  context->target_auid, context->target_uid,
1449                  context->target_sessionid,
1450                  context->target_sid, context->target_comm))
1451            call_panic = 1;
1452
1453    if (context->pwd.dentry && context->pwd.mnt) {
1454        ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1455        if (ab) {
1456            audit_log_d_path(ab, "cwd=", &context->pwd);
1457            audit_log_end(ab);
1458        }
1459    }
1460    for (i = 0; i < context->name_count; i++) {
1461        struct audit_names *n = &context->names[i];
1462
1463        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1464        if (!ab)
1465            continue; /* audit_panic has been called */
1466
1467        audit_log_format(ab, "item=%d", i);
1468
1469        if (n->name) {
1470            switch(n->name_len) {
1471            case AUDIT_NAME_FULL:
1472                /* log the full path */
1473                audit_log_format(ab, " name=");
1474                audit_log_untrustedstring(ab, n->name);
1475                break;
1476            case 0:
1477                /* name was specified as a relative path and the
1478                 * directory component is the cwd */
1479                audit_log_d_path(ab, "name=", &context->pwd);
1480                break;
1481            default:
1482                /* log the name's directory component */
1483                audit_log_format(ab, " name=");
1484                audit_log_n_untrustedstring(ab, n->name,
1485                                n->name_len);
1486            }
1487        } else
1488            audit_log_format(ab, " name=(null)");
1489
1490        if (n->ino != (unsigned long)-1) {
1491            audit_log_format(ab, " inode=%lu"
1492                     " dev=%02x:%02x mode=%#o"
1493                     " ouid=%u ogid=%u rdev=%02x:%02x",
1494                     n->ino,
1495                     MAJOR(n->dev),
1496                     MINOR(n->dev),
1497                     n->mode,
1498                     n->uid,
1499                     n->gid,
1500                     MAJOR(n->rdev),
1501                     MINOR(n->rdev));
1502        }
1503        if (n->osid != 0) {
1504            char *ctx = NULL;
1505            u32 len;
1506            if (security_secid_to_secctx(
1507                n->osid, &ctx, &len)) {
1508                audit_log_format(ab, " osid=%u", n->osid);
1509                call_panic = 2;
1510            } else {
1511                audit_log_format(ab, " obj=%s", ctx);
1512                security_release_secctx(ctx, len);
1513            }
1514        }
1515
1516        audit_log_fcaps(ab, n);
1517
1518        audit_log_end(ab);
1519    }
1520
1521    /* Send end of event record to help user space know we are finished */
1522    ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1523    if (ab)
1524        audit_log_end(ab);
1525    if (call_panic)
1526        audit_panic("error converting sid to string");
1527}
1528
1529/**
1530 * audit_free - free a per-task audit context
1531 * @tsk: task whose audit context block to free
1532 *
1533 * Called from copy_process and do_exit
1534 */
1535void audit_free(struct task_struct *tsk)
1536{
1537    struct audit_context *context;
1538
1539    context = audit_get_context(tsk, 0, 0);
1540    if (likely(!context))
1541        return;
1542
1543    /* Check for system calls that do not go through the exit
1544     * function (e.g., exit_group), then free context block.
1545     * We use GFP_ATOMIC here because we might be doing this
1546     * in the context of the idle thread */
1547    /* that can happen only if we are called from do_exit() */
1548    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1549        audit_log_exit(context, tsk);
1550    if (!list_empty(&context->killed_trees))
1551        audit_kill_trees(&context->killed_trees);
1552
1553    audit_free_context(context);
1554}
1555
1556/**
1557 * audit_syscall_entry - fill in an audit record at syscall entry
1558 * @arch: architecture type
1559 * @major: major syscall type (function)
1560 * @a1: additional syscall register 1
1561 * @a2: additional syscall register 2
1562 * @a3: additional syscall register 3
1563 * @a4: additional syscall register 4
1564 *
1565 * Fill in audit context at syscall entry. This only happens if the
1566 * audit context was created when the task was created and the state or
1567 * filters demand the audit context be built. If the state from the
1568 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1569 * then the record will be written at syscall exit time (otherwise, it
1570 * will only be written if another part of the kernel requests that it
1571 * be written).
