Root/kernel/cpuset.c

1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
45#include <linux/rcupdate.h>
46#include <linux/sched.h>
47#include <linux/seq_file.h>
48#include <linux/security.h>
49#include <linux/slab.h>
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
59#include <linux/mutex.h>
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
62
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76int number_of_cpusets __read_mostly;
77
78/* Forward declare cgroup structures */
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85    int cnt; /* unprocessed events count */
86    int val; /* most recent output value */
87    time_t time; /* clock (secs) when val computed */
88    spinlock_t lock; /* guards read or write of above */
89};
90
91struct cpuset {
92    struct cgroup_subsys_state css;
93
94    unsigned long flags; /* "unsigned long" so bitops work */
95    cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96    nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98    struct cpuset *parent; /* my parent */
99
100    struct fmeter fmeter; /* memory_pressure filter */
101
102    /* partition number for rebuild_sched_domains() */
103    int pn;
104
105    /* for custom sched domain */
106    int relax_domain_level;
107
108    /* used for walking a cpuset heirarchy */
109    struct list_head stack_list;
110};
111
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115    return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116                struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122    return container_of(task_subsys_state(task, cpuset_subsys_id),
123                struct cpuset, css);
124}
125
126/* bits in struct cpuset flags field */
127typedef enum {
128    CS_CPU_EXCLUSIVE,
129    CS_MEM_EXCLUSIVE,
130    CS_MEM_HARDWALL,
131    CS_MEMORY_MIGRATE,
132    CS_SCHED_LOAD_BALANCE,
133    CS_SPREAD_PAGE,
134    CS_SPREAD_SLAB,
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
140    return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
145    return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146}
147
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150    return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155    return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
160    return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161}
162
163static inline int is_spread_page(const struct cpuset *cs)
164{
165    return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170    return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
173static struct cpuset top_cpuset = {
174    .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
175};
176
177/*
178 * There are two global mutexes guarding cpuset structures. The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181 * callback_mutex, below. They can nest. It is ok to first take
182 * cgroup_mutex, then nest callback_mutex. We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer. See "The
184 * task_lock() exception", at the end of this comment.
185 *
186 * A task must hold both mutexes to modify cpusets. If a task
187 * holds cgroup_mutex, then it blocks others wanting that mutex,
188 * ensuring that it is the only task able to also acquire callback_mutex
189 * and be able to modify cpusets. It can perform various checks on
190 * the cpuset structure first, knowing nothing will change. It can
191 * also allocate memory while just holding cgroup_mutex. While it is
192 * performing these checks, various callback routines can briefly
193 * acquire callback_mutex to query cpusets. Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
195 *
196 * Calls to the kernel memory allocator can not be made while holding
197 * callback_mutex, as that would risk double tripping on callback_mutex
198 * from one of the callbacks into the cpuset code from within
199 * __alloc_pages().
200 *
201 * If a task is only holding callback_mutex, then it has read-only
202 * access to cpusets.
203 *
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
207 *
208 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
211 *
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
214 */
215
216static DEFINE_MUTEX(callback_mutex);
217
218/*
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers. They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
222 */
223#define CPUSET_NAME_LEN (128)
224#define CPUSET_NODELIST_LEN (256)
225static char cpuset_name[CPUSET_NAME_LEN];
226static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
229/*
230 * This is ugly, but preserves the userspace API for existing cpuset
231 * users. If someone tries to mount the "cpuset" filesystem, we
232 * silently switch it to mount "cgroup" instead
233 */
234static int cpuset_get_sb(struct file_system_type *fs_type,
235             int flags, const char *unused_dev_name,
236             void *data, struct vfsmount *mnt)
237{
238    struct file_system_type *cgroup_fs = get_fs_type("cgroup");
239    int ret = -ENODEV;
240    if (cgroup_fs) {
241        char mountopts[] =
242            "cpuset,noprefix,"
243            "release_agent=/sbin/cpuset_release_agent";
244        ret = cgroup_fs->get_sb(cgroup_fs, flags,
245                       unused_dev_name, mountopts, mnt);
246        put_filesystem(cgroup_fs);
247    }
248    return ret;
249}
250
251static struct file_system_type cpuset_fs_type = {
252    .name = "cpuset",
253    .get_sb = cpuset_get_sb,
254};
255
256/*
257 * Return in pmask the portion of a cpusets's cpus_allowed that
258 * are online. If none are online, walk up the cpuset hierarchy
259 * until we find one that does have some online cpus. If we get
260 * all the way to the top and still haven't found any online cpus,
261 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
262 * task, return cpu_online_map.
263 *
264 * One way or another, we guarantee to return some non-empty subset
265 * of cpu_online_map.
266 *
267 * Call with callback_mutex held.
268 */
269
270static void guarantee_online_cpus(const struct cpuset *cs,
271                  struct cpumask *pmask)
272{
273    while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
274        cs = cs->parent;
275    if (cs)
276        cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
277    else
278        cpumask_copy(pmask, cpu_online_mask);
279    BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
280}
281
282/*
283 * Return in *pmask the portion of a cpusets's mems_allowed that
284 * are online, with memory. If none are online with memory, walk
285 * up the cpuset hierarchy until we find one that does have some
286 * online mems. If we get all the way to the top and still haven't
287 * found any online mems, return node_states[N_HIGH_MEMORY].
288 *
289 * One way or another, we guarantee to return some non-empty subset
290 * of node_states[N_HIGH_MEMORY].
291 *
292 * Call with callback_mutex held.
293 */
294
295static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
296{
297    while (cs && !nodes_intersects(cs->mems_allowed,
298                    node_states[N_HIGH_MEMORY]))
299        cs = cs->parent;
300    if (cs)
301        nodes_and(*pmask, cs->mems_allowed,
302                    node_states[N_HIGH_MEMORY]);
303    else
304        *pmask = node_states[N_HIGH_MEMORY];
305    BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
306}
307
308/*
309 * update task's spread flag if cpuset's page/slab spread flag is set
310 *
311 * Called with callback_mutex/cgroup_mutex held
312 */
313static void cpuset_update_task_spread_flag(struct cpuset *cs,
314                    struct task_struct *tsk)
315{
316    if (is_spread_page(cs))
317        tsk->flags |= PF_SPREAD_PAGE;
318    else
319        tsk->flags &= ~PF_SPREAD_PAGE;
320    if (is_spread_slab(cs))
321        tsk->flags |= PF_SPREAD_SLAB;
322    else
323        tsk->flags &= ~PF_SPREAD_SLAB;
324}
325
326/*
327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
328 *
329 * One cpuset is a subset of another if all its allowed CPUs and
330 * Memory Nodes are a subset of the other, and its exclusive flags
331 * are only set if the other's are set. Call holding cgroup_mutex.
332 */
333
334static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
335{
336    return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
337        nodes_subset(p->mems_allowed, q->mems_allowed) &&
338        is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
339        is_mem_exclusive(p) <= is_mem_exclusive(q);
340}
341
342/**
343 * alloc_trial_cpuset - allocate a trial cpuset
344 * @cs: the cpuset that the trial cpuset duplicates
345 */
346static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
347{
348    struct cpuset *trial;
349
350    trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
351    if (!trial)
352        return NULL;
353
354    if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
355        kfree(trial);
356        return NULL;
357    }
358    cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
359
360    return trial;
361}
362
363/**
364 * free_trial_cpuset - free the trial cpuset
365 * @trial: the trial cpuset to be freed
366 */
367static void free_trial_cpuset(struct cpuset *trial)
368{
369    free_cpumask_var(trial->cpus_allowed);
370    kfree(trial);
371}
372
373/*
374 * validate_change() - Used to validate that any proposed cpuset change
375 * follows the structural rules for cpusets.
376 *
377 * If we replaced the flag and mask values of the current cpuset
378 * (cur) with those values in the trial cpuset (trial), would
379 * our various subset and exclusive rules still be valid? Presumes
380 * cgroup_mutex held.
381 *
382 * 'cur' is the address of an actual, in-use cpuset. Operations
383 * such as list traversal that depend on the actual address of the
384 * cpuset in the list must use cur below, not trial.
385 *
386 * 'trial' is the address of bulk structure copy of cur, with
387 * perhaps one or more of the fields cpus_allowed, mems_allowed,
388 * or flags changed to new, trial values.
389 *
390 * Return 0 if valid, -errno if not.
391 */
392
393static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
394{
395    struct cgroup *cont;
396    struct cpuset *c, *par;
397
398    /* Each of our child cpusets must be a subset of us */
399    list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
400        if (!is_cpuset_subset(cgroup_cs(cont), trial))
401            return -EBUSY;
402    }
403
404    /* Remaining checks don't apply to root cpuset */
405    if (cur == &top_cpuset)
406        return 0;
407
408    par = cur->parent;
409
410    /* We must be a subset of our parent cpuset */
411    if (!is_cpuset_subset(trial, par))
412        return -EACCES;
413
414    /*
415     * If either I or some sibling (!= me) is exclusive, we can't
416     * overlap
417     */
418    list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
419        c = cgroup_cs(cont);
420        if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
421            c != cur &&
422            cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
423            return -EINVAL;
424        if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
425            c != cur &&
426            nodes_intersects(trial->mems_allowed, c->mems_allowed))
427            return -EINVAL;
428    }
429
430    /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
431    if (cgroup_task_count(cur->css.cgroup)) {
432        if (cpumask_empty(trial->cpus_allowed) ||
433            nodes_empty(trial->mems_allowed)) {
434            return -ENOSPC;
435        }
436    }
437
438    return 0;
439}
440
441#ifdef CONFIG_SMP
442/*
443 * Helper routine for generate_sched_domains().
