Root/kernel/kexec.c

1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/mutex.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
20#include <linux/ioport.h>
21#include <linux/hardirq.h>
22#include <linux/elf.h>
23#include <linux/elfcore.h>
24#include <linux/utsrelease.h>
25#include <linux/utsname.h>
26#include <linux/numa.h>
27#include <linux/suspend.h>
28#include <linux/device.h>
29#include <linux/freezer.h>
30#include <linux/pm.h>
31#include <linux/cpu.h>
32#include <linux/console.h>
33#include <linux/vmalloc.h>
34
35#include <asm/page.h>
36#include <asm/uaccess.h>
37#include <asm/io.h>
38#include <asm/system.h>
39#include <asm/sections.h>
40
41/* Per cpu memory for storing cpu states in case of system crash. */
42note_buf_t* crash_notes;
43
44/* vmcoreinfo stuff */
45static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47size_t vmcoreinfo_size;
48size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49
50/* Location of the reserved area for the crash kernel */
51struct resource crashk_res = {
52    .name = "Crash kernel",
53    .start = 0,
54    .end = 0,
55    .flags = IORESOURCE_BUSY | IORESOURCE_MEM
56};
57
58int kexec_should_crash(struct task_struct *p)
59{
60    if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
61        return 1;
62    return 0;
63}
64
65/*
66 * When kexec transitions to the new kernel there is a one-to-one
67 * mapping between physical and virtual addresses. On processors
68 * where you can disable the MMU this is trivial, and easy. For
69 * others it is still a simple predictable page table to setup.
70 *
71 * In that environment kexec copies the new kernel to its final
72 * resting place. This means I can only support memory whose
73 * physical address can fit in an unsigned long. In particular
74 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
75 * If the assembly stub has more restrictive requirements
76 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
77 * defined more restrictively in <asm/kexec.h>.
78 *
79 * The code for the transition from the current kernel to the
80 * the new kernel is placed in the control_code_buffer, whose size
81 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
82 * page of memory is necessary, but some architectures require more.
83 * Because this memory must be identity mapped in the transition from
84 * virtual to physical addresses it must live in the range
85 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
86 * modifiable.
87 *
88 * The assembly stub in the control code buffer is passed a linked list
89 * of descriptor pages detailing the source pages of the new kernel,
90 * and the destination addresses of those source pages. As this data
91 * structure is not used in the context of the current OS, it must
92 * be self-contained.
93 *
94 * The code has been made to work with highmem pages and will use a
95 * destination page in its final resting place (if it happens
96 * to allocate it). The end product of this is that most of the
97 * physical address space, and most of RAM can be used.
98 *
99 * Future directions include:
100 * - allocating a page table with the control code buffer identity
101 * mapped, to simplify machine_kexec and make kexec_on_panic more
102 * reliable.
103 */
104
105/*
106 * KIMAGE_NO_DEST is an impossible destination address..., for
107 * allocating pages whose destination address we do not care about.
108 */
109#define KIMAGE_NO_DEST (-1UL)
110
111static int kimage_is_destination_range(struct kimage *image,
112                       unsigned long start, unsigned long end);
113static struct page *kimage_alloc_page(struct kimage *image,
114                       gfp_t gfp_mask,
115                       unsigned long dest);
116
117static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
118                        unsigned long nr_segments,
119                            struct kexec_segment __user *segments)
120{
121    size_t segment_bytes;
122    struct kimage *image;
123    unsigned long i;
124    int result;
125
126    /* Allocate a controlling structure */
127    result = -ENOMEM;
128    image = kzalloc(sizeof(*image), GFP_KERNEL);
129    if (!image)
130        goto out;
131
132    image->head = 0;
133    image->entry = &image->head;
134    image->last_entry = &image->head;
135    image->control_page = ~0; /* By default this does not apply */
136    image->start = entry;
137    image->type = KEXEC_TYPE_DEFAULT;
138
139    /* Initialize the list of control pages */
140    INIT_LIST_HEAD(&image->control_pages);
141
142    /* Initialize the list of destination pages */
143    INIT_LIST_HEAD(&image->dest_pages);
144
145    /* Initialize the list of unuseable pages */
146    INIT_LIST_HEAD(&image->unuseable_pages);
147
148    /* Read in the segments */
149    image->nr_segments = nr_segments;
150    segment_bytes = nr_segments * sizeof(*segments);
151    result = copy_from_user(image->segment, segments, segment_bytes);
152    if (result)
153        goto out;
154
155    /*
156     * Verify we have good destination addresses. The caller is
157     * responsible for making certain we don't attempt to load
158     * the new image into invalid or reserved areas of RAM. This
159     * just verifies it is an address we can use.
160     *
161     * Since the kernel does everything in page size chunks ensure
162     * the destination addreses are page aligned. Too many
163     * special cases crop of when we don't do this. The most
164     * insidious is getting overlapping destination addresses
165     * simply because addresses are changed to page size
166     * granularity.
167     */
168    result = -EADDRNOTAVAIL;
169    for (i = 0; i < nr_segments; i++) {
170        unsigned long mstart, mend;
171
172        mstart = image->segment[i].mem;
173        mend = mstart + image->segment[i].memsz;
174        if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
175            goto out;
176        if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
177            goto out;
178    }
179
180    /* Verify our destination addresses do not overlap.
181     * If we alloed overlapping destination addresses
182     * through very weird things can happen with no
183     * easy explanation as one segment stops on another.