1572 */
1573void audit_syscall_entry(int arch, int major,
1574             unsigned long a1, unsigned long a2,
1575             unsigned long a3, unsigned long a4)
1576{
1577    struct task_struct *tsk = current;
1578    struct audit_context *context = tsk->audit_context;
1579    enum audit_state state;
1580
1581    if (unlikely(!context))
1582        return;
1583
1584    /*
1585     * This happens only on certain architectures that make system
1586     * calls in kernel_thread via the entry.S interface, instead of
1587     * with direct calls. (If you are porting to a new
1588     * architecture, hitting this condition can indicate that you
1589     * got the _exit/_leave calls backward in entry.S.)
1590     *
1591     * i386 no
1592     * x86_64 no
1593     * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1594     *
1595     * This also happens with vm86 emulation in a non-nested manner
1596     * (entries without exits), so this case must be caught.
1597     */
1598    if (context->in_syscall) {
1599        struct audit_context *newctx;
1600
1601#if AUDIT_DEBUG
1602        printk(KERN_ERR
1603               "audit(:%d) pid=%d in syscall=%d;"
1604               " entering syscall=%d\n",
1605               context->serial, tsk->pid, context->major, major);
1606#endif
1607        newctx = audit_alloc_context(context->state);
1608        if (newctx) {
1609            newctx->previous = context;
1610            context = newctx;
1611            tsk->audit_context = newctx;
1612        } else {
1613            /* If we can't alloc a new context, the best we
1614             * can do is to leak memory (any pending putname
1615             * will be lost). The only other alternative is
1616             * to abandon auditing. */
1617            audit_zero_context(context, context->state);
1618        }
1619    }
1620    BUG_ON(context->in_syscall || context->name_count);
1621
1622    if (!audit_enabled)
1623        return;
1624
1625    context->arch = arch;
1626    context->major = major;
1627    context->argv[0] = a1;
1628    context->argv[1] = a2;
1629    context->argv[2] = a3;
1630    context->argv[3] = a4;
1631
1632    state = context->state;
1633    context->dummy = !audit_n_rules;
1634    if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1635        context->prio = 0;
1636        state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1637    }
1638    if (likely(state == AUDIT_DISABLED))
1639        return;
1640
1641    context->serial = 0;
1642    context->ctime = CURRENT_TIME;
1643    context->in_syscall = 1;
1644    context->current_state = state;
1645    context->ppid = 0;
1646}
1647
1648void audit_finish_fork(struct task_struct *child)
1649{
1650    struct audit_context *ctx = current->audit_context;
1651    struct audit_context *p = child->audit_context;
1652    if (!p || !ctx)
1653        return;
1654    if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1655        return;
1656    p->arch = ctx->arch;
1657    p->major = ctx->major;
1658    memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1659    p->ctime = ctx->ctime;
1660    p->dummy = ctx->dummy;
1661    p->in_syscall = ctx->in_syscall;
1662    p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1663    p->ppid = current->pid;
1664    p->prio = ctx->prio;
1665    p->current_state = ctx->current_state;
1666}
1667
1668/**
1669 * audit_syscall_exit - deallocate audit context after a system call
1670 * @valid: success/failure flag
1671 * @return_code: syscall return value
1672 *
1673 * Tear down after system call. If the audit context has been marked as
1674 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1675 * filtering, or because some other part of the kernel write an audit
1676 * message), then write out the syscall information. In call cases,
1677 * free the names stored from getname().
