Root/kernel/futex.c

1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/module.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
63#include <asm/futex.h>
64
65#include "rtmutex_common.h"
66
67int __read_mostly futex_cmpxchg_enabled;
68
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75    /*
76     * list of 'owned' pi_state instances - these have to be
77     * cleaned up in do_exit() if the task exits prematurely:
78     */
79    struct list_head list;
80
81    /*
82     * The PI object:
83     */
84    struct rt_mutex pi_mutex;
85
86    struct task_struct *owner;
87    atomic_t refcount;
88
89    union futex_key key;
90};
91
92/**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
101 *
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
104 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
109 *
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
112 */
113struct futex_q {
114    struct plist_node list;
115
116    struct task_struct *task;
117    spinlock_t *lock_ptr;
118    union futex_key key;
119    struct futex_pi_state *pi_state;
120    struct rt_mutex_waiter *rt_waiter;
121    union futex_key *requeue_pi_key;
122    u32 bitset;
123};
124
125/*
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
129 */
130struct futex_hash_bucket {
131    spinlock_t lock;
132    struct plist_head chain;
133};
134
135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137/*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140static struct futex_hash_bucket *hash_futex(union futex_key *key)
141{
142    u32 hash = jhash2((u32*)&key->both.word,
143              (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144              key->both.offset);
145    return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146}
147
148/*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151static inline int match_futex(union futex_key *key1, union futex_key *key2)
152{
153    return (key1 && key2
154        && key1->both.word == key2->both.word
155        && key1->both.ptr == key2->both.ptr
156        && key1->both.offset == key2->both.offset);
157}
158
159/*
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
162 *
163 */
164static void get_futex_key_refs(union futex_key *key)
165{
166    if (!key->both.ptr)
167        return;
168
169    switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170    case FUT_OFF_INODE:
171        atomic_inc(&key->shared.inode->i_count);
172        break;
173    case FUT_OFF_MMSHARED:
174        atomic_inc(&key->private.mm->mm_count);
175        break;
176    }
177}
178
179/*
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
182 */
183static void drop_futex_key_refs(union futex_key *key)
184{
185    if (!key->both.ptr) {
186        /* If we're here then we tried to put a key we failed to get */
187        WARN_ON_ONCE(1);
188        return;
189    }
190
191    switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192    case FUT_OFF_INODE:
193        iput(key->shared.inode);
194        break;
195    case FUT_OFF_MMSHARED:
196        mmdrop(key->private.mm);
197        break;
198    }
199}
200
201/**
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 *
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
209 *
210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
213 *
214 * lock_page() might sleep, the caller should not hold a spinlock.
215 */
216static int
217get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
218{
219    unsigned long address = (unsigned long)uaddr;
220    struct mm_struct *mm = current->mm;
221    struct page *page;
222    int err;
223
224    /*
225     * The futex address must be "naturally" aligned.
226     */
227    key->both.offset = address % PAGE_SIZE;
228    if (unlikely((address % sizeof(u32)) != 0))
229        return -EINVAL;
230    address -= key->both.offset;
231
232    /*
233     * PROCESS_PRIVATE futexes are fast.
234     * As the mm cannot disappear under us and the 'key' only needs
235     * virtual address, we dont even have to find the underlying vma.
236     * Note : We do have to check 'uaddr' is a valid user address,
237     * but access_ok() should be faster than find_vma()
238     */
239    if (!fshared) {
240        if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
241            return -EFAULT;
242        key->private.mm = mm;
243        key->private.address = address;
244        get_futex_key_refs(key);
245        return 0;
246    }
247
248again:
249    err = get_user_pages_fast(address, 1, 1, &page);
250    if (err < 0)
251        return err;
252
253    page = compound_head(page);
254    lock_page(page);
255    if (!page->mapping) {
256        unlock_page(page);
257        put_page(page);
258        goto again;
259    }
260
261    /*
262     * Private mappings are handled in a simple way.
263     *
264     * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265     * it's a read-only handle, it's expected that futexes attach to
266     * the object not the particular process.
267     */
268    if (PageAnon(page)) {
269        key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
270        key->private.mm = mm;
271        key->private.address = address;
272    } else {
273        key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274        key->shared.inode = page->mapping->host;
275        key->shared.pgoff = page->index;
276    }
277
278    get_futex_key_refs(key);
279
280    unlock_page(page);
281    put_page(page);
282    return 0;
283}
284
285static inline
286void put_futex_key(int fshared, union futex_key *key)
287{
288    drop_futex_key_refs(key);
289}
290
291/**
292 * fault_in_user_writeable() - Fault in user address and verify RW access
293 * @uaddr: pointer to faulting user space address
294 *
295 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr.
297 *
298 * We have no generic implementation of a non destructive write to the
299 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away.
302 */
303static int fault_in_user_writeable(u32 __user *uaddr)
304{
305    struct mm_struct *mm = current->mm;
306    int ret;
307
308    down_read(&mm->mmap_sem);
309    ret = get_user_pages(current, mm, (unsigned long)uaddr,
310                 1, 1, 0, NULL, NULL);
311    up_read(&mm->mmap_sem);
312
313    return ret < 0 ? ret : 0;
314}
315
316/**
317 * futex_top_waiter() - Return the highest priority waiter on a futex
318 * @hb: the hash bucket the futex_q's reside in
319 * @key: the futex key (to distinguish it from other futex futex_q's)
320 *
321 * Must be called with the hb lock held.
322 */
323static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
324                    union futex_key *key)
325{
326    struct futex_q *this;
327
328    plist_for_each_entry(this, &hb->chain, list) {
329        if (match_futex(&this->key, key))
330            return this;
331    }
332    return NULL;
333}
334
335static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
336{
337    u32 curval;
338
339    pagefault_disable();
340    curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
341    pagefault_enable();
342
343    return curval;
344}
345
346static int get_futex_value_locked(u32 *dest, u32 __user *from)
347{
348    int ret;
349
350    pagefault_disable();
351    ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
352    pagefault_enable();
353
354    return ret ? -EFAULT : 0;
355}
356
357
358/*
359 * PI code:
360 */
361static int refill_pi_state_cache(void)
362{
363    struct futex_pi_state *pi_state;
364
365    if (likely(current->pi_state_cache))
366        return 0;
367
368    pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
369
370    if (!pi_state)
371        return -ENOMEM;
372
373    INIT_LIST_HEAD(&pi_state->list);
374    /* pi_mutex gets initialized later */
375    pi_state->owner = NULL;
376    atomic_set(&pi_state->refcount, 1);
377    pi_state->key = FUTEX_KEY_INIT;
378
379    current->pi_state_cache = pi_state;
380
381    return 0;
382}
383
384static struct futex_pi_state * alloc_pi_state(void)
385{
386    struct futex_pi_state *pi_state = current->pi_state_cache;
387
388    WARN_ON(!pi_state);
389    current->pi_state_cache = NULL;
390
391    return pi_state;
392}
393
394static void free_pi_state(struct futex_pi_state *pi_state)
395{
396    if (!atomic_dec_and_test(&pi_state->refcount))
397        return;
398
399    /*
400     * If pi_state->owner is NULL, the owner is most probably dying
401     * and has cleaned up the pi_state already
402     */
403    if (pi_state->owner) {
404        spin_lock_irq(&pi_state->owner->pi_lock);
405        list_del_init(&pi_state->list);
406        spin_unlock_irq(&pi_state->owner->pi_lock);
407
408        rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
409    }
410
411    if (current->pi_state_cache)
412        kfree(pi_state);
413    else {
414        /*
415         * pi_state->list is already empty.
416         * clear pi_state->owner.
417         * refcount is at 0 - put it back to 1.
418         */
419        pi_state->owner = NULL;
420        atomic_set(&pi_state->refcount, 1);
421        current->pi_state_cache = pi_state;
422    }
423}
424
425/*
426 * Look up the task based on what TID userspace gave us.
427 * We dont trust it.
428 */
429static struct task_struct * futex_find_get_task(pid_t pid)
430{
431    struct task_struct *p;
432    const struct cred *cred = current_cred(), *pcred;
433
434    rcu_read_lock();
435    p = find_task_by_vpid(pid);
436    if (!p) {
437        p = ERR_PTR(-ESRCH);
438    } else {
439        pcred = __task_cred(p);
440        if (cred->euid != pcred->euid &&
441            cred->euid != pcred->uid)
442            p = ERR_PTR(-ESRCH);
443        else
444            get_task_struct(p);
445    }
446
447    rcu_read_unlock();
448
449    return p;
450}
451
452/*
453 * This task is holding PI mutexes at exit time => bad.
454 * Kernel cleans up PI-state, but userspace is likely hosed.
455 * (Robust-futex cleanup is separate and might save the day for userspace.)