184     */
185    result = -EINVAL;
186    for (i = 0; i < nr_segments; i++) {
187        unsigned long mstart, mend;
188        unsigned long j;
189
190        mstart = image->segment[i].mem;
191        mend = mstart + image->segment[i].memsz;
192        for (j = 0; j < i; j++) {
193            unsigned long pstart, pend;
194            pstart = image->segment[j].mem;
195            pend = pstart + image->segment[j].memsz;
196            /* Do the segments overlap ? */
197            if ((mend > pstart) && (mstart < pend))
198                goto out;
199        }
200    }
201
202    /* Ensure our buffer sizes are strictly less than
203     * our memory sizes. This should always be the case,
204     * and it is easier to check up front than to be surprised
205     * later on.
206     */
207    result = -EINVAL;
208    for (i = 0; i < nr_segments; i++) {
209        if (image->segment[i].bufsz > image->segment[i].memsz)
210            goto out;
211    }
212
213    result = 0;
214out:
215    if (result == 0)
216        *rimage = image;
217    else
218        kfree(image);
219
220    return result;
221
222}
223
224static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
225                unsigned long nr_segments,
226                struct kexec_segment __user *segments)
227{
228    int result;
229    struct kimage *image;
230
231    /* Allocate and initialize a controlling structure */
232    image = NULL;
233    result = do_kimage_alloc(&image, entry, nr_segments, segments);
234    if (result)
235        goto out;
236
237    *rimage = image;
238
239    /*
240     * Find a location for the control code buffer, and add it
241     * the vector of segments so that it's pages will also be
242     * counted as destination pages.
243     */
244    result = -ENOMEM;
245    image->control_code_page = kimage_alloc_control_pages(image,
246                       get_order(KEXEC_CONTROL_PAGE_SIZE));
247    if (!image->control_code_page) {
248        printk(KERN_ERR "Could not allocate control_code_buffer\n");
249        goto out;
250    }
251
252    image->swap_page = kimage_alloc_control_pages(image, 0);
253    if (!image->swap_page) {
254        printk(KERN_ERR "Could not allocate swap buffer\n");
255        goto out;
256    }
257
258    result = 0;
259 out:
260    if (result == 0)
261        *rimage = image;
262    else
263        kfree(image);
264
265    return result;
266}
267
268static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
269                unsigned long nr_segments,
270                struct kexec_segment __user *segments)
271{
272    int result;
273    struct kimage *image;
274    unsigned long i;
275
276    image = NULL;
277    /* Verify we have a valid entry point */
278    if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
279        result = -EADDRNOTAVAIL;
280        goto out;
281    }
282
283    /* Allocate and initialize a controlling structure */
284    result = do_kimage_alloc(&image, entry, nr_segments, segments);
285    if (result)
286        goto out;
287
288    /* Enable the special crash kernel control page
289     * allocation policy.
290     */
291    image->control_page = crashk_res.start;
292    image->type = KEXEC_TYPE_CRASH;
293
294    /*
295     * Verify we have good destination addresses. Normally
296     * the caller is responsible for making certain we don't
297     * attempt to load the new image into invalid or reserved
298     * areas of RAM. But crash kernels are preloaded into a
299     * reserved area of ram. We must ensure the addresses
300     * are in the reserved area otherwise preloading the
301     * kernel could corrupt things.
302     */
303    result = -EADDRNOTAVAIL;
304    for (i = 0; i < nr_segments; i++) {
305        unsigned long mstart, mend;
306
307        mstart = image->segment[i].mem;
308        mend = mstart + image->segment[i].memsz - 1;
309        /* Ensure we are within the crash kernel limits */
310        if ((mstart < crashk_res.start) || (mend > crashk_res.end))
311            goto out;
312    }
313
314    /*
315     * Find a location for the control code buffer, and add
316     * the vector of segments so that it's pages will also be
317     * counted as destination pages.
318     */
319    result = -ENOMEM;
320    image->control_code_page = kimage_alloc_control_pages(image,
321                       get_order(KEXEC_CONTROL_PAGE_SIZE));
322    if (!image->control_code_page) {
323        printk(KERN_ERR "Could not allocate control_code_buffer\n");
324        goto out;
325    }
326
327    result = 0;
328out:
329    if (result == 0)
330        *rimage = image;
331    else
332        kfree(image);
333
334    return result;
335}
336
337static int kimage_is_destination_range(struct kimage *image,
338                    unsigned long start,
339                    unsigned long end)
340{
341    unsigned long i;
342
343    for (i = 0; i < image->nr_segments; i++) {
344        unsigned long mstart, mend;
345
346        mstart = image->segment[i].mem;
347        mend = mstart + image->segment[i].memsz;
348        if ((end > mstart) && (start < mend))
349            return 1;
350    }
351
352    return 0;
353}
354
355static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
356{
357    struct page *pages;
358
359    pages = alloc_pages(gfp_mask, order);
360    if (pages) {
361        unsigned int count, i;
362        pages->mapping = NULL;
363        set_page_private(pages, order);
364        count = 1 << order;
365        for (i = 0; i < count; i++)
366            SetPageReserved(pages + i);
367    }
368
369    return pages;
370}
371
372static void kimage_free_pages(struct page *page)
373{
374    unsigned int order, count, i;
375
376    order = page_private(page);
377    count = 1 << order;
378    for (i = 0; i < count; i++)
379        ClearPageReserved(page + i);
380    __free_pages(page, order);
381}
382
383static void kimage_free_page_list(struct list_head *list)
384{
385    struct list_head *pos, *next;
386
387    list_for_each_safe(pos, next, list) {
388        struct page *page;
389
390        page = list_entry(pos, struct page, lru);
391        list_del(&page->lru);
392        kimage_free_pages(page);
393    }
394}
395
396static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
397                            unsigned int order)
398{
399    /* Control pages are special, they are the intermediaries
400     * that are needed while we copy the rest of the pages
401     * to their final resting place. As such they must
402     * not conflict with either the destination addresses
403     * or memory the kernel is already using.