444 * Do cpusets a, b have overlapping cpus_allowed masks?
445 */
446static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
447{
448    return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
449}
450
451static void
452update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
453{
454    if (dattr->relax_domain_level < c->relax_domain_level)
455        dattr->relax_domain_level = c->relax_domain_level;
456    return;
457}
458
459static void
460update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
461{
462    LIST_HEAD(q);
463
464    list_add(&c->stack_list, &q);
465    while (!list_empty(&q)) {
466        struct cpuset *cp;
467        struct cgroup *cont;
468        struct cpuset *child;
469
470        cp = list_first_entry(&q, struct cpuset, stack_list);
471        list_del(q.next);
472
473        if (cpumask_empty(cp->cpus_allowed))
474            continue;
475
476        if (is_sched_load_balance(cp))
477            update_domain_attr(dattr, cp);
478
479        list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
480            child = cgroup_cs(cont);
481            list_add_tail(&child->stack_list, &q);
482        }
483    }
484}
485
486/*
487 * generate_sched_domains()
488 *
489 * This function builds a partial partition of the systems CPUs
490 * A 'partial partition' is a set of non-overlapping subsets whose
491 * union is a subset of that set.
492 * The output of this function needs to be passed to kernel/sched.c
493 * partition_sched_domains() routine, which will rebuild the scheduler's
494 * load balancing domains (sched domains) as specified by that partial
495 * partition.
496 *
497 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
498 * for a background explanation of this.
499 *
500 * Does not return errors, on the theory that the callers of this
501 * routine would rather not worry about failures to rebuild sched
502 * domains when operating in the severe memory shortage situations
503 * that could cause allocation failures below.
504 *
505 * Must be called with cgroup_lock held.
506 *
507 * The three key local variables below are:
508 * q - a linked-list queue of cpuset pointers, used to implement a
509 * top-down scan of all cpusets. This scan loads a pointer
510 * to each cpuset marked is_sched_load_balance into the
511 * array 'csa'. For our purposes, rebuilding the schedulers
512 * sched domains, we can ignore !is_sched_load_balance cpusets.
513 * csa - (for CpuSet Array) Array of pointers to all the cpusets
514 * that need to be load balanced, for convenient iterative
515 * access by the subsequent code that finds the best partition,
516 * i.e the set of domains (subsets) of CPUs such that the
517 * cpus_allowed of every cpuset marked is_sched_load_balance
518 * is a subset of one of these domains, while there are as
519 * many such domains as possible, each as small as possible.
520 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
521 * the kernel/sched.c routine partition_sched_domains() in a
522 * convenient format, that can be easily compared to the prior
523 * value to determine what partition elements (sched domains)
524 * were changed (added or removed.)
525 *
526 * Finding the best partition (set of domains):
527 * The triple nested loops below over i, j, k scan over the
528 * load balanced cpusets (using the array of cpuset pointers in
529 * csa[]) looking for pairs of cpusets that have overlapping
530 * cpus_allowed, but which don't have the same 'pn' partition
531 * number and gives them in the same partition number. It keeps
532 * looping on the 'restart' label until it can no longer find
533 * any such pairs.
534 *
535 * The union of the cpus_allowed masks from the set of
536 * all cpusets having the same 'pn' value then form the one
537 * element of the partition (one sched domain) to be passed to
538 * partition_sched_domains().
539 */
540/* FIXME: see the FIXME in partition_sched_domains() */
541static int generate_sched_domains(struct cpumask **domains,
542            struct sched_domain_attr **attributes)
543{
544    LIST_HEAD(q); /* queue of cpusets to be scanned */
545    struct cpuset *cp; /* scans q */
546    struct cpuset **csa; /* array of all cpuset ptrs */
547    int csn; /* how many cpuset ptrs in csa so far */
548    int i, j, k; /* indices for partition finding loops */
549    struct cpumask *doms; /* resulting partition; i.e. sched domains */
550    struct sched_domain_attr *dattr; /* attributes for custom domains */
551    int ndoms = 0; /* number of sched domains in result */
552    int nslot; /* next empty doms[] struct cpumask slot */
553
554    doms = NULL;
555    dattr = NULL;
556    csa = NULL;
557
558    /* Special case for the 99% of systems with one, full, sched domain */
559    if (is_sched_load_balance(&top_cpuset)) {
560        doms = kmalloc(cpumask_size(), GFP_KERNEL);
561        if (!doms)
562            goto done;
563
564        dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
565        if (dattr) {
566            *dattr = SD_ATTR_INIT;
567            update_domain_attr_tree(dattr, &top_cpuset);
568        }
569        cpumask_copy(doms, top_cpuset.cpus_allowed);
570
571        ndoms = 1;
572        goto done;
573    }
574
575    csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
576    if (!csa)
577        goto done;
578    csn = 0;
579
580    list_add(&top_cpuset.stack_list, &q);
581    while (!list_empty(&q)) {
582        struct cgroup *cont;
583        struct cpuset *child; /* scans child cpusets of cp */
584
585        cp = list_first_entry(&q, struct cpuset, stack_list);
586        list_del(q.next);
587
588        if (cpumask_empty(cp->cpus_allowed))
589            continue;
590
591        /*
592         * All child cpusets contain a subset of the parent's cpus, so
593         * just skip them, and then we call update_domain_attr_tree()
594         * to calc relax_domain_level of the corresponding sched
595         * domain.
596         */
597        if (is_sched_load_balance(cp)) {
598            csa[csn++] = cp;
599            continue;
600        }
601
602        list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
603            child = cgroup_cs(cont);
604            list_add_tail(&child->stack_list, &q);
605        }
606      }
607
608    for (i = 0; i < csn; i++)
609        csa[i]->pn = i;
610    ndoms = csn;
611
612restart:
613    /* Find the best partition (set of sched domains) */
614    for (i = 0; i < csn; i++) {
615        struct cpuset *a = csa[i];
616        int apn = a->pn;
617
618        for (j = 0; j < csn; j++) {
619            struct cpuset *b = csa[j];
620            int bpn = b->pn;
621
622            if (apn != bpn && cpusets_overlap(a, b)) {
623                for (k = 0; k < csn; k++) {
624                    struct cpuset *c = csa[k];
625
626                    if (c->pn == bpn)
627                        c->pn = apn;
628                }
629                ndoms--; /* one less element */
630                goto restart;
631            }
632        }
633    }
634
635    /*
636     * Now we know how many domains to create.
637     * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
638     */
639    doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
640    if (!doms)
641        goto done;
642
643    /*
644     * The rest of the code, including the scheduler, can deal with
645     * dattr==NULL case. No need to abort if alloc fails.
646     */
647    dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
648
649    for (nslot = 0, i = 0; i < csn; i++) {
650        struct cpuset *a = csa[i];
651        struct cpumask *dp;
652        int apn = a->pn;
653
654        if (apn < 0) {
655            /* Skip completed partitions */
656            continue;
657        }
658
659        dp = doms + nslot;
660
661        if (nslot == ndoms) {
662            static int warnings = 10;
663            if (warnings) {
664                printk(KERN_WARNING
665                 "rebuild_sched_domains confused:"
666                  " nslot %d, ndoms %d, csn %d, i %d,"
667                  " apn %d\n",
668                  nslot, ndoms, csn, i, apn);
669                warnings--;
670            }
671            continue;
672        }
673
674        cpumask_clear(dp);
675        if (dattr)
676            *(dattr + nslot) = SD_ATTR_INIT;
677        for (j = i; j < csn; j++) {
678            struct cpuset *b = csa[j];
679
680            if (apn == b->pn) {
681                cpumask_or(dp, dp, b->cpus_allowed);
682                if (dattr)
683                    update_domain_attr_tree(dattr + nslot, b);
684
685                /* Done with this partition */
686                b->pn = -1;
687            }
688        }
689        nslot++;
690    }
691    BUG_ON(nslot != ndoms);
692
693done:
694    kfree(csa);
695
696    /*
697     * Fallback to the default domain if kmalloc() failed.
698     * See comments in partition_sched_domains().
699     */
700    if (doms == NULL)
701        ndoms = 1;
702
703    *domains = doms;
704    *attributes = dattr;
705    return ndoms;
706}
707
708/*
709 * Rebuild scheduler domains.
710 *
711 * Call with neither cgroup_mutex held nor within get_online_cpus().
712 * Takes both cgroup_mutex and get_online_cpus().
713 *
714 * Cannot be directly called from cpuset code handling changes
715 * to the cpuset pseudo-filesystem, because it cannot be called
716 * from code that already holds cgroup_mutex.
717 */
718static void do_rebuild_sched_domains(struct work_struct *unused)
719{
720    struct sched_domain_attr *attr;
721    struct cpumask *doms;
722    int ndoms;
723
724    get_online_cpus();
725
726    /* Generate domain masks and attrs */
727    cgroup_lock();
728    ndoms = generate_sched_domains(&doms, &attr);
729    cgroup_unlock();
730
731    /* Have scheduler rebuild the domains */
732    partition_sched_domains(ndoms, doms, attr);
733
734    put_online_cpus();
735}
736#else /* !CONFIG_SMP */
737static void do_rebuild_sched_domains(struct work_struct *unused)
738{
739}
740
741static int generate_sched_domains(struct cpumask **domains,
742            struct sched_domain_attr **attributes)
743{
744    *domains = NULL;
745    return 1;
746}
747#endif /* CONFIG_SMP */
748
749static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
750
751/*
752 * Rebuild scheduler domains, asynchronously via workqueue.