1678 */
1679void audit_syscall_exit(int valid, long return_code)
1680{
1681    struct task_struct *tsk = current;
1682    struct audit_context *context;
1683
1684    context = audit_get_context(tsk, valid, return_code);
1685
1686    if (likely(!context))
1687        return;
1688
1689    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1690        audit_log_exit(context, tsk);
1691
1692    context->in_syscall = 0;
1693    context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1694
1695    if (!list_empty(&context->killed_trees))
1696        audit_kill_trees(&context->killed_trees);
1697
1698    if (context->previous) {
1699        struct audit_context *new_context = context->previous;
1700        context->previous = NULL;
1701        audit_free_context(context);
1702        tsk->audit_context = new_context;
1703    } else {
1704        audit_free_names(context);
1705        unroll_tree_refs(context, NULL, 0);
1706        audit_free_aux(context);
1707        context->aux = NULL;
1708        context->aux_pids = NULL;
1709        context->target_pid = 0;
1710        context->target_sid = 0;
1711        context->sockaddr_len = 0;
1712        context->type = 0;
1713        context->fds[0] = -1;
1714        if (context->state != AUDIT_RECORD_CONTEXT) {
1715            kfree(context->filterkey);
1716            context->filterkey = NULL;
1717        }
1718        tsk->audit_context = context;
1719    }
1720}
1721
1722static inline void handle_one(const struct inode *inode)
1723{
1724#ifdef CONFIG_AUDIT_TREE
1725    struct audit_context *context;
1726    struct audit_tree_refs *p;
1727    struct audit_chunk *chunk;
1728    int count;
1729    if (likely(list_empty(&inode->inotify_watches)))
1730        return;
1731    context = current->audit_context;
1732    p = context->trees;
1733    count = context->tree_count;
1734    rcu_read_lock();
1735    chunk = audit_tree_lookup(inode);
1736    rcu_read_unlock();
1737    if (!chunk)
1738        return;
1739    if (likely(put_tree_ref(context, chunk)))
1740        return;
1741    if (unlikely(!grow_tree_refs(context))) {
1742        printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1743        audit_set_auditable(context);
1744        audit_put_chunk(chunk);
1745        unroll_tree_refs(context, p, count);
1746        return;
1747    }
1748    put_tree_ref(context, chunk);
1749#endif
1750}
1751
1752static void handle_path(const struct dentry *dentry)
1753{
1754#ifdef CONFIG_AUDIT_TREE
1755    struct audit_context *context;
1756    struct audit_tree_refs *p;
1757    const struct dentry *d, *parent;
1758    struct audit_chunk *drop;
1759    unsigned long seq;
1760    int count;
1761
1762    context = current->audit_context;
1763    p = context->trees;
1764    count = context->tree_count;
1765retry:
1766    drop = NULL;
1767    d = dentry;
1768    rcu_read_lock();
1769    seq = read_seqbegin(&rename_lock);
1770    for(;;) {
1771        struct inode *inode = d->d_inode;
1772        if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1773            struct audit_chunk *chunk;
1774            chunk = audit_tree_lookup(inode);
1775            if (chunk) {
1776                if (unlikely(!put_tree_ref(context, chunk))) {
1777                    drop = chunk;
1778                    break;
1779                }
1780            }
1781        }
1782        parent = d->d_parent;
1783        if (parent == d)
1784            break;
1785        d = parent;
1786    }
1787    if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1788        rcu_read_unlock();
1789        if (!drop) {
1790            /* just a race with rename */
1791            unroll_tree_refs(context, p, count);
1792            goto retry;
1793        }
1794        audit_put_chunk(drop);
1795        if (grow_tree_refs(context)) {
1796            /* OK, got more space */
1797            unroll_tree_refs(context, p, count);
1798            goto retry;
1799        }
1800        /* too bad */
1801        printk(KERN_WARNING
1802            "out of memory, audit has lost a tree reference\n");
1803        unroll_tree_refs(context, p, count);
1804        audit_set_auditable(context);
1805        return;
1806    }
1807    rcu_read_unlock();
1808#endif
1809}
1810
1811/**
1812 * audit_getname - add a name to the list
1813 * @name: name to add
1814 *
1815 * Add a name to the list of audit names for this context.
1816 * Called from fs/namei.c:getname().
1817 */
1818void __audit_getname(const char *name)
1819{
1820    struct audit_context *context = current->audit_context;
1821
1822    if (IS_ERR(name) || !name)
1823        return;
1824
1825    if (!context->in_syscall) {
1826#if AUDIT_DEBUG == 2
1827        printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1828               __FILE__, __LINE__, context->serial, name);
1829        dump_stack();
1830#endif
1831        return;
1832    }
1833    BUG_ON(context->name_count >= AUDIT_NAMES);
1834    context->names[context->name_count].name = name;
1835    context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1836    context->names[context->name_count].name_put = 1;
1837    context->names[context->name_count].ino = (unsigned long)-1;
1838    context->names[context->name_count].osid = 0;
1839    ++context->name_count;
1840    if (!context->pwd.dentry) {
1841        read_lock(&current->fs->lock);
1842        context->pwd = current->fs->pwd;
1843        path_get(&current->fs->pwd);
1844        read_unlock(&current->fs->lock);
1845    }
1846
1847}
1848
1849/* audit_putname - intercept a putname request
1850 * @name: name to intercept and delay for putname
1851 *
1852 * If we have stored the name from getname in the audit context,
1853 * then we delay the putname until syscall exit.