404     *
405     * The only case where we really need more than one of
406     * these are for architectures where we cannot disable
407     * the MMU and must instead generate an identity mapped
408     * page table for all of the memory.
409     *
410     * At worst this runs in O(N) of the image size.
411     */
412    struct list_head extra_pages;
413    struct page *pages;
414    unsigned int count;
415
416    count = 1 << order;
417    INIT_LIST_HEAD(&extra_pages);
418
419    /* Loop while I can allocate a page and the page allocated
420     * is a destination page.
421     */
422    do {
423        unsigned long pfn, epfn, addr, eaddr;
424
425        pages = kimage_alloc_pages(GFP_KERNEL, order);
426        if (!pages)
427            break;
428        pfn = page_to_pfn(pages);
429        epfn = pfn + count;
430        addr = pfn << PAGE_SHIFT;
431        eaddr = epfn << PAGE_SHIFT;
432        if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
433                  kimage_is_destination_range(image, addr, eaddr)) {
434            list_add(&pages->lru, &extra_pages);
435            pages = NULL;
436        }
437    } while (!pages);
438
439    if (pages) {
440        /* Remember the allocated page... */
441        list_add(&pages->lru, &image->control_pages);
442
443        /* Because the page is already in it's destination
444         * location we will never allocate another page at
445         * that address. Therefore kimage_alloc_pages
446         * will not return it (again) and we don't need
447         * to give it an entry in image->segment[].
448         */
449    }
450    /* Deal with the destination pages I have inadvertently allocated.
451     *
452     * Ideally I would convert multi-page allocations into single
453     * page allocations, and add everyting to image->dest_pages.
454     *
455     * For now it is simpler to just free the pages.
456     */
457    kimage_free_page_list(&extra_pages);
458
459    return pages;
460}
461
462static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
463                              unsigned int order)
464{
465    /* Control pages are special, they are the intermediaries
466     * that are needed while we copy the rest of the pages
467     * to their final resting place. As such they must
468     * not conflict with either the destination addresses
469     * or memory the kernel is already using.
470     *
471     * Control pages are also the only pags we must allocate
472     * when loading a crash kernel. All of the other pages
473     * are specified by the segments and we just memcpy
474     * into them directly.
475     *
476     * The only case where we really need more than one of
477     * these are for architectures where we cannot disable
478     * the MMU and must instead generate an identity mapped
479     * page table for all of the memory.
480     *
481     * Given the low demand this implements a very simple
482     * allocator that finds the first hole of the appropriate
483     * size in the reserved memory region, and allocates all
484     * of the memory up to and including the hole.
485     */
486    unsigned long hole_start, hole_end, size;
487    struct page *pages;
488
489    pages = NULL;
490    size = (1 << order) << PAGE_SHIFT;
491    hole_start = (image->control_page + (size - 1)) & ~(size - 1);
492    hole_end = hole_start + size - 1;
493    while (hole_end <= crashk_res.end) {
494        unsigned long i;
495
496        if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
497            break;
498        if (hole_end > crashk_res.end)
499            break;
500        /* See if I overlap any of the segments */
501        for (i = 0; i < image->nr_segments; i++) {
502            unsigned long mstart, mend;
503
504            mstart = image->segment[i].mem;
505            mend = mstart + image->segment[i].memsz - 1;
506            if ((hole_end >= mstart) && (hole_start <= mend)) {
507                /* Advance the hole to the end of the segment */
508                hole_start = (mend + (size - 1)) & ~(size - 1);
509                hole_end = hole_start + size - 1;
510                break;
511            }
512        }
513        /* If I don't overlap any segments I have found my hole! */
514        if (i == image->nr_segments) {
515            pages = pfn_to_page(hole_start >> PAGE_SHIFT);
516            break;
517        }
518    }
519    if (pages)
520        image->control_page = hole_end;
521
522    return pages;
523}
524
525
526struct page *kimage_alloc_control_pages(struct kimage *image,
527                     unsigned int order)
528{
529    struct page *pages = NULL;
530
531    switch (image->type) {
532    case KEXEC_TYPE_DEFAULT:
533        pages = kimage_alloc_normal_control_pages(image, order);
534        break;
535    case KEXEC_TYPE_CRASH:
536        pages = kimage_alloc_crash_control_pages(image, order);
537        break;
538    }
539
540    return pages;
541}
542
543static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
544{
545    if (*image->entry != 0)
546        image->entry++;
547
548    if (image->entry == image->last_entry) {
549        kimage_entry_t *ind_page;
550        struct page *page;
551
552        page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
553        if (!page)
554            return -ENOMEM;
555
556        ind_page = page_address(page);
557        *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
558        image->entry = ind_page;
559        image->last_entry = ind_page +
560                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
561    }
562    *image->entry = entry;
563    image->entry++;
564    *image->entry = 0;
565
566    return 0;
567}
568
569static int kimage_set_destination(struct kimage *image,
570                   unsigned long destination)
571{
572    int result;
573
574    destination &= PAGE_MASK;
575    result = kimage_add_entry(image, destination | IND_DESTINATION);
576    if (result == 0)
577        image->destination = destination;
578
579    return result;
580}
581
582
583static int kimage_add_page(struct kimage *image, unsigned long page)
584{
585    int result;
586
587    page &= PAGE_MASK;
588    result = kimage_add_entry(image, page | IND_SOURCE);
589    if (result == 0)
590        image->destination += PAGE_SIZE;
591
592    return result;
593}
594
595
596static void kimage_free_extra_pages(struct kimage *image)
597{
598    /* Walk through and free any extra destination pages I may have */
599    kimage_free_page_list(&image->dest_pages);
600
601    /* Walk through and free any unuseable pages I have cached */
602    kimage_free_page_list(&image->unuseable_pages);
603
604}
605static void kimage_terminate(struct kimage *image)
606{
607    if (*image->entry != 0)
608        image->entry++;
609
610    *image->entry = IND_DONE;
611}
612
613#define for_each_kimage_entry(image, ptr, entry) \
614    for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
615        ptr = (entry & IND_INDIRECTION)? \
616            phys_to_virt((entry & PAGE_MASK)): ptr +1)
617
618static void kimage_free_entry(kimage_entry_t entry)
619{
620    struct page *page;
621
622    page = pfn_to_page(entry >> PAGE_SHIFT);
623    kimage_free_pages(page);
624}
625
626static void kimage_free(struct kimage *image)
627{
628    kimage_entry_t *ptr, entry;
629    kimage_entry_t ind = 0;
630
631    if (!image)
632        return;
633
634    kimage_free_extra_pages(image);
635    for_each_kimage_entry(image, ptr, entry) {
636        if (entry & IND_INDIRECTION) {
637            /* Free the previous indirection page */
638            if (ind & IND_INDIRECTION)
639                kimage_free_entry(ind);
640            /* Save this indirection page until we are
641             * done with it.