753 *
754 * If the flag 'sched_load_balance' of any cpuset with non-empty
755 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
756 * which has that flag enabled, or if any cpuset with a non-empty
757 * 'cpus' is removed, then call this routine to rebuild the
758 * scheduler's dynamic sched domains.
759 *
760 * The rebuild_sched_domains() and partition_sched_domains()
761 * routines must nest cgroup_lock() inside get_online_cpus(),
762 * but such cpuset changes as these must nest that locking the
763 * other way, holding cgroup_lock() for much of the code.
764 *
765 * So in order to avoid an ABBA deadlock, the cpuset code handling
766 * these user changes delegates the actual sched domain rebuilding
767 * to a separate workqueue thread, which ends up processing the
768 * above do_rebuild_sched_domains() function.
769 */
770static void async_rebuild_sched_domains(void)
771{
772    queue_work(cpuset_wq, &rebuild_sched_domains_work);
773}
774
775/*
776 * Accomplishes the same scheduler domain rebuild as the above
777 * async_rebuild_sched_domains(), however it directly calls the
778 * rebuild routine synchronously rather than calling it via an
779 * asynchronous work thread.
780 *
781 * This can only be called from code that is not holding
782 * cgroup_mutex (not nested in a cgroup_lock() call.)
783 */
784void rebuild_sched_domains(void)
785{
786    do_rebuild_sched_domains(NULL);
787}
788
789/**
790 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
791 * @tsk: task to test
792 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
793 *
794 * Call with cgroup_mutex held. May take callback_mutex during call.
795 * Called for each task in a cgroup by cgroup_scan_tasks().
796 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
797 * words, if its mask is not equal to its cpuset's mask).
798 */
799static int cpuset_test_cpumask(struct task_struct *tsk,
800                   struct cgroup_scanner *scan)
801{
802    return !cpumask_equal(&tsk->cpus_allowed,
803            (cgroup_cs(scan->cg))->cpus_allowed);
804}
805
806/**
807 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
808 * @tsk: task to test
809 * @scan: struct cgroup_scanner containing the cgroup of the task
810 *
811 * Called by cgroup_scan_tasks() for each task in a cgroup whose
812 * cpus_allowed mask needs to be changed.
813 *
814 * We don't need to re-check for the cgroup/cpuset membership, since we're
815 * holding cgroup_lock() at this point.
816 */
817static void cpuset_change_cpumask(struct task_struct *tsk,
818                  struct cgroup_scanner *scan)
819{
820    set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
821}
822
823/**
824 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
825 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
826 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
827 *
828 * Called with cgroup_mutex held
829 *
830 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
831 * calling callback functions for each.
832 *
833 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
834 * if @heap != NULL.
835 */
836static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
837{
838    struct cgroup_scanner scan;
839
840    scan.cg = cs->css.cgroup;
841    scan.test_task = cpuset_test_cpumask;
842    scan.process_task = cpuset_change_cpumask;
843    scan.heap = heap;
844    cgroup_scan_tasks(&scan);
845}
846
847/**
848 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
849 * @cs: the cpuset to consider
850 * @buf: buffer of cpu numbers written to this cpuset
851 */
852static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
853              const char *buf)
854{
855    struct ptr_heap heap;
856    int retval;
857    int is_load_balanced;
858
859    /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
860    if (cs == &top_cpuset)
861        return -EACCES;
862
863    /*
864     * An empty cpus_allowed is ok only if the cpuset has no tasks.
865     * Since cpulist_parse() fails on an empty mask, we special case
866     * that parsing. The validate_change() call ensures that cpusets
867     * with tasks have cpus.
868     */
869    if (!*buf) {
870        cpumask_clear(trialcs->cpus_allowed);
871    } else {
872        retval = cpulist_parse(buf, trialcs->cpus_allowed);
873        if (retval < 0)
874            return retval;
875
876        if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
877            return -EINVAL;
878    }
879    retval = validate_change(cs, trialcs);
880    if (retval < 0)
881        return retval;
882
883    /* Nothing to do if the cpus didn't change */
884    if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
885        return 0;
886
887    retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
888    if (retval)
889        return retval;
890
891    is_load_balanced = is_sched_load_balance(trialcs);
892
893    mutex_lock(&callback_mutex);
894    cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
895    mutex_unlock(&callback_mutex);
896
897    /*
898     * Scan tasks in the cpuset, and update the cpumasks of any
899     * that need an update.
900     */
901    update_tasks_cpumask(cs, &heap);
902
903    heap_free(&heap);
904
905    if (is_load_balanced)
906        async_rebuild_sched_domains();
907    return 0;
908}
909
910/*
911 * cpuset_migrate_mm
912 *
913 * Migrate memory region from one set of nodes to another.
914 *
915 * Temporarilly set tasks mems_allowed to target nodes of migration,
916 * so that the migration code can allocate pages on these nodes.
917 *
918 * Call holding cgroup_mutex, so current's cpuset won't change
919 * during this call, as manage_mutex holds off any cpuset_attach()
920 * calls. Therefore we don't need to take task_lock around the
921 * call to guarantee_online_mems(), as we know no one is changing
922 * our task's cpuset.
923 *
924 * Hold callback_mutex around the two modifications of our tasks
925 * mems_allowed to synchronize with cpuset_mems_allowed().
926 *
927 * While the mm_struct we are migrating is typically from some
928 * other task, the task_struct mems_allowed that we are hacking
929 * is for our current task, which must allocate new pages for that
930 * migrating memory region.
931 */
932
933static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
934                            const nodemask_t *to)
935{
936    struct task_struct *tsk = current;
937
938    tsk->mems_allowed = *to;
939
940    do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
941
942    guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
943}
944
945/*
946 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
947 * @tsk: the task to change
948 * @newmems: new nodes that the task will be set
949 *
950 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
951 * we structure updates as setting all new allowed nodes, then clearing newly
952 * disallowed ones.
953 *
954 * Called with task's alloc_lock held
955 */
956static void cpuset_change_task_nodemask(struct task_struct *tsk,
957                    nodemask_t *newmems)
958{
959    nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
960    mpol_rebind_task(tsk, &tsk->mems_allowed);
961    mpol_rebind_task(tsk, newmems);
962    tsk->mems_allowed = *newmems;
963}
964
965/*
966 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
967 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
968 * memory_migrate flag is set. Called with cgroup_mutex held.
969 */
970static void cpuset_change_nodemask(struct task_struct *p,
971                   struct cgroup_scanner *scan)
972{
973    struct mm_struct *mm;
974    struct cpuset *cs;
975    int migrate;
976    const nodemask_t *oldmem = scan->data;
977    nodemask_t newmems;
978
979    cs = cgroup_cs(scan->cg);
980    guarantee_online_mems(cs, &newmems);
981
982    task_lock(p);
983    cpuset_change_task_nodemask(p, &newmems);
984    task_unlock(p);
985
986    mm = get_task_mm(p);
987    if (!mm)
988        return;
989
990    migrate = is_memory_migrate(cs);
991
992    mpol_rebind_mm(mm, &cs->mems_allowed);
993    if (migrate)
994        cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
995    mmput(mm);
996}
997
998static void *cpuset_being_rebound;
999
1000/**
1001 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1002 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1003 * @oldmem: old mems_allowed of cpuset cs
1004 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1005 *
1006 * Called with cgroup_mutex held
1007 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1008 * if @heap != NULL.
1009 */
1010static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1011                 struct ptr_heap *heap)
1012{
1013    struct cgroup_scanner scan;
1014
1015    cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1016
1017    scan.cg = cs->css.cgroup;
1018    scan.test_task = NULL;
1019    scan.process_task = cpuset_change_nodemask;
1020    scan.heap = heap;
1021    scan.data = (nodemask_t *)oldmem;
1022
1023    /*
1024     * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1025     * take while holding tasklist_lock. Forks can happen - the
1026     * mpol_dup() cpuset_being_rebound check will catch such forks,
1027     * and rebind their vma mempolicies too. Because we still hold
1028     * the global cgroup_mutex, we know that no other rebind effort
1029     * will be contending for the global variable cpuset_being_rebound.
1030     * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1031     * is idempotent. Also migrate pages in each mm to new nodes.
1032     */
1033    cgroup_scan_tasks(&scan);
1034
1035    /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1036    cpuset_being_rebound = NULL;
1037}
1038
1039/*
1040 * Handle user request to change the 'mems' memory placement
1041 * of a cpuset. Needs to validate the request, update the
1042 * cpusets mems_allowed, and for each task in the cpuset,
1043 * update mems_allowed and rebind task's mempolicy and any vma
1044 * mempolicies and if the cpuset is marked 'memory_migrate',
1045 * migrate the tasks pages to the new memory.
1046 *
1047 * Call with cgroup_mutex held. May take callback_mutex during call.
1048 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1049 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1050 * their mempolicies to the cpusets new mems_allowed.
1051 */
1052static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1053               const char *buf)
1054{
1055    nodemask_t oldmem;
1056    int retval;
1057    struct ptr_heap heap;
1058
1059    /*
1060     * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1061     * it's read-only
1062     */
1063    if (cs == &top_cpuset)
1064        return -EACCES;
1065
1066    /*
1067     * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1068     * Since nodelist_parse() fails on an empty mask, we special case
1069     * that parsing. The validate_change() call ensures that cpusets
1070     * with tasks have memory.