1854 * Called from include/linux/fs.h:putname().
1855 */
1856void audit_putname(const char *name)
1857{
1858    struct audit_context *context = current->audit_context;
1859
1860    BUG_ON(!context);
1861    if (!context->in_syscall) {
1862#if AUDIT_DEBUG == 2
1863        printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1864               __FILE__, __LINE__, context->serial, name);
1865        if (context->name_count) {
1866            int i;
1867            for (i = 0; i < context->name_count; i++)
1868                printk(KERN_ERR "name[%d] = %p = %s\n", i,
1869                       context->names[i].name,
1870                       context->names[i].name ?: "(null)");
1871        }
1872#endif
1873        __putname(name);
1874    }
1875#if AUDIT_DEBUG
1876    else {
1877        ++context->put_count;
1878        if (context->put_count > context->name_count) {
1879            printk(KERN_ERR "%s:%d(:%d): major=%d"
1880                   " in_syscall=%d putname(%p) name_count=%d"
1881                   " put_count=%d\n",
1882                   __FILE__, __LINE__,
1883                   context->serial, context->major,
1884                   context->in_syscall, name, context->name_count,
1885                   context->put_count);
1886            dump_stack();
1887        }
1888    }
1889#endif
1890}
1891
1892static int audit_inc_name_count(struct audit_context *context,
1893                const struct inode *inode)
1894{
1895    if (context->name_count >= AUDIT_NAMES) {
1896        if (inode)
1897            printk(KERN_DEBUG "name_count maxed, losing inode data: "
1898                   "dev=%02x:%02x, inode=%lu\n",
1899                   MAJOR(inode->i_sb->s_dev),
1900                   MINOR(inode->i_sb->s_dev),
1901                   inode->i_ino);
1902
1903        else
1904            printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1905        return 1;
1906    }
1907    context->name_count++;
1908#if AUDIT_DEBUG
1909    context->ino_count++;
1910#endif
1911    return 0;
1912}
1913
1914
1915static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1916{
1917    struct cpu_vfs_cap_data caps;
1918    int rc;
1919
1920    memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1921    memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1922    name->fcap.fE = 0;
1923    name->fcap_ver = 0;
1924
1925    if (!dentry)
1926        return 0;
1927
1928    rc = get_vfs_caps_from_disk(dentry, &caps);
1929    if (rc)
1930        return rc;
1931
1932    name->fcap.permitted = caps.permitted;
1933    name->fcap.inheritable = caps.inheritable;
1934    name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1935    name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1936
1937    return 0;
1938}
1939
1940
1941/* Copy inode data into an audit_names. */
1942static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1943                 const struct inode *inode)
1944{
1945    name->ino = inode->i_ino;
1946    name->dev = inode->i_sb->s_dev;
1947    name->mode = inode->i_mode;
1948    name->uid = inode->i_uid;
1949    name->gid = inode->i_gid;
1950    name->rdev = inode->i_rdev;
1951    security_inode_getsecid(inode, &name->osid);
1952    audit_copy_fcaps(name, dentry);
1953}
1954
1955/**
1956 * audit_inode - store the inode and device from a lookup
1957 * @name: name being audited
1958 * @dentry: dentry being audited
1959 *
1960 * Called from fs/namei.c:path_lookup().