456 */
457void exit_pi_state_list(struct task_struct *curr)
458{
459    struct list_head *next, *head = &curr->pi_state_list;
460    struct futex_pi_state *pi_state;
461    struct futex_hash_bucket *hb;
462    union futex_key key = FUTEX_KEY_INIT;
463
464    if (!futex_cmpxchg_enabled)
465        return;
466    /*
467     * We are a ZOMBIE and nobody can enqueue itself on
468     * pi_state_list anymore, but we have to be careful
469     * versus waiters unqueueing themselves:
470     */
471    spin_lock_irq(&curr->pi_lock);
472    while (!list_empty(head)) {
473
474        next = head->next;
475        pi_state = list_entry(next, struct futex_pi_state, list);
476        key = pi_state->key;
477        hb = hash_futex(&key);
478        spin_unlock_irq(&curr->pi_lock);
479
480        spin_lock(&hb->lock);
481
482        spin_lock_irq(&curr->pi_lock);
483        /*
484         * We dropped the pi-lock, so re-check whether this
485         * task still owns the PI-state:
486         */
487        if (head->next != next) {
488            spin_unlock(&hb->lock);
489            continue;
490        }
491
492        WARN_ON(pi_state->owner != curr);
493        WARN_ON(list_empty(&pi_state->list));
494        list_del_init(&pi_state->list);
495        pi_state->owner = NULL;
496        spin_unlock_irq(&curr->pi_lock);
497
498        rt_mutex_unlock(&pi_state->pi_mutex);
499
500        spin_unlock(&hb->lock);
501
502        spin_lock_irq(&curr->pi_lock);
503    }
504    spin_unlock_irq(&curr->pi_lock);
505}
506
507static int
508lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
509        union futex_key *key, struct futex_pi_state **ps)
510{
511    struct futex_pi_state *pi_state = NULL;
512    struct futex_q *this, *next;
513    struct plist_head *head;
514    struct task_struct *p;
515    pid_t pid = uval & FUTEX_TID_MASK;
516
517    head = &hb->chain;
518
519    plist_for_each_entry_safe(this, next, head, list) {
520        if (match_futex(&this->key, key)) {
521            /*
522             * Another waiter already exists - bump up
523             * the refcount and return its pi_state:
524             */
525            pi_state = this->pi_state;
526            /*
527             * Userspace might have messed up non PI and PI futexes
528             */
529            if (unlikely(!pi_state))
530                return -EINVAL;
531
532            WARN_ON(!atomic_read(&pi_state->refcount));
533
534            /*
535             * When pi_state->owner is NULL then the owner died
536             * and another waiter is on the fly. pi_state->owner
537             * is fixed up by the task which acquires
538             * pi_state->rt_mutex.
539             *
540             * We do not check for pid == 0 which can happen when
541             * the owner died and robust_list_exit() cleared the
542             * TID.
543             */
544            if (pid && pi_state->owner) {
545                /*
546                 * Bail out if user space manipulated the
547                 * futex value.
548                 */
549                if (pid != task_pid_vnr(pi_state->owner))
550                    return -EINVAL;
551            }
552
553            atomic_inc(&pi_state->refcount);
554            *ps = pi_state;
555
556            return 0;
557        }
558    }
559
560    /*
561     * We are the first waiter - try to look up the real owner and attach
562     * the new pi_state to it, but bail out when TID = 0
563     */
564    if (!pid)
565        return -ESRCH;
566    p = futex_find_get_task(pid);
567    if (IS_ERR(p))
568        return PTR_ERR(p);
569
570    /*
571     * We need to look at the task state flags to figure out,
572     * whether the task is exiting. To protect against the do_exit
573     * change of the task flags, we do this protected by
574     * p->pi_lock:
575     */
576    spin_lock_irq(&p->pi_lock);
577    if (unlikely(p->flags & PF_EXITING)) {
578        /*
579         * The task is on the way out. When PF_EXITPIDONE is
580         * set, we know that the task has finished the
581         * cleanup:
582         */
583        int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
584
585        spin_unlock_irq(&p->pi_lock);
586        put_task_struct(p);
587        return ret;
588    }
589
590    pi_state = alloc_pi_state();
591
592    /*
593     * Initialize the pi_mutex in locked state and make 'p'
594     * the owner of it:
595     */
596    rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
597
598    /* Store the key for possible exit cleanups: */
599    pi_state->key = *key;
600
601    WARN_ON(!list_empty(&pi_state->list));
602    list_add(&pi_state->list, &p->pi_state_list);
603    pi_state->owner = p;
604    spin_unlock_irq(&p->pi_lock);
605
606    put_task_struct(p);
607
608    *ps = pi_state;
609
610    return 0;
611}
612
613/**
614 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
615 * @uaddr: the pi futex user address
616 * @hb: the pi futex hash bucket
617 * @key: the futex key associated with uaddr and hb
618 * @ps: the pi_state pointer where we store the result of the
619 * lookup
620 * @task: the task to perform the atomic lock work for. This will
621 * be "current" except in the case of requeue pi.
622 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
623 *
624 * Returns:
625 * 0 - ready to wait
626 * 1 - acquired the lock
627 * <0 - error
628 *
629 * The hb->lock and futex_key refs shall be held by the caller.
630 */
631static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
632                union futex_key *key,
633                struct futex_pi_state **ps,
634                struct task_struct *task, int set_waiters)
635{
636    int lock_taken, ret, ownerdied = 0;
637    u32 uval, newval, curval;
638
639retry:
640    ret = lock_taken = 0;
641
642    /*
643     * To avoid races, we attempt to take the lock here again
644     * (by doing a 0 -> TID atomic cmpxchg), while holding all
645     * the locks. It will most likely not succeed.
646     */
647    newval = task_pid_vnr(task);
648    if (set_waiters)
649        newval |= FUTEX_WAITERS;
650
651    curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
652
653    if (unlikely(curval == -EFAULT))
654        return -EFAULT;
655
656    /*
657     * Detect deadlocks.
658     */
659    if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
660        return -EDEADLK;
661
662    /*
663     * Surprise - we got the lock. Just return to userspace:
664     */
665    if (unlikely(!curval))
666        return 1;
667
668    uval = curval;
669
670    /*
671     * Set the FUTEX_WAITERS flag, so the owner will know it has someone
672     * to wake at the next unlock.
673     */
674    newval = curval | FUTEX_WAITERS;
675
676    /*
677     * There are two cases, where a futex might have no owner (the
678     * owner TID is 0): OWNER_DIED. We take over the futex in this
679     * case. We also do an unconditional take over, when the owner
680     * of the futex died.
681     *
682     * This is safe as we are protected by the hash bucket lock !
683     */
684    if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
685        /* Keep the OWNER_DIED bit */
686        newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
687        ownerdied = 0;
688        lock_taken = 1;
689    }
690
691    curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
692
693    if (unlikely(curval == -EFAULT))
694        return -EFAULT;
695    if (unlikely(curval != uval))
696        goto retry;
697
698    /*
699     * We took the lock due to owner died take over.
700     */
701    if (unlikely(lock_taken))
702        return 1;
703
704    /*
705     * We dont have the lock. Look up the PI state (or create it if
706     * we are the first waiter):
707     */
708    ret = lookup_pi_state(uval, hb, key, ps);
709
710    if (unlikely(ret)) {
711        switch (ret) {
712        case -ESRCH:
713            /*
714             * No owner found for this futex. Check if the
715             * OWNER_DIED bit is set to figure out whether
716             * this is a robust futex or not.
717             */
718            if (get_futex_value_locked(&curval, uaddr))
719                return -EFAULT;
720
721            /*
722             * We simply start over in case of a robust
723             * futex. The code above will take the futex
724             * and return happy.
725             */
726            if (curval & FUTEX_OWNER_DIED) {
727                ownerdied = 1;
728                goto retry;
729            }
730        default:
731            break;
732        }
733    }
734
735    return ret;
736}
737
738/*
739 * The hash bucket lock must be held when this is called.
740 * Afterwards, the futex_q must not be accessed.
741 */
742static void wake_futex(struct futex_q *q)
743{
744    struct task_struct *p = q->task;
745
746    /*
747     * We set q->lock_ptr = NULL _before_ we wake up the task. If
748     * a non futex wake up happens on another CPU then the task
749     * might exit and p would dereference a non existing task
750     * struct. Prevent this by holding a reference on p across the
751     * wake up.
752     */
753    get_task_struct(p);
754
755    plist_del(&q->list, &q->list.plist);
756    /*
757     * The waiting task can free the futex_q as soon as
758     * q->lock_ptr = NULL is written, without taking any locks. A
759     * memory barrier is required here to prevent the following
760     * store to lock_ptr from getting ahead of the plist_del.
761     */
762    smp_wmb();
763    q->lock_ptr = NULL;
764
765    wake_up_state(p, TASK_NORMAL);
766    put_task_struct(p);
767}
768
769static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
770{
771    struct task_struct *new_owner;
772    struct futex_pi_state *pi_state = this->pi_state;
773    u32 curval, newval;
774
775    if (!pi_state)
776        return -EINVAL;
777
778    /*
779     * If current does not own the pi_state then the futex is
780     * inconsistent and user space fiddled with the futex value.
781     */
782    if (pi_state->owner != current)
783        return -EINVAL;
784
785    spin_lock(&pi_state->pi_mutex.wait_lock);
786    new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
787
788    /*
789     * This happens when we have stolen the lock and the original
790     * pending owner did not enqueue itself back on the rt_mutex.
791     * Thats not a tragedy. We know that way, that a lock waiter
792     * is on the fly. We make the futex_q waiter the pending owner.
793     */
794    if (!new_owner)
795        new_owner = this->task;
796
797    /*
798     * We pass it to the next owner. (The WAITERS bit is always
799     * kept enabled while there is PI state around. We must also
800     * preserve the owner died bit.)