1071     */
1072    if (!*buf) {
1073        nodes_clear(trialcs->mems_allowed);
1074    } else {
1075        retval = nodelist_parse(buf, trialcs->mems_allowed);
1076        if (retval < 0)
1077            goto done;
1078
1079        if (!nodes_subset(trialcs->mems_allowed,
1080                node_states[N_HIGH_MEMORY]))
1081            return -EINVAL;
1082    }
1083    oldmem = cs->mems_allowed;
1084    if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1085        retval = 0; /* Too easy - nothing to do */
1086        goto done;
1087    }
1088    retval = validate_change(cs, trialcs);
1089    if (retval < 0)
1090        goto done;
1091
1092    retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1093    if (retval < 0)
1094        goto done;
1095
1096    mutex_lock(&callback_mutex);
1097    cs->mems_allowed = trialcs->mems_allowed;
1098    mutex_unlock(&callback_mutex);
1099
1100    update_tasks_nodemask(cs, &oldmem, &heap);
1101
1102    heap_free(&heap);
1103done:
1104    return retval;
1105}
1106
1107int current_cpuset_is_being_rebound(void)
1108{
1109    return task_cs(current) == cpuset_being_rebound;
1110}
1111
1112static int update_relax_domain_level(struct cpuset *cs, s64 val)
1113{
1114#ifdef CONFIG_SMP
1115    if (val < -1 || val >= SD_LV_MAX)
1116        return -EINVAL;
1117#endif
1118
1119    if (val != cs->relax_domain_level) {
1120        cs->relax_domain_level = val;
1121        if (!cpumask_empty(cs->cpus_allowed) &&
1122            is_sched_load_balance(cs))
1123            async_rebuild_sched_domains();
1124    }
1125
1126    return 0;
1127}
1128
1129/*
1130 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1131 * @tsk: task to be updated
1132 * @scan: struct cgroup_scanner containing the cgroup of the task
1133 *
1134 * Called by cgroup_scan_tasks() for each task in a cgroup.
1135 *
1136 * We don't need to re-check for the cgroup/cpuset membership, since we're
1137 * holding cgroup_lock() at this point.
1138 */
1139static void cpuset_change_flag(struct task_struct *tsk,
1140                struct cgroup_scanner *scan)
1141{
1142    cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1143}
1144
1145/*
1146 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1147 * @cs: the cpuset in which each task's spread flags needs to be changed
1148 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1149 *
1150 * Called with cgroup_mutex held
1151 *
1152 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1153 * calling callback functions for each.
1154 *
1155 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1156 * if @heap != NULL.
1157 */
1158static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1159{
1160    struct cgroup_scanner scan;
1161
1162    scan.cg = cs->css.cgroup;
1163    scan.test_task = NULL;
1164    scan.process_task = cpuset_change_flag;
1165    scan.heap = heap;
1166    cgroup_scan_tasks(&scan);
1167}
1168
1169/*
1170 * update_flag - read a 0 or a 1 in a file and update associated flag
1171 * bit: the bit to update (see cpuset_flagbits_t)
1172 * cs: the cpuset to update
1173 * turning_on: whether the flag is being set or cleared
1174 *
1175 * Call with cgroup_mutex held.
1176 */
1177
1178static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1179               int turning_on)
1180{
1181    struct cpuset *trialcs;
1182    int balance_flag_changed;
1183    int spread_flag_changed;
1184    struct ptr_heap heap;
1185    int err;
1186
1187    trialcs = alloc_trial_cpuset(cs);
1188    if (!trialcs)
1189        return -ENOMEM;
1190
1191    if (turning_on)
1192        set_bit(bit, &trialcs->flags);
1193    else
1194        clear_bit(bit, &trialcs->flags);
1195
1196    err = validate_change(cs, trialcs);
1197    if (err < 0)
1198        goto out;
1199
1200    err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1201    if (err < 0)
1202        goto out;
1203
1204    balance_flag_changed = (is_sched_load_balance(cs) !=
1205                is_sched_load_balance(trialcs));
1206
1207    spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1208            || (is_spread_page(cs) != is_spread_page(trialcs)));
1209
1210    mutex_lock(&callback_mutex);
1211    cs->flags = trialcs->flags;
1212    mutex_unlock(&callback_mutex);
1213
1214    if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1215        async_rebuild_sched_domains();
1216
1217    if (spread_flag_changed)
1218        update_tasks_flags(cs, &heap);
1219    heap_free(&heap);
1220out:
1221    free_trial_cpuset(trialcs);
1222    return err;
1223}
1224
1225/*
1226 * Frequency meter - How fast is some event occurring?
1227 *
1228 * These routines manage a digitally filtered, constant time based,
1229 * event frequency meter. There are four routines:
1230 * fmeter_init() - initialize a frequency meter.
1231 * fmeter_markevent() - called each time the event happens.
1232 * fmeter_getrate() - returns the recent rate of such events.
1233 * fmeter_update() - internal routine used to update fmeter.
1234 *
1235 * A common data structure is passed to each of these routines,
1236 * which is used to keep track of the state required to manage the
1237 * frequency meter and its digital filter.
1238 *
1239 * The filter works on the number of events marked per unit time.
1240 * The filter is single-pole low-pass recursive (IIR). The time unit
1241 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1242 * simulate 3 decimal digits of precision (multiplied by 1000).
1243 *
1244 * With an FM_COEF of 933, and a time base of 1 second, the filter
1245 * has a half-life of 10 seconds, meaning that if the events quit
1246 * happening, then the rate returned from the fmeter_getrate()
1247 * will be cut in half each 10 seconds, until it converges to zero.
1248 *
1249 * It is not worth doing a real infinitely recursive filter. If more
1250 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1251 * just compute FM_MAXTICKS ticks worth, by which point the level
1252 * will be stable.
1253 *
1254 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1255 * arithmetic overflow in the fmeter_update() routine.
1256 *
1257 * Given the simple 32 bit integer arithmetic used, this meter works
1258 * best for reporting rates between one per millisecond (msec) and
1259 * one per 32 (approx) seconds. At constant rates faster than one
1260 * per msec it maxes out at values just under 1,000,000. At constant
1261 * rates between one per msec, and one per second it will stabilize
1262 * to a value N*1000, where N is the rate of events per second.
1263 * At constant rates between one per second and one per 32 seconds,
1264 * it will be choppy, moving up on the seconds that have an event,
1265 * and then decaying until the next event. At rates slower than
1266 * about one in 32 seconds, it decays all the way back to zero between
1267 * each event.
1268 */
1269
1270#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1271#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1272#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1273#define FM_SCALE 1000 /* faux fixed point scale */
1274
1275/* Initialize a frequency meter */
1276static void fmeter_init(struct fmeter *fmp)
1277{
1278    fmp->cnt = 0;
1279    fmp->val = 0;
1280    fmp->time = 0;
1281    spin_lock_init(&fmp->lock);
1282}
1283
1284/* Internal meter update - process cnt events and update value */
1285static void fmeter_update(struct fmeter *fmp)
1286{
1287    time_t now = get_seconds();
1288    time_t ticks = now - fmp->time;
1289
1290    if (ticks == 0)
1291        return;
1292
1293    ticks = min(FM_MAXTICKS, ticks);
1294    while (ticks-- > 0)
1295        fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1296    fmp->time = now;
1297
1298    fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1299    fmp->cnt = 0;
1300}
1301
1302/* Process any previous ticks, then bump cnt by one (times scale). */
1303static void fmeter_markevent(struct fmeter *fmp)
1304{
1305    spin_lock(&fmp->lock);
1306    fmeter_update(fmp);
1307    fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1308    spin_unlock(&fmp->lock);
1309}
1310
1311/* Process any previous ticks, then return current value. */
1312static int fmeter_getrate(struct fmeter *fmp)
1313{
1314    int val;
1315
1316    spin_lock(&fmp->lock);
1317    fmeter_update(fmp);
1318    val = fmp->val;
1319    spin_unlock(&fmp->lock);
1320    return val;
1321}
1322
1323/* Protected by cgroup_lock */
1324static cpumask_var_t cpus_attach;
1325
1326/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1327static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1328                 struct task_struct *tsk, bool threadgroup)
1329{
1330    int ret;
1331    struct cpuset *cs = cgroup_cs(cont);
1332
1333    if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1334        return -ENOSPC;
1335
1336    /*
1337     * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1338     * cannot change their cpu affinity and isolating such threads by their
1339     * set of allowed nodes is unnecessary. Thus, cpusets are not
1340     * applicable for such threads. This prevents checking for success of
1341     * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1342     * be changed.
1343     */
1344    if (tsk->flags & PF_THREAD_BOUND)
1345        return -EINVAL;
1346
1347    ret = security_task_setscheduler(tsk, 0, NULL);
1348    if (ret)
1349        return ret;
1350    if (threadgroup) {
1351        struct task_struct *c;
1352
1353        rcu_read_lock();
1354        list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1355            ret = security_task_setscheduler(c, 0, NULL);
1356            if (ret) {
1357                rcu_read_unlock();
1358                return ret;
1359            }
1360        }
1361        rcu_read_unlock();
1362    }
1363    return 0;
1364}
1365
1366static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1367                   struct cpuset *cs)
1368{
1369    int err;
1370    /*
1371     * can_attach beforehand should guarantee that this doesn't fail.