1961 */
1962void __audit_inode(const char *name, const struct dentry *dentry)
1963{
1964    int idx;
1965    struct audit_context *context = current->audit_context;
1966    const struct inode *inode = dentry->d_inode;
1967
1968    if (!context->in_syscall)
1969        return;
1970    if (context->name_count
1971        && context->names[context->name_count-1].name
1972        && context->names[context->name_count-1].name == name)
1973        idx = context->name_count - 1;
1974    else if (context->name_count > 1
1975         && context->names[context->name_count-2].name
1976         && context->names[context->name_count-2].name == name)
1977        idx = context->name_count - 2;
1978    else {
1979        /* FIXME: how much do we care about inodes that have no
1980         * associated name? */
1981        if (audit_inc_name_count(context, inode))
1982            return;
1983        idx = context->name_count - 1;
1984        context->names[idx].name = NULL;
1985    }
1986    handle_path(dentry);
1987    audit_copy_inode(&context->names[idx], dentry, inode);
1988}
1989
1990/**
1991 * audit_inode_child - collect inode info for created/removed objects
1992 * @dname: inode's dentry name
1993 * @dentry: dentry being audited
1994 * @parent: inode of dentry parent
1995 *
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created. Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2003 */
2004void __audit_inode_child(const char *dname, const struct dentry *dentry,
2005             const struct inode *parent)
2006{
2007    int idx;
2008    struct audit_context *context = current->audit_context;
2009    const char *found_parent = NULL, *found_child = NULL;
2010    const struct inode *inode = dentry->d_inode;
2011    int dirlen = 0;
2012
2013    if (!context->in_syscall)
2014        return;
2015
2016    if (inode)
2017        handle_one(inode);
2018    /* determine matching parent */
2019    if (!dname)
2020        goto add_names;
2021
2022    /* parent is more likely, look for it first */
2023    for (idx = 0; idx < context->name_count; idx++) {
2024        struct audit_names *n = &context->names[idx];
2025
2026        if (!n->name)
2027            continue;
2028
2029        if (n->ino == parent->i_ino &&
2030            !audit_compare_dname_path(dname, n->name, &dirlen)) {
2031            n->name_len = dirlen; /* update parent data in place */
2032            found_parent = n->name;
2033            goto add_names;
2034        }
2035    }
2036
2037    /* no matching parent, look for matching child */
2038    for (idx = 0; idx < context->name_count; idx++) {
2039        struct audit_names *n = &context->names[idx];
2040
2041        if (!n->name)
2042            continue;
2043
2044        /* strcmp() is the more likely scenario */
2045        if (!strcmp(dname, n->name) ||
2046             !audit_compare_dname_path(dname, n->name, &dirlen)) {
2047            if (inode)
2048                audit_copy_inode(n, NULL, inode);
2049            else
2050                n->ino = (unsigned long)-1;
2051            found_child = n->name;
2052            goto add_names;
2053        }
2054    }
2055
2056add_names:
2057    if (!found_parent) {
2058        if (audit_inc_name_count(context, parent))
2059            return;
2060        idx = context->name_count - 1;
2061        context->names[idx].name = NULL;
2062        audit_copy_inode(&context->names[idx], NULL, parent);
2063    }
2064
2065    if (!found_child) {
2066        if (audit_inc_name_count(context, inode))
2067            return;
2068        idx = context->name_count - 1;
2069
2070        /* Re-use the name belonging to the slot for a matching parent
2071         * directory. All names for this context are relinquished in
2072         * audit_free_names() */
2073        if (found_parent) {
2074            context->names[idx].name = found_parent;
2075            context->names[idx].name_len = AUDIT_NAME_FULL;
2076            /* don't call __putname() */
2077            context->names[idx].name_put = 0;
2078        } else {
2079            context->names[idx].name = NULL;
2080        }
2081
2082        if (inode)
2083            audit_copy_inode(&context->names[idx], NULL, inode);
2084        else
2085            context->names[idx].ino = (unsigned long)-1;
2086    }
2087}
2088EXPORT_SYMBOL_GPL(__audit_inode_child);
2089
2090/**
2091 * auditsc_get_stamp - get local copies of audit_context values
2092 * @ctx: audit_context for the task
2093 * @t: timespec to store time recorded in the audit_context
2094 * @serial: serial value that is recorded in the audit_context
2095 *
2096 * Also sets the context as auditable.
2097 */
2098int auditsc_get_stamp(struct audit_context *ctx,
2099               struct timespec *t, unsigned int *serial)
2100{
2101    if (!ctx->in_syscall)
2102        return 0;
2103    if (!ctx->serial)
2104        ctx->serial = audit_serial();
2105    t->tv_sec = ctx->ctime.tv_sec;
2106    t->tv_nsec = ctx->ctime.tv_nsec;
2107    *serial = ctx->serial;
2108    if (!ctx->prio) {
2109        ctx->prio = 1;
2110        ctx->current_state = AUDIT_RECORD_CONTEXT;
2111    }
2112    return 1;
2113}
2114
2115/* global counter which is incremented every time something logs in */
2116static atomic_t session_id = ATOMIC_INIT(0);
2117
2118/**
2119 * audit_set_loginuid - set a task's audit_context loginuid
2120 * @task: task whose audit context is being modified
2121 * @loginuid: loginuid value
2122 *
2123 * Returns 0.