801     */
802    if (!(uval & FUTEX_OWNER_DIED)) {
803        int ret = 0;
804
805        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
806
807        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
808
809        if (curval == -EFAULT)
810            ret = -EFAULT;
811        else if (curval != uval)
812            ret = -EINVAL;
813        if (ret) {
814            spin_unlock(&pi_state->pi_mutex.wait_lock);
815            return ret;
816        }
817    }
818
819    spin_lock_irq(&pi_state->owner->pi_lock);
820    WARN_ON(list_empty(&pi_state->list));
821    list_del_init(&pi_state->list);
822    spin_unlock_irq(&pi_state->owner->pi_lock);
823
824    spin_lock_irq(&new_owner->pi_lock);
825    WARN_ON(!list_empty(&pi_state->list));
826    list_add(&pi_state->list, &new_owner->pi_state_list);
827    pi_state->owner = new_owner;
828    spin_unlock_irq(&new_owner->pi_lock);
829
830    spin_unlock(&pi_state->pi_mutex.wait_lock);
831    rt_mutex_unlock(&pi_state->pi_mutex);
832
833    return 0;
834}
835
836static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
837{
838    u32 oldval;
839
840    /*
841     * There is no waiter, so we unlock the futex. The owner died
842     * bit has not to be preserved here. We are the owner:
843     */
844    oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
845
846    if (oldval == -EFAULT)
847        return oldval;
848    if (oldval != uval)
849        return -EAGAIN;
850
851    return 0;
852}
853
854/*
855 * Express the locking dependencies for lockdep:
856 */
857static inline void
858double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
859{
860    if (hb1 <= hb2) {
861        spin_lock(&hb1->lock);
862        if (hb1 < hb2)
863            spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
864    } else { /* hb1 > hb2 */
865        spin_lock(&hb2->lock);
866        spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
867    }
868}
869
870static inline void
871double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
872{
873    spin_unlock(&hb1->lock);
874    if (hb1 != hb2)
875        spin_unlock(&hb2->lock);
876}
877
878/*
879 * Wake up waiters matching bitset queued on this futex (uaddr).
880 */
881static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
882{
883    struct futex_hash_bucket *hb;
884    struct futex_q *this, *next;
885    struct plist_head *head;
886    union futex_key key = FUTEX_KEY_INIT;
887    int ret;
888
889    if (!bitset)
890        return -EINVAL;
891
892    ret = get_futex_key(uaddr, fshared, &key);
893    if (unlikely(ret != 0))
894        goto out;
895
896    hb = hash_futex(&key);
897    spin_lock(&hb->lock);
898    head = &hb->chain;
899
900    plist_for_each_entry_safe(this, next, head, list) {
901        if (match_futex (&this->key, &key)) {
902            if (this->pi_state || this->rt_waiter) {
903                ret = -EINVAL;
904                break;
905            }
906
907            /* Check if one of the bits is set in both bitsets */
908            if (!(this->bitset & bitset))
909                continue;
910
911            wake_futex(this);
912            if (++ret >= nr_wake)
913                break;
914        }
915    }
916
917    spin_unlock(&hb->lock);
918    put_futex_key(fshared, &key);
919out:
920    return ret;
921}
922
923/*
924 * Wake up all waiters hashed on the physical page that is mapped
925 * to this virtual address:
926 */
927static int
928futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
929          int nr_wake, int nr_wake2, int op)
930{
931    union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
932    struct futex_hash_bucket *hb1, *hb2;
933    struct plist_head *head;
934    struct futex_q *this, *next;
935    int ret, op_ret;
936
937retry:
938    ret = get_futex_key(uaddr1, fshared, &key1);
939    if (unlikely(ret != 0))
940        goto out;
941    ret = get_futex_key(uaddr2, fshared, &key2);
942    if (unlikely(ret != 0))
943        goto out_put_key1;
944
945    hb1 = hash_futex(&key1);
946    hb2 = hash_futex(&key2);
947
948retry_private:
949    double_lock_hb(hb1, hb2);
950    op_ret = futex_atomic_op_inuser(op, uaddr2);
951    if (unlikely(op_ret < 0)) {
952
953        double_unlock_hb(hb1, hb2);
954
955#ifndef CONFIG_MMU
956        /*
957         * we don't get EFAULT from MMU faults if we don't have an MMU,
958         * but we might get them from range checking
959         */
960        ret = op_ret;
961        goto out_put_keys;
962#endif
963
964        if (unlikely(op_ret != -EFAULT)) {
965            ret = op_ret;
966            goto out_put_keys;
967        }
968
969        ret = fault_in_user_writeable(uaddr2);
970        if (ret)
971            goto out_put_keys;
972
973        if (!fshared)
974            goto retry_private;
975
976        put_futex_key(fshared, &key2);
977        put_futex_key(fshared, &key1);
978        goto retry;
979    }
980
981    head = &hb1->chain;
982
983    plist_for_each_entry_safe(this, next, head, list) {
984        if (match_futex (&this->key, &key1)) {
985            wake_futex(this);
986            if (++ret >= nr_wake)
987                break;
988        }
989    }
990
991    if (op_ret > 0) {
992        head = &hb2->chain;
993
994        op_ret = 0;
995        plist_for_each_entry_safe(this, next, head, list) {
996            if (match_futex (&this->key, &key2)) {
997                wake_futex(this);
998                if (++op_ret >= nr_wake2)
999                    break;
1000            }
1001        }
1002        ret += op_ret;
1003    }
1004
1005    double_unlock_hb(hb1, hb2);
1006out_put_keys:
1007    put_futex_key(fshared, &key2);
1008out_put_key1:
1009    put_futex_key(fshared, &key1);
1010out:
1011    return ret;
1012}
1013
1014/**
1015 * requeue_futex() - Requeue a futex_q from one hb to another
1016 * @q: the futex_q to requeue
1017 * @hb1: the source hash_bucket
1018 * @hb2: the target hash_bucket
1019 * @key2: the new key for the requeued futex_q
1020 */
1021static inline
1022void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1023           struct futex_hash_bucket *hb2, union futex_key *key2)
1024{
1025
1026    /*
1027     * If key1 and key2 hash to the same bucket, no need to
1028     * requeue.
1029     */
1030    if (likely(&hb1->chain != &hb2->chain)) {
1031        plist_del(&q->list, &hb1->chain);
1032        plist_add(&q->list, &hb2->chain);
1033        q->lock_ptr = &hb2->lock;
1034#ifdef CONFIG_DEBUG_PI_LIST
1035        q->list.plist.lock = &hb2->lock;
1036#endif
1037    }
1038    get_futex_key_refs(key2);
1039    q->key = *key2;
1040}
1041
1042/**
1043 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1044 * @q: the futex_q
1045 * @key: the key of the requeue target futex
1046 * @hb: the hash_bucket of the requeue target futex
1047 *
1048 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1049 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1050 * to the requeue target futex so the waiter can detect the wakeup on the right
1051 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1052 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1053 * to protect access to the pi_state to fixup the owner later. Must be called
1054 * with both q->lock_ptr and hb->lock held.
1055 */
1056static inline
1057void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1058               struct futex_hash_bucket *hb)
1059{
1060    get_futex_key_refs(key);
1061    q->key = *key;
1062
1063    WARN_ON(plist_node_empty(&q->list));
1064    plist_del(&q->list, &q->list.plist);
1065
1066    WARN_ON(!q->rt_waiter);
1067    q->rt_waiter = NULL;
1068
1069    q->lock_ptr = &hb->lock;
1070#ifdef CONFIG_DEBUG_PI_LIST
1071    q->list.plist.lock = &hb->lock;
1072#endif
1073
1074    wake_up_state(q->task, TASK_NORMAL);
1075}
1076
1077/**
1078 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1079 * @pifutex: the user address of the to futex
1080 * @hb1: the from futex hash bucket, must be locked by the caller
1081 * @hb2: the to futex hash bucket, must be locked by the caller
1082 * @key1: the from futex key
1083 * @key2: the to futex key
1084 * @ps: address to store the pi_state pointer
1085 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1086 *
1087 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1088 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1089 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1090 * hb1 and hb2 must be held by the caller.
1091 *
1092 * Returns:
1093 * 0 - failed to acquire the lock atomicly
1094 * 1 - acquired the lock
1095 * <0 - error
1096 */
1097static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1098                 struct futex_hash_bucket *hb1,
1099                 struct futex_hash_bucket *hb2,
1100                 union futex_key *key1, union futex_key *key2,
1101                 struct futex_pi_state **ps, int set_waiters)
1102{
1103    struct futex_q *top_waiter = NULL;
1104    u32 curval;
1105    int ret;
1106
1107    if (get_futex_value_locked(&curval, pifutex))
1108        return -EFAULT;
1109
1110    /*
1111     * Find the top_waiter and determine if there are additional waiters.
1112     * If the caller intends to requeue more than 1 waiter to pifutex,
1113     * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1114     * as we have means to handle the possible fault. If not, don't set
1115     * the bit unecessarily as it will force the subsequent unlock to enter
1116     * the kernel.
1117     */
1118    top_waiter = futex_top_waiter(hb1, key1);
1119
1120    /* There are no waiters, nothing for us to do. */
1121    if (!top_waiter)
1122        return 0;
1123
1124    /* Ensure we requeue to the expected futex. */
1125    if (!match_futex(top_waiter->requeue_pi_key, key2))
1126        return -EINVAL;
1127
1128    /*
1129     * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1130     * the contended case or if set_waiters is 1. The pi_state is returned
1131     * in ps in contended cases.
1132     */
1133    ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1134                   set_waiters);
1135    if (ret == 1)
1136        requeue_pi_wake_futex(top_waiter, key2, hb2);
1137
1138    return ret;
1139}
1140
1141/**
1142 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1143 * uaddr1: source futex user address
1144 * uaddr2: target futex user address
1145 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1146 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1147 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1148 * pi futex (pi to pi requeue is not supported)
1149 *
1150 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1151 * uaddr2 atomically on behalf of the top waiter.