1372     * TODO: have a better way to handle failure here
1373     */
1374    err = set_cpus_allowed_ptr(tsk, cpus_attach);
1375    WARN_ON_ONCE(err);
1376
1377    task_lock(tsk);
1378    cpuset_change_task_nodemask(tsk, to);
1379    task_unlock(tsk);
1380    cpuset_update_task_spread_flag(cs, tsk);
1381
1382}
1383
1384static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1385              struct cgroup *oldcont, struct task_struct *tsk,
1386              bool threadgroup)
1387{
1388    nodemask_t from, to;
1389    struct mm_struct *mm;
1390    struct cpuset *cs = cgroup_cs(cont);
1391    struct cpuset *oldcs = cgroup_cs(oldcont);
1392
1393    if (cs == &top_cpuset) {
1394        cpumask_copy(cpus_attach, cpu_possible_mask);
1395        to = node_possible_map;
1396    } else {
1397        guarantee_online_cpus(cs, cpus_attach);
1398        guarantee_online_mems(cs, &to);
1399    }
1400
1401    /* do per-task migration stuff possibly for each in the threadgroup */
1402    cpuset_attach_task(tsk, &to, cs);
1403    if (threadgroup) {
1404        struct task_struct *c;
1405        rcu_read_lock();
1406        list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1407            cpuset_attach_task(c, &to, cs);
1408        }
1409        rcu_read_unlock();
1410    }
1411
1412    /* change mm; only needs to be done once even if threadgroup */
1413    from = oldcs->mems_allowed;
1414    to = cs->mems_allowed;
1415    mm = get_task_mm(tsk);
1416    if (mm) {
1417        mpol_rebind_mm(mm, &to);
1418        if (is_memory_migrate(cs))
1419            cpuset_migrate_mm(mm, &from, &to);
1420        mmput(mm);
1421    }
1422}
1423
1424/* The various types of files and directories in a cpuset file system */
1425
1426typedef enum {
1427    FILE_MEMORY_MIGRATE,
1428    FILE_CPULIST,
1429    FILE_MEMLIST,
1430    FILE_CPU_EXCLUSIVE,
1431    FILE_MEM_EXCLUSIVE,
1432    FILE_MEM_HARDWALL,
1433    FILE_SCHED_LOAD_BALANCE,
1434    FILE_SCHED_RELAX_DOMAIN_LEVEL,
1435    FILE_MEMORY_PRESSURE_ENABLED,
1436    FILE_MEMORY_PRESSURE,
1437    FILE_SPREAD_PAGE,
1438    FILE_SPREAD_SLAB,
1439} cpuset_filetype_t;
1440
1441static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1442{
1443    int retval = 0;
1444    struct cpuset *cs = cgroup_cs(cgrp);
1445    cpuset_filetype_t type = cft->private;
1446
1447    if (!cgroup_lock_live_group(cgrp))
1448        return -ENODEV;
1449
1450    switch (type) {
1451    case FILE_CPU_EXCLUSIVE:
1452        retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1453        break;
1454    case FILE_MEM_EXCLUSIVE:
1455        retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1456        break;
1457    case FILE_MEM_HARDWALL:
1458        retval = update_flag(CS_MEM_HARDWALL, cs, val);
1459        break;
1460    case FILE_SCHED_LOAD_BALANCE:
1461        retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1462        break;
1463    case FILE_MEMORY_MIGRATE:
1464        retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1465        break;
1466    case FILE_MEMORY_PRESSURE_ENABLED:
1467        cpuset_memory_pressure_enabled = !!val;
1468        break;
1469    case FILE_MEMORY_PRESSURE:
1470        retval = -EACCES;
1471        break;
1472    case FILE_SPREAD_PAGE:
1473        retval = update_flag(CS_SPREAD_PAGE, cs, val);
1474        break;
1475    case FILE_SPREAD_SLAB:
1476        retval = update_flag(CS_SPREAD_SLAB, cs, val);
1477        break;
1478    default:
1479        retval = -EINVAL;
1480        break;
1481    }
1482    cgroup_unlock();
1483    return retval;
1484}
1485
1486static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1487{
1488    int retval = 0;
1489    struct cpuset *cs = cgroup_cs(cgrp);
1490    cpuset_filetype_t type = cft->private;
1491
1492    if (!cgroup_lock_live_group(cgrp))
1493        return -ENODEV;
1494
1495    switch (type) {
1496    case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1497        retval = update_relax_domain_level(cs, val);
1498        break;
1499    default:
1500        retval = -EINVAL;
1501        break;
1502    }
1503    cgroup_unlock();
1504    return retval;
1505}
1506
1507/*
1508 * Common handling for a write to a "cpus" or "mems" file.
1509 */
1510static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1511                const char *buf)
1512{
1513    int retval = 0;
1514    struct cpuset *cs = cgroup_cs(cgrp);
1515    struct cpuset *trialcs;
1516
1517    if (!cgroup_lock_live_group(cgrp))
1518        return -ENODEV;
1519
1520    trialcs = alloc_trial_cpuset(cs);
1521    if (!trialcs)
1522        return -ENOMEM;
1523
1524    switch (cft->private) {
1525    case FILE_CPULIST:
1526        retval = update_cpumask(cs, trialcs, buf);
1527        break;
1528    case FILE_MEMLIST:
1529        retval = update_nodemask(cs, trialcs, buf);
1530        break;
1531    default:
1532        retval = -EINVAL;
1533        break;
1534    }
1535
1536    free_trial_cpuset(trialcs);
1537    cgroup_unlock();
1538    return retval;
1539}
1540
1541/*
1542 * These ascii lists should be read in a single call, by using a user
1543 * buffer large enough to hold the entire map. If read in smaller
1544 * chunks, there is no guarantee of atomicity. Since the display format
1545 * used, list of ranges of sequential numbers, is variable length,
1546 * and since these maps can change value dynamically, one could read
1547 * gibberish by doing partial reads while a list was changing.
1548 * A single large read to a buffer that crosses a page boundary is
1549 * ok, because the result being copied to user land is not recomputed
1550 * across a page fault.
1551 */
1552
1553static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1554{
1555    int ret;
1556
1557    mutex_lock(&callback_mutex);
1558    ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1559    mutex_unlock(&callback_mutex);
1560
1561    return ret;
1562}
1563
1564static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1565{
1566    nodemask_t mask;
1567
1568    mutex_lock(&callback_mutex);
1569    mask = cs->mems_allowed;
1570    mutex_unlock(&callback_mutex);
1571
1572    return nodelist_scnprintf(page, PAGE_SIZE, mask);
1573}
1574
1575static ssize_t cpuset_common_file_read(struct cgroup *cont,
1576                       struct cftype *cft,
1577                       struct file *file,
1578                       char __user *buf,
1579                       size_t nbytes, loff_t *ppos)
1580{
1581    struct cpuset *cs = cgroup_cs(cont);
1582    cpuset_filetype_t type = cft->private;
1583    char *page;
1584    ssize_t retval = 0;
1585    char *s;
1586
1587    if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1588        return -ENOMEM;
1589
1590    s = page;
1591
1592    switch (type) {
1593    case FILE_CPULIST:
1594        s += cpuset_sprintf_cpulist(s, cs);
1595        break;
1596    case FILE_MEMLIST:
1597        s += cpuset_sprintf_memlist(s, cs);
1598        break;
1599    default:
1600        retval = -EINVAL;
1601        goto out;
1602    }
1603    *s++ = '\n';
1604
1605    retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1606out:
1607    free_page((unsigned long)page);
1608    return retval;
1609}
1610
1611static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1612{
1613    struct cpuset *cs = cgroup_cs(cont);
1614    cpuset_filetype_t type = cft->private;
1615    switch (type) {
1616    case FILE_CPU_EXCLUSIVE:
1617        return is_cpu_exclusive(cs);
1618    case FILE_MEM_EXCLUSIVE:
1619        return is_mem_exclusive(cs);
1620    case FILE_MEM_HARDWALL:
1621        return is_mem_hardwall(cs);
1622    case FILE_SCHED_LOAD_BALANCE:
1623        return is_sched_load_balance(cs);
1624    case FILE_MEMORY_MIGRATE:
1625        return is_memory_migrate(cs);
1626    case FILE_MEMORY_PRESSURE_ENABLED:
1627        return cpuset_memory_pressure_enabled;
1628    case FILE_MEMORY_PRESSURE:
1629        return fmeter_getrate(&cs->fmeter);
1630    case FILE_SPREAD_PAGE:
1631        return is_spread_page(cs);
1632    case FILE_SPREAD_SLAB:
1633        return is_spread_slab(cs);
1634    default:
1635        BUG();
1636    }
1637
1638    /* Unreachable but makes gcc happy */
1639    return 0;
1640}
1641
1642static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1643{
1644    struct cpuset *cs = cgroup_cs(cont);
1645    cpuset_filetype_t type = cft->private;
1646    switch (type) {
1647    case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1648        return cs->relax_domain_level;
1649    default:
1650        BUG();
1651    }
1652
1653    /* Unrechable but makes gcc happy */
1654    return 0;
1655}
1656
1657
1658/*
1659 * for the common functions, 'private' gives the type of file
1660 */
1661
1662static struct cftype files[] = {
1663    {
1664        .name = "cpus",
1665        .read = cpuset_common_file_read,
1666        .write_string = cpuset_write_resmask,
1667        .max_write_len = (100U + 6 * NR_CPUS),
1668        .private = FILE_CPULIST,
1669    },
1670
1671    {
1672        .name = "mems",
1673        .read = cpuset_common_file_read,
1674        .write_string = cpuset_write_resmask,