2124 *
2125 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2126 */
2127int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2128{
2129    unsigned int sessionid = atomic_inc_return(&session_id);
2130    struct audit_context *context = task->audit_context;
2131
2132    if (context && context->in_syscall) {
2133        struct audit_buffer *ab;
2134
2135        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2136        if (ab) {
2137            audit_log_format(ab, "login pid=%d uid=%u "
2138                "old auid=%u new auid=%u"
2139                " old ses=%u new ses=%u",
2140                task->pid, task_uid(task),
2141                task->loginuid, loginuid,
2142                task->sessionid, sessionid);
2143            audit_log_end(ab);
2144        }
2145    }
2146    task->sessionid = sessionid;
2147    task->loginuid = loginuid;
2148    return 0;
2149}
2150
2151/**
2152 * __audit_mq_open - record audit data for a POSIX MQ open
2153 * @oflag: open flag
2154 * @mode: mode bits
2155 * @attr: queue attributes
2156 *
2157 */
2158void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2159{
2160    struct audit_context *context = current->audit_context;
2161
2162    if (attr)
2163        memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2164    else
2165        memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2166
2167    context->mq_open.oflag = oflag;
2168    context->mq_open.mode = mode;
2169
2170    context->type = AUDIT_MQ_OPEN;
2171}
2172
2173/**
2174 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2175 * @mqdes: MQ descriptor
2176 * @msg_len: Message length
2177 * @msg_prio: Message priority
2178 * @abs_timeout: Message timeout in absolute time
2179 *
2180 */
2181void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2182            const struct timespec *abs_timeout)
2183{
2184    struct audit_context *context = current->audit_context;
2185    struct timespec *p = &context->mq_sendrecv.abs_timeout;
2186
2187    if (abs_timeout)
2188        memcpy(p, abs_timeout, sizeof(struct timespec));
2189    else
2190        memset(p, 0, sizeof(struct timespec));
2191
2192    context->mq_sendrecv.mqdes = mqdes;
2193    context->mq_sendrecv.msg_len = msg_len;
2194    context->mq_sendrecv.msg_prio = msg_prio;
2195
2196    context->type = AUDIT_MQ_SENDRECV;
2197}
2198
2199/**
2200 * __audit_mq_notify - record audit data for a POSIX MQ notify
2201 * @mqdes: MQ descriptor
2202 * @notification: Notification event
2203 *
2204 */
2205
2206void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2207{
2208    struct audit_context *context = current->audit_context;
2209
2210    if (notification)
2211        context->mq_notify.sigev_signo = notification->sigev_signo;
2212    else
2213        context->mq_notify.sigev_signo = 0;
2214
2215    context->mq_notify.mqdes = mqdes;
2216    context->type = AUDIT_MQ_NOTIFY;
2217}
2218
2219/**
2220 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2221 * @mqdes: MQ descriptor
2222 * @mqstat: MQ flags
2223 *
2224 */
2225void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2226{
2227    struct audit_context *context = current->audit_context;
2228    context->mq_getsetattr.mqdes = mqdes;
2229    context->mq_getsetattr.mqstat = *mqstat;
2230    context->type = AUDIT_MQ_GETSETATTR;
2231}
2232
2233/**
2234 * audit_ipc_obj - record audit data for ipc object
2235 * @ipcp: ipc permissions
2236 *
2237 */
2238void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2239{
2240    struct audit_context *context = current->audit_context;
2241    context->ipc.uid = ipcp->uid;
2242    context->ipc.gid = ipcp->gid;
2243    context->ipc.mode = ipcp->mode;
2244    context->ipc.has_perm = 0;
2245    security_ipc_getsecid(ipcp, &context->ipc.osid);
2246    context->type = AUDIT_IPC;
2247}
2248
2249/**
2250 * audit_ipc_set_perm - record audit data for new ipc permissions
2251 * @qbytes: msgq bytes
2252 * @uid: msgq user id
2253 * @gid: msgq group id
2254 * @mode: msgq mode (permissions)
2255 *
2256 * Called only after audit_ipc_obj().