642             */
643            ind = entry;
644        }
645        else if (entry & IND_SOURCE)
646            kimage_free_entry(entry);
647    }
648    /* Free the final indirection page */
649    if (ind & IND_INDIRECTION)
650        kimage_free_entry(ind);
651
652    /* Handle any machine specific cleanup */
653    machine_kexec_cleanup(image);
654
655    /* Free the kexec control pages... */
656    kimage_free_page_list(&image->control_pages);
657    kfree(image);
658}
659
660static kimage_entry_t *kimage_dst_used(struct kimage *image,
661                    unsigned long page)
662{
663    kimage_entry_t *ptr, entry;
664    unsigned long destination = 0;
665
666    for_each_kimage_entry(image, ptr, entry) {
667        if (entry & IND_DESTINATION)
668            destination = entry & PAGE_MASK;
669        else if (entry & IND_SOURCE) {
670            if (page == destination)
671                return ptr;
672            destination += PAGE_SIZE;
673        }
674    }
675
676    return NULL;
677}
678
679static struct page *kimage_alloc_page(struct kimage *image,
680                    gfp_t gfp_mask,
681                    unsigned long destination)
682{
683    /*
684     * Here we implement safeguards to ensure that a source page
685     * is not copied to its destination page before the data on
686     * the destination page is no longer useful.
687     *
688     * To do this we maintain the invariant that a source page is
689     * either its own destination page, or it is not a
690     * destination page at all.
691     *
692     * That is slightly stronger than required, but the proof
693     * that no problems will not occur is trivial, and the
694     * implementation is simply to verify.
695     *
696     * When allocating all pages normally this algorithm will run
697     * in O(N) time, but in the worst case it will run in O(N^2)
698     * time. If the runtime is a problem the data structures can
699     * be fixed.
700     */
701    struct page *page;
702    unsigned long addr;
703
704    /*
705     * Walk through the list of destination pages, and see if I
706     * have a match.
707     */
708    list_for_each_entry(page, &image->dest_pages, lru) {
709        addr = page_to_pfn(page) << PAGE_SHIFT;
710        if (addr == destination) {
711            list_del(&page->lru);
712            return page;
713        }
714    }
715    page = NULL;
716    while (1) {
717        kimage_entry_t *old;
718
719        /* Allocate a page, if we run out of memory give up */
720        page = kimage_alloc_pages(gfp_mask, 0);
721        if (!page)
722            return NULL;
723        /* If the page cannot be used file it away */
724        if (page_to_pfn(page) >
725                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
726            list_add(&page->lru, &image->unuseable_pages);
727            continue;
728        }
729        addr = page_to_pfn(page) << PAGE_SHIFT;
730
731        /* If it is the destination page we want use it */
732        if (addr == destination)
733            break;
734
735        /* If the page is not a destination page use it */
736        if (!kimage_is_destination_range(image, addr,
737                          addr + PAGE_SIZE))
738            break;
739
740        /*
741         * I know that the page is someones destination page.
742         * See if there is already a source page for this
743         * destination page. And if so swap the source pages.
744         */
745        old = kimage_dst_used(image, addr);
746        if (old) {
747            /* If so move it */
748            unsigned long old_addr;
749            struct page *old_page;
750
751            old_addr = *old & PAGE_MASK;
752            old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
753            copy_highpage(page, old_page);
754            *old = addr | (*old & ~PAGE_MASK);
755
756            /* The old page I have found cannot be a
757             * destination page, so return it if it's
758             * gfp_flags honor the ones passed in.
759             */
760            if (!(gfp_mask & __GFP_HIGHMEM) &&
761                PageHighMem(old_page)) {
762                kimage_free_pages(old_page);
763                continue;
764            }
765            addr = old_addr;
766            page = old_page;
767            break;
768        }
769        else {
770            /* Place the page on the destination list I
771             * will use it later.