1152 *
1153 * Returns:
1154 * >=0 - on success, the number of tasks requeued or woken
1155 * <0 - on error
1156 */
1157static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1158             int nr_wake, int nr_requeue, u32 *cmpval,
1159             int requeue_pi)
1160{
1161    union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1162    int drop_count = 0, task_count = 0, ret;
1163    struct futex_pi_state *pi_state = NULL;
1164    struct futex_hash_bucket *hb1, *hb2;
1165    struct plist_head *head1;
1166    struct futex_q *this, *next;
1167    u32 curval2;
1168
1169    if (requeue_pi) {
1170        /*
1171         * requeue_pi requires a pi_state, try to allocate it now
1172         * without any locks in case it fails.
1173         */
1174        if (refill_pi_state_cache())
1175            return -ENOMEM;
1176        /*
1177         * requeue_pi must wake as many tasks as it can, up to nr_wake
1178         * + nr_requeue, since it acquires the rt_mutex prior to
1179         * returning to userspace, so as to not leave the rt_mutex with
1180         * waiters and no owner. However, second and third wake-ups
1181         * cannot be predicted as they involve race conditions with the
1182         * first wake and a fault while looking up the pi_state. Both
1183         * pthread_cond_signal() and pthread_cond_broadcast() should
1184         * use nr_wake=1.
1185         */
1186        if (nr_wake != 1)
1187            return -EINVAL;
1188    }
1189
1190retry:
1191    if (pi_state != NULL) {
1192        /*
1193         * We will have to lookup the pi_state again, so free this one
1194         * to keep the accounting correct.
1195         */
1196        free_pi_state(pi_state);
1197        pi_state = NULL;
1198    }
1199
1200    ret = get_futex_key(uaddr1, fshared, &key1);
1201    if (unlikely(ret != 0))
1202        goto out;
1203    ret = get_futex_key(uaddr2, fshared, &key2);
1204    if (unlikely(ret != 0))
1205        goto out_put_key1;
1206
1207    hb1 = hash_futex(&key1);
1208    hb2 = hash_futex(&key2);
1209
1210retry_private:
1211    double_lock_hb(hb1, hb2);
1212
1213    if (likely(cmpval != NULL)) {
1214        u32 curval;
1215
1216        ret = get_futex_value_locked(&curval, uaddr1);
1217
1218        if (unlikely(ret)) {
1219            double_unlock_hb(hb1, hb2);
1220
1221            ret = get_user(curval, uaddr1);
1222            if (ret)
1223                goto out_put_keys;
1224
1225            if (!fshared)
1226                goto retry_private;
1227
1228            put_futex_key(fshared, &key2);
1229            put_futex_key(fshared, &key1);
1230            goto retry;
1231        }
1232        if (curval != *cmpval) {
1233            ret = -EAGAIN;
1234            goto out_unlock;
1235        }
1236    }
1237
1238    if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1239        /*
1240         * Attempt to acquire uaddr2 and wake the top waiter. If we
1241         * intend to requeue waiters, force setting the FUTEX_WAITERS
1242         * bit. We force this here where we are able to easily handle
1243         * faults rather in the requeue loop below.
1244         */
1245        ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1246                         &key2, &pi_state, nr_requeue);
1247
1248        /*
1249         * At this point the top_waiter has either taken uaddr2 or is
1250         * waiting on it. If the former, then the pi_state will not
1251         * exist yet, look it up one more time to ensure we have a
1252         * reference to it.
1253         */
1254        if (ret == 1) {
1255            WARN_ON(pi_state);
1256            drop_count++;
1257            task_count++;
1258            ret = get_futex_value_locked(&curval2, uaddr2);
1259            if (!ret)
1260                ret = lookup_pi_state(curval2, hb2, &key2,
1261                              &pi_state);
1262        }
1263
1264        switch (ret) {
1265        case 0:
1266            break;
1267        case -EFAULT:
1268            double_unlock_hb(hb1, hb2);
1269            put_futex_key(fshared, &key2);
1270            put_futex_key(fshared, &key1);
1271            ret = fault_in_user_writeable(uaddr2);
1272            if (!ret)
1273                goto retry;
1274            goto out;
1275        case -EAGAIN:
1276            /* The owner was exiting, try again. */
1277            double_unlock_hb(hb1, hb2);
1278            put_futex_key(fshared, &key2);
1279            put_futex_key(fshared, &key1);
1280            cond_resched();
1281            goto retry;
1282        default:
1283            goto out_unlock;
1284        }
1285    }
1286
1287    head1 = &hb1->chain;
1288    plist_for_each_entry_safe(this, next, head1, list) {
1289        if (task_count - nr_wake >= nr_requeue)
1290            break;
1291
1292        if (!match_futex(&this->key, &key1))
1293            continue;
1294
1295        /*
1296         * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1297         * be paired with each other and no other futex ops.
1298         */
1299        if ((requeue_pi && !this->rt_waiter) ||
1300            (!requeue_pi && this->rt_waiter)) {
1301            ret = -EINVAL;
1302            break;
1303        }
1304
1305        /*
1306         * Wake nr_wake waiters. For requeue_pi, if we acquired the
1307         * lock, we already woke the top_waiter. If not, it will be
1308         * woken by futex_unlock_pi().
1309         */
1310        if (++task_count <= nr_wake && !requeue_pi) {
1311            wake_futex(this);
1312            continue;
1313        }
1314
1315        /* Ensure we requeue to the expected futex for requeue_pi. */
1316        if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1317            ret = -EINVAL;
1318            break;
1319        }
1320
1321        /*
1322         * Requeue nr_requeue waiters and possibly one more in the case
1323         * of requeue_pi if we couldn't acquire the lock atomically.
1324         */
1325        if (requeue_pi) {
1326            /* Prepare the waiter to take the rt_mutex. */
1327            atomic_inc(&pi_state->refcount);
1328            this->pi_state = pi_state;
1329            ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1330                            this->rt_waiter,
1331                            this->task, 1);
1332            if (ret == 1) {
1333                /* We got the lock. */
1334                requeue_pi_wake_futex(this, &key2, hb2);
1335                drop_count++;
1336                continue;
1337            } else if (ret) {
1338                /* -EDEADLK */
1339                this->pi_state = NULL;
1340                free_pi_state(pi_state);
1341                goto out_unlock;
1342            }
1343        }
1344        requeue_futex(this, hb1, hb2, &key2);
1345        drop_count++;
1346    }
1347
1348out_unlock:
1349    double_unlock_hb(hb1, hb2);
1350
1351    /*
1352     * drop_futex_key_refs() must be called outside the spinlocks. During
1353     * the requeue we moved futex_q's from the hash bucket at key1 to the
1354     * one at key2 and updated their key pointer. We no longer need to
1355     * hold the references to key1.
1356     */
1357    while (--drop_count >= 0)
1358        drop_futex_key_refs(&key1);
1359
1360out_put_keys:
1361    put_futex_key(fshared, &key2);
1362out_put_key1:
1363    put_futex_key(fshared, &key1);
1364out:
1365    if (pi_state != NULL)
1366        free_pi_state(pi_state);
1367    return ret ? ret : task_count;
1368}
1369
1370/* The key must be already stored in q->key. */
1371static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1372{
1373    struct futex_hash_bucket *hb;
1374
1375    get_futex_key_refs(&q->key);
1376    hb = hash_futex(&q->key);
1377    q->lock_ptr = &hb->lock;
1378
1379    spin_lock(&hb->lock);
1380    return hb;
1381}
1382
1383static inline void
1384queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1385{
1386    spin_unlock(&hb->lock);
1387    drop_futex_key_refs(&q->key);
1388}
1389
1390/**
1391 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1392 * @q: The futex_q to enqueue
1393 * @hb: The destination hash bucket
1394 *
1395 * The hb->lock must be held by the caller, and is released here. A call to
1396 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1397 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1398 * or nothing if the unqueue is done as part of the wake process and the unqueue
1399 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1400 * an example).
1401 */
1402static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1403{
1404    int prio;
1405
1406    /*
1407     * The priority used to register this element is
1408     * - either the real thread-priority for the real-time threads
1409     * (i.e. threads with a priority lower than MAX_RT_PRIO)
1410     * - or MAX_RT_PRIO for non-RT threads.
1411     * Thus, all RT-threads are woken first in priority order, and
1412     * the others are woken last, in FIFO order.
1413     */
1414    prio = min(current->normal_prio, MAX_RT_PRIO);
1415
1416    plist_node_init(&q->list, prio);
1417#ifdef CONFIG_DEBUG_PI_LIST
1418    q->list.plist.lock = &hb->lock;
1419#endif
1420    plist_add(&q->list, &hb->chain);
1421    q->task = current;
1422    spin_unlock(&hb->lock);
1423}
1424
1425/**
1426 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1427 * @q: The futex_q to unqueue
1428 *
1429 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1430 * be paired with exactly one earlier call to queue_me().
1431 *
1432 * Returns:
1433 * 1 - if the futex_q was still queued (and we removed unqueued it)
1434 * 0 - if the futex_q was already removed by the waking thread
1435 */
1436static int unqueue_me(struct futex_q *q)
1437{
1438    spinlock_t *lock_ptr;
1439    int ret = 0;
1440
1441    /* In the common case we don't take the spinlock, which is nice. */
1442retry:
1443    lock_ptr = q->lock_ptr;
1444    barrier();
1445    if (lock_ptr != NULL) {
1446        spin_lock(lock_ptr);
1447        /*
1448         * q->lock_ptr can change between reading it and
1449         * spin_lock(), causing us to take the wrong lock. This
1450         * corrects the race condition.