1675        .max_write_len = (100U + 6 * MAX_NUMNODES),
1676        .private = FILE_MEMLIST,
1677    },
1678
1679    {
1680        .name = "cpu_exclusive",
1681        .read_u64 = cpuset_read_u64,
1682        .write_u64 = cpuset_write_u64,
1683        .private = FILE_CPU_EXCLUSIVE,
1684    },
1685
1686    {
1687        .name = "mem_exclusive",
1688        .read_u64 = cpuset_read_u64,
1689        .write_u64 = cpuset_write_u64,
1690        .private = FILE_MEM_EXCLUSIVE,
1691    },
1692
1693    {
1694        .name = "mem_hardwall",
1695        .read_u64 = cpuset_read_u64,
1696        .write_u64 = cpuset_write_u64,
1697        .private = FILE_MEM_HARDWALL,
1698    },
1699
1700    {
1701        .name = "sched_load_balance",
1702        .read_u64 = cpuset_read_u64,
1703        .write_u64 = cpuset_write_u64,
1704        .private = FILE_SCHED_LOAD_BALANCE,
1705    },
1706
1707    {
1708        .name = "sched_relax_domain_level",
1709        .read_s64 = cpuset_read_s64,
1710        .write_s64 = cpuset_write_s64,
1711        .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1712    },
1713
1714    {
1715        .name = "memory_migrate",
1716        .read_u64 = cpuset_read_u64,
1717        .write_u64 = cpuset_write_u64,
1718        .private = FILE_MEMORY_MIGRATE,
1719    },
1720
1721    {
1722        .name = "memory_pressure",
1723        .read_u64 = cpuset_read_u64,
1724        .write_u64 = cpuset_write_u64,
1725        .private = FILE_MEMORY_PRESSURE,
1726        .mode = S_IRUGO,
1727    },
1728
1729    {
1730        .name = "memory_spread_page",
1731        .read_u64 = cpuset_read_u64,
1732        .write_u64 = cpuset_write_u64,
1733        .private = FILE_SPREAD_PAGE,
1734    },
1735
1736    {
1737        .name = "memory_spread_slab",
1738        .read_u64 = cpuset_read_u64,
1739        .write_u64 = cpuset_write_u64,
1740        .private = FILE_SPREAD_SLAB,
1741    },
1742};
1743
1744static struct cftype cft_memory_pressure_enabled = {
1745    .name = "memory_pressure_enabled",
1746    .read_u64 = cpuset_read_u64,
1747    .write_u64 = cpuset_write_u64,
1748    .private = FILE_MEMORY_PRESSURE_ENABLED,
1749};
1750
1751static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1752{
1753    int err;
1754
1755    err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1756    if (err)
1757        return err;
1758    /* memory_pressure_enabled is in root cpuset only */
1759    if (!cont->parent)
1760        err = cgroup_add_file(cont, ss,
1761                      &cft_memory_pressure_enabled);
1762    return err;
1763}
1764
1765/*
1766 * post_clone() is called at the end of cgroup_clone().
1767 * 'cgroup' was just created automatically as a result of
1768 * a cgroup_clone(), and the current task is about to
1769 * be moved into 'cgroup'.
1770 *
1771 * Currently we refuse to set up the cgroup - thereby
1772 * refusing the task to be entered, and as a result refusing
1773 * the sys_unshare() or clone() which initiated it - if any
1774 * sibling cpusets have exclusive cpus or mem.
1775 *
1776 * If this becomes a problem for some users who wish to
1777 * allow that scenario, then cpuset_post_clone() could be
1778 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1779 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1780 * held.
1781 */
1782static void cpuset_post_clone(struct cgroup_subsys *ss,
1783                  struct cgroup *cgroup)
1784{
1785    struct cgroup *parent, *child;
1786    struct cpuset *cs, *parent_cs;
1787
1788    parent = cgroup->parent;
1789    list_for_each_entry(child, &parent->children, sibling) {
1790        cs = cgroup_cs(child);
1791        if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1792            return;
1793    }
1794    cs = cgroup_cs(cgroup);
1795    parent_cs = cgroup_cs(parent);
1796
1797    cs->mems_allowed = parent_cs->mems_allowed;
1798    cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1799    return;
1800}
1801
1802/*
1803 * cpuset_create - create a cpuset
1804 * ss: cpuset cgroup subsystem
1805 * cont: control group that the new cpuset will be part of
1806 */
1807
1808static struct cgroup_subsys_state *cpuset_create(
1809    struct cgroup_subsys *ss,
1810    struct cgroup *cont)
1811{
1812    struct cpuset *cs;
1813    struct cpuset *parent;
1814
1815    if (!cont->parent) {
1816        return &top_cpuset.css;
1817    }
1818    parent = cgroup_cs(cont->parent);
1819    cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1820    if (!cs)
1821        return ERR_PTR(-ENOMEM);
1822    if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1823        kfree(cs);
1824        return ERR_PTR(-ENOMEM);
1825    }
1826
1827    cs->flags = 0;
1828    if (is_spread_page(parent))
1829        set_bit(CS_SPREAD_PAGE, &cs->flags);
1830    if (is_spread_slab(parent))
1831        set_bit(CS_SPREAD_SLAB, &cs->flags);
1832    set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1833    cpumask_clear(cs->cpus_allowed);
1834    nodes_clear(cs->mems_allowed);
1835    fmeter_init(&cs->fmeter);
1836    cs->relax_domain_level = -1;
1837
1838    cs->parent = parent;
1839    number_of_cpusets++;
1840    return &cs->css ;
1841}
1842
1843/*
1844 * If the cpuset being removed has its flag 'sched_load_balance'
1845 * enabled, then simulate turning sched_load_balance off, which
1846 * will call async_rebuild_sched_domains().
1847 */
1848
1849static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1850{
1851    struct cpuset *cs = cgroup_cs(cont);
1852
1853    if (is_sched_load_balance(cs))
1854        update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1855
1856    number_of_cpusets--;
1857    free_cpumask_var(cs->cpus_allowed);
1858    kfree(cs);
1859}
1860
1861struct cgroup_subsys cpuset_subsys = {
1862    .name = "cpuset",
1863    .create = cpuset_create,
1864    .destroy = cpuset_destroy,
1865    .can_attach = cpuset_can_attach,
1866    .attach = cpuset_attach,
1867    .populate = cpuset_populate,
1868    .post_clone = cpuset_post_clone,
1869    .subsys_id = cpuset_subsys_id,
1870    .early_init = 1,
1871};
1872
1873/**
1874 * cpuset_init - initialize cpusets at system boot
1875 *
1876 * Description: Initialize top_cpuset and the cpuset internal file system,
1877 **/
1878
1879int __init cpuset_init(void)
1880{
1881    int err = 0;
1882
1883    if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1884        BUG();
1885
1886    cpumask_setall(top_cpuset.cpus_allowed);
1887    nodes_setall(top_cpuset.mems_allowed);
1888
1889    fmeter_init(&top_cpuset.fmeter);
1890    set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1891    top_cpuset.relax_domain_level = -1;
1892
1893    err = register_filesystem(&cpuset_fs_type);
1894    if (err < 0)
1895        return err;
1896
1897    if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1898        BUG();
1899
1900    number_of_cpusets = 1;
1901    return 0;
1902}
1903
1904/**
1905 * cpuset_do_move_task - move a given task to another cpuset
1906 * @tsk: pointer to task_struct the task to move
1907 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1908 *
1909 * Called by cgroup_scan_tasks() for each task in a cgroup.
1910 * Return nonzero to stop the walk through the tasks.
1911 */
1912static void cpuset_do_move_task(struct task_struct *tsk,
1913                struct cgroup_scanner *scan)
1914{
1915    struct cgroup *new_cgroup = scan->data;
1916
1917    cgroup_attach_task(new_cgroup, tsk);
1918}
1919
1920/**
1921 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1922 * @from: cpuset in which the tasks currently reside
1923 * @to: cpuset to which the tasks will be moved
1924 *
1925 * Called with cgroup_mutex held
1926 * callback_mutex must not be held, as cpuset_attach() will take it.
1927 *
1928 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1929 * calling callback functions for each.
1930 */
1931static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1932{
1933    struct cgroup_scanner scan;
1934
1935    scan.cg = from->css.cgroup;
1936    scan.test_task = NULL; /* select all tasks in cgroup */
1937    scan.process_task = cpuset_do_move_task;
1938    scan.heap = NULL;
1939    scan.data = to->css.cgroup;
1940
1941    if (cgroup_scan_tasks(&scan))
1942        printk(KERN_ERR "move_member_tasks_to_cpuset: "
1943                "cgroup_scan_tasks failed\n");
1944}
1945
1946/*
1947 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1948 * or memory nodes, we need to walk over the cpuset hierarchy,
1949 * removing that CPU or node from all cpusets. If this removes the
1950 * last CPU or node from a cpuset, then move the tasks in the empty
1951 * cpuset to its next-highest non-empty parent.
1952 *
1953 * Called with cgroup_mutex held
1954 * callback_mutex must not be held, as cpuset_attach() will take it.
1955 */
1956static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1957{
1958    struct cpuset *parent;
1959
1960    /*
1961     * The cgroup's css_sets list is in use if there are tasks
1962     * in the cpuset; the list is empty if there are none;
1963     * the cs->css.refcnt seems always 0.