772             */
773            list_add(&page->lru, &image->dest_pages);
774        }
775    }
776
777    return page;
778}
779
780static int kimage_load_normal_segment(struct kimage *image,
781                     struct kexec_segment *segment)
782{
783    unsigned long maddr;
784    unsigned long ubytes, mbytes;
785    int result;
786    unsigned char __user *buf;
787
788    result = 0;
789    buf = segment->buf;
790    ubytes = segment->bufsz;
791    mbytes = segment->memsz;
792    maddr = segment->mem;
793
794    result = kimage_set_destination(image, maddr);
795    if (result < 0)
796        goto out;
797
798    while (mbytes) {
799        struct page *page;
800        char *ptr;
801        size_t uchunk, mchunk;
802
803        page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
804        if (!page) {
805            result = -ENOMEM;
806            goto out;
807        }
808        result = kimage_add_page(image, page_to_pfn(page)
809                                << PAGE_SHIFT);
810        if (result < 0)
811            goto out;
812
813        ptr = kmap(page);
814        /* Start with a clear page */
815        memset(ptr, 0, PAGE_SIZE);
816        ptr += maddr & ~PAGE_MASK;
817        mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
818        if (mchunk > mbytes)
819            mchunk = mbytes;
820
821        uchunk = mchunk;
822        if (uchunk > ubytes)
823            uchunk = ubytes;
824
825        result = copy_from_user(ptr, buf, uchunk);
826        kunmap(page);
827        if (result) {
828            result = (result < 0) ? result : -EIO;
829            goto out;
830        }
831        ubytes -= uchunk;
832        maddr += mchunk;
833        buf += mchunk;
834        mbytes -= mchunk;
835    }
836out:
837    return result;
838}
839
840static int kimage_load_crash_segment(struct kimage *image,
841                    struct kexec_segment *segment)
842{
843    /* For crash dumps kernels we simply copy the data from
844     * user space to it's destination.
845     * We do things a page at a time for the sake of kmap.
846     */
847    unsigned long maddr;
848    unsigned long ubytes, mbytes;
849    int result;
850    unsigned char __user *buf;
851
852    result = 0;
853    buf = segment->buf;
854    ubytes = segment->bufsz;
855    mbytes = segment->memsz;
856    maddr = segment->mem;
857    while (mbytes) {
858        struct page *page;
859        char *ptr;
860        size_t uchunk, mchunk;
861
862        page = pfn_to_page(maddr >> PAGE_SHIFT);
863        if (!page) {
864            result = -ENOMEM;
865            goto out;
866        }
867        ptr = kmap(page);
868        ptr += maddr & ~PAGE_MASK;
869        mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
870        if (mchunk > mbytes)
871            mchunk = mbytes;
872
873        uchunk = mchunk;
874        if (uchunk > ubytes) {
875            uchunk = ubytes;
876            /* Zero the trailing part of the page */
877            memset(ptr + uchunk, 0, mchunk - uchunk);
878        }
879        result = copy_from_user(ptr, buf, uchunk);
880        kexec_flush_icache_page(page);
881        kunmap(page);
882        if (result) {
883            result = (result < 0) ? result : -EIO;
884            goto out;
885        }
886        ubytes -= uchunk;
887        maddr += mchunk;
888        buf += mchunk;
889        mbytes -= mchunk;
890    }
891out:
892    return result;
893}
894
895static int kimage_load_segment(struct kimage *image,
896                struct kexec_segment *segment)
897{
898    int result = -ENOMEM;
899
900    switch (image->type) {
901    case KEXEC_TYPE_DEFAULT:
902        result = kimage_load_normal_segment(image, segment);
903        break;
904    case KEXEC_TYPE_CRASH:
905        result = kimage_load_crash_segment(image, segment);
906        break;
907    }
908
909    return result;
910}
911
912/*
913 * Exec Kernel system call: for obvious reasons only root may call it.
914 *
915 * This call breaks up into three pieces.
916 * - A generic part which loads the new kernel from the current
917 * address space, and very carefully places the data in the
918 * allocated pages.
919 *
920 * - A generic part that interacts with the kernel and tells all of
921 * the devices to shut down. Preventing on-going dmas, and placing
922 * the devices in a consistent state so a later kernel can
923 * reinitialize them.
924 *
925 * - A machine specific part that includes the syscall number
926 * and the copies the image to it's final destination. And
927 * jumps into the image at entry.
928 *
929 * kexec does not sync, or unmount filesystems so if you need
930 * that to happen you need to do that yourself.
931 */
932struct kimage *kexec_image;
933struct kimage *kexec_crash_image;
934
935static DEFINE_MUTEX(kexec_mutex);
936
937SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
938        struct kexec_segment __user *, segments, unsigned long, flags)
939{
940    struct kimage **dest_image, *image;
941    int result;
942
943    /* We only trust the superuser with rebooting the system. */
944    if (!capable(CAP_SYS_BOOT))
945        return -EPERM;
946
947    /*
948     * Verify we have a legal set of flags
949     * This leaves us room for future extensions.
950     */
951    if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
952        return -EINVAL;
953
954    /* Verify we are on the appropriate architecture */
955    if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
956        ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
957        return -EINVAL;
958
959    /* Put an artificial cap on the number
960     * of segments passed to kexec_load.
961     */
962    if (nr_segments > KEXEC_SEGMENT_MAX)
963        return -EINVAL;
964
965    image = NULL;
966    result = 0;
967
968    /* Because we write directly to the reserved memory
969     * region when loading crash kernels we need a mutex here to
970     * prevent multiple crash kernels from attempting to load
971     * simultaneously, and to prevent a crash kernel from loading
972     * over the top of a in use crash kernel.
973     *
974     * KISS: always take the mutex.
975     */
976    if (!mutex_trylock(&kexec_mutex))
977        return -EBUSY;
978
979    dest_image = &kexec_image;
980    if (flags & KEXEC_ON_CRASH)
981        dest_image = &kexec_crash_image;
982    if (nr_segments > 0) {
983        unsigned long i;
984
985        /* Loading another kernel to reboot into */
986        if ((flags & KEXEC_ON_CRASH) == 0)
987            result = kimage_normal_alloc(&image, entry,
988                            nr_segments, segments);
989        /* Loading another kernel to switch to if this one crashes */
990        else if (flags & KEXEC_ON_CRASH) {
991            /* Free any current crash dump kernel before
992             * we corrupt it.