1451         *
1452         * Reasoning goes like this: if we have the wrong lock,
1453         * q->lock_ptr must have changed (maybe several times)
1454         * between reading it and the spin_lock(). It can
1455         * change again after the spin_lock() but only if it was
1456         * already changed before the spin_lock(). It cannot,
1457         * however, change back to the original value. Therefore
1458         * we can detect whether we acquired the correct lock.
1459         */
1460        if (unlikely(lock_ptr != q->lock_ptr)) {
1461            spin_unlock(lock_ptr);
1462            goto retry;
1463        }
1464        WARN_ON(plist_node_empty(&q->list));
1465        plist_del(&q->list, &q->list.plist);
1466
1467        BUG_ON(q->pi_state);
1468
1469        spin_unlock(lock_ptr);
1470        ret = 1;
1471    }
1472
1473    drop_futex_key_refs(&q->key);
1474    return ret;
1475}
1476
1477/*
1478 * PI futexes can not be requeued and must remove themself from the
1479 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1480 * and dropped here.
1481 */
1482static void unqueue_me_pi(struct futex_q *q)
1483{
1484    WARN_ON(plist_node_empty(&q->list));
1485    plist_del(&q->list, &q->list.plist);
1486
1487    BUG_ON(!q->pi_state);
1488    free_pi_state(q->pi_state);
1489    q->pi_state = NULL;
1490
1491    spin_unlock(q->lock_ptr);
1492
1493    drop_futex_key_refs(&q->key);
1494}
1495
1496/*
1497 * Fixup the pi_state owner with the new owner.
1498 *
1499 * Must be called with hash bucket lock held and mm->sem held for non
1500 * private futexes.
1501 */
1502static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1503                struct task_struct *newowner, int fshared)
1504{
1505    u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1506    struct futex_pi_state *pi_state = q->pi_state;
1507    struct task_struct *oldowner = pi_state->owner;
1508    u32 uval, curval, newval;
1509    int ret;
1510
1511    /* Owner died? */
1512    if (!pi_state->owner)
1513        newtid |= FUTEX_OWNER_DIED;
1514
1515    /*
1516     * We are here either because we stole the rtmutex from the
1517     * pending owner or we are the pending owner which failed to
1518     * get the rtmutex. We have to replace the pending owner TID
1519     * in the user space variable. This must be atomic as we have
1520     * to preserve the owner died bit here.
1521     *
1522     * Note: We write the user space value _before_ changing the pi_state
1523     * because we can fault here. Imagine swapped out pages or a fork
1524     * that marked all the anonymous memory readonly for cow.
1525     *
1526     * Modifying pi_state _before_ the user space value would
1527     * leave the pi_state in an inconsistent state when we fault
1528     * here, because we need to drop the hash bucket lock to
1529     * handle the fault. This might be observed in the PID check
1530     * in lookup_pi_state.
1531     */
1532retry:
1533    if (get_futex_value_locked(&uval, uaddr))
1534        goto handle_fault;
1535
1536    while (1) {
1537        newval = (uval & FUTEX_OWNER_DIED) | newtid;
1538
1539        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1540
1541        if (curval == -EFAULT)
1542            goto handle_fault;
1543        if (curval == uval)
1544            break;
1545        uval = curval;
1546    }
1547
1548    /*
1549     * We fixed up user space. Now we need to fix the pi_state
1550     * itself.
1551     */
1552    if (pi_state->owner != NULL) {
1553        spin_lock_irq(&pi_state->owner->pi_lock);
1554        WARN_ON(list_empty(&pi_state->list));
1555        list_del_init(&pi_state->list);
1556        spin_unlock_irq(&pi_state->owner->pi_lock);
1557    }
1558
1559    pi_state->owner = newowner;
1560
1561    spin_lock_irq(&newowner->pi_lock);
1562    WARN_ON(!list_empty(&pi_state->list));
1563    list_add(&pi_state->list, &newowner->pi_state_list);
1564    spin_unlock_irq(&newowner->pi_lock);
1565    return 0;
1566
1567    /*
1568     * To handle the page fault we need to drop the hash bucket
1569     * lock here. That gives the other task (either the pending
1570     * owner itself or the task which stole the rtmutex) the
1571     * chance to try the fixup of the pi_state. So once we are
1572     * back from handling the fault we need to check the pi_state
1573     * after reacquiring the hash bucket lock and before trying to
1574     * do another fixup. When the fixup has been done already we
1575     * simply return.
1576     */
1577handle_fault:
1578    spin_unlock(q->lock_ptr);
1579
1580    ret = fault_in_user_writeable(uaddr);
1581
1582    spin_lock(q->lock_ptr);
1583
1584    /*
1585     * Check if someone else fixed it for us:
1586     */
1587    if (pi_state->owner != oldowner)
1588        return 0;
1589
1590    if (ret)
1591        return ret;
1592
1593    goto retry;
1594}
1595
1596/*
1597 * In case we must use restart_block to restart a futex_wait,
1598 * we encode in the 'flags' shared capability
1599 */
1600#define FLAGS_SHARED 0x01
1601#define FLAGS_CLOCKRT 0x02
1602#define FLAGS_HAS_TIMEOUT 0x04
1603
1604static long futex_wait_restart(struct restart_block *restart);
1605
1606/**
1607 * fixup_owner() - Post lock pi_state and corner case management
1608 * @uaddr: user address of the futex
1609 * @fshared: whether the futex is shared (1) or not (0)
1610 * @q: futex_q (contains pi_state and access to the rt_mutex)
1611 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1612 *
1613 * After attempting to lock an rt_mutex, this function is called to cleanup
1614 * the pi_state owner as well as handle race conditions that may allow us to
1615 * acquire the lock. Must be called with the hb lock held.
1616 *
1617 * Returns:
1618 * 1 - success, lock taken
1619 * 0 - success, lock not taken
1620 * <0 - on error (-EFAULT)
1621 */
1622static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1623               int locked)
1624{
1625    struct task_struct *owner;
1626    int ret = 0;
1627
1628    if (locked) {
1629        /*
1630         * Got the lock. We might not be the anticipated owner if we
1631         * did a lock-steal - fix up the PI-state in that case:
1632         */
1633        if (q->pi_state->owner != current)
1634            ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1635        goto out;
1636    }
1637
1638    /*
1639     * Catch the rare case, where the lock was released when we were on the
1640     * way back before we locked the hash bucket.
1641     */
1642    if (q->pi_state->owner == current) {
1643        /*
1644         * Try to get the rt_mutex now. This might fail as some other
1645         * task acquired the rt_mutex after we removed ourself from the
1646         * rt_mutex waiters list.
1647         */
1648        if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1649            locked = 1;
1650            goto out;
1651        }
1652
1653        /*
1654         * pi_state is incorrect, some other task did a lock steal and
1655         * we returned due to timeout or signal without taking the
1656         * rt_mutex. Too late. We can access the rt_mutex_owner without
1657         * locking, as the other task is now blocked on the hash bucket
1658         * lock. Fix the state up.
1659         */
1660        owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1661        ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1662        goto out;
1663    }
1664
1665    /*
1666     * Paranoia check. If we did not take the lock, then we should not be
1667     * the owner, nor the pending owner, of the rt_mutex.
1668     */
1669    if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1670        printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1671                "pi-state %p\n", ret,
1672                q->pi_state->pi_mutex.owner,
1673                q->pi_state->owner);
1674
1675out:
1676    return ret ? ret : locked;
1677}
1678
1679/**
1680 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1681 * @hb: the futex hash bucket, must be locked by the caller
1682 * @q: the futex_q to queue up on
1683 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1684 */
1685static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1686                struct hrtimer_sleeper *timeout)
1687{
1688    /*
1689     * The task state is guaranteed to be set before another task can
1690     * wake it. set_current_state() is implemented using set_mb() and
1691     * queue_me() calls spin_unlock() upon completion, both serializing
1692     * access to the hash list and forcing another memory barrier.
1693     */
1694    set_current_state(TASK_INTERRUPTIBLE);
1695    queue_me(q, hb);
1696
1697    /* Arm the timer */
1698    if (timeout) {
1699        hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1700        if (!hrtimer_active(&timeout->timer))
1701            timeout->task = NULL;
1702    }
1703
1704    /*
1705     * If we have been removed from the hash list, then another task
1706     * has tried to wake us, and we can skip the call to schedule().
1707     */
1708    if (likely(!plist_node_empty(&q->list))) {
1709        /*
1710         * If the timer has already expired, current will already be
1711         * flagged for rescheduling. Only call schedule if there
1712         * is no timeout, or if it has yet to expire.
1713         */
1714        if (!timeout || timeout->task)
1715            schedule();
1716    }
1717    __set_current_state(TASK_RUNNING);
1718}
1719
1720/**
1721 * futex_wait_setup() - Prepare to wait on a futex
1722 * @uaddr: the futex userspace address
1723 * @val: the expected value
1724 * @fshared: whether the futex is shared (1) or not (0)
1725 * @q: the associated futex_q
1726 * @hb: storage for hash_bucket pointer to be returned to caller
1727 *
1728 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1729 * compare it with the expected value. Handle atomic faults internally.
1730 * Return with the hb lock held and a q.key reference on success, and unlocked
1731 * with no q.key reference on failure.
1732 *
1733 * Returns:
1734 * 0 - uaddr contains val and hb has been locked
1735 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1736 */
1737static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1738               struct futex_q *q, struct futex_hash_bucket **hb)
1739{
1740    u32 uval;
1741    int ret;
1742
1743    /*
1744     * Access the page AFTER the hash-bucket is locked.