2257 */
2258void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2259{
2260    struct audit_context *context = current->audit_context;
2261
2262    context->ipc.qbytes = qbytes;
2263    context->ipc.perm_uid = uid;
2264    context->ipc.perm_gid = gid;
2265    context->ipc.perm_mode = mode;
2266    context->ipc.has_perm = 1;
2267}
2268
2269int audit_bprm(struct linux_binprm *bprm)
2270{
2271    struct audit_aux_data_execve *ax;
2272    struct audit_context *context = current->audit_context;
2273
2274    if (likely(!audit_enabled || !context || context->dummy))
2275        return 0;
2276
2277    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2278    if (!ax)
2279        return -ENOMEM;
2280
2281    ax->argc = bprm->argc;
2282    ax->envc = bprm->envc;
2283    ax->mm = bprm->mm;
2284    ax->d.type = AUDIT_EXECVE;
2285    ax->d.next = context->aux;
2286    context->aux = (void *)ax;
2287    return 0;
2288}
2289
2290
2291/**
2292 * audit_socketcall - record audit data for sys_socketcall
2293 * @nargs: number of args
2294 * @args: args array
2295 *
2296 */
2297void audit_socketcall(int nargs, unsigned long *args)
2298{
2299    struct audit_context *context = current->audit_context;
2300
2301    if (likely(!context || context->dummy))
2302        return;
2303
2304    context->type = AUDIT_SOCKETCALL;
2305    context->socketcall.nargs = nargs;
2306    memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2307}
2308
2309/**
2310 * __audit_fd_pair - record audit data for pipe and socketpair
2311 * @fd1: the first file descriptor
2312 * @fd2: the second file descriptor
2313 *
2314 */
2315void __audit_fd_pair(int fd1, int fd2)
2316{
2317    struct audit_context *context = current->audit_context;
2318    context->fds[0] = fd1;
2319    context->fds[1] = fd2;
2320}
2321
2322/**
2323 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2324 * @len: data length in user space
2325 * @a: data address in kernel space
2326 *
2327 * Returns 0 for success or NULL context or < 0 on error.
2328 */
2329int audit_sockaddr(int len, void *a)
2330{
2331    struct audit_context *context = current->audit_context;
2332
2333    if (likely(!context || context->dummy))
2334        return 0;
2335
2336    if (!context->sockaddr) {
2337        void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2338        if (!p)
2339            return -ENOMEM;
2340        context->sockaddr = p;
2341    }
2342
2343    context->sockaddr_len = len;
2344    memcpy(context->sockaddr, a, len);
2345    return 0;
2346}
2347
2348void __audit_ptrace(struct task_struct *t)
2349{
2350    struct audit_context *context = current->audit_context;
2351
2352    context->target_pid = t->pid;
2353    context->target_auid = audit_get_loginuid(t);
2354    context->target_uid = task_uid(t);
2355    context->target_sessionid = audit_get_sessionid(t);
2356    security_task_getsecid(t, &context->target_sid);
2357    memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2358}
2359
2360/**
2361 * audit_signal_info - record signal info for shutting down audit subsystem
2362 * @sig: signal value
2363 * @t: task being signaled
2364 *
2365 * If the audit subsystem is being terminated, record the task (pid)
2366 * and uid that is doing that.
2367 */
2368int __audit_signal_info(int sig, struct task_struct *t)
2369{
2370    struct audit_aux_data_pids *axp;
2371    struct task_struct *tsk = current;
2372    struct audit_context *ctx = tsk->audit_context;
2373    uid_t uid = current_uid(), t_uid = task_uid(t);
2374
2375    if (audit_pid && t->tgid == audit_pid) {
2376        if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2377            audit_sig_pid = tsk->pid;
2378            if (tsk->loginuid != -1)
2379                audit_sig_uid = tsk->loginuid;
2380            else
2381                audit_sig_uid = uid;
2382            security_task_getsecid(tsk, &audit_sig_sid);
2383        }
2384        if (!audit_signals || audit_dummy_context())
2385            return 0;
2386    }
2387
2388    /* optimize the common case by putting first signal recipient directly
2389     * in audit_context */
2390    if (!ctx->target_pid) {
2391        ctx->target_pid = t->tgid;
2392        ctx->target_auid = audit_get_loginuid(t);
2393        ctx->target_uid = t_uid;
2394        ctx->target_sessionid = audit_get_sessionid(t);
2395        security_task_getsecid(t, &ctx->target_sid);
2396        memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2397        return 0;
2398    }
2399
2400    axp = (void *)ctx->aux_pids;
2401    if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2402        axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2403        if (!axp)
2404            return -ENOMEM;
2405