1964     */
1965    if (list_empty(&cs->css.cgroup->css_sets))
1966        return;
1967
1968    /*
1969     * Find its next-highest non-empty parent, (top cpuset
1970     * has online cpus, so can't be empty).
1971     */
1972    parent = cs->parent;
1973    while (cpumask_empty(parent->cpus_allowed) ||
1974            nodes_empty(parent->mems_allowed))
1975        parent = parent->parent;
1976
1977    move_member_tasks_to_cpuset(cs, parent);
1978}
1979
1980/*
1981 * Walk the specified cpuset subtree and look for empty cpusets.
1982 * The tasks of such cpuset must be moved to a parent cpuset.
1983 *
1984 * Called with cgroup_mutex held. We take callback_mutex to modify
1985 * cpus_allowed and mems_allowed.
1986 *
1987 * This walk processes the tree from top to bottom, completing one layer
1988 * before dropping down to the next. It always processes a node before
1989 * any of its children.
1990 *
1991 * For now, since we lack memory hot unplug, we'll never see a cpuset
1992 * that has tasks along with an empty 'mems'. But if we did see such
1993 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1994 */
1995static void scan_for_empty_cpusets(struct cpuset *root)
1996{
1997    LIST_HEAD(queue);
1998    struct cpuset *cp; /* scans cpusets being updated */
1999    struct cpuset *child; /* scans child cpusets of cp */
2000    struct cgroup *cont;
2001    nodemask_t oldmems;
2002
2003    list_add_tail((struct list_head *)&root->stack_list, &queue);
2004
2005    while (!list_empty(&queue)) {
2006        cp = list_first_entry(&queue, struct cpuset, stack_list);
2007        list_del(queue.next);
2008        list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2009            child = cgroup_cs(cont);
2010            list_add_tail(&child->stack_list, &queue);
2011        }
2012
2013        /* Continue past cpusets with all cpus, mems online */
2014        if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2015            nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2016            continue;
2017
2018        oldmems = cp->mems_allowed;
2019
2020        /* Remove offline cpus and mems from this cpuset. */
2021        mutex_lock(&callback_mutex);
2022        cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2023                cpu_active_mask);
2024        nodes_and(cp->mems_allowed, cp->mems_allowed,
2025                        node_states[N_HIGH_MEMORY]);
2026        mutex_unlock(&callback_mutex);
2027
2028        /* Move tasks from the empty cpuset to a parent */
2029        if (cpumask_empty(cp->cpus_allowed) ||
2030             nodes_empty(cp->mems_allowed))
2031            remove_tasks_in_empty_cpuset(cp);
2032        else {
2033            update_tasks_cpumask(cp, NULL);
2034            update_tasks_nodemask(cp, &oldmems, NULL);
2035        }
2036    }
2037}
2038
2039/*
2040 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2041 * period. This is necessary in order to make cpusets transparent
2042 * (of no affect) on systems that are actively using CPU hotplug
2043 * but making no active use of cpusets.
2044 *
2045 * This routine ensures that top_cpuset.cpus_allowed tracks
2046 * cpu_online_map on each CPU hotplug (cpuhp) event.
2047 *
2048 * Called within get_online_cpus(). Needs to call cgroup_lock()
2049 * before calling generate_sched_domains().
2050 */
2051static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2052                unsigned long phase, void *unused_cpu)
2053{
2054    struct sched_domain_attr *attr;
2055    struct cpumask *doms;
2056    int ndoms;
2057
2058    switch (phase) {
2059    case CPU_ONLINE:
2060    case CPU_ONLINE_FROZEN:
2061    case CPU_DOWN_PREPARE:
2062    case CPU_DOWN_PREPARE_FROZEN:
2063    case CPU_DOWN_FAILED:
2064    case CPU_DOWN_FAILED_FROZEN:
2065        break;
2066
2067    default:
2068        return NOTIFY_DONE;
2069    }
2070
2071    cgroup_lock();
2072    mutex_lock(&callback_mutex);
2073    cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2074    mutex_unlock(&callback_mutex);
2075    scan_for_empty_cpusets(&top_cpuset);
2076    ndoms = generate_sched_domains(&doms, &attr);
2077    cgroup_unlock();
2078
2079    /* Have scheduler rebuild the domains */
2080    partition_sched_domains(ndoms, doms, attr);
2081
2082    return NOTIFY_OK;
2083}
2084
2085#ifdef CONFIG_MEMORY_HOTPLUG
2086/*
2087 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2088 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2089 * See also the previous routine cpuset_track_online_cpus().
2090 */
2091static int cpuset_track_online_nodes(struct notifier_block *self,
2092                unsigned long action, void *arg)
2093{
2094    cgroup_lock();
2095    switch (action) {
2096    case MEM_ONLINE:
2097    case MEM_OFFLINE:
2098        mutex_lock(&callback_mutex);
2099        top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2100        mutex_unlock(&callback_mutex);
2101        if (action == MEM_OFFLINE)
2102            scan_for_empty_cpusets(&top_cpuset);
2103        break;
2104    default:
2105        break;
2106    }
2107    cgroup_unlock();
2108    return NOTIFY_OK;
2109}
2110#endif
2111
2112/**
2113 * cpuset_init_smp - initialize cpus_allowed
2114 *
2115 * Description: Finish top cpuset after cpu, node maps are initialized
2116 **/
2117
2118void __init cpuset_init_smp(void)
2119{
2120    cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2121    top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2122
2123    hotcpu_notifier(cpuset_track_online_cpus, 0);
2124    hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2125
2126    cpuset_wq = create_singlethread_workqueue("cpuset");
2127    BUG_ON(!cpuset_wq);
2128}
2129
2130/**
2131 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2132 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2133 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2134 *
2135 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2136 * attached to the specified @tsk. Guaranteed to return some non-empty
2137 * subset of cpu_online_map, even if this means going outside the
2138 * tasks cpuset.
2139 **/
2140
2141void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2142{
2143    mutex_lock(&callback_mutex);
2144    cpuset_cpus_allowed_locked(tsk, pmask);
2145    mutex_unlock(&callback_mutex);
2146}
2147
2148/**
2149 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2150 * Must be called with callback_mutex held.
2151 **/
2152void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2153{
2154    task_lock(tsk);
2155    guarantee_online_cpus(task_cs(tsk), pmask);
2156    task_unlock(tsk);
2157}
2158
2159void cpuset_init_current_mems_allowed(void)
2160{
2161    nodes_setall(current->mems_allowed);
2162}
2163
2164/**
2165 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2166 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2167 *
2168 * Description: Returns the nodemask_t mems_allowed of the cpuset
2169 * attached to the specified @tsk. Guaranteed to return some non-empty
2170 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2171 * tasks cpuset.
2172 **/
2173
2174nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2175{
2176    nodemask_t mask;
2177
2178    mutex_lock(&callback_mutex);
2179    task_lock(tsk);
2180    guarantee_online_mems(task_cs(tsk), &mask);
2181    task_unlock(tsk);
2182    mutex_unlock(&callback_mutex);
2183
2184    return mask;
2185}
2186
2187/**
2188 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2189 * @nodemask: the nodemask to be checked
2190 *
2191 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2192 */
2193int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2194{
2195    return nodes_intersects(*nodemask, current->mems_allowed);
2196}
2197
2198/*
2199 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2200 * mem_hardwall ancestor to the specified cpuset. Call holding
2201 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2202 * (an unusual configuration), then returns the root cpuset.
2203 */
2204static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2205{
2206    while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2207        cs = cs->parent;
2208    return cs;
2209}
2210
2211/**
2212 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2213 * @node: is this an allowed node?
2214 * @gfp_mask: memory allocation flags
2215 *
2216 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2217 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2218 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2219 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2220 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2221 * flag, yes.
2222 * Otherwise, no.
2223 *
2224 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2225 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2226 * might sleep, and might allow a node from an enclosing cpuset.
2227 *
2228 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2229 * cpusets, and never sleeps.
2230 *
2231 * The __GFP_THISNODE placement logic is really handled elsewhere,
2232 * by forcibly using a zonelist starting at a specified node, and by
2233 * (in get_page_from_freelist()) refusing to consider the zones for
2234 * any node on the zonelist except the first. By the time any such
2235 * calls get to this routine, we should just shut up and say 'yes'.
2236 *
2237 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2238 * and do not allow allocations outside the current tasks cpuset
2239 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2240 * GFP_KERNEL allocations are not so marked, so can escape to the
2241 * nearest enclosing hardwalled ancestor cpuset.
2242 *
2243 * Scanning up parent cpusets requires callback_mutex. The
2244 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2245 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2246 * current tasks mems_allowed came up empty on the first pass over
2247 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2248 * cpuset are short of memory, might require taking the callback_mutex
2249 * mutex.
2250 *
2251 * The first call here from mm/page_alloc:get_page_from_freelist()
2252 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2253 * so no allocation on a node outside the cpuset is allowed (unless
2254 * in interrupt, of course).
2255 *
2256 * The second pass through get_page_from_freelist() doesn't even call
2257 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2258 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2259 * in alloc_flags. That logic and the checks below have the combined
2260 * affect that:
2261 * in_interrupt - any node ok (current task context irrelevant)
2262 * GFP_ATOMIC - any node ok
2263 * TIF_MEMDIE - any node ok
2264 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2265 * GFP_USER - only nodes in current tasks mems allowed ok.
2266 *
2267 * Rule:
2268 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2269 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2270 * the code that might scan up ancestor cpusets and sleep.