993             */
994            kimage_free(xchg(&kexec_crash_image, NULL));
995            result = kimage_crash_alloc(&image, entry,
996                             nr_segments, segments);
997        }
998        if (result)
999            goto out;
1000
1001        if (flags & KEXEC_PRESERVE_CONTEXT)
1002            image->preserve_context = 1;
1003        result = machine_kexec_prepare(image);
1004        if (result)
1005            goto out;
1006
1007        for (i = 0; i < nr_segments; i++) {
1008            result = kimage_load_segment(image, &image->segment[i]);
1009            if (result)
1010                goto out;
1011        }
1012        kimage_terminate(image);
1013    }
1014    /* Install the new kernel, and Uninstall the old */
1015    image = xchg(dest_image, image);
1016
1017out:
1018    mutex_unlock(&kexec_mutex);
1019    kimage_free(image);
1020
1021    return result;
1022}
1023
1024#ifdef CONFIG_COMPAT
1025asmlinkage long compat_sys_kexec_load(unsigned long entry,
1026                unsigned long nr_segments,
1027                struct compat_kexec_segment __user *segments,
1028                unsigned long flags)
1029{
1030    struct compat_kexec_segment in;
1031    struct kexec_segment out, __user *ksegments;
1032    unsigned long i, result;
1033
1034    /* Don't allow clients that don't understand the native
1035     * architecture to do anything.
1036     */
1037    if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1038        return -EINVAL;
1039
1040    if (nr_segments > KEXEC_SEGMENT_MAX)
1041        return -EINVAL;
1042
1043    ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1044    for (i=0; i < nr_segments; i++) {
1045        result = copy_from_user(&in, &segments[i], sizeof(in));
1046        if (result)
1047            return -EFAULT;
1048
1049        out.buf = compat_ptr(in.buf);
1050        out.bufsz = in.bufsz;
1051        out.mem = in.mem;
1052        out.memsz = in.memsz;
1053
1054        result = copy_to_user(&ksegments[i], &out, sizeof(out));
1055        if (result)
1056            return -EFAULT;
1057    }
1058
1059    return sys_kexec_load(entry, nr_segments, ksegments, flags);
1060}
1061#endif
1062
1063void crash_kexec(struct pt_regs *regs)
1064{
1065    /* Take the kexec_mutex here to prevent sys_kexec_load
1066     * running on one cpu from replacing the crash kernel
1067     * we are using after a panic on a different cpu.
1068     *
1069     * If the crash kernel was not located in a fixed area
1070     * of memory the xchg(&kexec_crash_image) would be
1071     * sufficient. But since I reuse the memory...
1072     */
1073    if (mutex_trylock(&kexec_mutex)) {
1074        if (kexec_crash_image) {
1075            struct pt_regs fixed_regs;
1076            crash_setup_regs(&fixed_regs, regs);
1077            crash_save_vmcoreinfo();
1078            machine_crash_shutdown(&fixed_regs);
1079            machine_kexec(kexec_crash_image);
1080        }
1081        mutex_unlock(&kexec_mutex);
1082    }
1083}
1084
1085static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1086                size_t data_len)
1087{
1088    struct elf_note note;
1089
1090    note.n_namesz = strlen(name) + 1;
1091    note.n_descsz = data_len;
1092    note.n_type = type;
1093    memcpy(buf, &note, sizeof(note));
1094    buf += (sizeof(note) + 3)/4;
1095    memcpy(buf, name, note.n_namesz);
1096    buf += (note.n_namesz + 3)/4;
1097    memcpy(buf, data, note.n_descsz);
1098    buf += (note.n_descsz + 3)/4;
1099
1100    return buf;
1101}
1102
1103static void final_note(u32 *buf)
1104{
1105    struct elf_note note;
1106
1107    note.n_namesz = 0;
1108    note.n_descsz = 0;
1109    note.n_type = 0;
1110    memcpy(buf, &note, sizeof(note));
1111}
1112
1113void crash_save_cpu(struct pt_regs *regs, int cpu)
1114{
1115    struct elf_prstatus prstatus;
1116    u32 *buf;
1117
1118    if ((cpu < 0) || (cpu >= nr_cpu_ids))
1119        return;
1120
1121    /* Using ELF notes here is opportunistic.
1122     * I need a well defined structure format
1123     * for the data I pass, and I need tags
1124     * on the data to indicate what information I have
1125     * squirrelled away. ELF notes happen to provide
1126     * all of that, so there is no need to invent something new.
1127     */
1128    buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1129    if (!buf)
1130        return;
1131    memset(&prstatus, 0, sizeof(prstatus));
1132    prstatus.pr_pid = current->pid;
1133    elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1134    buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1135                        &prstatus, sizeof(prstatus));
1136    final_note(buf);
1137}
1138
1139static int __init crash_notes_memory_init(void)
1140{
1141    /* Allocate memory for saving cpu registers. */
1142    crash_notes = alloc_percpu(note_buf_t);
1143    if (!crash_notes) {
1144        printk("Kexec: Memory allocation for saving cpu register"
1145        " states failed\n");
1146        return -ENOMEM;
1147    }
1148    return 0;
1149}
1150module_init(crash_notes_memory_init)
1151
1152
1153/*
1154 * parsing the "crashkernel" commandline
1155 *
1156 * this code is intended to be called from architecture specific code
1157 */
1158
1159
1160/*
1161 * This function parses command lines in the format
1162 *
1163 * crashkernel=ramsize-range:size[,...][@offset]
1164 *
1165 * The function returns 0 on success and -EINVAL on failure.