1745     * Order is important:
1746     *
1747     * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1748     * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1749     *
1750     * The basic logical guarantee of a futex is that it blocks ONLY
1751     * if cond(var) is known to be true at the time of blocking, for
1752     * any cond. If we queued after testing *uaddr, that would open
1753     * a race condition where we could block indefinitely with
1754     * cond(var) false, which would violate the guarantee.
1755     *
1756     * A consequence is that futex_wait() can return zero and absorb
1757     * a wakeup when *uaddr != val on entry to the syscall. This is
1758     * rare, but normal.
1759     */
1760retry:
1761    q->key = FUTEX_KEY_INIT;
1762    ret = get_futex_key(uaddr, fshared, &q->key);
1763    if (unlikely(ret != 0))
1764        return ret;
1765
1766retry_private:
1767    *hb = queue_lock(q);
1768
1769    ret = get_futex_value_locked(&uval, uaddr);
1770
1771    if (ret) {
1772        queue_unlock(q, *hb);
1773
1774        ret = get_user(uval, uaddr);
1775        if (ret)
1776            goto out;
1777
1778        if (!fshared)
1779            goto retry_private;
1780
1781        put_futex_key(fshared, &q->key);
1782        goto retry;
1783    }
1784
1785    if (uval != val) {
1786        queue_unlock(q, *hb);
1787        ret = -EWOULDBLOCK;
1788    }
1789
1790out:
1791    if (ret)
1792        put_futex_key(fshared, &q->key);
1793    return ret;
1794}
1795
1796static int futex_wait(u32 __user *uaddr, int fshared,
1797              u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1798{
1799    struct hrtimer_sleeper timeout, *to = NULL;
1800    struct restart_block *restart;
1801    struct futex_hash_bucket *hb;
1802    struct futex_q q;
1803    int ret;
1804
1805    if (!bitset)
1806        return -EINVAL;
1807
1808    q.pi_state = NULL;
1809    q.bitset = bitset;
1810    q.rt_waiter = NULL;
1811    q.requeue_pi_key = NULL;
1812
1813    if (abs_time) {
1814        to = &timeout;
1815
1816        hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1817                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1818        hrtimer_init_sleeper(to, current);
1819        hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1820                         current->timer_slack_ns);
1821    }
1822
1823retry:
1824    /* Prepare to wait on uaddr. */
1825    ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1826    if (ret)
1827        goto out;
1828
1829    /* queue_me and wait for wakeup, timeout, or a signal. */
1830    futex_wait_queue_me(hb, &q, to);
1831
1832    /* If we were woken (and unqueued), we succeeded, whatever. */
1833    ret = 0;
1834    if (!unqueue_me(&q))
1835        goto out_put_key;
1836    ret = -ETIMEDOUT;
1837    if (to && !to->task)
1838        goto out_put_key;
1839
1840    /*
1841     * We expect signal_pending(current), but we might be the
1842     * victim of a spurious wakeup as well.
1843     */
1844    if (!signal_pending(current)) {
1845        put_futex_key(fshared, &q.key);
1846        goto retry;
1847    }
1848
1849    ret = -ERESTARTSYS;
1850    if (!abs_time)
1851        goto out_put_key;
1852
1853    restart = &current_thread_info()->restart_block;
1854    restart->fn = futex_wait_restart;
1855    restart->futex.uaddr = (u32 *)uaddr;
1856    restart->futex.val = val;
1857    restart->futex.time = abs_time->tv64;
1858    restart->futex.bitset = bitset;
1859    restart->futex.flags = FLAGS_HAS_TIMEOUT;
1860
1861    if (fshared)
1862        restart->futex.flags |= FLAGS_SHARED;
1863    if (clockrt)
1864        restart->futex.flags |= FLAGS_CLOCKRT;
1865
1866    ret = -ERESTART_RESTARTBLOCK;
1867
1868out_put_key:
1869    put_futex_key(fshared, &q.key);
1870out:
1871    if (to) {
1872        hrtimer_cancel(&to->timer);
1873        destroy_hrtimer_on_stack(&to->timer);
1874    }
1875    return ret;
1876}
1877
1878
1879static long futex_wait_restart(struct restart_block *restart)
1880{
1881    u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1882    int fshared = 0;
1883    ktime_t t, *tp = NULL;
1884
1885    if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1886        t.tv64 = restart->futex.time;
1887        tp = &t;
1888    }
1889    restart->fn = do_no_restart_syscall;
1890    if (restart->futex.flags & FLAGS_SHARED)
1891        fshared = 1;
1892    return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1893                restart->futex.bitset,
1894                restart->futex.flags & FLAGS_CLOCKRT);
1895}
1896
1897
1898/*
1899 * Userspace tried a 0 -> TID atomic transition of the futex value
1900 * and failed. The kernel side here does the whole locking operation:
1901 * if there are waiters then it will block, it does PI, etc. (Due to
1902 * races the kernel might see a 0 value of the futex too.)
1903 */
1904static int futex_lock_pi(u32 __user *uaddr, int fshared,
1905             int detect, ktime_t *time, int trylock)
1906{
1907    struct hrtimer_sleeper timeout, *to = NULL;
1908    struct futex_hash_bucket *hb;
1909    struct futex_q q;
1910    int res, ret;
1911
1912    if (refill_pi_state_cache())
1913        return -ENOMEM;
1914
1915    if (time) {
1916        to = &timeout;
1917        hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1918                      HRTIMER_MODE_ABS);
1919        hrtimer_init_sleeper(to, current);
1920        hrtimer_set_expires(&to->timer, *time);
1921    }
1922
1923    q.pi_state = NULL;
1924    q.rt_waiter = NULL;
1925    q.requeue_pi_key = NULL;
1926retry:
1927    q.key = FUTEX_KEY_INIT;
1928    ret = get_futex_key(uaddr, fshared, &q.key);
1929    if (unlikely(ret != 0))
1930        goto out;
1931
1932retry_private:
1933    hb = queue_lock(&q);
1934
1935    ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1936    if (unlikely(ret)) {
1937        switch (ret) {
1938        case 1:
1939            /* We got the lock. */
1940            ret = 0;
1941            goto out_unlock_put_key;
1942        case -EFAULT:
1943            goto uaddr_faulted;
1944        case -EAGAIN:
1945            /*
1946             * Task is exiting and we just wait for the
1947             * exit to complete.
1948             */
1949            queue_unlock(&q, hb);
1950            put_futex_key(fshared, &q.key);
1951            cond_resched();
1952            goto retry;
1953        default:
1954            goto out_unlock_put_key;
1955        }
1956    }
1957
1958    /*
1959     * Only actually queue now that the atomic ops are done:
1960     */
1961    queue_me(&q, hb);
1962
1963    WARN_ON(!q.pi_state);
1964    /*
1965     * Block on the PI mutex:
1966     */
1967    if (!trylock)
1968        ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1969    else {
1970        ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1971        /* Fixup the trylock return value: */
1972        ret = ret ? 0 : -EWOULDBLOCK;
1973    }
1974
1975    spin_lock(q.lock_ptr);
1976    /*
1977     * Fixup the pi_state owner and possibly acquire the lock if we
1978     * haven't already.
1979     */
1980    res = fixup_owner(uaddr, fshared, &q, !ret);
1981    /*
1982     * If fixup_owner() returned an error, proprogate that. If it acquired
1983     * the lock, clear our -ETIMEDOUT or -EINTR.
1984     */
1985    if (res)
1986        ret = (res < 0) ? res : 0;
1987
1988    /*
1989     * If fixup_owner() faulted and was unable to handle the fault, unlock
1990     * it and return the fault to userspace.
1991     */
1992    if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1993        rt_mutex_unlock(&q.pi_state->pi_mutex);
1994
1995    /* Unqueue and drop the lock */
1996    unqueue_me_pi(&q);
1997
1998    goto out_put_key;
1999
2000out_unlock_put_key:
2001    queue_unlock(&q, hb);
2002
2003out_put_key:
2004    put_futex_key(fshared, &q.key);
2005out:
2006    if (to)
2007        destroy_hrtimer_on_stack(&to->timer);
2008    return ret != -EINTR ? ret : -ERESTARTNOINTR;
2009
2010uaddr_faulted:
2011    queue_unlock(&q, hb);
2012
2013    ret = fault_in_user_writeable(uaddr);
2014    if (ret)
2015        goto out_put_key;
2016
2017    if (!fshared)
2018        goto retry_private;
2019
2020    put_futex_key(fshared, &q.key);
2021    goto retry;
2022}
2023
2024/*
2025 * Userspace attempted a TID -> 0 atomic transition, and failed.
2026 * This is the in-kernel slowpath: we look up the PI state (if any),
2027 * and do the rt-mutex unlock.