2406        axp->d.type = AUDIT_OBJ_PID;
2407        axp->d.next = ctx->aux_pids;
2408        ctx->aux_pids = (void *)axp;
2409    }
2410    BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2411
2412    axp->target_pid[axp->pid_count] = t->tgid;
2413    axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2414    axp->target_uid[axp->pid_count] = t_uid;
2415    axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2416    security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2417    memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2418    axp->pid_count++;
2419
2420    return 0;
2421}
2422
2423/**
2424 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2425 * @bprm: pointer to the bprm being processed
2426 * @new: the proposed new credentials
2427 * @old: the old credentials
2428 *
2429 * Simply check if the proc already has the caps given by the file and if not
2430 * store the priv escalation info for later auditing at the end of the syscall
2431 *
2432 * -Eric
2433 */
2434int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2435               const struct cred *new, const struct cred *old)
2436{
2437    struct audit_aux_data_bprm_fcaps *ax;
2438    struct audit_context *context = current->audit_context;
2439    struct cpu_vfs_cap_data vcaps;
2440    struct dentry *dentry;
2441
2442    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2443    if (!ax)
2444        return -ENOMEM;
2445
2446    ax->d.type = AUDIT_BPRM_FCAPS;
2447    ax->d.next = context->aux;
2448    context->aux = (void *)ax;
2449
2450    dentry = dget(bprm->file->f_dentry);
2451    get_vfs_caps_from_disk(dentry, &vcaps);
2452    dput(dentry);
2453
2454    ax->fcap.permitted = vcaps.permitted;
2455    ax->fcap.inheritable = vcaps.inheritable;
2456    ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457    ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2458
2459    ax->old_pcap.permitted = old->cap_permitted;
2460    ax->old_pcap.inheritable = old->cap_inheritable;
2461    ax->old_pcap.effective = old->cap_effective;
2462
2463    ax->new_pcap.permitted = new->cap_permitted;
2464    ax->new_pcap.inheritable = new->cap_inheritable;
2465    ax->new_pcap.effective = new->cap_effective;
2466    return 0;
2467}
2468
2469/**
2470 * __audit_log_capset - store information about the arguments to the capset syscall
2471 * @pid: target pid of the capset call
2472 * @new: the new credentials
2473 * @old: the old (current) credentials
2474 *
2475 * Record the aguments userspace sent to sys_capset for later printing by the
2476 * audit system if applicable
2477 */
2478void __audit_log_capset(pid_t pid,
2479               const struct cred *new, const struct cred *old)
2480{
2481    struct audit_context *context = current->audit_context;
2482    context->capset.pid = pid;
2483    context->capset.cap.effective = new->cap_effective;
2484    context->capset.cap.inheritable = new->cap_effective;
2485    context->capset.cap.permitted = new->cap_permitted;
2486    context->type = AUDIT_CAPSET;
2487}
2488
2489/**
2490 * audit_core_dumps - record information about processes that end abnormally
2491 * @signr: signal value
2492 *
2493 * If a process ends with a core dump, something fishy is going on and we
2494 * should record the event for investigation.
2495 */
2496void audit_core_dumps(long signr)
2497{
2498    struct audit_buffer *ab;
2499    u32 sid;
2500    uid_t auid = audit_get_loginuid(current), uid;
2501    gid_t gid;
2502    unsigned int sessionid = audit_get_sessionid(current);
2503
2504    if (!audit_enabled)
2505        return;
2506
2507    if (signr == SIGQUIT) /* don't care for those */
2508        return;
2509
2510    ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2511    current_uid_gid(&uid, &gid);
2512    audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2513             auid, uid, gid, sessionid);
2514    security_task_getsecid(current, &sid);
2515    if (sid) {
2516        char *ctx = NULL;
2517        u32 len;
2518
2519        if (security_secid_to_secctx(sid, &ctx, &len))
2520            audit_log_format(ab, " ssid=%u", sid);
2521        else {
2522            audit_log_format(ab, " subj=%s", ctx);
2523            security_release_secctx(ctx, len);
2524        }
2525    }
2526    audit_log_format(ab, " pid=%d comm=", current->pid);
2527    audit_log_untrustedstring(ab, current->comm);
2528    audit_log_format(ab, " sig=%ld", signr);
2529    audit_log_end(ab);
2530}
2531
2532struct list_head *audit_killed_trees(void)
2533{
2534    struct audit_context *ctx = current->audit_context;
2535    if (likely(!ctx || !ctx->in_syscall))
2536        return NULL;
2537    return &ctx->killed_trees;
2538}
2539

Archive Download this file



interactive