1166 */
1167static int __init parse_crashkernel_mem(char *cmdline,
1168                    unsigned long long system_ram,
1169                    unsigned long long *crash_size,
1170                    unsigned long long *crash_base)
1171{
1172    char *cur = cmdline, *tmp;
1173
1174    /* for each entry of the comma-separated list */
1175    do {
1176        unsigned long long start, end = ULLONG_MAX, size;
1177
1178        /* get the start of the range */
1179        start = memparse(cur, &tmp);
1180        if (cur == tmp) {
1181            pr_warning("crashkernel: Memory value expected\n");
1182            return -EINVAL;
1183        }
1184        cur = tmp;
1185        if (*cur != '-') {
1186            pr_warning("crashkernel: '-' expected\n");
1187            return -EINVAL;
1188        }
1189        cur++;
1190
1191        /* if no ':' is here, than we read the end */
1192        if (*cur != ':') {
1193            end = memparse(cur, &tmp);
1194            if (cur == tmp) {
1195                pr_warning("crashkernel: Memory "
1196                        "value expected\n");
1197                return -EINVAL;
1198            }
1199            cur = tmp;
1200            if (end <= start) {
1201                pr_warning("crashkernel: end <= start\n");
1202                return -EINVAL;
1203            }
1204        }
1205
1206        if (*cur != ':') {
1207            pr_warning("crashkernel: ':' expected\n");
1208            return -EINVAL;
1209        }
1210        cur++;
1211
1212        size = memparse(cur, &tmp);
1213        if (cur == tmp) {
1214            pr_warning("Memory value expected\n");
1215            return -EINVAL;
1216        }
1217        cur = tmp;
1218        if (size >= system_ram) {
1219            pr_warning("crashkernel: invalid size\n");
1220            return -EINVAL;
1221        }
1222
1223        /* match ? */
1224        if (system_ram >= start && system_ram < end) {
1225            *crash_size = size;
1226            break;
1227        }
1228    } while (*cur++ == ',');
1229
1230    if (*crash_size > 0) {
1231        while (*cur && *cur != ' ' && *cur != '@')
1232            cur++;
1233        if (*cur == '@') {
1234            cur++;
1235            *crash_base = memparse(cur, &tmp);
1236            if (cur == tmp) {
1237                pr_warning("Memory value expected "
1238                        "after '@'\n");
1239                return -EINVAL;
1240            }
1241        }
1242    }
1243
1244    return 0;
1245}
1246
1247/*
1248 * That function parses "simple" (old) crashkernel command lines like
1249 *
1250 * crashkernel=size[@offset]
1251 *
1252 * It returns 0 on success and -EINVAL on failure.
1253 */
1254static int __init parse_crashkernel_simple(char *cmdline,
1255                       unsigned long long *crash_size,
1256                       unsigned long long *crash_base)
1257{
1258    char *cur = cmdline;
1259
1260    *crash_size = memparse(cmdline, &cur);
1261    if (cmdline == cur) {
1262        pr_warning("crashkernel: memory value expected\n");
1263        return -EINVAL;
1264    }
1265
1266    if (*cur == '@')
1267        *crash_base = memparse(cur+1, &cur);
1268
1269    return 0;
1270}
1271
1272/*
1273 * That function is the entry point for command line parsing and should be
1274 * called from the arch-specific code.
1275 */
1276int __init parse_crashkernel(char *cmdline,
1277                 unsigned long long system_ram,
1278                 unsigned long long *crash_size,
1279                 unsigned long long *crash_base)
1280{
1281    char *p = cmdline, *ck_cmdline = NULL;
1282    char *first_colon, *first_space;
1283
1284    BUG_ON(!crash_size || !crash_base);
1285    *crash_size = 0;
1286    *crash_base = 0;
1287
1288    /* find crashkernel and use the last one if there are more */
1289    p = strstr(p, "crashkernel=");
1290    while (p) {
1291        ck_cmdline = p;
1292        p = strstr(p+1, "crashkernel=");
1293    }
1294
1295    if (!ck_cmdline)
1296        return -EINVAL;
1297
1298    ck_cmdline += 12; /* strlen("crashkernel=") */
1299
1300    /*
1301     * if the commandline contains a ':', then that's the extended
1302     * syntax -- if not, it must be the classic syntax
1303     */
1304    first_colon = strchr(ck_cmdline, ':');
1305    first_space = strchr(ck_cmdline, ' ');
1306    if (first_colon && (!first_space || first_colon < first_space))
1307        return parse_crashkernel_mem(ck_cmdline, system_ram,
1308                crash_size, crash_base);
1309    else
1310        return parse_crashkernel_simple(ck_cmdline, crash_size,
1311                crash_base);
1312
1313    return 0;
1314}
1315
1316
1317
1318void crash_save_vmcoreinfo(void)
1319{
1320    u32 *buf;
1321
1322    if (!vmcoreinfo_size)
1323        return;
1324
1325    vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1326
1327    buf = (u32 *)vmcoreinfo_note;
1328
1329    buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1330                  vmcoreinfo_size);
1331
1332    final_note(buf);
1333}
1334
1335void vmcoreinfo_append_str(const char *fmt, ...)