2028 */
2029static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2030{
2031    struct futex_hash_bucket *hb;
2032    struct futex_q *this, *next;
2033    u32 uval;
2034    struct plist_head *head;
2035    union futex_key key = FUTEX_KEY_INIT;
2036    int ret;
2037
2038retry:
2039    if (get_user(uval, uaddr))
2040        return -EFAULT;
2041    /*
2042     * We release only a lock we actually own:
2043     */
2044    if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2045        return -EPERM;
2046
2047    ret = get_futex_key(uaddr, fshared, &key);
2048    if (unlikely(ret != 0))
2049        goto out;
2050
2051    hb = hash_futex(&key);
2052    spin_lock(&hb->lock);
2053
2054    /*
2055     * To avoid races, try to do the TID -> 0 atomic transition
2056     * again. If it succeeds then we can return without waking
2057     * anyone else up:
2058     */
2059    if (!(uval & FUTEX_OWNER_DIED))
2060        uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2061
2062
2063    if (unlikely(uval == -EFAULT))
2064        goto pi_faulted;
2065    /*
2066     * Rare case: we managed to release the lock atomically,
2067     * no need to wake anyone else up:
2068     */
2069    if (unlikely(uval == task_pid_vnr(current)))
2070        goto out_unlock;
2071
2072    /*
2073     * Ok, other tasks may need to be woken up - check waiters
2074     * and do the wakeup if necessary:
2075     */
2076    head = &hb->chain;
2077
2078    plist_for_each_entry_safe(this, next, head, list) {
2079        if (!match_futex (&this->key, &key))
2080            continue;
2081        ret = wake_futex_pi(uaddr, uval, this);
2082        /*
2083         * The atomic access to the futex value
2084         * generated a pagefault, so retry the
2085         * user-access and the wakeup:
2086         */
2087        if (ret == -EFAULT)
2088            goto pi_faulted;
2089        goto out_unlock;
2090    }
2091    /*
2092     * No waiters - kernel unlocks the futex:
2093     */
2094    if (!(uval & FUTEX_OWNER_DIED)) {
2095        ret = unlock_futex_pi(uaddr, uval);
2096        if (ret == -EFAULT)
2097            goto pi_faulted;
2098    }
2099
2100out_unlock:
2101    spin_unlock(&hb->lock);
2102    put_futex_key(fshared, &key);
2103
2104out:
2105    return ret;
2106
2107pi_faulted:
2108    spin_unlock(&hb->lock);
2109    put_futex_key(fshared, &key);
2110
2111    ret = fault_in_user_writeable(uaddr);
2112    if (!ret)
2113        goto retry;
2114
2115    return ret;
2116}
2117
2118/**
2119 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2120 * @hb: the hash_bucket futex_q was original enqueued on
2121 * @q: the futex_q woken while waiting to be requeued
2122 * @key2: the futex_key of the requeue target futex
2123 * @timeout: the timeout associated with the wait (NULL if none)
2124 *
2125 * Detect if the task was woken on the initial futex as opposed to the requeue
2126 * target futex. If so, determine if it was a timeout or a signal that caused
2127 * the wakeup and return the appropriate error code to the caller. Must be
2128 * called with the hb lock held.
2129 *
2130 * Returns
2131 * 0 - no early wakeup detected
2132 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2133 */
2134static inline
2135int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2136                   struct futex_q *q, union futex_key *key2,
2137                   struct hrtimer_sleeper *timeout)
2138{
2139    int ret = 0;
2140
2141    /*
2142     * With the hb lock held, we avoid races while we process the wakeup.
2143     * We only need to hold hb (and not hb2) to ensure atomicity as the
2144     * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2145     * It can't be requeued from uaddr2 to something else since we don't
2146     * support a PI aware source futex for requeue.
2147     */
2148    if (!match_futex(&q->key, key2)) {
2149        WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2150        /*
2151         * We were woken prior to requeue by a timeout or a signal.
2152         * Unqueue the futex_q and determine which it was.
2153         */
2154        plist_del(&q->list, &q->list.plist);
2155
2156        /* Handle spurious wakeups gracefully */
2157        ret = -EWOULDBLOCK;
2158        if (timeout && !timeout->task)
2159            ret = -ETIMEDOUT;
2160        else if (signal_pending(current))
2161            ret = -ERESTARTNOINTR;
2162    }
2163    return ret;
2164}
2165
2166/**
2167 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2168 * @uaddr: the futex we initially wait on (non-pi)
2169 * @fshared: whether the futexes are shared (1) or not (0). They must be
2170 * the same type, no requeueing from private to shared, etc.
2171 * @val: the expected value of uaddr
2172 * @abs_time: absolute timeout
2173 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2174 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2175 * @uaddr2: the pi futex we will take prior to returning to user-space
2176 *
2177 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2178 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2179 * complete the acquisition of the rt_mutex prior to returning to userspace.
2180 * This ensures the rt_mutex maintains an owner when it has waiters; without
2181 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2182 * need to.
2183 *
2184 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2185 * via the following:
2186 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2187 * 2) wakeup on uaddr2 after a requeue
2188 * 3) signal
2189 * 4) timeout
2190 *
2191 * If 3, cleanup and return -ERESTARTNOINTR.
2192 *
2193 * If 2, we may then block on trying to take the rt_mutex and return via:
2194 * 5) successful lock
2195 * 6) signal
2196 * 7) timeout
2197 * 8) other lock acquisition failure
2198 *
2199 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2200 *
2201 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2202 *
2203 * Returns:
2204 * 0 - On success
2205 * <0 - On error
2206 */
2207static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2208                 u32 val, ktime_t *abs_time, u32 bitset,
2209                 int clockrt, u32 __user *uaddr2)
2210{
2211    struct hrtimer_sleeper timeout, *to = NULL;
2212    struct rt_mutex_waiter rt_waiter;
2213    struct rt_mutex *pi_mutex = NULL;
2214    struct futex_hash_bucket *hb;
2215    union futex_key key2;
2216    struct futex_q q;
2217    int res, ret;
2218
2219    if (!bitset)
2220        return -EINVAL;
2221
2222    if (abs_time) {
2223        to = &timeout;
2224        hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2225                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2226        hrtimer_init_sleeper(to, current);
2227        hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2228                         current->timer_slack_ns);
2229    }
2230
2231    /*
2232     * The waiter is allocated on our stack, manipulated by the requeue
2233     * code while we sleep on uaddr.
2234     */
2235    debug_rt_mutex_init_waiter(&rt_waiter);
2236    rt_waiter.task = NULL;
2237
2238    key2 = FUTEX_KEY_INIT;
2239    ret = get_futex_key(uaddr2, fshared, &key2);
2240    if (unlikely(ret != 0))
2241        goto out;
2242
2243    q.pi_state = NULL;
2244    q.bitset = bitset;
2245    q.rt_waiter = &rt_waiter;
2246    q.requeue_pi_key = &key2;
2247
2248    /* Prepare to wait on uaddr. */
2249    ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2250    if (ret)
2251        goto out_key2;
2252
2253    /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2254    futex_wait_queue_me(hb, &q, to);
2255
2256    spin_lock(&hb->lock);
2257    ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2258    spin_unlock(&hb->lock);
2259    if (ret)
2260        goto out_put_keys;
2261
2262    /*
2263     * In order for us to be here, we know our q.key == key2, and since
2264     * we took the hb->lock above, we also know that futex_requeue() has
2265     * completed and we no longer have to concern ourselves with a wakeup
2266     * race with the atomic proxy lock acquition by the requeue code.
2267     */
2268
2269    /* Check if the requeue code acquired the second futex for us. */
2270    if (!q.rt_waiter) {
2271        /*
2272         * Got the lock. We might not be the anticipated owner if we
2273         * did a lock-steal - fix up the PI-state in that case.
2274         */
2275        if (q.pi_state && (q.pi_state->owner != current)) {
2276            spin_lock(q.lock_ptr);
2277            ret = fixup_pi_state_owner(uaddr2, &q, current,
2278                           fshared);
2279            spin_unlock(q.lock_ptr);
2280        }
2281    } else {
2282        /*
2283         * We have been woken up by futex_unlock_pi(), a timeout, or a
2284         * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2285         * the pi_state.
2286         */
2287        WARN_ON(!&q.pi_state);
2288        pi_mutex = &q.pi_state->pi_mutex;
2289        ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2290        debug_rt_mutex_free_waiter(&rt_waiter);
2291
2292        spin_lock(q.lock_ptr);
2293        /*
2294         * Fixup the pi_state owner and possibly acquire the lock if we
2295         * haven't already.
2296         */
2297        res = fixup_owner(uaddr2, fshared, &q, !ret);
2298        /*
2299         * If fixup_owner() returned an error, proprogate that. If it
2300         * acquired the lock, clear -ETIMEDOUT or -EINTR.
2301         */
2302        if (res)
2303            ret = (res < 0) ? res : 0;
2304
2305        /* Unqueue and drop the lock. */
2306        unqueue_me_pi(&q);
2307    }
2308
2309    /*
2310     * If fixup_pi_state_owner() faulted and was unable to handle the
2311     * fault, unlock the rt_mutex and return the fault to userspace.
2312     */
2313    if (ret == -EFAULT) {
2314        if (rt_mutex_owner(pi_mutex) == current)
2315            rt_mutex_unlock(pi_mutex);
2316    } else if (ret == -EINTR) {
2317        /*
2318         * We've already been requeued, but cannot restart by calling
2319         * futex_lock_pi() directly. We could restart this syscall, but
2320         * it would detect that the user space "val" changed and return
2321         * -EWOULDBLOCK. Save the overhead of the restart and return
2322         * -EWOULDBLOCK directly.
2323         */
2324        ret = -EWOULDBLOCK;
2325    }
2326
2327out_put_keys:
2328    put_futex_key(fshared, &q.key);
2329out_key2:
2330    put_futex_key(fshared, &key2);
2331
2332out:
2333    if (to) {
2334        hrtimer_cancel(&to->timer);
2335        destroy_hrtimer_on_stack(&to->timer);
2336    }
2337    return ret;
2338}
2339
2340/*
2341 * Support for robust futexes: the kernel cleans up held futexes at
2342 * thread exit time.
2343 *
2344 * Implementation: user-space maintains a per-thread list of locks it
2345 * is holding. Upon do_exit(), the kernel carefully walks this list,
2346 * and marks all locks that are owned by this thread with the
2347 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2348 * always manipulated with the lock held, so the list is private and
2349 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2350 * field, to allow the kernel to clean up if the thread dies after
2351 * acquiring the lock, but just before it could have added itself to
2352 * the list. There can only be one such pending lock.