2271 */
2272int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2273{
2274    const struct cpuset *cs; /* current cpuset ancestors */
2275    int allowed; /* is allocation in zone z allowed? */
2276
2277    if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2278        return 1;
2279    might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2280    if (node_isset(node, current->mems_allowed))
2281        return 1;
2282    /*
2283     * Allow tasks that have access to memory reserves because they have
2284     * been OOM killed to get memory anywhere.
2285     */
2286    if (unlikely(test_thread_flag(TIF_MEMDIE)))
2287        return 1;
2288    if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2289        return 0;
2290
2291    if (current->flags & PF_EXITING) /* Let dying task have memory */
2292        return 1;
2293
2294    /* Not hardwall and node outside mems_allowed: scan up cpusets */
2295    mutex_lock(&callback_mutex);
2296
2297    task_lock(current);
2298    cs = nearest_hardwall_ancestor(task_cs(current));
2299    task_unlock(current);
2300
2301    allowed = node_isset(node, cs->mems_allowed);
2302    mutex_unlock(&callback_mutex);
2303    return allowed;
2304}
2305
2306/*
2307 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2308 * @node: is this an allowed node?
2309 * @gfp_mask: memory allocation flags
2310 *
2311 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2312 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2313 * yes. If the task has been OOM killed and has access to memory reserves as
2314 * specified by the TIF_MEMDIE flag, yes.
2315 * Otherwise, no.
2316 *
2317 * The __GFP_THISNODE placement logic is really handled elsewhere,
2318 * by forcibly using a zonelist starting at a specified node, and by
2319 * (in get_page_from_freelist()) refusing to consider the zones for
2320 * any node on the zonelist except the first. By the time any such
2321 * calls get to this routine, we should just shut up and say 'yes'.
2322 *
2323 * Unlike the cpuset_node_allowed_softwall() variant, above,
2324 * this variant requires that the node be in the current task's
2325 * mems_allowed or that we're in interrupt. It does not scan up the
2326 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2327 * It never sleeps.
2328 */
2329int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2330{
2331    if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2332        return 1;
2333    if (node_isset(node, current->mems_allowed))
2334        return 1;
2335    /*
2336     * Allow tasks that have access to memory reserves because they have
2337     * been OOM killed to get memory anywhere.
2338     */
2339    if (unlikely(test_thread_flag(TIF_MEMDIE)))
2340        return 1;
2341    return 0;
2342}
2343
2344/**
2345 * cpuset_lock - lock out any changes to cpuset structures
2346 *
2347 * The out of memory (oom) code needs to mutex_lock cpusets
2348 * from being changed while it scans the tasklist looking for a
2349 * task in an overlapping cpuset. Expose callback_mutex via this
2350 * cpuset_lock() routine, so the oom code can lock it, before
2351 * locking the task list. The tasklist_lock is a spinlock, so
2352 * must be taken inside callback_mutex.
2353 */
2354
2355void cpuset_lock(void)
2356{
2357    mutex_lock(&callback_mutex);
2358}
2359
2360/**
2361 * cpuset_unlock - release lock on cpuset changes
2362 *
2363 * Undo the lock taken in a previous cpuset_lock() call.
2364 */
2365
2366void cpuset_unlock(void)
2367{
2368    mutex_unlock(&callback_mutex);
2369}
2370
2371/**
2372 * cpuset_mem_spread_node() - On which node to begin search for a page
2373 *
2374 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2375 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2376 * and if the memory allocation used cpuset_mem_spread_node()
2377 * to determine on which node to start looking, as it will for
2378 * certain page cache or slab cache pages such as used for file
2379 * system buffers and inode caches, then instead of starting on the
2380 * local node to look for a free page, rather spread the starting
2381 * node around the tasks mems_allowed nodes.
2382 *
2383 * We don't have to worry about the returned node being offline
2384 * because "it can't happen", and even if it did, it would be ok.
2385 *
2386 * The routines calling guarantee_online_mems() are careful to
2387 * only set nodes in task->mems_allowed that are online. So it
2388 * should not be possible for the following code to return an
2389 * offline node. But if it did, that would be ok, as this routine
2390 * is not returning the node where the allocation must be, only
2391 * the node where the search should start. The zonelist passed to
2392 * __alloc_pages() will include all nodes. If the slab allocator
2393 * is passed an offline node, it will fall back to the local node.
2394 * See kmem_cache_alloc_node().
2395 */
2396
2397int cpuset_mem_spread_node(void)
2398{
2399    int node;
2400
2401    node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2402    if (node == MAX_NUMNODES)
2403        node = first_node(current->mems_allowed);
2404    current->cpuset_mem_spread_rotor = node;
2405    return node;
2406}
2407EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2408
2409/**
2410 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2411 * @tsk1: pointer to task_struct of some task.
2412 * @tsk2: pointer to task_struct of some other task.
2413 *
2414 * Description: Return true if @tsk1's mems_allowed intersects the
2415 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2416 * one of the task's memory usage might impact the memory available
2417 * to the other.
2418 **/
2419
2420int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2421                   const struct task_struct *tsk2)
2422{
2423    return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2424}
2425
2426/**
2427 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2428 * @task: pointer to task_struct of some task.
2429 *
2430 * Description: Prints @task's name, cpuset name, and cached copy of its
2431 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2432 * dereferencing task_cs(task).
2433 */
2434void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2435{
2436    struct dentry *dentry;
2437
2438    dentry = task_cs(tsk)->css.cgroup->dentry;
2439    spin_lock(&cpuset_buffer_lock);
2440    snprintf(cpuset_name, CPUSET_NAME_LEN,
2441         dentry ? (const char *)dentry->d_name.name : "/");
2442    nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2443               tsk->mems_allowed);
2444    printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2445           tsk->comm, cpuset_name, cpuset_nodelist);
2446    spin_unlock(&cpuset_buffer_lock);
2447}
2448
2449/*
2450 * Collection of memory_pressure is suppressed unless
2451 * this flag is enabled by writing "1" to the special
2452 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2453 */
2454
2455int cpuset_memory_pressure_enabled __read_mostly;
2456
2457/**
2458 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2459 *
2460 * Keep a running average of the rate of synchronous (direct)
2461 * page reclaim efforts initiated by tasks in each cpuset.
2462 *
2463 * This represents the rate at which some task in the cpuset
2464 * ran low on memory on all nodes it was allowed to use, and
2465 * had to enter the kernels page reclaim code in an effort to
2466 * create more free memory by tossing clean pages or swapping
2467 * or writing dirty pages.
2468 *
2469 * Display to user space in the per-cpuset read-only file
2470 * "memory_pressure". Value displayed is an integer
2471 * representing the recent rate of entry into the synchronous
2472 * (direct) page reclaim by any task attached to the cpuset.
2473 **/
2474
2475void __cpuset_memory_pressure_bump(void)
2476{
2477    task_lock(current);
2478    fmeter_markevent(&task_cs(current)->fmeter);
2479    task_unlock(current);
2480}
2481
2482#ifdef CONFIG_PROC_PID_CPUSET
2483/*
2484 * proc_cpuset_show()
2485 * - Print tasks cpuset path into seq_file.
2486 * - Used for /proc/<pid>/cpuset.
2487 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2488 * doesn't really matter if tsk->cpuset changes after we read it,
2489 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2490 * anyway.
2491 */
2492static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2493{
2494    struct pid *pid;
2495    struct task_struct *tsk;
2496    char *buf;
2497    struct cgroup_subsys_state *css;
2498    int retval;
2499
2500    retval = -ENOMEM;
2501    buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2502    if (!buf)
2503        goto out;
2504
2505    retval = -ESRCH;
2506    pid = m->private;
2507    tsk = get_pid_task(pid, PIDTYPE_PID);
2508    if (!tsk)
2509        goto out_free;
2510
2511    retval = -EINVAL;
2512    cgroup_lock();
2513    css = task_subsys_state(tsk, cpuset_subsys_id);
2514    retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2515    if (retval < 0)
2516        goto out_unlock;
2517    seq_puts(m, buf);
2518    seq_putc(m, '\n');
2519out_unlock:
2520    cgroup_unlock();
2521    put_task_struct(tsk);
2522out_free:
2523    kfree(buf);
2524out:
2525    return retval;
2526}
2527
2528static int cpuset_open(struct inode *inode, struct file *file)
2529{
2530    struct pid *pid = PROC_I(inode)->pid;
2531    return single_open(file, proc_cpuset_show, pid);
2532}
2533
2534const struct file_operations proc_cpuset_operations = {
2535    .open = cpuset_open,
2536    .read = seq_read,
2537    .llseek = seq_lseek,
2538    .release = single_release,
2539};
2540#endif /* CONFIG_PROC_PID_CPUSET */
2541
2542/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2543void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2544{
2545    seq_printf(m, "Cpus_allowed:\t");
2546    seq_cpumask(m, &task->cpus_allowed);
2547    seq_printf(m, "\n");
2548    seq_printf(m, "Cpus_allowed_list:\t");
2549    seq_cpumask_list(m, &task->cpus_allowed);
2550    seq_printf(m, "\n");
2551    seq_printf(m, "Mems_allowed:\t");
2552    seq_nodemask(m, &task->mems_allowed);
2553    seq_printf(m, "\n");
2554    seq_printf(m, "Mems_allowed_list:\t");
2555    seq_nodemask_list(m, &task->mems_allowed);
2556    seq_printf(m, "\n");
2557}
2558

Archive Download this file



interactive