1336{
1337    va_list args;
1338    char buf[0x50];
1339    int r;
1340
1341    va_start(args, fmt);
1342    r = vsnprintf(buf, sizeof(buf), fmt, args);
1343    va_end(args);
1344
1345    if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1346        r = vmcoreinfo_max_size - vmcoreinfo_size;
1347
1348    memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1349
1350    vmcoreinfo_size += r;
1351}
1352
1353/*
1354 * provide an empty default implementation here -- architecture
1355 * code may override this
1356 */
1357void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1358{}
1359
1360unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1361{
1362    return __pa((unsigned long)(char *)&vmcoreinfo_note);
1363}
1364
1365static int __init crash_save_vmcoreinfo_init(void)
1366{
1367    VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1368    VMCOREINFO_PAGESIZE(PAGE_SIZE);
1369
1370    VMCOREINFO_SYMBOL(init_uts_ns);
1371    VMCOREINFO_SYMBOL(node_online_map);
1372    VMCOREINFO_SYMBOL(swapper_pg_dir);
1373    VMCOREINFO_SYMBOL(_stext);
1374    VMCOREINFO_SYMBOL(vmlist);
1375
1376#ifndef CONFIG_NEED_MULTIPLE_NODES
1377    VMCOREINFO_SYMBOL(mem_map);
1378    VMCOREINFO_SYMBOL(contig_page_data);
1379#endif
1380#ifdef CONFIG_SPARSEMEM
1381    VMCOREINFO_SYMBOL(mem_section);
1382    VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1383    VMCOREINFO_STRUCT_SIZE(mem_section);
1384    VMCOREINFO_OFFSET(mem_section, section_mem_map);
1385#endif
1386    VMCOREINFO_STRUCT_SIZE(page);
1387    VMCOREINFO_STRUCT_SIZE(pglist_data);
1388    VMCOREINFO_STRUCT_SIZE(zone);
1389    VMCOREINFO_STRUCT_SIZE(free_area);
1390    VMCOREINFO_STRUCT_SIZE(list_head);
1391    VMCOREINFO_SIZE(nodemask_t);
1392    VMCOREINFO_OFFSET(page, flags);
1393    VMCOREINFO_OFFSET(page, _count);
1394    VMCOREINFO_OFFSET(page, mapping);
1395    VMCOREINFO_OFFSET(page, lru);
1396    VMCOREINFO_OFFSET(pglist_data, node_zones);
1397    VMCOREINFO_OFFSET(pglist_data, nr_zones);
1398#ifdef CONFIG_FLAT_NODE_MEM_MAP
1399    VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1400#endif
1401    VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1402    VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1403    VMCOREINFO_OFFSET(pglist_data, node_id);
1404    VMCOREINFO_OFFSET(zone, free_area);
1405    VMCOREINFO_OFFSET(zone, vm_stat);
1406    VMCOREINFO_OFFSET(zone, spanned_pages);
1407    VMCOREINFO_OFFSET(free_area, free_list);
1408    VMCOREINFO_OFFSET(list_head, next);
1409    VMCOREINFO_OFFSET(list_head, prev);
1410    VMCOREINFO_OFFSET(vm_struct, addr);
1411    VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1412    log_buf_kexec_setup();
1413    VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1414    VMCOREINFO_NUMBER(NR_FREE_PAGES);
1415    VMCOREINFO_NUMBER(PG_lru);
1416    VMCOREINFO_NUMBER(PG_private);
1417    VMCOREINFO_NUMBER(PG_swapcache);
1418
1419    arch_crash_save_vmcoreinfo();
1420
1421    return 0;
1422}
1423
1424module_init(crash_save_vmcoreinfo_init)
1425
1426/*
1427 * Move into place and start executing a preloaded standalone
1428 * executable. If nothing was preloaded return an error.
1429 */
1430int kernel_kexec(void)
1431{
1432    int error = 0;
1433
1434    if (!mutex_trylock(&kexec_mutex))
1435        return -EBUSY;
1436    if (!kexec_image) {
1437        error = -EINVAL;
1438        goto Unlock;
1439    }
1440
1441#ifdef CONFIG_KEXEC_JUMP
1442    if (kexec_image->preserve_context) {
1443        mutex_lock(&pm_mutex);
1444        pm_prepare_console();
1445        error = freeze_processes();
1446        if (error) {
1447            error = -EBUSY;
1448            goto Restore_console;
1449        }
1450        suspend_console();
1451        error = dpm_suspend_start(PMSG_FREEZE);
1452        if (error)
1453            goto Resume_console;
1454        /* At this point, dpm_suspend_start() has been called,
1455         * but *not* dpm_suspend_noirq(). We *must* call
1456         * dpm_suspend_noirq() now. Otherwise, drivers for
1457         * some devices (e.g. interrupt controllers) become
1458         * desynchronized with the actual state of the
1459         * hardware at resume time, and evil weirdness ensues.
1460         */
1461        error = dpm_suspend_noirq(PMSG_FREEZE);
1462        if (error)
1463            goto Resume_devices;
1464        error = disable_nonboot_cpus();
1465        if (error)
1466            goto Enable_cpus;
1467        local_irq_disable();
1468        /* Suspend system devices */
1469        error = sysdev_suspend(PMSG_FREEZE);
1470        if (error)
1471            goto Enable_irqs;
1472    } else
1473#endif
1474    {
1475        kernel_restart_prepare(NULL);
1476        printk(KERN_EMERG "Starting new kernel\n");
1477        machine_shutdown();
1478    }
1479
1480    machine_kexec(kexec_image);
1481
1482#ifdef CONFIG_KEXEC_JUMP
1483    if (kexec_image->preserve_context) {
1484        sysdev_resume();
1485 Enable_irqs:
1486        local_irq_enable();
1487 Enable_cpus:
1488        enable_nonboot_cpus();
1489        dpm_resume_noirq(PMSG_RESTORE);
1490 Resume_devices:
1491        dpm_resume_end(PMSG_RESTORE);
1492 Resume_console:
1493        resume_console();
1494        thaw_processes();
1495 Restore_console:
1496        pm_restore_console();
1497        mutex_unlock(&pm_mutex);
1498    }
1499#endif
1500
1501 Unlock:
1502    mutex_unlock(&kexec_mutex);
1503    return error;
1504}
1505

Archive Download this file



interactive