2353 */
2354
2355/**
2356 * sys_set_robust_list() - Set the robust-futex list head of a task
2357 * @head: pointer to the list-head
2358 * @len: length of the list-head, as userspace expects
2359 */
2360SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2361        size_t, len)
2362{
2363    if (!futex_cmpxchg_enabled)
2364        return -ENOSYS;
2365    /*
2366     * The kernel knows only one size for now:
2367     */
2368    if (unlikely(len != sizeof(*head)))
2369        return -EINVAL;
2370
2371    current->robust_list = head;
2372
2373    return 0;
2374}
2375
2376/**
2377 * sys_get_robust_list() - Get the robust-futex list head of a task
2378 * @pid: pid of the process [zero for current task]
2379 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2380 * @len_ptr: pointer to a length field, the kernel fills in the header size
2381 */
2382SYSCALL_DEFINE3(get_robust_list, int, pid,
2383        struct robust_list_head __user * __user *, head_ptr,
2384        size_t __user *, len_ptr)
2385{
2386    struct robust_list_head __user *head;
2387    unsigned long ret;
2388    const struct cred *cred = current_cred(), *pcred;
2389
2390    if (!futex_cmpxchg_enabled)
2391        return -ENOSYS;
2392
2393    if (!pid)
2394        head = current->robust_list;
2395    else {
2396        struct task_struct *p;
2397
2398        ret = -ESRCH;
2399        rcu_read_lock();
2400        p = find_task_by_vpid(pid);
2401        if (!p)
2402            goto err_unlock;
2403        ret = -EPERM;
2404        pcred = __task_cred(p);
2405        if (cred->euid != pcred->euid &&
2406            cred->euid != pcred->uid &&
2407            !capable(CAP_SYS_PTRACE))
2408            goto err_unlock;
2409        head = p->robust_list;
2410        rcu_read_unlock();
2411    }
2412
2413    if (put_user(sizeof(*head), len_ptr))
2414        return -EFAULT;
2415    return put_user(head, head_ptr);
2416
2417err_unlock:
2418    rcu_read_unlock();
2419
2420    return ret;
2421}
2422
2423/*
2424 * Process a futex-list entry, check whether it's owned by the
2425 * dying task, and do notification if so:
2426 */
2427int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2428{
2429    u32 uval, nval, mval;
2430
2431retry:
2432    if (get_user(uval, uaddr))
2433        return -1;
2434
2435    if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2436        /*
2437         * Ok, this dying thread is truly holding a futex
2438         * of interest. Set the OWNER_DIED bit atomically
2439         * via cmpxchg, and if the value had FUTEX_WAITERS
2440         * set, wake up a waiter (if any). (We have to do a
2441         * futex_wake() even if OWNER_DIED is already set -
2442         * to handle the rare but possible case of recursive
2443         * thread-death.) The rest of the cleanup is done in
2444         * userspace.
2445         */
2446        mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2447        nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2448
2449        if (nval == -EFAULT)
2450            return -1;
2451
2452        if (nval != uval)
2453            goto retry;
2454
2455        /*
2456         * Wake robust non-PI futexes here. The wakeup of
2457         * PI futexes happens in exit_pi_state():
2458         */
2459        if (!pi && (uval & FUTEX_WAITERS))
2460            futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2461    }
2462    return 0;
2463}
2464
2465/*
2466 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2467 */
2468static inline int fetch_robust_entry(struct robust_list __user **entry,
2469                     struct robust_list __user * __user *head,
2470                     int *pi)
2471{
2472    unsigned long uentry;
2473
2474    if (get_user(uentry, (unsigned long __user *)head))
2475        return -EFAULT;
2476
2477    *entry = (void __user *)(uentry & ~1UL);
2478    *pi = uentry & 1;
2479
2480    return 0;
2481}
2482
2483/*
2484 * Walk curr->robust_list (very carefully, it's a userspace list!)
2485 * and mark any locks found there dead, and notify any waiters.
2486 *
2487 * We silently return on any sign of list-walking problem.
2488 */
2489void exit_robust_list(struct task_struct *curr)
2490{
2491    struct robust_list_head __user *head = curr->robust_list;
2492    struct robust_list __user *entry, *next_entry, *pending;
2493    unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2494    unsigned long futex_offset;
2495    int rc;
2496
2497    if (!futex_cmpxchg_enabled)
2498        return;
2499
2500    /*
2501     * Fetch the list head (which was registered earlier, via
2502     * sys_set_robust_list()):
2503     */
2504    if (fetch_robust_entry(&entry, &head->list.next, &pi))
2505        return;
2506    /*
2507     * Fetch the relative futex offset:
2508     */
2509    if (get_user(futex_offset, &head->futex_offset))
2510        return;
2511    /*
2512     * Fetch any possibly pending lock-add first, and handle it
2513     * if it exists:
2514     */
2515    if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2516        return;
2517
2518    next_entry = NULL; /* avoid warning with gcc */
2519    while (entry != &head->list) {
2520        /*
2521         * Fetch the next entry in the list before calling
2522         * handle_futex_death:
2523         */
2524        rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2525        /*
2526         * A pending lock might already be on the list, so
2527         * don't process it twice:
2528         */
2529        if (entry != pending)
2530            if (handle_futex_death((void __user *)entry + futex_offset,
2531                        curr, pi))
2532                return;
2533        if (rc)
2534            return;
2535        entry = next_entry;
2536        pi = next_pi;
2537        /*
2538         * Avoid excessively long or circular lists:
2539         */
2540        if (!--limit)
2541            break;
2542
2543        cond_resched();
2544    }
2545
2546    if (pending)
2547        handle_futex_death((void __user *)pending + futex_offset,
2548                   curr, pip);
2549}
2550
2551long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2552        u32 __user *uaddr2, u32 val2, u32 val3)
2553{
2554    int clockrt, ret = -ENOSYS;
2555    int cmd = op & FUTEX_CMD_MASK;
2556    int fshared = 0;
2557
2558    if (!(op & FUTEX_PRIVATE_FLAG))
2559        fshared = 1;
2560
2561    clockrt = op & FUTEX_CLOCK_REALTIME;
2562    if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2563        return -ENOSYS;
2564
2565    switch (cmd) {
2566    case FUTEX_WAIT:
2567        val3 = FUTEX_BITSET_MATCH_ANY;
2568    case FUTEX_WAIT_BITSET:
2569        ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2570        break;
2571    case FUTEX_WAKE:
2572        val3 = FUTEX_BITSET_MATCH_ANY;
2573    case FUTEX_WAKE_BITSET:
2574        ret = futex_wake(uaddr, fshared, val, val3);
2575        break;
2576    case FUTEX_REQUEUE:
2577        ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2578        break;
2579    case FUTEX_CMP_REQUEUE:
2580        ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2581                    0);
2582        break;
2583    case FUTEX_WAKE_OP:
2584        ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2585        break;
2586    case FUTEX_LOCK_PI:
2587        if (futex_cmpxchg_enabled)
2588            ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2589        break;
2590    case FUTEX_UNLOCK_PI:
2591        if (futex_cmpxchg_enabled)
2592            ret = futex_unlock_pi(uaddr, fshared);
2593        break;
2594    case FUTEX_TRYLOCK_PI:
2595        if (futex_cmpxchg_enabled)
2596            ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2597        break;
2598    case FUTEX_WAIT_REQUEUE_PI:
2599        val3 = FUTEX_BITSET_MATCH_ANY;
2600        ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2601                        clockrt, uaddr2);
2602        break;
2603    case FUTEX_CMP_REQUEUE_PI:
2604        ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2605                    1);
2606        break;
2607    default:
2608        ret = -ENOSYS;
2609    }
2610    return ret;
2611}
2612
2613
2614SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2615        struct timespec __user *, utime, u32 __user *, uaddr2,
2616        u32, val3)
2617{
2618    struct timespec ts;
2619    ktime_t t, *tp = NULL;
2620    u32 val2 = 0;
2621    int cmd = op & FUTEX_CMD_MASK;
2622
2623    if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2624              cmd == FUTEX_WAIT_BITSET ||
2625              cmd == FUTEX_WAIT_REQUEUE_PI)) {
2626        if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2627            return -EFAULT;
2628        if (!timespec_valid(&ts))
2629            return -EINVAL;
2630
2631        t = timespec_to_ktime(ts);
2632        if (cmd == FUTEX_WAIT)
2633            t = ktime_add_safe(ktime_get(), t);
2634        tp = &t;
2635    }
2636    /*
2637     * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2638     * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2639     */
2640    if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2641        cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2642        val2 = (u32) (unsigned long) utime;
2643
2644    return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2645}
2646
2647static int __init futex_init(void)
2648{
2649    u32 curval;
2650    int i;
2651
2652    /*
2653     * This will fail and we want it. Some arch implementations do
2654     * runtime detection of the futex_atomic_cmpxchg_inatomic()
2655     * functionality. We want to know that before we call in any
2656     * of the complex code paths. Also we want to prevent
2657     * registration of robust lists in that case. NULL is
2658     * guaranteed to fault and we get -EFAULT on functional
2659     * implementation, the non functional ones will return
2660     * -ENOSYS.
2661     */
2662    curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2663    if (curval == -EFAULT)
2664        futex_cmpxchg_enabled = 1;
2665
2666    for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2667        plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2668        spin_lock_init(&futex_queues[i].lock);
2669    }
2670
2671    return 0;
2672}
2673__initcall(futex_init);
2674

Archive Download this file



interactive